void CpDo( void ) { // Compile a DO statement. signed_32 term; AddCSNode( CS_DO ); term = DoLabel(); if( term == 0 ) { Extension( DO_DO_EXT ); } InitDo( term ); ColonLabel(); }
void CpDoWhile( void ) { // Compile a DO WHILE statement. Extension( DO_DO_EXT ); InitLoop( CS_DO_WHILE ); CSHead->cs_info.do_term = DoLabel(); if( RecKeyWord( "WHILE" ) ) { RemKeyword( CITNode, 5 ); CSCond( CSHead->bottom ); BlockLabel(); } else { if( ReqNOpn() ) { BlockLabel(); } } }
std::ostream & TKTry:: Release(std::ostream & s) const { DoLabel(s); // try must have braces switch (GetChildCount()) { case 2: { // try-finally s << "try"; Token & what = GetFirstChild(); // Add braces if (what.GetType() == TokenType::TO_BRACE_O) { what.Release(s); } else { s << '{'; what.Release(s); s << '}'; } s << "finally"; Token & final = GetChild(1); // Add braces if (final.GetType() == TokenType::TO_BRACE_O) { final.Release(s); } else { s << '{'; final.Release(s); s << '}'; }
int Statement (int* PendingToken) /* Statement parser. Returns 1 if the statement does a return/break, returns ** 0 otherwise. If the PendingToken pointer is not NULL, the function will ** not skip the terminating token of the statement (closing brace or ** semicolon), but store true if there is a pending token, and false if there ** is none. The token is always checked, so there is no need for the caller to ** check this token, it must be skipped, however. If the argument pointer is ** NULL, the function will skip the token. */ { ExprDesc Expr; int GotBreak; CodeMark Start, End; /* Assume no pending token */ if (PendingToken) { *PendingToken = 0; } /* Check for a label. A label is always part of a statement, it does not ** replace one. */ while (CurTok.Tok == TOK_IDENT && NextTok.Tok == TOK_COLON) { /* Handle the label */ DoLabel (); if (CheckLabelWithoutStatement ()) { return 0; } } switch (CurTok.Tok) { case TOK_LCURLY: NextToken (); GotBreak = CompoundStatement (); CheckTok (TOK_RCURLY, "`{' expected", PendingToken); return GotBreak; case TOK_IF: return IfStatement (); case TOK_WHILE: WhileStatement (); break; case TOK_DO: DoStatement (); break; case TOK_SWITCH: SwitchStatement (); break; case TOK_RETURN: ReturnStatement (); CheckSemi (PendingToken); return 1; case TOK_BREAK: BreakStatement (); CheckSemi (PendingToken); return 1; case TOK_CONTINUE: ContinueStatement (); CheckSemi (PendingToken); return 1; case TOK_FOR: ForStatement (); break; case TOK_GOTO: GotoStatement (); CheckSemi (PendingToken); return 1; case TOK_SEMI: /* Ignore it */ CheckSemi (PendingToken); break; case TOK_PRAGMA: DoPragma (); break; case TOK_CASE: CaseLabel (); CheckLabelWithoutStatement (); break; case TOK_DEFAULT: DefaultLabel (); CheckLabelWithoutStatement (); break; default: /* Remember the current code position */ GetCodePos (&Start); /* Actual statement */ ExprWithCheck (hie0, &Expr); /* Load the result only if it is an lvalue and the type is ** marked as volatile. Otherwise the load is useless. */ if (ED_IsLVal (&Expr) && IsQualVolatile (Expr.Type)) { LoadExpr (CF_NONE, &Expr); } /* If the statement didn't generate code, and is not of type ** void, emit a warning. */ GetCodePos (&End); if (CodeRangeIsEmpty (&Start, &End) && !IsTypeVoid (Expr.Type) && IS_Get (&WarnNoEffect)) { Warning ("Statement has no effect"); } CheckSemi (PendingToken); } return 0; }
