static float Jump_from_L2(int Z,float E) { float Factor=1.0,JumpL1,JumpL2,JumpK; float TaoL1=0.0,TaoL2=0.0; if( E > EdgeEnergy(Z,K_SHELL) ) { JumpK = JumpFactor(Z,K_SHELL) ; if( JumpK <= 0. ) return 0. ; Factor /= JumpK ; } JumpL1 = JumpFactor(Z,L1_SHELL) ; JumpL2 = JumpFactor(Z,L2_SHELL) ; if(E>EdgeEnergy (Z,L1_SHELL)) { if( JumpL1 <= 0.|| JumpL2 <= 0. ) return 0. ; TaoL1 = (JumpL1-1) / JumpL1 ; TaoL2 = (JumpL2-1) / (JumpL2*JumpL1) ; } else if( E > EdgeEnergy(Z,L2_SHELL) ) { if( JumpL2 <= 0. ) return 0. ; TaoL1 = 0. ; TaoL2 = (JumpL2-1)/(JumpL2) ; } else Factor = 0; Factor *= (TaoL2 + TaoL1*CosKronTransProb(Z,F12_TRANS)) * FluorYield(Z,L2_SHELL) ; return Factor; }
static double Jump_from_L2(int Z, double E, xrl_error **error) { double Factor = 1.0, JumpL1, JumpL2, JumpK; double TaoL1 = 0.0, TaoL2 = 0.0; double edgeK = EdgeEnergy(Z, K_SHELL, NULL); double edgeL1 = EdgeEnergy(Z, L1_SHELL, NULL); double edgeL2 = EdgeEnergy(Z, L2_SHELL, NULL); double ck_L12, yield; if (E > edgeK && edgeK > 0.0) { JumpK = JumpFactor(Z, K_SHELL, NULL); if (JumpK == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR); return 0.0; } Factor /= JumpK ; } JumpL1 = JumpFactor(Z, L1_SHELL, NULL); JumpL2 = JumpFactor(Z, L2_SHELL, NULL); if (E > edgeL1 && edgeL1 > 0.0) { if (JumpL1 == 0.0 || JumpL2 == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR); return 0.0; } TaoL1 = (JumpL1 - 1) / JumpL1 ; TaoL2 = (JumpL2 - 1) / (JumpL2 * JumpL1) ; } else if (E > edgeL2 && edgeL2 > 0.0) { if (JumpL2 == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR); return 0.0; } TaoL1 = 0.0; TaoL2 = (JumpL2 - 1) / JumpL2; } else { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, TOO_LOW_EXCITATION_ENERGY); return 0.0; } ck_L12 = CosKronTransProb(Z, F12_TRANS, NULL); if (TaoL1 > 0 && ck_L12 == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_CK); return 0.0; } yield = FluorYield(Z, L2_SHELL, NULL); if (yield == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_FLUOR_YIELD); return 0.0; } Factor *= (TaoL2 + TaoL1 * ck_L12) * yield; return Factor; }
static float Jump_from_L3(int Z,float E ) { float Factor=1.0,JumpL1,JumpL2,JumpL3,JumpK; float TaoL1=0.0,TaoL2=0.0,TaoL3=0.0; if( E > EdgeEnergy(Z,K_SHELL) ) { JumpK = JumpFactor(Z,K_SHELL) ; if( JumpK <= 0. ) return 0.; Factor /= JumpK ; } JumpL1 = JumpFactor(Z,L1_SHELL) ; JumpL2 = JumpFactor(Z,L2_SHELL) ; JumpL3 = JumpFactor(Z,L3_SHELL) ; if( E > EdgeEnergy(Z,L1_SHELL) ) { if( JumpL1 <= 0.|| JumpL2 <= 0. || JumpL3 <= 0. ) return 0. ; TaoL1 = (JumpL1-1) / JumpL1 ; TaoL2 = (JumpL2-1) / (JumpL2*JumpL1) ; TaoL3 = (JumpL3-1) / (JumpL3*JumpL2*JumpL1) ; } else if( E > EdgeEnergy(Z,L2_SHELL) ) { if( JumpL2 <= 0. || JumpL3 <= 0. ) return 0. ; TaoL1 = 0. ; TaoL2 = (JumpL2-1) / (JumpL2) ; TaoL3 = (JumpL3-1) / (JumpL3*JumpL2) ; } else if( E > EdgeEnergy(Z,L3_SHELL) ) { TaoL1 = 0. ; TaoL2 = 0. ; if( JumpL3 <= 0. ) return 0. ; TaoL3 = (JumpL3-1) / JumpL3 ; } else Factor = 0; Factor *= (TaoL3 + TaoL2 * CosKronTransProb(Z,F23_TRANS) + TaoL1 * (CosKronTransProb(Z,F13_TRANS) + CosKronTransProb(Z,FP13_TRANS) + CosKronTransProb(Z,F12_TRANS) * CosKronTransProb(Z,F23_TRANS))) ; Factor *= (FluorYield(Z,L3_SHELL) ) ; return Factor; }
static float Jump_from_L1(int Z,float E) { float Factor=1.0,JumpL1,JumpK; if( E > EdgeEnergy(Z,K_SHELL) ) { JumpK = JumpFactor(Z,K_SHELL) ; if( JumpK <= 0. ) return 0. ; Factor /= JumpK ; } if (E > EdgeEnergy(Z, L1_SHELL)) { JumpL1 = JumpFactor(Z, L1_SHELL); if (JumpL1 <= 0.0) return 0.0; Factor *= ((JumpL1-1)/JumpL1) * FluorYield(Z, L1_SHELL); } else return 0.; return Factor; }
static double Jump_from_L1(int Z, double E, xrl_error **error) { double Factor = 1.0, JumpL1, JumpK; double edgeK = EdgeEnergy(Z, K_SHELL, NULL); double edgeL1 = EdgeEnergy(Z, L1_SHELL, NULL); double yield; if (E > edgeK && edgeK > 0.0) { JumpK = JumpFactor(Z, K_SHELL, NULL); if (JumpK == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR); return 0.0; } Factor /= JumpK ; } if (E > edgeL1 && edgeL1 > 0.0) { JumpL1 = JumpFactor(Z, L1_SHELL, NULL); if (JumpL1 == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR); return 0.0; } yield = FluorYield(Z, L1_SHELL, NULL); if (yield == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_FLUOR_YIELD); return 0.0; } Factor *= ((JumpL1 - 1) / JumpL1) * yield; } else { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, TOO_LOW_EXCITATION_ENERGY); return 0.0; } return Factor; }
