void mop_get_package_symbols (HV *stash, type_filter_t filter, get_package_symbols_cb_t cb, void *ud) { HE *he; (void)hv_iterinit(stash); if (filter == TYPE_FILTER_NONE) { while ( (he = hv_iternext(stash)) ) { STRLEN keylen; const char *key = HePV(he, keylen); if (!cb(key, keylen, HeVAL(he), ud)) { return; } } return; } while ( (he = hv_iternext(stash)) ) { GV * const gv = (GV*)HeVAL(he); STRLEN keylen; const char * const key = HePV(he, keylen); SV *sv = NULL; if(isGV(gv)){ switch (filter) { case TYPE_FILTER_CODE: sv = (SV *)GvCVu(gv); break; case TYPE_FILTER_ARRAY: sv = (SV *)GvAV(gv); break; case TYPE_FILTER_IO: sv = (SV *)GvIO(gv); break; case TYPE_FILTER_HASH: sv = (SV *)GvHV(gv); break; case TYPE_FILTER_SCALAR: sv = (SV *)GvSV(gv); break; default: croak("Unknown type"); } } /* expand the gv into a real typeglob if it * contains stub functions or constants and we * were asked to return CODE references */ else if (filter == TYPE_FILTER_CODE) { gv_init(gv, stash, key, keylen, GV_ADDMULTI); sv = (SV *)GvCV(gv); } if (sv) { if (!cb(key, keylen, sv, ud)) { return; } } } }
static inline SV *hv_he_store_or_croak(HV *hv, SV *key, SV *val) { dTHX; HE *he = hv_fetch_ent(hv, key, TRUE, 0U); if (!he) { SvREFCNT_dec(val); croak("Can't store value"); } SV *sv = HeVAL(he); SvSetMagicSV(sv, val); return sv; }
bool THX_MopMcV_has_method(pTHX_ SV* metaclass, SV* name) { HV* stash = (HV*) SvRV(metaclass); HE* method_gv_he = hv_fetch_ent(stash, name, 0, 0); if (method_gv_he != NULL) { GV* method_gv = (GV*) HeVAL(method_gv_he); CV* method = GvCV(method_gv); if (method != NULL && GvSTASH(CvGV(method)) == stash) { return TRUE; } } return FALSE; }
SV* THX_MopMcV_get_method(pTHX_ SV* metaclass, SV* name) { HV* stash = (HV*) SvRV(metaclass); HE* method_gv_he = hv_fetch_ent(stash, name, 0, 0); if (method_gv_he != NULL) { GV* method_gv = (GV*) HeVAL(method_gv_he); CV* method = GvCV(method_gv); if (method != NULL && GvSTASH(CvGV(method)) == stash) { return newRV_inc((SV*) method); } } return NULL; }
MP_INLINE CV *modperl_handler_anon_get(pTHX_ modperl_mgv_t *anon) { modperl_modglobal_key_t *gkey = modperl_modglobal_lookup(aTHX_ "ANONSUB"); HE *he = MP_MODGLOBAL_FETCH(gkey); HV *hv; SV *sv; if (!(he && (hv = (HV*)HeVAL(he)))) { Perl_croak(aTHX_ "modperl_handler_anon_get: " "can't find ANONSUB top entry (get)"); } if ((he = hv_fetch_he(hv, anon->name, anon->len, anon->hash))) { sv = HeVAL(he); MP_TRACE_h(MP_FUNC, "anonsub gets name '%s'", anon->name); } else { Perl_croak(aTHX_ "can't find ANONSUB's '%s' entry", anon->name); } return (CV*)sv; }
void THX_MopMcV_add_method(pTHX_ SV* metaclass, SV* name, SV* code) { GV* method_gv; HV* stash = (HV*) SvRV(metaclass); SV* method = newMopMmV(code, 0); HE* method_gv_he = hv_fetch_ent(stash, name, 0, 0); if (method_gv_he != NULL) { GV* method_gv = (GV*) HeVAL(method_gv_he); } else { method_gv = (GV*) newSV(0); gv_init_sv(method_gv, stash, name, 0); (void)hv_store_ent(stash, name, (SV*) method_gv, 0); } MopMmV_assign_to_stash(method, method_gv, stash); }
static amf0_data_t* _amf0_data_rv(SV* sv) { svtype svt = SvTYPE(sv); int i, len, count; amf0_data_t* d; SV** svp; SV* k; AV* ary; HV* hval; HE* he; STRLEN strlen; char* key; if (SVt_PVAV == svt) { d = (amf0_data_t*)amf0_strictarray_init(); ary = (AV*)sv; len = av_len(ary) + 1; for (i = 0; i < len; ++i) { svp = av_fetch(ary, i, 0); if (svp) { amf0_strictarray_add((amf0_strictarray_t*)d, _amf0_data(*svp)); } else { amf0_strictarray_add((amf0_strictarray_t*)d, _amf0_data(NULL)); } } } else if (SVt_PVHV == svt) { d = (amf0_data_t*)amf0_object_init(); hval = (HV*)sv; count = hv_iterinit(hval); while ( (he = hv_iternext(hval)) ) { k = hv_iterkeysv(he); key = SvPV(k, strlen); amf0_object_add((amf0_object_t*)d, key, _amf0_data(HeVAL(he))); } } else { Perl_croak(aTHX_ "Data::AMF::XS doesn't support references except ARRAY and HASH"); } return d; }
Datum plperl_to_hstore(PG_FUNCTION_ARGS) { HV *hv; HE *he; int32 buflen; int32 i; int32 pcount; HStore *out; Pairs *pairs; hv = (HV *) SvRV((SV *) PG_GETARG_POINTER(0)); pcount = hv_iterinit(hv); pairs = palloc(pcount * sizeof(Pairs)); i = 0; while ((he = hv_iternext(hv))) { char *key = sv2cstr(HeSVKEY_force(he)); SV *value = HeVAL(he); pairs[i].key = pstrdup(key); pairs[i].keylen = hstoreCheckKeyLen(strlen(pairs[i].key)); pairs[i].needfree = true; if (!SvOK(value)) { pairs[i].val = NULL; pairs[i].vallen = 0; pairs[i].isnull = true; } else { pairs[i].val = pstrdup(sv2cstr(value)); pairs[i].vallen = hstoreCheckValLen(strlen(pairs[i].val)); pairs[i].isnull = false; } i++; } pcount = hstoreUniquePairs(pairs, pcount, &buflen); out = hstorePairs(pairs, pcount, buflen); PG_RETURN_POINTER(out); }
MP_INLINE void modperl_handler_anon_add(pTHX_ modperl_mgv_t *anon, CV *cv) { modperl_modglobal_key_t *gkey = modperl_modglobal_lookup(aTHX_ "ANONSUB"); HE *he = MP_MODGLOBAL_FETCH(gkey); HV *hv; if (!(he && (hv = (HV*)HeVAL(he)))) { Perl_croak(aTHX_ "modperl_handler_anon_add: " "can't find ANONSUB top entry (get)"); } SvREFCNT_inc(cv); if (!(*hv_store(hv, anon->name, anon->len, (SV*)cv, anon->hash))) { SvREFCNT_dec(cv); Perl_croak(aTHX_ "hv_store of anonsub '%s' has failed!", anon->name); } MP_TRACE_h(MP_FUNC, "anonsub '%s' added", anon->name); }