void Constraint::DrawOrGetDistance(Vector *labelPos) { if(!SS.GW.showConstraints) return; Group *g = SK.GetGroup(group); // If the group is hidden, then the constraints are hidden and not // able to be selected. if(!(g->visible)) return; // And likewise if the group is not the active group; except for comments // with an assigned style. if(g->h.v != SS.GW.activeGroup.v && !(type == COMMENT && disp.style.v)) { return; } if(disp.style.v) { Style *s = Style::Get(disp.style); if(!s->visible) return; } // Unit vectors that describe our current view of the scene. One pixel // long, not one actual unit. Vector gr = SS.GW.projRight.ScaledBy(1/SS.GW.scale); Vector gu = SS.GW.projUp.ScaledBy(1/SS.GW.scale); Vector gn = (gr.Cross(gu)).WithMagnitude(1/SS.GW.scale); switch(type) { case PT_PT_DISTANCE: { Vector ap = SK.GetEntity(ptA)->PointGetNum(); Vector bp = SK.GetEntity(ptB)->PointGetNum(); if(workplane.v != Entity::FREE_IN_3D.v) { DoProjectedPoint(&ap); DoProjectedPoint(&bp); } Vector ref = ((ap.Plus(bp)).ScaledBy(0.5)).Plus(disp.offset); DoLineWithArrows(ref, ap, bp, false); DoLabel(ref, labelPos, gr, gu); break; } case PROJ_PT_DISTANCE: { Vector ap = SK.GetEntity(ptA)->PointGetNum(), bp = SK.GetEntity(ptB)->PointGetNum(), dp = (bp.Minus(ap)), pp = SK.GetEntity(entityA)->VectorGetNum(); Vector ref = ((ap.Plus(bp)).ScaledBy(0.5)).Plus(disp.offset); pp = pp.WithMagnitude(1); double d = dp.Dot(pp); Vector bpp = ap.Plus(pp.ScaledBy(d)); StippledLine(ap, bpp); StippledLine(bp, bpp); DoLineWithArrows(ref, ap, bpp, false); DoLabel(ref, labelPos, gr, gu); break; } case PT_FACE_DISTANCE: case PT_PLANE_DISTANCE: { Vector pt = SK.GetEntity(ptA)->PointGetNum(); Entity *enta = SK.GetEntity(entityA); Vector n, p; if(type == PT_PLANE_DISTANCE) { n = enta->Normal()->NormalN(); p = enta->WorkplaneGetOffset(); } else { n = enta->FaceGetNormalNum(); p = enta->FaceGetPointNum(); } double d = (p.Minus(pt)).Dot(n); Vector closest = pt.Plus(n.WithMagnitude(d)); Vector ref = ((closest.Plus(pt)).ScaledBy(0.5)).Plus(disp.offset); if(!pt.Equals(closest)) { DoLineWithArrows(ref, pt, closest, true); } DoLabel(ref, labelPos, gr, gu); break; } case PT_LINE_DISTANCE: { Vector pt = SK.GetEntity(ptA)->PointGetNum(); Entity *line = SK.GetEntity(entityA); Vector lA = SK.GetEntity(line->point[0])->PointGetNum(); Vector lB = SK.GetEntity(line->point[1])->PointGetNum(); Vector dl = lB.Minus(lA); if(workplane.v != Entity::FREE_IN_3D.v) { lA = lA.ProjectInto(workplane); lB = lB.ProjectInto(workplane); DoProjectedPoint(&pt); } // Find the closest point on the line Vector closest = pt.ClosestPointOnLine(lA, dl); Vector ref = ((closest.Plus(pt)).ScaledBy(0.5)).Plus(disp.offset); DoLabel(ref, labelPos, gr, gu); if(!pt.Equals(closest)) { DoLineWithArrows(ref, pt, closest, true); } if(workplane.v != Entity::FREE_IN_3D.v) { // Draw the projection marker from the closest point on the // projected line to the projected point on the real line. Vector lAB = (lA.Minus(lB)); double t = (lA.Minus(closest)).DivPivoting(lAB); Vector lA = SK.GetEntity(line->point[0])->PointGetNum(); Vector lB = SK.GetEntity(line->point[1])->PointGetNum(); Vector c2 = (lA.ScaledBy(1-t)).Plus(lB.ScaledBy(t)); DoProjectedPoint(&c2); } break; } case DIAMETER: { Entity *circle = SK.GetEntity(entityA); Vector center = SK.GetEntity(circle->point[0])->PointGetNum(); Quaternion q = SK.GetEntity(circle->normal)->NormalGetNum(); Vector n = q.RotationN().WithMagnitude(1); double r = circle->CircleGetRadiusNum(); Vector ref = center.Plus(disp.offset); // Force the label into the same plane as the circle. ref = ref.Minus(n.ScaledBy(n.Dot(ref) - n.Dot(center))); Vector mark = ref.Minus(center); mark = mark.WithMagnitude(mark.Magnitude()-r); DoLineTrimmedAgainstBox(ref, ref, ref.Minus(mark)); Vector topLeft; DoLabel(ref, &topLeft, gr, gu); if(labelPos) *labelPos = topLeft; // Show this as diameter or radius? if(!other) { // Draw the diameter symbol Vector dc = topLeft; dc = dc.Plus(gu.WithMagnitude(5/SS.GW.scale)); dc = dc.Plus(gr.WithMagnitude(9/SS.GW.scale)); double dr = 5/SS.GW.scale; double theta, dtheta = (2*PI)/12; for(theta = 0; theta < 2*PI-0.01; theta += dtheta) { LineDrawOrGetDistance( dc.Plus(gu.WithMagnitude(cos(theta)*dr)).Plus( gr.WithMagnitude(sin(theta)*dr)), dc.Plus(gu.WithMagnitude(cos(theta+dtheta)*dr)).Plus( gr.WithMagnitude(sin(theta+dtheta)*dr))); } theta = 25*(PI/180); dr *= 1.7; dtheta = PI; LineDrawOrGetDistance( dc.Plus(gu.WithMagnitude(cos(theta)*dr)).Plus( gr.WithMagnitude(sin(theta)*dr)), dc.Plus(gu.WithMagnitude(cos(theta+dtheta)*dr)).Plus( gr.WithMagnitude(sin(theta+dtheta)*dr))); } break; } case POINTS_COINCIDENT: { if(!dogd.drawing) { for(int i = 0; i < 2; i++) { Vector p = SK.GetEntity(i == 0 ? ptA : ptB)-> PointGetNum(); Point2d pp = SS.GW.ProjectPoint(p); // The point is selected within a radius of 7, from the // same center; so if the point is visible, then this // constraint cannot be selected. But that's okay. dogd.dmin = min(dogd.dmin, pp.DistanceTo(dogd.mp) - 3); dogd.refp = p; } break; } if(dogd.drawing) { // Let's adjust the color of this constraint to have the same // rough luma as the point color, so that the constraint does not // stand out in an ugly way. RgbaColor cd = Style::Color(Style::DATUM), cc = Style::Color(Style::CONSTRAINT); // convert from 8-bit color to a vector Vector vd = Vector::From(cd.redF(), cd.greenF(), cd.blueF()), vc = Vector::From(cc.redF(), cc.greenF(), cc.blueF()); // and scale the constraint color to have the same magnitude as // the datum color, maybe a bit dimmer vc = vc.WithMagnitude(vd.Magnitude()*0.9); // and set the color to that. ssglColorRGB(RGBf(vc.x, vc.y, vc.z)); for(int a = 0; a < 