float LineEnergy(int Z, int line) { float line_energy; float lE[50],rr[50]; float tmp=0.0,tmp1=0.0,tmp2=0.0; int i; int temp_line; if (Z<1 || Z>ZMAX) { ErrorExit("Z out of range in function LineEnergy"); return 0; } if (line>=KA_LINE && line<LA_LINE) { if (line == KA_LINE) { for (i = KL1; i <= KL3 ; i++) { lE[i] = LineEnergy_arr[Z][i]; rr[i] = RadRate_arr[Z][i]; tmp1+=rr[i]; tmp+=lE[i]*rr[i]; if (lE[i]<0.0 || rr[i]<0.0) { ErrorExit("Line not available in function LineEnergy"); return 0; } } } else if (line == KB_LINE) { for (i = KM1; i < KP5; i++) { lE[i] = LineEnergy_arr[Z][i]; rr[i] = RadRate_arr[Z][i]; tmp1+=rr[i]; tmp+=lE[i]*rr[i]; if (lE[i]<0.0 || rr[i]<0.0) { ErrorExit("Line not available in function LineEnergy"); return 0; } } } if (tmp1>0) return tmp/tmp1; else return 0.0; } if (line == LA_LINE) { temp_line = L3M5_LINE; tmp1=CS_FluorLine(Z, temp_line,EdgeEnergy(Z,L3_SHELL)+0.1); tmp2=tmp1; tmp=LineEnergy(Z,temp_line)*tmp1; temp_line = L3M4_LINE; tmp1=CS_FluorLine(Z, temp_line,EdgeEnergy(Z,L3_SHELL)+0.1); tmp2+=tmp1; tmp+=LineEnergy(Z,temp_line)*tmp1 ; if (tmp2>0) return tmp/tmp2; else return 0.0; } else if (line == LB_LINE) { temp_line = L2M4_LINE; /* b1 */ tmp1=CS_FluorLine(Z, temp_line,EdgeEnergy(Z,L2_SHELL)+0.1); tmp2=tmp1; tmp=LineEnergy(Z,temp_line)*tmp1; temp_line = L3N5_LINE; /* b2 */ tmp1=CS_FluorLine(Z, temp_line,EdgeEnergy(Z,L3_SHELL)+0.1); tmp2+=tmp1; tmp+=LineEnergy(Z,temp_line)*tmp1 ; temp_line = L1M3_LINE; /* b3 */ tmp1=CS_FluorLine(Z, temp_line,EdgeEnergy(Z,L1_SHELL)+0.1); tmp2+=tmp1; tmp+=LineEnergy(Z,temp_line)*tmp1 ; temp_line = L1M2_LINE; /* b4 */ tmp1=CS_FluorLine(Z, temp_line,EdgeEnergy(Z,L1_SHELL)+0.1); tmp2+=tmp1; tmp+=LineEnergy(Z,temp_line)*tmp1 ; temp_line = L3O3_LINE; /* b5 */ tmp1=CS_FluorLine(Z, temp_line,EdgeEnergy(Z,L3_SHELL)+0.1); tmp2+=tmp1; tmp+=LineEnergy(Z,temp_line)*tmp1 ; temp_line = L3O4_LINE; /* b5 */ tmp1=CS_FluorLine(Z, temp_line,EdgeEnergy(Z,L3_SHELL)+0.1); tmp2+=tmp1; tmp+=LineEnergy(Z,temp_line)*tmp1 ; temp_line = L3N1_LINE; /* b6 */ tmp1=CS_FluorLine(Z, temp_line,EdgeEnergy(Z,L3_SHELL)+0.1); tmp2+=tmp1; tmp+=LineEnergy(Z,temp_line)*tmp1 ; if (tmp2>0) return tmp/tmp2; else return 0.0; } /* * special cases for composed lines */ else if (line == L1N67_LINE) { return (LineEnergy(Z, L1N6_LINE)+LineEnergy(Z,L1N7_LINE))/2.0; } else if (line == L1O45_LINE) { return (LineEnergy(Z, L1O4_LINE)+LineEnergy(Z,L1O5_LINE))/2.0; } else if (line == L1P23_LINE) { return (LineEnergy(Z, L1P2_LINE)+LineEnergy(Z,L1P3_LINE))/2.0; } else if (line == L2P23_LINE) { return (LineEnergy(Z, L2P2_LINE)+LineEnergy(Z,L2P3_LINE))/2.0; } else if (line == L3O45_LINE) { return (LineEnergy(Z, L3O4_LINE)+LineEnergy(Z,L3O5_LINE))/2.0; } else if (line == L3P23_LINE) { return (LineEnergy(Z, L3P2_LINE)+LineEnergy(Z,L3P3_LINE))/2.0; } else if (line == L3P45_LINE) { return (LineEnergy(Z, L3P4_LINE)+LineEnergy(Z,L3P5_LINE))/2.0; } line = -line - 1; if (line<0 || line>=LINENUM) { ErrorExit("Line not available in function LineEnergy"); return 0; } line_energy = LineEnergy_arr[Z][line]; if (line_energy < 0.) { ErrorExit("Line not available in function LineEnergy"); return 0; } return line_energy; }
double CS_FluorLine(int Z, int line, double E, xrl_error **error) { double JumpK; double cs_line, Factor = 1.0; if (Z < 1 || Z > ZMAX) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, Z_OUT_OF_RANGE); return 0.0; } if (E <= 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, NEGATIVE_ENERGY); return 0.0; } if (line >= KN5_LINE && line <= KB_LINE) { double edgeK = EdgeEnergy(Z, K_SHELL, error); double cs, rr; if (E > edgeK && edgeK > 0.0) { double yield; JumpK = JumpFactor(Z, K_SHELL, error); if (JumpK == 0.0) { return 0.0; } yield = FluorYield(Z, K_SHELL, error); if (yield == 0.0) { return 0.0; } Factor = ((JumpK - 1)/JumpK) * yield; } else if (edgeK == 0.0) { return 0.0; } else { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, TOO_LOW_EXCITATION_ENERGY); return 0.0; } cs = CS_Photo(Z, E, error); if (cs == 0.0) { return 0.0; } rr = RadRate(Z, line, error); if (rr == 0.0) { return 0.0; } cs_line = cs * Factor * rr; } else if ((line <= L1L2_LINE && line >= L3Q1_LINE) || line == LA_LINE) { double cs, rr; cs = CS_Photo(Z, E, error); if (cs == 0.0) { return 0.0; } rr = RadRate(Z, line, error); if (rr == 0.0) { return 0.0; } if (line >= L1P5_LINE && line <= L1L2_LINE) { Factor = Jump_from_L1(Z, E, error); } else if (line >= L2Q1_LINE && line <= L2L3_LINE) { Factor = Jump_from_L2(Z, E, error); } /* * it's