bool LUCY_Doc_Equals_IMP(lucy_Doc *self, cfish_Obj *other) { if ((lucy_Doc*)other == self) { return true; } if (!cfish_Obj_is_a(other, LUCY_DOC)) { return false; } lucy_DocIVARS *const ivars = lucy_Doc_IVARS(self); lucy_DocIVARS *const ovars = lucy_Doc_IVARS((lucy_Doc*)other); if (!ivars->doc_id == ovars->doc_id) { return false; } if (!!ivars->fields ^ !!ovars->fields) { return false; } // Verify fields. Don't allow any deep data structures. dTHX; HV *my_fields = (HV*)ivars->fields; HV *other_fields = (HV*)ovars->fields; if (HvKEYS(my_fields) != HvKEYS(other_fields)) { return false; } I32 num_fields = hv_iterinit(my_fields); while (num_fields--) { HE *my_entry = hv_iternext(my_fields); SV *my_val_sv = HeVAL(my_entry); STRLEN key_len; char *key; if (HeKLEN(my_entry) == HEf_SVKEY) { SV *key_sv = HeKEY_sv(my_entry); key = SvPV(key_sv, key_len); if (SvUTF8(key_sv)) { key_len = -key_len; } } else { key_len = HeKLEN(my_entry); key = key_len ? HeKEY(my_entry) : Nullch; if (HeKUTF8(my_entry)) { key_len = -key_len; } } SV **const other_val = hv_fetch(other_fields, key, key_len, 0); if (!other_val) { return false; } if (!sv_eq(my_val_sv, *other_val)) { return false; } } return true; }
SV* THX_MopMcV_get_attribute(pTHX_ SV* metaclass, SV* name) { HE* attribute; SV* attributes = MopOV_get_at_slot(metaclass, CLASS_ATTRIBUTE_SLOT); if (attributes == NULL) { attributes = newRV_noinc((SV*) newHV()); MopOV_set_at_slot(metaclass, CLASS_ATTRIBUTE_SLOT, attributes); // NOTE: // I know I am not going to // have the value since I // only just now created the // HV to store it. return NULL; } if (SvTYPE(attributes) != SVt_RV && SvTYPE(SvRV(attributes)) != SVt_PVHV) { croak("attributes is not a HASH ref, this is wrong"); } attribute = hv_fetch_ent((HV*) SvRV(attributes), name, 0, 0); return attribute == NULL ? NULL : HeVAL(attribute); }
SV* Application_font_encodings( Handle self, char * encoding) { AV * glo = newAV(); HE *he; PHash h = apc_font_encodings( self); if ( !h) return newRV_noinc(( SV *) glo); hv_iterinit(( HV*) h); for (;;) { void *value, *key; STRLEN keyLen; if (( he = hv_iternext( h)) == nil) break; value = HeVAL( he); key = HeKEY( he); keyLen = HeKLEN( he); av_push( glo, newSVpvn(( char*) key, keyLen)); } return newRV_noinc(( SV *) glo); }
void LUCY_Inverter_Invert_Doc_IMP(lucy_Inverter *self, lucy_Doc *doc) { dTHX; HV *const fields = (HV*)LUCY_Doc_Get_Fields(doc); I32 num_keys = hv_iterinit(fields); // Prepare for the new doc. LUCY_Inverter_Set_Doc(self, doc); // Extract and invert the doc's fields. while (num_keys--) { HE *hash_entry = hv_iternext(fields); lucy_InverterEntry *inv_entry = S_fetch_entry(aTHX_ self, hash_entry); SV *value_sv = HeVAL(hash_entry); lucy_InverterEntryIVARS *const entry_ivars = lucy_InvEntry_IVARS(inv_entry); lucy_FieldType *type = entry_ivars->type; cfish_Obj *obj = NULL; // Get the field value, forcing text fields to UTF-8. switch (LUCY_FType_Primitive_ID(type) & lucy_FType_PRIMITIVE_ID_MASK) { case lucy_FType_TEXT: { STRLEN val_len; char *val_ptr = SvPVutf8(value_sv, val_len); obj = (cfish_Obj*)cfish_Str_new_wrap_trusted_utf8(val_ptr, val_len); break; } case lucy_FType_BLOB: { STRLEN val_len; char *val_ptr = SvPV(value_sv, val_len); obj = (cfish_Obj*)cfish_Blob_new_wrap(val_ptr, val_len); break; } case lucy_FType_INT32: { obj = (cfish_Obj*)cfish_Int_new(SvIV(value_sv)); break; } case lucy_FType_INT64: { // nwellnhof: Using SvNOK could avoid a int/float/int // round-trip with 32-bit IVs. int64_t val = sizeof(IV) == 8 ? SvIV(value_sv) : (int64_t)SvNV(value_sv); // lossy obj = (cfish_Obj*)cfish_Int_new(val); break; } case lucy_FType_FLOAT32: case lucy_FType_FLOAT64: { obj = (cfish_Obj*)cfish_Float_new(SvNV(value_sv)); break; } default: THROW(CFISH_ERR, "Unrecognized type: %o", type); } CFISH_DECREF(entry_ivars->value); entry_ivars->value = obj; LUCY_Inverter_Add_Field(self, inv_entry); } }
void _mpack_item(SV *res, SV *o) { size_t len, res_len, new_len; char *s, *res_s; res_s = SvPVbyte(res, res_len); unsigned i; if (!SvOK(o)) { new_len = res_len + mp_sizeof_nil(); res_s = SvGROW(res, new_len); SvCUR_set(res, new_len); mp_encode_nil(res_s + res_len); return; } if (SvROK(o)) { o = SvRV(o); if (SvOBJECT(o)) { SvGETMAGIC(o); HV *stash = SvSTASH(o); GV *mtd = gv_fetchmethod_autoload(stash, "msgpack", 0); if (!mtd) croak("Object has no method 'msgpack'"); dSP; ENTER; SAVETMPS; PUSHMARK(SP); XPUSHs (sv_bless (sv_2mortal (newRV_inc(o)), stash)); PUTBACK; call_sv((SV *)GvCV(mtd), G_SCALAR); SPAGAIN; SV *pkt = POPs; if (!SvOK(pkt)) croak("O->msgpack returned undef"); s = SvPV(pkt, len); new_len = res_len + len; res_s = SvGROW(res, new_len); SvCUR_set(res, new_len); memcpy(res_s + res_len, s, len); PUTBACK; FREETMPS; LEAVE; return; } switch(SvTYPE(o)) { case SVt_PVAV: { AV *a = (AV *)o; len = av_len(a) + 1; new_len = res_len + mp_sizeof_array(len); res_s = SvGROW(res, new_len); SvCUR_set(res, new_len); mp_encode_array(res_s + res_len, len); for (i = 0; i < len; i++) { SV **item = av_fetch(a, i, 0); if (!item) _mpack_item(res, 0); else _mpack_item(res, *item); } break; } case SVt_PVHV: { HV *h = (HV *)o; len = hv_iterinit(h); new_len = res_len + mp_sizeof_map(len); res_s = SvGROW(res, new_len); SvCUR_set(res, new_len); mp_encode_map(res_s + res_len, len); for (;;) { HE * iter = hv_iternext(h); if (!iter) break; SV *k = hv_iterkeysv(iter); SV *v = HeVAL(iter); _mpack_item(res, k); _mpack_item(res, v); } break; } default: croak("Can't serialize reference"); } return; } switch(SvTYPE(o)) { case SVt_PV: case SVt_PVIV: case SVt_PVNV: case SVt_PVMG: case SVt_REGEXP: if (!looks_like_number(o)) { s = SvPV(o, len); new_len = res_len + mp_sizeof_str(len); res_s = SvGROW(res, new_len); SvCUR_set(res, new_len); mp_encode_str(res_s + res_len, s, len); break; } case SVt_NV: { NV v = SvNV(o); IV iv = (IV)v; if (v != iv) { new_len = res_len + mp_sizeof_double(v); res_s = SvGROW(res, new_len); SvCUR_set(res, new_len); mp_encode_double(res_s + res_len, v); break; } } case SVt_IV: { IV v = SvIV(o); if (v >= 0) { new_len = res_len + mp_sizeof_uint(v); res_s = SvGROW(res, new_len); SvCUR_set(res, new_len); mp_encode_uint(res_s + res_len, v); } else { new_len = res_len + mp_sizeof_int(v); res_s = SvGROW(res, new_len); SvCUR_set(res, new_len); mp_encode_int(res_s + res_len, v); } break; } default: croak("Internal msgpack error %d", SvTYPE(o)); } }