2; a++) { Vector r = SS.GW.projRight.ScaledBy((a+1)/SS.GW.scale); Vector d = SS.GW.projUp.ScaledBy((2-a)/SS.GW.scale); for(int i = 0; i < 2; i++) { Vector p = SK.GetEntity(i == 0 ? ptA : ptB)-> PointGetNum(); glBegin(GL_QUADS); ssglVertex3v(p.Plus (r).Plus (d)); ssglVertex3v(p.Plus (r).Minus(d)); ssglVertex3v(p.Minus(r).Minus(d)); ssglVertex3v(p.Minus(r).Plus (d)); glEnd(); } } } break; } case PT_ON_CIRCLE: case PT_ON_LINE: case PT_ON_FACE: case PT_IN_PLANE: { double s = 8/SS.GW.scale; Vector p = SK.GetEntity(ptA)->PointGetNum(); Vector r, d; if(type == PT_ON_FACE) { Vector n = SK.GetEntity(entityA)->FaceGetNormalNum(); r = n.Normal(0); d = n.Normal(1); } else if(type == PT_IN_PLANE) { EntityBase *n = SK.GetEntity(entityA)->Normal(); r = n->NormalU(); d = n->NormalV(); } else { r = gr; d = gu; s *= (6.0/8); // draw these a little smaller } r = r.WithMagnitude(s); d = d.WithMagnitude(s); LineDrawOrGetDistance(p.Plus (r).Plus (d), p.Plus (r).Minus(d)); LineDrawOrGetDistance(p.Plus (r).Minus(d), p.Minus(r).Minus(d)); LineDrawOrGetDistance(p.Minus(r).Minus(d), p.Minus(r).Plus (d)); LineDrawOrGetDistance(p.Minus(r).Plus (d), p.Plus (r).Plus (d)); break; } case WHERE_DRAGGED: { Vector p = SK.GetEntity(ptA)->PointGetNum(), u = p.Plus(gu.WithMagnitude(8/SS.GW.scale)).Plus( gr.WithMagnitude(8/SS.GW.scale)), uu = u.Minus(gu.WithMagnitude(5/SS.GW.scale)), ur = u.Minus(gr.WithMagnitude(5/SS.GW.scale)); // Draw four little crop marks, uniformly spaced (by ninety // degree rotations) around the point. int i; for(i = 0; i < 4; i++) { LineDrawOrGetDistance(u, uu); LineDrawOrGetDistance(u, ur); u = u.RotatedAbout(p, gn, PI/2); ur = ur.RotatedAbout(p, gn, PI/2); uu = uu.RotatedAbout(p, gn, PI/2); } break; } case SAME_ORIENTATION: { for(int i = 0; i < 2; i++) { Entity *e = SK.GetEntity(i == 0 ? entityA : entityB); Quaternion q = e->NormalGetNum(); Vector n = q.RotationN().WithMagnitude(25/SS.GW.scale); Vector u = q.RotationU().WithMagnitude(6/SS.GW.scale); Vector p = SK.GetEntity(e->point[0])->PointGetNum(); p = p.Plus(n.WithMagnitude(10/SS.GW.scale)); LineDrawOrGetDistance(p.Plus(u), p.Minus(u).Plus(n)); LineDrawOrGetDistance(p.Minus(u), p.Plus(u).Plus(n)); } break; } case EQUAL_ANGLE: { Vector ref; Entity *a = SK.GetEntity(entityA); Entity *b = SK.GetEntity(entityB); Entity *c = SK.GetEntity(entityC); Entity *d = SK.GetEntity(entityD); Vector a0 = a->VectorGetRefPoint(); Vector b0 = b->VectorGetRefPoint(); Vector c0 = c->VectorGetRefPoint(); Vector d0 = d->VectorGetRefPoint(); Vector da = a->VectorGetNum(); Vector db = b->VectorGetNum(); Vector dc = c->VectorGetNum(); Vector dd = d->VectorGetNum(); if(other) da = da.ScaledBy(-1); DoArcForAngle(a0, da, b0, db, da.WithMagnitude(40/SS.GW.scale), &ref); DoArcForAngle(c0, dc, d0, dd, dc.WithMagnitude(40/SS.GW.scale), &ref); break; } case ANGLE: { Entity *a = SK.GetEntity(entityA); Entity *b = SK.GetEntity(entityB); Vector a0 = a->VectorGetRefPoint(); Vector b0 = b->VectorGetRefPoint(); Vector da = a->VectorGetNum(); Vector db = b->VectorGetNum(); if(other) da = da.ScaledBy(-1); Vector ref; DoArcForAngle(a0, da, b0, db, disp.offset, &ref); DoLabel(ref, labelPos, gr, gu); break; } case PERPENDICULAR: { Vector u = Vector::From(0, 0, 0), v = Vector::From(0, 0, 0); Vector rn, ru; if(workplane.v == Entity::FREE_IN_3D.v) { rn = gn; ru = gu; } else { EntityBase *normal = SK.GetEntity(workplane)->Normal(); rn = normal->NormalN(); ru = normal->NormalV(); // ru meaning r_up, not u/v } for(int i = 0; i < 2; i++) { Entity *e = SK.GetEntity(i == 0 ? entityA : entityB); if(i == 0) { // Calculate orientation of perpendicular sign only // once, so that it's the same both times it's drawn u = e->VectorGetNum(); u = u.WithMagnitude(16/SS.GW.scale); v = (rn.Cross(u)).WithMagnitude(16/SS.GW.scale); // a bit of bias to stop it from flickering between the // two possibilities if(fabs(u.Dot(ru)) < fabs(v.Dot(ru)) + LENGTH_EPS) { SWAP(Vector, u, v); } if(u.Dot(ru) < 0) u = u.ScaledBy(-1); } Vector p = e->VectorGetRefPoint(); Vector s = p.Plus(u).Plus(v); LineDrawOrGetDistance(s, s.Plus(v)); Vector m = s.Plus(v.ScaledBy(0.5)); LineDrawOrGetDistance(m, m.Plus(u)); } break; } case CURVE_CURVE_TANGENT: case CUBIC_LINE_TANGENT: case ARC_LINE_TANGENT: { Vector textAt, u, v; if(type == ARC_LINE_TANGENT) { Entity *arc = SK.GetEntity(entityA); Entity *norm = SK.GetEntity(arc->normal); Vector c = SK.GetEntity(arc->point[0])->PointGetNum(); Vector p = SK.GetEntity(arc->point[other ? 2 : 1])->PointGetNum(); Vector r = p.Minus(c); textAt = p.Plus(r.WithMagnitude(14/SS.GW.scale)); u = norm->NormalU(); v = norm->NormalV(); } else if(type == CUBIC_LINE_TANGENT) { Vector n; if(workplane.v == Entity::FREE_IN_3D.v) { u = gr; v = gu; n = gn; } else { EntityBase *wn = SK.GetEntity(workplane)->Normal(); u = wn->NormalU(); v = wn->NormalV(); n = wn->NormalN(); } Entity *cubic = SK.GetEntity(entityA); Vector p = other ? cubic->CubicGetFinishNum() : cubic->CubicGetStartNum(); Vector dir = SK.GetEntity(entityB)->VectorGetNum(); Vector out = n.Cross(dir); textAt = p.Plus(out.WithMagnitude(14/SS.GW.scale)); } else { Vector n, dir; EntityBase *wn = SK.GetEntity(workplane)->Normal(); u = wn->NormalU(); v = wn->NormalV(); n = wn->NormalN(); EntityBase *eA = SK.GetEntity(entityA); // Big pain; we have to get a vector tangent to the curve // at the shared point, which could be from either a cubic // or an arc. if(other) { textAt = eA->EndpointFinish(); if(eA->type == Entity::CUBIC) { dir = eA->CubicGetFinishTangentNum(); } else { dir = SK.GetEntity(eA->point[0])->PointGetNum().Minus( SK.GetEntity(eA->point[2])->PointGetNum()); dir = n.Cross(dir); } } else { textAt = eA->EndpointStart(); if(eA->type == Entity::CUBIC) { dir = eA->CubicGetStartTangentNum(); } else { dir = SK.GetEntity(eA->point[0])->PointGetNum().Minus( SK.GetEntity(eA->point[1])->PointGetNum()); dir = n.Cross(dir); } } dir = n.Cross(dir); textAt = textAt.Plus(dir.WithMagnitude(14/SS.GW.scale)); } if(dogd.drawing) { ssglWriteTextRefCenter("T", DEFAULT_TEXT_HEIGHT, textAt, u, v, LineCallback, this); } else { dogd.refp = textAt; Point2d ref = SS.GW.ProjectPoint(dogd.refp); dogd.dmin = min(dogd.dmin, ref.DistanceTo(dogd.mp)-10); } break; } case PARALLEL: { for(int i = 0; i < 2; i++) { Entity *e = SK.GetEntity(i == 0 ? entityA : entityB); Vector n = e->VectorGetNum(); n = n.WithMagnitude(25/SS.GW.scale); Vector u = (gn.Cross(n)).WithMagnitude(4/SS.GW.scale); Vector p = e->VectorGetRefPoint(); LineDrawOrGetDistance(p.Plus(u), p.Plus(u).Plus(n)); LineDrawOrGetDistance(p.Minus(u), p.Minus(u).Plus(n)); } break; } case EQUAL_RADIUS: { for(int i = 0; i < 2; i++) { DoEqualRadiusTicks(i == 0 ? entityA : entityB); } break; } case EQUAL_LINE_ARC_LEN: { Entity *line = SK.GetEntity(entityA); DoEqualLenTicks( SK.GetEntity(line->point[0])->PointGetNum(), SK.GetEntity(line->point[1])->PointGetNum(), gn); DoEqualRadiusTicks(entityB); break; } case LENGTH_RATIO: case EQUAL_LENGTH_LINES: { Vector a, b = Vector::From(0, 0, 0); for(int i = 0; i < 2; i++) { Entity *e = SK.GetEntity(i == 0 ? entityA : entityB); a = SK.GetEntity(e->point[0])->PointGetNum(); b = SK.GetEntity(e->point[1])->PointGetNum(); if(workplane.v != Entity::FREE_IN_3D.v) { DoProjectedPoint(&a); DoProjectedPoint(&b); } DoEqualLenTicks(a, b, gn); } if(type == LENGTH_RATIO) { Vector ref = ((a.Plus(b)).ScaledBy(0.5)).Plus(disp.offset); DoLabel(ref, labelPos, gr, gu); } break; } case EQ_LEN_PT_LINE_D: { Entity *forLen = SK.GetEntity(entityA); Vector a = SK.GetEntity(forLen->point[0])->PointGetNum(), b = SK.GetEntity(forLen->point[1])->PointGetNum(); if(workplane.v != Entity::FREE_IN_3D.v) { DoProjectedPoint(&a); DoProjectedPoint(&b); } DoEqualLenTicks(a, b, gn); Entity *ln = SK.GetEntity(entityB); Vector la = SK.GetEntity(ln->point[0])->PointGetNum(), lb = SK.GetEntity(ln->point[1])->PointGetNum(); Vector pt = SK.GetEntity(ptA)->PointGetNum(); if(workplane.v != Entity::FREE_IN_3D.v) { DoProjectedPoint(&pt); la = la.ProjectInto(workplane); lb = lb.ProjectInto(workplane); } Vector closest = pt.ClosestPointOnLine(la, lb.Minus(la)); LineDrawOrGetDistance(pt, closest); DoEqualLenTicks(pt, closest, gn); break; } case EQ_PT_LN_DISTANCES: { for(int i = 0; i < 2; i++) { Entity *ln = SK.GetEntity(i == 0 ? entityA : entityB); Vector la = SK.GetEntity(ln->point[0])->PointGetNum(), lb = SK.GetEntity(ln->point[1])->PointGetNum(); Entity *pte = SK.GetEntity(i == 0 ? ptA : ptB); Vector pt = pte->PointGetNum(); if(workplane.v != Entity::FREE_IN_3D.v) { DoProjectedPoint(&pt); la = la.ProjectInto(workplane); lb = lb.ProjectInto(workplane); } Vector closest = pt.ClosestPointOnLine(la, lb.Minus(la)); LineDrawOrGetDistance(pt, closest); DoEqualLenTicks(pt, closest, gn); } break; } { case SYMMETRIC: Vector n; n = SK.GetEntity(entityA)->Normal()->NormalN(); goto s; case SYMMETRIC_HORIZ: n = SK.GetEntity(workplane)->Normal()->NormalU(); goto s; case SYMMETRIC_VERT: n = SK.GetEntity(workplane)->Normal()->NormalV(); goto s; case SYMMETRIC_LINE: { Entity *ln = SK.GetEntity(entityA); Vector la = SK.GetEntity(ln->point[0])->PointGetNum(), lb = SK.GetEntity(ln->point[1])->PointGetNum(); la = la.ProjectInto(workplane); lb = lb.ProjectInto(workplane); n = lb.Minus(la); Vector nw = SK.GetEntity(workplane)->Normal()->NormalN(); n = n.RotatedAbout(nw, PI/2); goto s; } s: Vector a = SK.GetEntity(ptA)->PointGetNum(); Vector b = SK.GetEntity(ptB)->PointGetNum(); for(int i = 0; i < 2; i++) { Vector tail = (i == 0) ? a : b; Vector d = (i == 0) ? b : a; d = d.Minus(tail); // Project the direction in which the arrow is drawn normal // to the symmetry plane; for projected symmetry constraints, // they might not be in the same direction, even when the // constraint is fully solved. d = n.ScaledBy(d.Dot(n)); d = d.WithMagnitude(20/SS.GW.scale); Vector tip = tail.Plus(d); LineDrawOrGetDistance(tail, tip); d = d.WithMagnitude(9/SS.GW.scale); LineDrawOrGetDistance(tip, tip.Minus(d.RotatedAbout(gn, 0.6))); LineDrawOrGetDistance(tip, tip.Minus(d.RotatedAbout(gn, -0.6))); } break; } case AT_MIDPOINT: case HORIZONTAL: case VERTICAL: if(entityA.v) { Vector r, u, n; if(workplane.v == Entity::FREE_IN_3D.v) { r = gr; u = gu; n = gn; } else { r = SK.GetEntity(workplane)->Normal()->NormalU(); u = SK.GetEntity(workplane)->Normal()->NormalV(); n = r.Cross(u); } // For "at midpoint", this branch is always taken. Entity *e = SK.GetEntity(entityA); Vector a = SK.GetEntity(e->point[0])->PointGetNum(); Vector b = SK.GetEntity(e->point[1])->PointGetNum(); Vector m = (a.ScaledBy(0.5)).Plus(b.ScaledBy(0.5)); Vector offset = (a.Minus(b)).Cross(n); offset = offset.WithMagnitude(13/SS.GW.scale); // Draw midpoint constraint on other side of line, so that // a line can be midpoint and horizontal at same time. if(type == AT_MIDPOINT) offset = offset.ScaledBy(-1); if(dogd.drawing) { const char *s = (type == HORIZONTAL) ? "H" : ( (type == VERTICAL) ? "V" : ( (type == AT_MIDPOINT) ? "M" : NULL)); ssglWriteTextRefCenter(s, DEFAULT_TEXT_HEIGHT, m.Plus(offset), r, u, LineCallback, this); } else { dogd.refp = m.Plus(offset); Point2d ref = SS.GW.ProjectPoint(dogd.refp); dogd.dmin = min(dogd.dmin, ref.DistanceTo(dogd.mp)-10); } } else { Vector a = SK.GetEntity(ptA)->PointGetNum(); Vector b = SK.GetEntity(ptB)->PointGetNum(); Entity *w = SK.GetEntity(workplane); Vector cu = w->Normal()->NormalU(); Vector cv = w->Normal()->NormalV(); Vector cn = w->Normal()->NormalN(); int i; for(i = 0; i < 2; i++) { Vector o = (i == 0) ? a : b; Vector oo = (i == 0) ? a.Minus(b) : b.Minus(a); Vector d = (type == HORIZONTAL) ? cu : cv; if(oo.Dot(d) < 0) d = d.ScaledBy(-1); Vector dp = cn.Cross(d); d = d.WithMagnitude(14/SS.GW.scale); Vector c = o.Minus(d); LineDrawOrGetDistance(o, c); d = d.WithMagnitude(3/SS.GW.scale); dp = dp.WithMagnitude(2/SS.GW.scale); if(dogd.drawing) { glBegin(GL_QUADS); ssglVertex3v((c.Plus(d)).Plus(dp)); ssglVertex3v((c.Minus(d)).Plus(dp)); ssglVertex3v((c.Minus(d)).Minus(dp)); ssglVertex3v((c.Plus(d)).Minus(dp)); glEnd(); } else { Point2d ref = SS.GW.ProjectPoint(c); dogd.dmin = min(dogd.dmin, ref.DistanceTo(dogd.mp)-6); } } } break; case COMMENT: { if(dogd.drawing && disp.style.v) { ssglLineWidth(Style::Width(disp.style)); ssglColorRGB(Style::Color(disp.style)); } Vector u, v; if(workplane.v == Entity::FREE_IN_3D.v) { u = gr; v = gu; } else { EntityBase *norm = SK.GetEntity(workplane)->Normal(); u = norm->NormalU(); v = norm->NormalV(); } DoLabel(disp.offset, labelPos, u, v); break; } default: oops(); } }