safe to use LA_LINE since it's only composed of 2 L3-lines */ else if ((line >= L3Q1_LINE && line <= L3M1_LINE) || line == LA_LINE) { Factor = Jump_from_L3(Z, E, error); } if (Factor == 0.0) { return 0.0; } cs_line = cs * Factor * rr; } else if (line == LB_LINE) { /* * b1->b17 */ double cs; cs_line = Jump_from_L2(Z, E, NULL) * (RadRate(Z, L2M4_LINE, NULL) + RadRate(Z, L2M3_LINE, NULL)) + Jump_from_L3(Z, E, NULL) * (RadRate(Z, L3N5_LINE, NULL) + RadRate(Z, L3O4_LINE, NULL) + RadRate(Z, L3O5_LINE, NULL) + RadRate(Z, L3O45_LINE, NULL) + RadRate(Z, L3N1_LINE, NULL) + RadRate(Z, L3O1_LINE, NULL) + RadRate(Z, L3N6_LINE, NULL) + RadRate(Z, L3N7_LINE, NULL) + RadRate(Z, L3N4_LINE, NULL)) + Jump_from_L1(Z, E, NULL) * (RadRate(Z, L1M3_LINE, NULL) + RadRate(Z, L1M2_LINE, NULL) + RadRate(Z, L1M5_LINE, NULL) + RadRate(Z, L1M4_LINE, NULL)); if (cs_line == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, TOO_LOW_EXCITATION_ENERGY); return 0.0; } cs = CS_Photo(Z, E, error); if (cs == 0.0) { return 0.0; } cs_line *= cs; } else { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, INVALID_LINE); return 0.0; } return cs_line; }
static double Jump_from_L3(int Z, double E, xrl_error **error) { double Factor=1.0, JumpL1, JumpL2, JumpL3, JumpK; double TaoL1=0.0, TaoL2=0.0, TaoL3=0.0; double edgeK = EdgeEnergy(Z, K_SHELL, NULL); double edgeL1 = EdgeEnergy(Z, L1_SHELL, NULL); double edgeL2 = EdgeEnergy(Z, L2_SHELL, NULL); double edgeL3 = EdgeEnergy(Z, L3_SHELL, NULL); double ck_L23, ck_L13, ck_LP13, ck_L12; double yield; if (E > edgeK && edgeK > 0.0) { JumpK = JumpFactor(Z, K_SHELL, NULL); if (JumpK == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR); return 0.0; } Factor /= JumpK ; } JumpL1 = JumpFactor(Z, L1_SHELL, NULL); JumpL2 = JumpFactor(Z, L2_SHELL, NULL); JumpL3 = JumpFactor(Z, L3_SHELL, NULL); if (E > edgeL1 && edgeL1 > 0.0) { if (JumpL1 == 0.0 || JumpL2 == 0.0 || JumpL3 == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR); return 0.0; } TaoL1 = (JumpL1 - 1) / JumpL1 ; TaoL2 = (JumpL2 - 1) / (JumpL2 * JumpL1) ; TaoL3 = (JumpL3 - 1) / (JumpL3 * JumpL2 * JumpL1) ; } else if (E > edgeL2 && edgeL2 > 0.0) { if (JumpL2 == 0.0 || JumpL3 == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR); return 0.0; } TaoL1 = 0.0; TaoL2 = (JumpL2 - 1) / (JumpL2) ; TaoL3 = (JumpL3 - 1) / (JumpL3 * JumpL2) ; } else if (E > edgeL3 && edgeL3 > 0.0) { TaoL1 = 0.0; TaoL2 = 0.0; if (JumpL3 == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_JUMP_FACTOR); return 0.0; } TaoL3 = (JumpL3 - 1) / JumpL3 ; } else { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, TOO_LOW_EXCITATION_ENERGY); return 0.0; } ck_L23 = CosKronTransProb(Z, F23_TRANS, NULL); ck_L13 = CosKronTransProb(Z, F13_TRANS, NULL); ck_LP13 = CosKronTransProb(Z, FP13_TRANS, NULL); ck_L12 = CosKronTransProb(Z, F12_TRANS, NULL); if (TaoL2 > 0.0 && ck_L23 == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_CK); return 0.0; } if (TaoL1 > 0.0 && (ck_L13 + ck_LP13 == 0.0 || ck_L12 == 0.0 || ck_L23 == 0.0)) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_CK); return 0.0; } Factor *= TaoL3 + TaoL2 * ck_L23 + TaoL1 * (ck_L13 + ck_LP13 + ck_L12 * ck_L23); yield = FluorYield(Z, L3_SHELL, NULL); if (yield == 0.0) { xrl_set_error_literal(error, XRL_ERROR_INVALID_ARGUMENT, UNAVAILABLE_FLUOR_YIELD); return 0.0; } Factor *= yield; return Factor; }
int main() { struct compoundData cdtest; int i; XRayInit(); //if something goes wrong, the test will end with EXIT_FAILURE //SetHardExit(1); std::printf("Example of C++ program using xraylib\n"); std::printf("Ca K-alpha Fluorescence Line Energy: %f\n", LineEnergy(20,KA_LINE)); std::printf("Fe partial photoionization cs of L3 at 6.0 keV: %f\n",CS_Photo_Partial(26,L3_SHELL,6.0)); std::printf("Zr L1 edge energy: %f\n",EdgeEnergy(40,L1_SHELL)); std::printf("Pb Lalpha XRF production cs at 20.0 keV (jump approx): %f\n",CS_FluorLine(82,LA_LINE,20.0)); std::printf("Pb Lalpha XRF production cs at 20.0 keV (Kissel): %f\n",CS_FluorLine_Kissel(82,LA_LINE,20.0)); std::printf("Bi M1N2 radiative rate: %f\n",RadRate(83,M1N2_LINE)); std::printf("U M3O3 Fluorescence Line Energy: %f\n",LineEnergy(92,M3O3_LINE)); //parser test for Ca(HCO3)2 (calcium bicarbonate) if (CompoundParser("Ca(HCO3)2",&cdtest) == 0) return 1; std::printf("Ca(HCO3)2 contains %i atoms and %i elements\n",cdtest.nAtomsAll,cdtest.nElements); for (i = 0 ; i < cdtest.nElements ; i++) std::printf("Element %i: %lf %%\n",cdtest.Elements[i],cdtest.massFractions[i]*100.0); FREE_COMPOUND_DATA(cdtest) //parser test for SiO2 (quartz) if (CompoundParser("SiO2",&cdtest) == 0) return 1; std::printf("SiO2 contains %i atoms and %i elements\n",cdtest.nAtomsAll,cdtest.nElements); for (i = 0 ; i < cdtest.nElements ; i++) std::printf("Element %i: %lf %%\n",cdtest.Elements[i],cdtest.massFractions[i]*100.0); FREE_COMPOUND_DATA(cdtest) std::printf("Ca(HCO3)2 Rayleigh cs at 10.0 keV: %f\n",CS_Rayl_CP("Ca(HCO3)2",10.0f) ); std::printf("CS2 Refractive Index at 10.0 keV : %f - %f i\n",Refractive_Index_Re("CS2",10.0f,1.261f),Refractive_Index_Im("CS2",10.0f,1.261f)); std::printf("C16H14O3 Refractive Index at 1 keV : %f - %f i\n",Refractive_Index_Re("C16H14O3",1.0f,1.2f),Refractive_Index_Im("C16H14O3",1.0f,1.2f)); std::printf("SiO2 Refractive Index at 5 keV : %f - %f i\n",Refractive_Index_Re("SiO2",5.0f,2.65f),Refractive_Index_Im("SiO2",5.0f,2.65f)); std::printf("Compton profile for Fe at pz = 1.1 : %f\n",ComptonProfile(26,1.1f)); std::printf("M5 Compton profile for Fe at pz = 1.1 : %f\n",ComptonProfile_Partial(26,M5_SHELL,1.1f)); std::printf("K atomic level width for Fe: %f\n", AtomicLevelWidth(26,K_SHELL)); std::printf("M1->M5 Coster-Kronig transition probability for Au : %f\n",CosKronTransProb(79,FM15_TRANS)); std::printf("L1->L3 Coster-Kronig transition probability for Fe : %f\n",CosKronTransProb(26,FL13_TRANS)); std::printf("Au Ma1 XRF production cs at 10.0 keV (Kissel): %f\n", CS_FluorLine_Kissel(79,MA1_LINE,10.0f)); std::printf("Au Mb XRF production cs at 10.0 keV (Kissel): %f\n", CS_FluorLine_Kissel(79,MB_LINE,10.0f)); std::printf("Au Mg XRF production cs at 10.0 keV (Kissel): %f\n", CS_FluorLine_Kissel(79,MG_LINE,10.0f)); std::printf("Bi L2-M5M5 Auger non-radiative rate: %f\n",AugerRate(86,L2_M5M5_AUGER)); std::printf("Pb Malpha XRF production cs at 20.0 keV with cascade effect: %f\n",CS_FluorLine_Kissel(82,MA1_LINE,20.0)); std::printf("Pb Malpha XRF production cs at 20.0 keV with radiative cascade effect: %f\n",CS_FluorLine_Kissel_Radiative_Cascade(82,MA1_LINE,20.0)); std::printf("Pb Malpha XRF production cs at 20.0 keV with non-radiative cascade effect: %f\n",CS_FluorLine_Kissel_Nonradiative_Cascade(82,MA1_LINE,20.0)); std::printf("Pb Malpha XRF production cs at 20.0 keV without cascade effect: %f\n",CS_FluorLine_Kissel_no_Cascade(82,MA1_LINE,20.0)); /* Si Crystal structure */ Crystal_Struct* cryst = Crystal_GetCrystal("Si", NULL); if (cryst == NULL) return 1; std::printf ("Si unit cell dimensions are %f %f %f\n", cryst->a, cryst->b, cryst->c); std::printf ("Si unit cell angles are %f %f %f\n", cryst->alpha, cryst->beta, cryst->gamma); std::printf ("Si unit cell volume is %f\n", cryst->volume); std::printf ("Si atoms at:\n"); std::printf (" Z fraction X Y Z\n"); Crystal_Atom* atom; for (i = 0; i < cryst->n_atom; i++) { atom = &cryst->atom[i]; std::printf (" %3i %f %f %f %f\n", atom->Zatom, atom->fraction, atom->x, atom->y, atom->z); } /* Si diffraction parameters */ std::printf ("\nSi111 at 8 KeV. Incidence at the Bragg angle:\n"); float energy = 8; float debye_temp_factor = 1.0; float rel_angle = 1.0; float bragg = Bragg_angle (cryst, energy, 1, 1, 1); std::printf (" Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI); float q = Q_scattering_amplitude (cryst, energy, 1, 1, 1, rel_angle); std::printf (" Q Scattering amplitude: %f\n", q); float f0, fp, fpp; Atomic_Factors (14, energy, q, debye_temp_factor, &f0, &fp, &fpp); std::printf (" Atomic factors (Z = 14) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp); Complex FH, F0; FH = Crystal_F_H_StructureFactor (cryst, energy, 1, 1, 1, debye_temp_factor, rel_angle); std::printf (" FH(1,1,1) structure factor: (%f, %f)\n", FH.re, FH.im); F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle); std::printf (" F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im); /* Diamond diffraction parameters */ cryst = Crystal_GetCrystal("Diamond", NULL); std::printf ("\nDiamond 111 at 8 KeV. Incidence at the Bragg angle:\n"); bragg = Bragg_angle (cryst, energy, 1, 1, 1); std::printf (" Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI); q = Q_scattering_amplitude (cryst, energy, 1, 1, 1, rel_angle); std::printf (" Q Scattering amplitude: %f\n", q); Atomic_Factors (6, energy, q, debye_temp_factor, &f0, &fp, &fpp); std::printf (" Atomic factors (Z = 6) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp); FH = Crystal_F_H_StructureFactor (cryst, energy, 1, 1, 1, debye_temp_factor, rel_angle); std::printf (" FH(1,1,1) structure factor: (%f, %f)\n", FH.re, FH.im); F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle); std::printf (" F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im); Complex FHbar = Crystal_F_H_StructureFactor (cryst, energy, -1, -1, -1, debye_temp_factor, rel_angle); float dw = 1e10 * 2 * (R_E / cryst->volume) * (KEV2ANGST * KEV2ANGST/ (energy * energy)) * sqrt(c_abs(c_mul(FH, FHbar))) / PI / sin(2*bragg); std::printf (" Darwin width: %f micro-radians\n", 1e6*dw); /* Alpha Quartz diffraction parameters */ cryst = Crystal_GetCrystal("AlphaQuartz", NULL); std::printf ("\nAlpha Quartz 020 at 8 KeV. Incidence at the Bragg angle:\n"); bragg = Bragg_angle (cryst, energy, 0, 2, 0); std::printf (" Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI); q = Q_scattering_amplitude (cryst, energy, 0, 2, 0, rel_angle); std::printf (" Q Scattering amplitude: %f\n", q); Atomic_Factors (8, energy, q, debye_temp_factor, &f0, &fp, &fpp); std::printf (" Atomic factors (Z = 8) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp); FH = Crystal_F_H_StructureFactor (cryst, energy, 0, 2, 0, debye_temp_factor, rel_angle); std::printf (" FH(0,2,0) structure factor: (%f, %f)\n", FH.re, FH.im); F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle); std::printf (" F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im); /* Muscovite diffraction parameters */ cryst = Crystal_GetCrystal("Muscovite", NULL); std::printf ("\nMuscovite 331 at 8 KeV. Incidence at the Bragg angle:\n"); bragg = Bragg_angle (cryst, energy, 3, 3, 1); std::printf (" Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI); q = Q_scattering_amplitude (cryst, energy, 3, 3, 1, rel_angle); std::printf (" Q Scattering amplitude: %f\n", q); Atomic_Factors (19, energy, q, debye_temp_factor, &f0, &fp, &fpp); std::printf (" Atomic factors (Z = 19) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp); FH = Crystal_F_H_StructureFactor (cryst, energy, 3, 3, 1, debye_temp_factor, rel_angle); std::printf (" FH(3,3,1) structure factor: (%f, %f)\n", FH.re, FH.im); F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle); std::printf (" F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im); std::printf ("\n--------------------------- END OF XRLEXAMPLE6 -------------------------------\n"); return 0; }
float CS_FluorLine(int Z, int line, float E) { float JumpK; float cs_line, Factor = 1.; if (Z<1 || Z>ZMAX) { ErrorExit("Z out of range in function CS_FluorLine"); return 0; } if (E <= 0.) { ErrorExit("Energy <=0 in function CS_FluorLine"); return 0; } if (line>=KN5_LINE && line<=KB_LINE) { if (E > EdgeEnergy(Z, K_SHELL)) { JumpK = JumpFactor(Z, K_SHELL); if (JumpK <= 0.) return 0.; Factor = ((JumpK-1)/JumpK) * FluorYield(Z, K_SHELL); } else return 0.; cs_line = CS_Photo(Z, E) * Factor * RadRate(Z, line) ; } else if (line>=L1P5_LINE && line<=L1L2_LINE) { Factor=Jump_from_L1(Z,E); cs_line = CS_Photo(Z, E) * Factor * RadRate(Z, line) ; } else if (line>=L2Q1_LINE && line<=L2L3_LINE) { Factor=Jump_from_L2(Z,E); cs_line = CS_Photo(Z, E) * Factor * RadRate(Z, line) ; } /* * it's safe to use LA_LINE since it's only composed of 2 L3-lines */ else if ((line>=L3Q1_LINE && line<=L3M1_LINE) || line==LA_LINE) { Factor=Jump_from_L3(Z,E); cs_line = CS_Photo(Z, E) * Factor * RadRate(Z, line) ; } else if (line==LB_LINE) { /* * b1->b17 */ cs_line=Jump_from_L2(Z,E)*(RadRate(Z,L2M4_LINE)+RadRate(Z,L2M3_LINE))+ Jump_from_L3(Z,E)*(RadRate(Z,L3N5_LINE)+RadRate(Z,L3O4_LINE)+RadRate(Z,L3O5_LINE)+RadRate(Z,L3O45_LINE)+RadRate(Z,L3N1_LINE)+RadRate(Z,L3O1_LINE)+RadRate(Z,L3N6_LINE)+RadRate(Z,L3N7_LINE)+RadRate(Z,L3N4_LINE)) + Jump_from_L1(Z,E)*(RadRate(Z,L1M3_LINE)+RadRate(Z,L1M2_LINE)+RadRate(Z,L1M5_LINE)+RadRate(Z,L1M4_LINE)); cs_line*=CS_Photo(Z, E); } else { ErrorExit("Line not allowed in function CS_FluorLine"); return 0; } return (cs_line); }