/* =for apidoc mro_isa_changed_in Takes the necessary steps (cache invalidations, mostly) when the @ISA of the given package has changed. Invoked by the C<setisa> magic, should not need to invoke directly. =cut */ void Perl_mro_isa_changed_in(pTHX_ HV* stash) { dVAR; HV* isarev; AV* linear_mro; HE* iter; SV** svp; I32 items; bool is_universal; struct mro_meta * meta; const char * const stashname = HvNAME_get(stash); const STRLEN stashname_len = HvNAMELEN_get(stash); PERL_ARGS_ASSERT_MRO_ISA_CHANGED_IN; if(!stashname) Perl_croak(aTHX_ "Can't call mro_isa_changed_in() on anonymous symbol table"); /* wipe out the cached linearizations for this stash */ meta = HvMROMETA(stash); if (meta->mro_linear_dfs) { SvREFCNT_dec(MUTABLE_SV(meta->mro_linear_dfs)); meta->mro_linear_dfs = NULL; /* This is just acting as a shortcut pointer. */ meta->mro_linear_c3 = NULL; } else if (meta->mro_linear_c3) { /* Only the current MRO is stored, so this owns the data. */ SvREFCNT_dec(MUTABLE_SV(meta->mro_linear_c3)); meta->mro_linear_c3 = NULL; } if (meta->isa) { SvREFCNT_dec(meta->isa); meta->isa = NULL; } /* Inc the package generation, since our @ISA changed */ meta->pkg_gen++; /* Wipe the global method cache if this package is UNIVERSAL or one of its parents */ svp = hv_fetch(PL_isarev, stashname, stashname_len, 0); isarev = svp ? MUTABLE_HV(*svp) : NULL; if((stashname_len == 9 && strEQ(stashname, "UNIVERSAL")) || (isarev && hv_exists(isarev, "UNIVERSAL", 9))) { PL_sub_generation++; is_universal = TRUE; } else { /* Wipe the local method cache otherwise */ meta->cache_gen++; is_universal = FALSE; } /* wipe next::method cache too */ if(meta->mro_nextmethod) hv_clear(meta->mro_nextmethod); /* Iterate the isarev (classes that are our children), wiping out their linearization, method and isa caches */ if(isarev) { hv_iterinit(isarev); while((iter = hv_iternext(isarev))) { I32 len; const char* const revkey = hv_iterkey(iter, &len); HV* revstash = gv_stashpvn(revkey, len, 0); struct mro_meta* revmeta; if(!revstash) continue; revmeta = HvMROMETA(revstash); if (revmeta->mro_linear_dfs) { SvREFCNT_dec(MUTABLE_SV(revmeta->mro_linear_dfs)); revmeta->mro_linear_dfs = NULL; /* This is just acting as a shortcut pointer. */ revmeta->mro_linear_c3 = NULL; } else if (revmeta->mro_linear_c3) { /* Only the current MRO is stored, so this owns the data. */ SvREFCNT_dec(MUTABLE_SV(revmeta->mro_linear_c3)); revmeta->mro_linear_c3 = NULL; } if(!is_universal) revmeta->cache_gen++; if(revmeta->mro_nextmethod) hv_clear(revmeta->mro_nextmethod); if (revmeta->isa) { SvREFCNT_dec(revmeta->isa); revmeta->isa = NULL; } } } /* Now iterate our MRO (parents), and do a few things: 1) instantiate with the "fake" flag if they don't exist 2) flag them as universal if we are universal 3) Add everything from our isarev to their isarev */ /* We're starting at the 2nd element, skipping ourselves here */ linear_mro = mro_get_linear_isa(stash); svp = AvARRAY(linear_mro) + 1; items = AvFILLp(linear_mro); while (items--) { SV* const sv = *svp++; HV* mroisarev; HE *he = hv_fetch_ent(PL_isarev, sv, TRUE, 0); /* That fetch should not fail. But if it had to create a new SV for us, then we can detect it, because it will not be the correct type. Probably faster and cleaner for us to free that scalar [very little code actually executed to free it] and create a new HV than to copy&paste [SIN!] the code from newHV() to allow us to upgrade the new SV from SVt_NULL. */ mroisarev = MUTABLE_HV(HeVAL(he)); if(SvTYPE(mroisarev) != SVt_PVHV) { SvREFCNT_dec(mroisarev); mroisarev = newHV(); HeVAL(he) = MUTABLE_SV(mroisarev); } /* This hash only ever contains PL_sv_yes. Storing it over itself is almost as cheap as calling hv_exists, so on aggregate we expect to save time by not making two calls to the common HV code for the case where it doesn't exist. */ (void)hv_store(mroisarev, stashname, stashname_len, &PL_sv_yes, 0); if(isarev) { hv_iterinit(isarev); while((iter = hv_iternext(isarev))) { I32 revkeylen; char* const revkey = hv_iterkey(iter, &revkeylen); (void)hv_store(mroisarev, revkey, revkeylen, &PL_sv_yes, 0); } } } }