void CUI::DoLabelScaled(const CUIRect *r, const char *pText, float Size, int Align, int MaxWidth) { DoLabel(r, pText, Size*Scale(), Align, MaxWidth); }
bool AsmFile::Read() { bool rv = true; AsmExpr::ReInit(); parser->Init(); bigEndian = parser->IsBigEndian(); FPF::SetBigEndian(bigEndian); Instruction::SetBigEndian(bigEndian); listing.SetBigEndian(bigEndian); while (!lexer.AtEof()) { bool inInstruction = false; try { if (GetKeyword() == Lexer::openbr) { Directive(); thisLabel = NULL; } else if (parser->MatchesOpcode(GetToken()->GetChars())) { NoAbsolute(); NeedSection(); inInstruction = true; int lineno = preProcessor.GetMainLineNo(); Instruction *ins = parser->Parse(lexer.GetRestOfLine(), currentSection->GetPC()); if (lineno >= 0) listing.Add(ins, lineno, preProcessor.InMacro()); NextToken(); currentSection->InsertInstruction(ins); thisLabel = NULL; } else { int lineno = preProcessor.GetMainLineNo(); std::string name = GetId(); DoLabel(name, lineno); } } catch(std::runtime_error *e) { Errors::Error(e->what()); delete e; rv = false; if (inInstruction) NextToken(); else lexer.SkipPastEol(); } } for (std::map<std::string, std::string>::iterator it = exports.begin(); it != exports.end(); ++it) { if (labels[it->first] == NULL) { Errors::Error(std::string("Undefined export symbol '") + it->first + "'"); rv = false; } else { labels[it->first]->SetPublic(true); } } for (std::set<std::string>::iterator it = globals.begin(); it != globals.end(); ++it) { if (labels[*it] == NULL) { Errors::Error(std::string("Undefined public '") + *it + "'"); rv = false; } else { labels[*it]->SetPublic(true); } } return rv && !Errors::ErrorCount(); }
std::ostream & TKSwitch:: Release(std::ostream & s) const { DoLabel(s); s << "switch("; // Thing to switch on GetFirstChild().Release(s); s << "){"; Token::Itter cases = *this; // Skip the switch conditional cases.Next(); bool semicolon = false; while (cases.HasNext()) { // Don't put a semicolon // after the very last // statement in this // switch. if (semicolon) { s << ';'; } semicolon = false; Token & cur = cases.Next(); Token::Itter entries = cur; if (cur.GetType() == TokenType::TK_case) { s << "case"; DoSpacePar(entries.Next(), s); s << ':'; } else if (cur.GetType() == TokenType::TK_default) { s << "default:"; } else { continue; } while (entries.HasNext()) { if (semicolon) { s << ';'; } Token & ent = entries.Next(); ent.Release(s); if (ent.IsStatement()) { // Some statements // need semicolons semicolon = ent.RequireSemicolon(); } else { // All expressions // need semicolons semicolon = true; } } } s << '}'; return s; }