int getAtomicXRayCS_Kissel (int shellID) { int i, Z; float energy_keV; Z = SymbolToAtomicNumber ( targetFormula ); edgeEnergy = 0.0; fluorYield = 1.0; jumpFactor = 1.0; levelWidth = 0.0; electronConfig = Z; if (verbose > 3) { fprintf(stdout, "getAtomicXRayCS: Z = %d\n", Z); fprintf(stdout, "getAtomicXRayCS_Kissel: shellID = %d\n", shellID); if (verbose>2) { fprintf(stdout, "Index PhotonEnergy TotalCS PhotoCS coherentCS incohrentCS \n"); } } if (shellID <= 30 && shellID >= 0) { edgeEnergy = 1000.0 * EdgeEnergy(Z, shellID); fluorYield = FluorYield(Z, shellID); jumpFactor = JumpFactor(Z, shellID); electronConfig = ElectronConfig(Z, shellID); levelWidth = AtomicLevelWidth(Z, shellID); for ( i = 0; i < npts; i++ ) { energy_keV = 0.001 * energy[i]; if ( energy[i] > edgeEnergy ) { photo[i] = CS_Photo_Partial (Z, shellID, energy_keV); } else { photo[i] = 0.0; } total[i] = 0.0; rayleigh[i] = 0.0; compton[i] = 0.0; if (verbose>2) { fprintf(stdout, "%4d %12.1f %12.4g %12.4g %12.4g %12.4g \n", i, energy[i], total[i], photo[i], rayleigh[i], compton[i]); } } } else if (shellID > 99) { for ( i = 0; i < npts; i++ ) { energy_keV = 0.001 * energy[i]; total[i] = CS_Total_Kissel ( Z, energy_keV ); photo[i] = CS_Photo_Total ( Z, energy_keV ); rayleigh[i] = CS_Rayl ( Z, energy_keV ); compton[i] = CS_Compt ( Z, energy_keV ); if (verbose>2) { fprintf(stdout, "%4d %12.1f %12.4g %12.4g %12.4g %12.4g \n", i, energy[i], total[i], photo[i], rayleigh[i], compton[i]); } } } else { for ( i = 0; i < npts; i++ ) { energy_keV = 0.001 * energy[i]; photo[i] = CS_Photo ( Z, energy_keV ); total[i] = CS_Total ( Z, energy_keV ); rayleigh[i] = CS_Rayl ( Z, energy_keV ); compton[i] = CS_Compt ( Z, energy_keV ); if (verbose>2) { fprintf(stdout, "%4d %12.1f %12.4g %12.4g %12.4g %12.4g \n", i, energy[i], total[i], photo[i], rayleigh[i], compton[i]); } } } if (verbose > 1) { fprintf(stdout, "edgeEnergy = %f, fluorYield = %f, jumpFactor = %f,", edgeEnergy, fluorYield, jumpFactor); fprintf(stdout, " electronConfig = %f, levelWidth = %f \n", electronConfig, levelWidth); } return 0; }
int main() { struct compoundData *cdtest; int i; XRayInit(); SetErrorMessages(0); //if something goes wrong, the test will end with EXIT_FAILURE //SetHardExit(1); std::printf("Example of C++ program using xraylib\n"); std::printf("Density of pure Al: %f g/cm3\n", ElementDensity(13)); std::printf("Ca K-alpha Fluorescence Line Energy: %f\n", LineEnergy(20,KA_LINE)); std::printf("Fe partial photoionization cs of L3 at 6.0 keV: %f\n",CS_Photo_Partial(26,L3_SHELL,6.0)); std::printf("Zr L1 edge energy: %f\n",EdgeEnergy(40,L1_SHELL)); std::printf("Pb Lalpha XRF production cs at 20.0 keV (jump approx): %f\n",CS_FluorLine(82,LA_LINE,20.0)); std::printf("Pb Lalpha XRF production cs at 20.0 keV (Kissel): %f\n",CS_FluorLine_Kissel(82,LA_LINE,20.0)); std::printf("Bi M1N2 radiative rate: %f\n",RadRate(83,M1N2_LINE)); std::printf("U M3O3 Fluorescence Line Energy: %f\n",LineEnergy(92,M3O3_LINE)); //parser test for Ca(HCO3)2 (calcium bicarbonate) if ((cdtest = CompoundParser("Ca(HCO3)2")) == NULL) return 1; std::printf("Ca(HCO3)2 contains %g atoms, %i elements and has a molar mass of %g g/mol\n", cdtest->nAtomsAll, cdtest->nElements, cdtest->molarMass); for (i = 0 ; i < cdtest->nElements ; i++) std::printf("Element %i: %f %% and %g atoms\n", cdtest->Elements[i], cdtest->massFractions[i]*100.0, cdtest->nAtoms[i]); FreeCompoundData(cdtest); //parser test for SiO2 (quartz) if ((cdtest = CompoundParser("SiO2")) == NULL) return 1; std::printf("SiO2 contains %g atoms, %i elements and has a molar mass of %g g/mol\n", cdtest->nAtomsAll, cdtest->nElements, cdtest->molarMass); for (i = 0 ; i < cdtest->nElements ; i++) std::printf("Element %i: %f %% and %g atoms\n", cdtest->Elements[i], cdtest->massFractions[i]*100.0, cdtest->nAtoms[i]); FreeCompoundData(cdtest); std::printf("Ca(HCO3)2 Rayleigh cs at 10.0 keV: %f\n",CS_Rayl_CP("Ca(HCO3)2",10.0f) ); std::printf("CS2 Refractive Index at 10.0 keV : %f - %f i\n",Refractive_Index_Re("CS2",10.0f,1.261f),Refractive_Index_Im("CS2",10.0f,1.261f)); std::printf("C16H14O3 Refractive Index at 1 keV : %f - %f i\n",Refractive_Index_Re("C16H14O3",1.0f,1.2f),Refractive_Index_Im("C16H14O3",1.0f,1.2f)); std::printf("SiO2 Refractive Index at 5 keV : %f - %f i\n",Refractive_Index_Re("SiO2",5.0f,2.65f),Refractive_Index_Im("SiO2",5.0f,2.65f)); std::printf("Compton profile for Fe at pz = 1.1 : %f\n",ComptonProfile(26,1.1f)); std::printf("M5 Compton profile for Fe at pz = 1.1 : %f\n",ComptonProfile_Partial(26,M5_SHELL,1.1f)); std::printf("K atomic level width for Fe: %f\n", AtomicLevelWidth(26,K_SHELL)); std::printf("M1->M5 Coster-Kronig transition probability for Au : %f\n",CosKronTransProb(79,FM15_TRANS)); std::printf("L1->L3 Coster-Kronig transition probability for Fe : %f\n",CosKronTransProb(26,FL13_TRANS)); std::printf("Au Ma1 XRF production cs at 10.0 keV (Kissel): %f\n", CS_FluorLine_Kissel(79,MA1_LINE,10.0f)); std::printf("Au Mb XRF