/* =for apidoc mro_get_linear_isa_dfs Returns the Depth-First Search linearization of @ISA the given stash. The return value is a read-only AV*. C<level> should be 0 (it is used internally in this function's recursion). You are responsible for C<SvREFCNT_inc()> on the return value if you plan to store it anywhere semi-permanently (otherwise it might be deleted out from under you the next time the cache is invalidated). =cut */ static AV* S_mro_get_linear_isa_dfs(pTHX_ HV *stash, U32 level) { AV* retval; GV** gvp; GV* gv; AV* av; const HEK* stashhek; struct mro_meta* meta; SV *our_name; HV *stored; PERL_ARGS_ASSERT_MRO_GET_LINEAR_ISA_DFS; assert(HvAUX(stash)); stashhek = HvNAME_HEK(stash); if (!stashhek) Perl_croak(aTHX_ "Can't linearize anonymous symbol table"); if (level > 100) Perl_croak(aTHX_ "Recursive inheritance detected in package '%s'", HEK_KEY(stashhek)); meta = HvMROMETA(stash); /* return cache if valid */ if((retval = MUTABLE_AV(MRO_GET_PRIVATE_DATA(meta, &dfs_alg)))) { return retval; } /* not in cache, make a new one */ retval = MUTABLE_AV(sv_2mortal(MUTABLE_SV(newAV()))); /* We use this later in this function, but don't need a reference to it beyond the end of this function, so reference count is fine. */ our_name = newSVhek(stashhek); av_push(retval, our_name); /* add ourselves at the top */ /* fetch our @ISA */ gvp = (GV**)hv_fetchs(stash, "ISA", FALSE); av = (gvp && (gv = *gvp) && isGV_with_GP(gv)) ? GvAV(gv) : NULL; /* "stored" is used to keep track of all of the classnames we have added to the MRO so far, so we can do a quick exists check and avoid adding duplicate classnames to the MRO as we go. It's then retained to be re-used as a fast lookup for ->isa(), by adding our own name and "UNIVERSAL" to it. */ stored = MUTABLE_HV(sv_2mortal(MUTABLE_SV(newHV()))); if(av && AvFILLp(av) >= 0) { SV **svp = AvARRAY(av); I32 items = AvFILLp(av) + 1; /* foreach(@ISA) */ while (items--) { SV* const sv = *svp++; HV* const basestash = gv_stashsv(sv, 0); SV *const *subrv_p; I32 subrv_items; if (!basestash) { /* if no stash exists for this @ISA member, simply add it to the MRO and move on */ subrv_p = &sv; subrv_items = 1; } else { /* otherwise, recurse into ourselves for the MRO of this @ISA member, and append their MRO to ours. The recursive call could throw an exception, which has memory management implications here, hence the use of the mortal. */ const AV *const subrv = mro_get_linear_isa_dfs(basestash, level + 1); subrv_p = AvARRAY(subrv); subrv_items = AvFILLp(subrv) + 1; } while(subrv_items--) { SV *const subsv = *subrv_p++; /* LVALUE fetch will create a new undefined SV if necessary */ HE *const he = hv_fetch_ent(stored, subsv, 1, 0); assert(he); if(HeVAL(he) != &PL_sv_undef) { /* It was newly created. Steal it for our new SV, and replace it in the hash with the "real" thing. */ SV *const val = HeVAL(he); HEK *const key = HeKEY_hek(he); HeVAL(he) = &PL_sv_undef; /* Save copying by making a shared hash key scalar. We inline this here rather than calling Perl_newSVpvn_share because we already have the scalar, and we already have the hash key. */ assert(SvTYPE(val) == SVt_NULL); sv_upgrade(val, SVt_PV); SvPV_set(val, HEK_KEY(share_hek_hek(key))); SvCUR_set(val, HEK_LEN(key)); SvREADONLY_on(val); SvFAKE_on(val); SvPOK_on(val); if (HEK_UTF8(key)) SvUTF8_on(val); av_push(retval, val); } } } } (void) hv_store_ent(stored, our_name, &PL_sv_undef, 0); (void) hv_store(stored, "UNIVERSAL", 9, &PL_sv_undef, 0); SvREFCNT_inc_simple_void_NN(stored); SvTEMP_off(stored); SvREADONLY_on(stored); meta->isa = stored; /* now that we're past the exception dangers, grab our own reference to the AV we're about to use for the result. The reference owned by the mortals' stack will be released soon, so everything will balance. */ SvREFCNT_inc_simple_void_NN(retval); SvTEMP_off(retval); /* we don't want anyone modifying the cache entry but us, and we do so by replacing it completely */ SvREADONLY_on(retval); return MUTABLE_AV(Perl_mro_set_private_data(aTHX_ meta, &dfs_alg, MUTABLE_SV(retval))); }
static AV* S_mro_get_linear_isa_c3(pTHX_ HV* stash, U32 level) { AV* retval; GV** gvp; GV* gv; AV* isa; const HEK* stashhek; struct mro_meta* meta; PERL_ARGS_ASSERT_MRO_GET_LINEAR_ISA_C3; assert(HvAUX(stash)); stashhek = HvNAME_HEK(stash); if (!stashhek) Perl_croak(aTHX_ "Can't linearize anonymous symbol table"); if (level > 100) Perl_croak(aTHX_ "Recursive inheritance detected in package '%s'", HEK_KEY(stashhek)); meta = HvMROMETA(stash); /* return cache if valid */ if((retval = meta->mro_linear_c3)) { return retval; } /* not in cache, make a new one */ gvp = (GV**)hv_fetchs(stash, "ISA", FALSE); isa = (gvp && (gv = *gvp) && isGV_with_GP(gv)) ? GvAV(gv) : NULL; if ( isa && ! SvAVOK(isa) ) { Perl_croak(aTHX_ "@ISA is not an array but %s", Ddesc((SV*)isa)); } /* For a better idea how the rest of this works, see the much clearer pure perl version in Algorithm::C3 0.01: http://search.cpan.org/src/STEVAN/Algorithm-C3-0.01/lib/Algorithm/C3.pm (later versions go about it differently than this code for speed reasons) */ if(isa && AvFILLp(isa) >= 0) { SV** seqs_ptr; I32 seqs_items; HV* const tails = MUTABLE_HV(sv_2mortal(MUTABLE_SV(newHV()))); AV *const seqs = MUTABLE_AV(sv_2mortal(MUTABLE_SV(newAV()))); I32* heads; /* This builds @seqs, which is an array of arrays. The members of @seqs are the MROs of the members of @ISA, followed by @ISA itself. */ I32 items = AvFILLp(isa) + 1; SV** isa_ptr = AvARRAY(isa); while(items--) { SV* const isa_item = *isa_ptr++; if ( ! SvPVOK(isa_item) ) { Perl_croak(aTHX_ "@ISA element which is not an plain value"); } { HV* const isa_item_stash = gv_stashsv(isa_item, 0); if(!isa_item_stash) { /* if no stash, make a temporary fake MRO containing just itself */ AV* const isa_lin = newAV(); av_push(isa_lin, newSVsv(isa_item)); av_push(seqs, (SV*)isa_lin); } else { /* recursion */ AV* const isa_lin = mro_get_linear_isa_c3(isa_item_stash, level + 1); av_push(seqs, SvREFCNT_inc_NN((SV*)isa_lin)); } } } av_push(seqs, SvREFCNT_inc_NN((SV*)isa)); /* This builds "heads", which as an array of integer array indices, one per seq, which point at the virtual "head" of the seq (initially zero) */ Newxz(heads, AvFILLp(seqs)+1, I32); /* This builds %tails, which has one key for every class mentioned in the tail of any sequence in @seqs (tail meaning everything after the first class, the "head"). The value is how many times this key appears in the tails of @seqs. */ seqs_ptr = AvARRAY(seqs); seqs_items = AvFILLp(seqs) + 1; while(seqs_items--) { AV *const seq = MUTABLE_AV(*seqs_ptr++); I32 seq_items = AvFILLp(seq); if(seq_items > 0) { SV** seq_ptr = AvARRAY(seq) + 1; while(seq_items--) { SV* const seqitem = *seq_ptr++; /* LVALUE fetch will create a new undefined SV if necessary */ HE* const he = hv_fetch_ent(tails, seqitem, 1, 0); if(he) { SV* const val = HeVAL(he); /* This will increment undef to 1, which is what we want for a newly created entry. */ sv_inc(val); } } } } /* Initialize retval to build the return value in */ retval = newAV(); av_push(retval, newSVhek(stashhek)); /* us first */ /* This loop won't terminate until we either finish building the MRO, or get an exception. */ while(1) { SV* cand = NULL; SV* winner = NULL; int s; /* "foreach $seq (@seqs)" */ SV** const avptr = AvARRAY(seqs); for(s = 0; s <= AvFILLp(seqs); s++) { SV** svp; AV * const seq = MUTABLE_AV(avptr[s]); SV* seqhead; if(!seq) continue; /* skip empty seqs */ svp = av_fetch(seq, heads[s], 0); seqhead = *svp; /* seqhead = head of this seq */ if(!winner) { HE* tail_entry; SV* val; /* if we haven't found a winner for this round yet, and this seqhead is not in tails (or the count for it in tails has dropped to zero), then this seqhead is our new winner, and is added to the final MRO immediately */ cand = seqhead; if((tail_entry = hv_fetch_ent(tails, cand, 0, 0)) && (val = HeVAL(tail_entry)) && (SvIV(val) > 0)) continue; winner = newSVsv(cand); av_push(retval, winner); /* note however that even when we find a winner, we continue looping over @seqs to do housekeeping */ } if(!sv_cmp(seqhead, winner)) { /* Once we have a winner (including the iteration where we first found him), inc the head ptr for any seq which had the winner as a head, NULL out any seq which is now empty, and adjust tails for consistency */ const int new_head = ++heads[s]; if(new_head > AvFILLp(seq)) { SvREFCNT_dec(avptr[s]); avptr[s] = NULL; } else { HE* tail_entry; SV* val; /* Because we know this new seqhead used to be a tail, we can assume it is in tails and has a positive value, which we need to dec */ svp = av_fetch(seq, new_head, 0); seqhead = *svp; tail_entry = hv_fetch_ent(tails, seqhead, 0, 0); val = HeVAL(tail_entry); sv_dec(val); } } } /* if we found no candidates, we are done building the MRO. !cand means no seqs have any entries left to check */ if(!cand) { Safefree(heads); break; } /* If we had candidates, but nobody won, then the @ISA hierarchy is not C3-incompatible */ if(!winner) { SV *errmsg; I32 i; errmsg = newSVpvf(aTHX_ "Inconsistent hierarchy during C3 merge of class '%s':\n\t" "current merge results [\n", HEK_KEY(stashhek)); for (i = 0; i <= av_len(retval); i++) { SV **elem = av_fetch(retval, i, 0); sv_catpvf(aTHX_ errmsg, "\t\t%"SVf",\n", SVfARG(*elem)); } sv_catpvf(aTHX_ errmsg, "\t]\n\tmerging failed on '%"SVf"'", SVfARG(cand)); /* we have to do some cleanup before we croak */ AvREFCNT_dec(retval); Safefree(heads); croak(aTHX_ "%"SVf, SVfARG(errmsg)); } } } else { /* @ISA was undefined or empty */ /* build a retval containing only ourselves */ retval = newAV(); av_push(retval, newSVhek(stashhek)); } /* we don't want anyone modifying the cache entry but us, and we do so by replacing it completely */ SvREADONLY_on(retval); meta->mro_linear_c3 = retval; return retval; }
/* =for apidoc mro_get_linear_isa_dfs Returns the Depth-First Search linearization of C<@ISA> the given stash. The return value is a read-only AV*. C<level> should be 0 (it is used internally in this function's recursion). You are responsible for C<SvREFCNT_inc()> on the return value if you plan to store it anywhere semi-permanently (otherwise it might be deleted out from under you the next time the cache is invalidated). =cut */ static AV* S_mro_get_linear_isa_dfs(pTHX_ HV *stash, U32 level) { AV* retval; GV** gvp; GV* gv; AV* av; const HEK* stashhek; struct mro_meta* meta; SV *our_name; HV *stored = NULL; PERL_ARGS_ASSERT_MRO_GET_LINEAR_ISA_DFS; assert(HvAUX(stash)); stashhek = HvAUX(stash)->xhv_name_u.xhvnameu_name && HvENAME_HEK_NN(stash) ? HvENAME_HEK_NN(stash) : HvNAME_HEK(stash); if (!stashhek) Perl_croak(aTHX_ "Can't linearize anonymous symbol table"); if (level > 100) Perl_croak(aTHX_ "Recursive inheritance detected in package '%"HEKf"'", HEKfARG(stashhek)); meta = HvMROMETA(stash); /* return cache if valid */ if((retval = MUTABLE_AV(MRO_GET_PRIVATE_DATA(meta, &dfs_alg)))) { return retval; } /* not in cache, make a new one */ retval = MUTABLE_AV(sv_2mortal(MUTABLE_SV(newAV()))); /* We use this later in this function, but don't need a reference to it beyond the end of this function, so reference count is fine. */ our_name = newSVhek(stashhek); av_push(retval, our_name); /* add ourselves at the top */ /* fetch our @ISA */ gvp = (GV**)hv_fetchs(stash, "ISA", FALSE); av = (gvp && (gv = *gvp) && isGV_with_GP(gv)) ? GvAV(gv) : NULL; /* "stored" is used to keep track of all of the classnames we have added to the MRO so far, so we can do a quick exists check and avoid adding duplicate classnames to the MRO as we go. It's then retained to be re-used as a fast lookup for ->isa(), by adding our own name and "UNIVERSAL" to it. */ if(av && AvFILLp(av) >= 0) { SV **svp = AvARRAY(av); I32 items = AvFILLp(av) + 1; /* foreach(@ISA) */ while (items--) { SV* const sv = *svp ? *svp : &PL_sv_undef; HV* const basestash = gv_stashsv(sv, 0); SV *const *subrv_p; I32 subrv_items; svp++; if (!basestash) { /* if no stash exists for this @ISA member, simply add it to the MRO and move on */ subrv_p = &sv; subrv_items = 1; } else { /* otherwise, recurse into ourselves for the MRO of this @ISA member, and append their MRO to ours. The recursive call could throw an exception, which has memory management implications here, hence the use of the mortal. */ const AV *const subrv = mro_get_linear_isa_dfs(basestash, level + 1); subrv_p = AvARRAY(subrv); subrv_items = AvFILLp(subrv) + 1; } if (stored) { while(subrv_items--) { SV *const subsv = *subrv_p++; /* LVALUE fetch will create a new undefined SV if necessary */ HE *const he = hv_fetch_ent(stored, subsv, 1, 0); assert(he); if(HeVAL(he) != &PL_sv_undef) { /* It was newly created. Steal it for our new SV, and replace it in the hash with the "real" thing. */ SV *const val = HeVAL(he); HEK *const key = HeKEY_hek(he); HeVAL(he) = &PL_sv_undef; sv_sethek(val, key); av_push(retval, val); } } } else { /* We are the first (or only) parent. We can short cut the complexity above, because our @ISA is simply us prepended to our parent's @ISA, and our ->isa cache is simply our parent's, with our name added. */ /* newSVsv() is slow. This code is only faster if we can avoid it by ensuring that SVs in the arrays are shared hash key scalar SVs, because we can "copy" them very efficiently. Although to be fair, we can't *ensure* this, as a reference to the internal array is returned by mro::get_linear_isa(), so we'll have to be defensive just in case someone faffed with it. */ if (basestash) { SV **svp; stored = MUTABLE_HV(sv_2mortal((SV*)newHVhv(HvMROMETA(basestash)->isa))); av_extend(retval, subrv_items); AvFILLp(retval) = subrv_items; svp = AvARRAY(retval); while(subrv_items--) { SV *const val = *subrv_p++; *++svp = SvIsCOW_shared_hash(val) ? newSVhek(SvSHARED_HEK_FROM_PV(SvPVX(val))) : newSVsv(val); } } else { /* They have no stash. So create ourselves an ->isa cache as if we'd copied it from what theirs should be. */ stored = MUTABLE_HV(sv_2mortal(MUTABLE_SV(newHV()))); (void) hv_store(stored, "UNIVERSAL", 9, &PL_sv_undef, 0); av_push(retval, newSVhek(HeKEY_hek(hv_store_ent(stored, sv, &PL_sv_undef, 0)))); } } } } else { /* We have no parents. */ stored = MUTABLE_HV(sv_2mortal(MUTABLE_SV(newHV()))); (void) hv_store(stored, "UNIVERSAL", 9, &PL_sv_undef, 0); } (void) hv_store_ent(stored, our_name, &PL_sv_undef, 0); SvREFCNT_inc_simple_void_NN(stored); SvTEMP_off(stored); SvREADONLY_on(stored); meta->isa = stored; /* now that we're past the exception dangers, grab our own reference to the AV we're about to use for the result. The reference owned by the mortals' stack will be released soon, so everything will balance. */ SvREFCNT_inc_simple_void_NN(retval); SvTEMP_off(retval); /* we don't want anyone modifying the cache entry but us, and we do so by replacing it completely */ SvREADONLY_on(retval); return MUTABLE_AV(Perl_mro_set_private_data(aTHX_ meta, &dfs_alg, MUTABLE_SV(retval))); }
void Perl_mro_isa_changed_in(pTHX_ HV* stash) { HV* isarev; AV* linear_mro; HE* iter; SV** svp; I32 items; bool is_universal; struct mro_meta * meta; HV *isa = NULL; const HEK * const stashhek = HvENAME_HEK(stash); const char * const stashname = HvENAME_get(stash); const STRLEN stashname_len = HvENAMELEN_get(stash); PERL_ARGS_ASSERT_MRO_ISA_CHANGED_IN; if(!stashname) Perl_croak(aTHX_ "Can't call mro_isa_changed_in() on anonymous symbol table"); /* wipe out the cached linearizations for this stash */ meta = HvMROMETA(stash); CLEAR_LINEAR(meta); if (meta->isa) { /* Steal it for our own purposes. */ isa = (HV *)sv_2mortal((SV *)meta->isa); meta->isa = NULL; } /* Inc the package generation, since our @ISA changed */ meta->pkg_gen++; /* Wipe the global method cache if this package is UNIVERSAL or one of its parents */ svp = hv_fetchhek(PL_isarev, stashhek, 0); isarev = svp ? MUTABLE_HV(*svp) : NULL; if((stashname_len == 9 && strEQ(stashname, "UNIVERSAL")) || (isarev && hv_exists(isarev, "UNIVERSAL", 9))) { PL_sub_generation++; is_universal = TRUE; } else { /* Wipe the local method cache otherwise */ meta->cache_gen++; is_universal = FALSE; } /* wipe next::method cache too */ if(meta->mro_nextmethod) hv_clear(meta->mro_nextmethod); /* Changes to @ISA might turn overloading on */ HvAMAGIC_on(stash); /* pessimise derefs for now. Will get recalculated by Gv_AMupdate() */ HvAUX(stash)->xhv_aux_flags &= ~HvAUXf_NO_DEREF; /* DESTROY can be cached in SvSTASH. */ if (!SvOBJECT(stash)) SvSTASH(stash) = NULL; /* Iterate the isarev (classes that are our children), wiping out their linearization, method and isa caches and upating PL_isarev. */ if(isarev) { HV *isa_hashes = NULL; /* We have to iterate through isarev twice to avoid a chicken and * egg problem: if A inherits from B and both are in isarev, A might * be processed before B and use B's previous linearisation. */ /* First iteration: Wipe everything, but stash away the isa hashes * since we still need them for updating PL_isarev. */ if(hv_iterinit(isarev)) { /* Only create the hash