production cs at 10.0 keV (Kissel): %f\n", CS_FluorLine_Kissel(79,MB_LINE,10.0f)); std::printf("Au Mg XRF production cs at 10.0 keV (Kissel): %f\n", CS_FluorLine_Kissel(79,MG_LINE,10.0f)); std::printf("Bi L2-M5M5 Auger non-radiative rate: %f\n",AugerRate(86,L2_M5M5_AUGER)); std::printf("Bi L3 Auger yield: %f\n", AugerYield(86, L3_SHELL)); std::printf("Sr anomalous scattering factor Fi at 10.0 keV: %f\n", Fi(38, 10.0)); std::printf("Sr anomalous scattering factor Fii at 10.0 keV: %f\n", Fii(38, 10.0)); char *symbol = AtomicNumberToSymbol(26); std::printf("Symbol of element 26 is: %s\n",symbol); xrlFree(symbol); std::printf("Number of element Fe is: %i\n",SymbolToAtomicNumber("Fe")); std::printf("Pb Malpha XRF production cs at 20.0 keV with cascade effect: %f\n",CS_FluorLine_Kissel(82,MA1_LINE,20.0)); std::printf("Pb Malpha XRF production cs at 20.0 keV with radiative cascade effect: %f\n",CS_FluorLine_Kissel_Radiative_Cascade(82,MA1_LINE,20.0)); std::printf("Pb Malpha XRF production cs at 20.0 keV with non-radiative cascade effect: %f\n",CS_FluorLine_Kissel_Nonradiative_Cascade(82,MA1_LINE,20.0)); std::printf("Pb Malpha XRF production cs at 20.0 keV without cascade effect: %f\n",CS_FluorLine_Kissel_no_Cascade(82,MA1_LINE,20.0)); std::printf("Al mass energy-absorption cs at 20.0 keV: %f\n", CS_Energy(13, 20.0)); std::printf("Pb mass energy-absorption cs at 40.0 keV: %f\n", CS_Energy(82, 40.0)); std::printf("CdTe mass energy-absorption cs at 40.0 keV: %f\n", CS_Energy_CP("CdTe", 40.0)); /* Si Crystal structure */ Crystal_Struct* cryst = Crystal_GetCrystal("Si", NULL); if (cryst == NULL) return 1; std::printf ("Si unit cell dimensions are %f %f %f\n", cryst->a, cryst->b, cryst->c); std::printf ("Si unit cell angles are %f %f %f\n", cryst->alpha, cryst->beta, cryst->gamma); std::printf ("Si unit cell volume is %f\n", cryst->volume); std::printf ("Si atoms at:\n"); std::printf (" Z fraction X Y Z\n"); Crystal_Atom* atom; for (i = 0; i < cryst->n_atom; i++) { atom = &cryst->atom[i]; std::printf (" %3i %f %f %f %f\n", atom->Zatom, atom->fraction, atom->x, atom->y, atom->z); } /* Si diffraction parameters */ std::printf ("\nSi111 at 8 KeV. Incidence at the Bragg angle:\n"); double energy = 8; double debye_temp_factor = 1.0; double rel_angle = 1.0; double bragg = Bragg_angle (cryst, energy, 1, 1, 1); std::printf (" Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI); double q = Q_scattering_amplitude (cryst, energy, 1, 1, 1, rel_angle); std::printf (" Q Scattering amplitude: %f\n", q); double f0, fp, fpp; Atomic_Factors (14, energy, q, debye_temp_factor, &f0, &fp, &fpp); std::printf (" Atomic factors (Z = 14) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp); xrlComplex FH, F0; FH = Crystal_F_H_StructureFactor (cryst, energy, 1, 1, 1, debye_temp_factor, rel_angle); std::printf (" FH(1,1,1) structure factor: (%f, %f)\n", FH.re, FH.im); F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle); std::printf (" F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im); /* Diamond diffraction parameters */ cryst = Crystal_GetCrystal("Diamond", NULL); std::printf ("\nDiamond 111 at 8 KeV. Incidence at the Bragg angle:\n"); bragg = Bragg_angle (cryst, energy, 1, 1, 1); std::printf (" Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI); q = Q_scattering_amplitude (cryst, energy, 1, 1, 1, rel_angle); std::printf (" Q Scattering amplitude: %f\n", q); Atomic_Factors (6, energy, q, debye_temp_factor, &f0, &fp, &fpp); std::printf (" Atomic factors (Z = 6) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp); FH = Crystal_F_H_StructureFactor (cryst, energy, 1, 1, 1, debye_temp_factor, rel_angle); std::printf (" FH(1,1,1) structure factor: (%f, %f)\n", FH.re, FH.im); F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle); std::printf (" F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im); xrlComplex FHbar = Crystal_F_H_StructureFactor (cryst, energy, -1, -1, -1, debye_temp_factor, rel_angle); double dw = 1e10 * 2 * (R_E / cryst->volume) * (KEV2ANGST * KEV2ANGST/ (energy * energy)) * std::sqrt(c_abs(c_mul(FH, FHbar))) / PI / std::sin(2*bragg); std::printf (" Darwin width: %f micro-radians\n", 1e6*dw); /* Alpha Quartz diffraction parameters */ cryst = Crystal_GetCrystal("AlphaQuartz", NULL); std::printf ("\nAlpha Quartz 020 at 8 KeV. Incidence at the Bragg angle:\n"); bragg = Bragg_angle (cryst, energy, 0, 2, 0); std::printf (" Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI); q = Q_scattering_amplitude (cryst, energy, 0, 2, 0, rel_angle); std::printf (" Q Scattering amplitude: %f\n", q); Atomic_Factors (8, energy, q, debye_temp_factor, &f0, &fp, &fpp); std::printf (" Atomic factors (Z = 8) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp); FH = Crystal_F_H_StructureFactor (cryst, energy, 0, 2, 0, debye_temp_factor, rel_angle); std::printf (" FH(0,2,0) structure factor: (%f, %f)\n", FH.re, FH.im); F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle); std::printf (" F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im); /* Muscovite diffraction parameters */ cryst = Crystal_GetCrystal("Muscovite", NULL); std::printf ("\nMuscovite 331 at 8 KeV. Incidence at the Bragg angle:\n"); bragg = Bragg_angle (cryst, energy, 3, 3, 1); std::printf (" Bragg angle: Rad: %f Deg: %f\n", bragg, bragg*180/PI); q = Q_scattering_amplitude (cryst, energy, 3, 3, 1, rel_angle); std::printf (" Q Scattering amplitude: %f\n", q); Atomic_Factors (19, energy, q, debye_temp_factor, &f0, &fp, &fpp); std::printf (" Atomic factors (Z = 19) f0, fp, fpp: %f, %f, i*%f\n", f0, fp, fpp); FH = Crystal_F_H_StructureFactor (cryst, energy, 3, 3, 1, debye_temp_factor, rel_angle); std::printf (" FH(3,3,1) structure factor: (%f, %f)\n", FH.re, FH.im); F0 = Crystal_F_H_StructureFactor (cryst, energy, 0, 0, 0, debye_temp_factor, rel_angle); std::printf (" F0=FH(0,0,0) structure factor: (%f, %f)\n", F0.re, F0.im); char **crystals; crystals = Crystal_GetCrystalsList(NULL, NULL); std::printf ("List of available crystals:\n"); for (i = 0 ; crystals[i] != NULL ; i++) { std::printf (" Crystal %i: %s\n", i, crystals[i]); xrlFree(crystals[i]); } xrlFree(crystals); std::printf ("\n"); /* compoundDataNIST tests */ struct compoundDataNIST *cdn; cdn = GetCompoundDataNISTByName("Uranium Monocarbide"); std::printf ("Uranium Monocarbide\n"); std::printf (" Name: %s\n", cdn->name); std::printf (" Density: %lf g/cm3\n", cdn->density); for (i = 0 ; i < cdn->nElements ; i++) { std::printf(" Element %i: %lf %%\n",cdn->Elements[i],cdn->massFractions[i]*100.0); } FreeCompoundDataNIST(cdn); cdn = NULL; cdn = GetCompoundDataNISTByIndex(NIST_COMPOUND_BRAIN_ICRP); std::printf ("NIST_COMPOUND_BRAIN_ICRP\n"); std::printf (" Name: %s\n", cdn->name); std::printf (" Density: %lf g/cm3\n", cdn->density); for (i = 0 ; i < cdn->nElements ; i++) { std::printf(" Element %i: %lf %%\n",cdn->Elements[i],cdn->massFractions[i]*100.0); } FreeCompoundDataNIST(cdn); cdn = NULL; char **nistCompounds = GetCompoundDataNISTList(NULL); std::printf ("List of available NIST compounds:\n"); for (i = 0 ; nistCompounds[i] != NULL ; i++) { std::printf (" Compound %i: %s\n", i, nistCompounds[i]); xrlFree(nistCompounds[i]); } xrlFree(nistCompounds); std::printf ("\n"); /* radioNuclideData tests */ struct radioNuclideData *rnd; rnd = GetRadioNuclideDataByName("109Cd"); std::printf ("109Cd\n"); std::printf (" Name: %s\n", rnd->name); std::printf (" Z: %i\n", rnd->Z); std::printf (" A: %i\n", rnd->A); std::printf (" N: %i\n", rnd->N); std::printf (" Z_xray: %i\n", rnd->Z_xray); std::printf (" X-rays:\n"); for (i = 0 ; i < rnd->nXrays ; i++) std::printf (" %f keV -> %f\n", LineEnergy(rnd->Z_xray, rnd->XrayLines[i]), rnd->XrayIntensities[i]); std::printf (" Gamma rays:\n"); for (i = 0 ; i < rnd->nGammas ; i++) std::printf (" %f keV -> %f\n", rnd->GammaEnergies[i], rnd->GammaIntensities[i]); FreeRadioNuclideData(rnd); rnd = GetRadioNuclideDataByIndex(RADIO_NUCLIDE_125I); std::printf ("RADIO_NUCLIDE_125I\n"); std::printf (" Name: %s\n", rnd->name); std::printf (" Z: %i\n", rnd->Z); std::printf (" A: %i\n", rnd->A); std::printf (" N: %i\n", rnd->N); std::printf (" Z_xray: %i\n", rnd->Z_xray); std::printf (" X-rays:\n"); for (i = 0 ; i < rnd->nXrays ; i++) std::printf (" %f keV -> %f\n", LineEnergy(rnd->Z_xray, rnd->XrayLines[i]), rnd->XrayIntensities[i]); std::printf (" Gamma rays:\n"); for (i = 0 ; i < rnd->nGammas ; i++) std::printf (" %f keV -> %f\n", rnd->GammaEnergies[i], rnd->GammaIntensities[i]); FreeRadioNuclideData(rnd); char **radioNuclides; radioNuclides = GetRadioNuclideDataList(NULL); std::printf ("List of available radionuclides:\n"); for (i = 0 ; radioNuclides[i] != NULL ; i++) { std::printf (" Radionuclide %i: %s\n", i, radioNuclides[i]); xrlFree(radioNuclides[i]); } xrlFree(radioNuclides); std::printf ("\n--------------------------- END OF XRLEXAMPLE6 -------------------------------\n"); return 0; }