if we need it; i.e., if isarev has any elements. */ isa_hashes = (HV *)sv_2mortal((SV *)newHV()); } while((iter = hv_iternext(isarev))) { HV* revstash = gv_stashsv(hv_iterkeysv(iter), 0); struct mro_meta* revmeta; if(!revstash) continue; revmeta = HvMROMETA(revstash); CLEAR_LINEAR(revmeta); if(!is_universal) revmeta->cache_gen++; if(revmeta->mro_nextmethod) hv_clear(revmeta->mro_nextmethod); if (!SvOBJECT(revstash)) SvSTASH(revstash) = NULL; (void) hv_store( isa_hashes, (const char*)&revstash, sizeof(HV *), revmeta->isa ? (SV *)revmeta->isa : &PL_sv_undef, 0 ); revmeta->isa = NULL; } /* Second pass: Update PL_isarev. We can just use isa_hashes to * avoid another round of stash lookups. */ /* isarev might be deleted from PL_isarev during this loop, so hang * on to it. */ SvREFCNT_inc_simple_void_NN(sv_2mortal((SV *)isarev)); if(isa_hashes) { hv_iterinit(isa_hashes); while((iter = hv_iternext(isa_hashes))) { HV* const revstash = *(HV **)HEK_KEY(HeKEY_hek(iter)); HV * const isa = (HV *)HeVAL(iter); const HEK *namehek; /* We're starting at the 2nd element, skipping revstash */ linear_mro = mro_get_linear_isa(revstash); svp = AvARRAY(linear_mro) + 1; items = AvFILLp(linear_mro); namehek = HvENAME_HEK(revstash); if (!namehek) namehek = HvNAME_HEK(revstash); while (items--) { SV* const sv = *svp++; HV* mroisarev; HE *he = hv_fetch_ent(PL_isarev, sv, TRUE, 0); /* That fetch should not fail. But if it had to create a new SV for us, then will need to upgrade it to an HV (which sv_upgrade() can now do for us). */ mroisarev = MUTABLE_HV(HeVAL(he)); SvUPGRADE(MUTABLE_SV(mroisarev), SVt_PVHV); /* This hash only ever contains PL_sv_yes. Storing it over itself is almost as cheap as calling hv_exists, so on aggregate we expect to save time by not making two calls to the common HV code for the case where it doesn't exist. */ (void) hv_storehek(mroisarev, namehek, &PL_sv_yes); } if ((SV *)isa != &PL_sv_undef) { assert(namehek); mro_clean_isarev( isa, HEK_KEY(namehek), HEK_LEN(namehek), HvMROMETA(revstash)->isa, HEK_HASH(namehek), HEK_UTF8(namehek) ); } } } } /* Now iterate our MRO (parents), adding ourselves and everything from our isarev to their isarev. */ /* We're starting at the 2nd element, skipping ourselves here */ linear_mro = mro_get_linear_isa(stash); svp = AvARRAY(linear_mro) + 1; items = AvFILLp(linear_mro); while (items--) { SV* const sv = *svp++; HV* mroisarev; HE *he = hv_fetch_ent(PL_isarev, sv, TRUE, 0); /* That fetch should not fail. But if it had to create a new SV for us, then will need to upgrade it to an HV (which sv_upgrade() can now do for us. */ mroisarev = MUTABLE_HV(HeVAL(he)); SvUPGRADE(MUTABLE_SV(mroisarev), SVt_PVHV); /* This hash only ever contains PL_sv_yes. Storing it over itself is almost as cheap as calling hv_exists, so on aggregate we expect to save time by not making two calls to the common HV code for the case where it doesn't exist. */ (void)hv_storehek(mroisarev, stashhek, &PL_sv_yes); } /* Delete our name from our former parents' isarevs. */ if(isa && HvARRAY(isa)) mro_clean_isarev(isa, stashname, stashname_len, meta->isa, HEK_HASH(stashhek), HEK_UTF8(stashhek)); }
/* =for apidoc mro_package_moved Call this function to signal to a stash that it has been assigned to another spot in the stash hierarchy. C<stash> is the stash that has been assigned. C<oldstash> is the stash it replaces, if any. C<gv> is the glob that is actually being assigned to. This can also be called with a null first argument to indicate that C<oldstash> has been deleted. This function invalidates isa caches on the old stash, on all subpackages nested inside it, and on the subclasses of all those, including non-existent packages that have corresponding entries in C<stash>. It also sets the effective names (C<HvENAME>) on all the stashes as appropriate. If the C<gv> is present and is not in the symbol table, then this function simply returns. This checked will be skipped if C<flags & 1>. =cut */ void Perl_mro_package_moved(pTHX_ HV * const stash, HV * const oldstash, const GV * const gv, U32 flags) { SV *namesv; HEK **namep; I32 name_count; HV *stashes; HE* iter; PERL_ARGS_ASSERT_MRO_PACKAGE_MOVED; assert(stash || oldstash); /* Determine the name(s) of the location that stash was assigned to * or from which oldstash was removed. * * We cannot reliably use the name in oldstash, because it may have * been deleted from the location in the symbol table that its name * suggests, as in this case: * * $globref = \*foo::bar::; * Symbol::delete_package("foo"); * *$globref = \%baz::; * *$globref = *frelp::; * # calls mro_package_moved(%frelp::, %baz::, *$globref, NULL, 0) * * So we get it from the gv. But, since the gv may no longer be in the * symbol table, we check that first. The only reliable way to tell is * to see whether its stash has an effective name and whether the gv * resides in that stash under its name. That effective name may be * different from what gv_fullname4 would use. * If flags & 1, the caller has asked us to skip the check. */ if(!(flags & 1)) { SV **svp; if( !GvSTASH(gv) || !HvENAME(GvSTASH(gv)) || !(svp = hv_fetchhek(GvSTASH(gv), GvNAME_HEK(gv), 0)) || *svp != (SV *)gv ) return; } assert(SvOOK(GvSTASH(gv))); assert(GvNAMELEN(gv)); assert(GvNAME(gv)[GvNAMELEN(gv) - 1] == ':'); assert(GvNAMELEN(gv) == 1 || GvNAME(gv)[GvNAMELEN(gv) - 2] == ':'); name_count = HvAUX(GvSTASH(gv))->xhv_name_count; if (!name_count) { name_count = 1; namep = &HvAUX(GvSTASH(gv))->xhv_name_u.xhvnameu_name; } else { namep = HvAUX(GvSTASH(gv))->xhv_name_u.xhvnameu_names; if (name_count < 0) ++namep, name_count = -name_count - 1; } if (name_count == 1) { if (HEK_LEN(*namep) == 4 && strnEQ(HEK_KEY(*namep), "main", 4)) { namesv = GvNAMELEN(gv) == 1 ? newSVpvs_flags(":", SVs_TEMP) : newSVpvs_flags("", SVs_TEMP); } else { namesv = sv_2mortal(newSVhek(*namep)); if (GvNAMELEN(gv) == 1) sv_catpvs(namesv, ":"); else sv_catpvs(namesv, "::"); } if (GvNAMELEN(gv) != 1) { sv_catpvn_flags( namesv, GvNAME(gv), GvNAMELEN(gv) - 2, /* skip trailing :: */ GvNAMEUTF8(gv) ? SV_CATUTF8 : SV_CATBYTES ); } } else { SV *aname; namesv = sv_2mortal((SV *)newAV()); while (name_count--) { if(HEK_LEN(*namep) == 4 && strnEQ(HEK_KEY(*namep), "main", 4)) { aname = GvNAMELEN(gv) == 1 ? newSVpvs(":") : newSVpvs(""); namep++; } else { aname = newSVhek(*namep++); if (GvNAMELEN(gv) == 1) sv_catpvs(aname, ":"); else sv_catpvs(aname, "::"); } if (GvNAMELEN(gv) != 1) { sv_catpvn_flags( aname, GvNAME(gv), GvNAMELEN(gv) - 2, /* skip trailing :: */ GvNAMEUTF8(gv) ? SV_CATUTF8 : SV_CATBYTES ); } av_push((AV *)namesv, aname); } } /* Get a list of all the affected classes. */ /* We cannot simply pass them all to mro_isa_changed_in to avoid the list, as that function assumes that only one package has changed. It does not work with: @foo::ISA = qw( B B::B ); *B:: = delete $::{"A::"}; as neither B nor B::B can be updated before the other, since they will reset caches on foo, which will see either B or B::B with the wrong name. The names must be set on *all* affected stashes before we do anything else. (And linearisations must be cleared, too.) */ stashes = (HV *) sv_2mortal((SV *)newHV()); mro_gather_and_rename( stashes, (HV *) sv_2mortal((SV *)newHV()), stash, oldstash, namesv ); /* Once the caches have been wiped on all the classes, call mro_isa_changed_in on each. */ hv_iterinit(stashes); while((iter = hv_iternext(stashes))) { HV * const stash = *(HV **)HEK_KEY(HeKEY_hek(iter)); if(HvENAME(stash)) { /* We have to restore the original meta->isa (that mro_gather_and_rename set aside for us) this way, in case one class in this list is a superclass of a another class that we have already encountered. In such a case, meta->isa from PL_isarev. */ struct mro_meta * const meta = HvMROMETA(stash); if(meta->isa != (HV *)HeVAL(iter)) { SvREFCNT_dec(meta->isa); meta->isa = HeVAL(iter) == &PL_sv_yes ? NULL : (HV *)HeVAL(iter); HeVAL(iter) = NULL; /* We donated our reference count. */ } mro_isa_changed_in(stash); } } }
void *swiftperl_hv_iterval(void *vp) { return HeVAL((HE *)vp); }
STATIC void S_mro_gather_and_rename(pTHX_ HV * const stashes, HV * const seen_stashes, HV *stash, HV *oldstash, SV *namesv) { XPVHV* xhv; HE *entry; I32 riter = -1; I32 items = 0; const bool stash_had_name = stash && HvENAME(stash); bool fetched_isarev = FALSE; HV *seen = NULL; HV *isarev = NULL; SV **svp = NULL; PERL_ARGS_ASSERT_MRO_GATHER_AND_RENAME; /* We use the seen_stashes hash to keep track of which packages have been encountered so far. This must be separate from the main list of stashes, as we need to distinguish between stashes being assigned and stashes being replaced/deleted. (A nested stash can be on both sides of an assignment. We cannot simply skip iterating through a stash on the right if we have seen it on the left, as it will not get its ename assigned to it.) To avoid allocating extra SVs, instead of a bitfield we can make bizarre use of immortals: &PL_sv_undef: seen on the left (oldstash) &PL_sv_no : seen on the right (stash) &PL_sv_yes : seen on both sides */ if(oldstash) { /* Add to the big list. */ struct mro_meta * meta; HE * const entry = (HE *) hv_common( seen_stashes, NULL, (const char *)&oldstash, sizeof(HV *), 0, HV_FETCH_LVALUE|HV_FETCH_EMPTY_HE, NULL, 0 ); if(HeVAL(entry) == &PL_sv_undef || HeVAL(entry) == &PL_sv_yes) { oldstash = NULL; goto check_stash; } HeVAL(entry) = HeVAL(entry) == &PL_sv_no ? &PL_sv_yes : &PL_sv_undef; meta = HvMROMETA(oldstash); (void) hv_store( stashes, (const char *)&oldstash, sizeof(HV *), meta->isa ? SvREFCNT_inc_simple_NN((SV *)meta->isa) : &PL_sv_yes, 0 ); CLEAR_LINEAR(meta); /* Update the effective name. */ if(HvENAME_get(oldstash)) { const HEK * const enamehek = HvENAME_HEK(oldstash); if(SvTYPE(namesv) == SVt_PVAV) { items = AvFILLp((AV *)namesv) + 1; svp = AvARRAY((AV *)namesv); } else { items = 1; svp = &namesv; } while (items--) { const U32 name_utf8 = SvUTF8(*svp); STRLEN len; const char *name = SvPVx_const(*svp, len); if(PL_stashcache) { DEBUG_o(Perl_deb(aTHX_ "mro_gather_and_rename clearing PL_stashcache for '%"SVf"'\n", SVfARG(*svp))); (void)hv_delete(PL_stashcache, name, name_utf8 ? -(I32)len : (I32)len, G_DISCARD); } ++svp; hv_ename_delete(oldstash, name, len, name_utf8); if (!fetched_isarev) { /* If the name deletion caused a name change, then we * are not going to call mro_isa_changed_in with this * name (and not at all if it has become anonymous) so * we need to delete old isarev entries here, both * those in the superclasses and this class's own list * of subclasses. We simply delete the latter from * PL_isarev, since we still need it. hv_delete morti- * fies it for us, so sv_2mortal is not necessary. */ if(HvENAME_HEK(oldstash) != enamehek) { if(meta->isa && HvARRAY(meta->isa)) mro_clean_isarev(meta->isa, name, len, 0, 0, name_utf8 ? HVhek_UTF8 : 0); isarev = (HV *)hv_delete(PL_isarev, name, name_utf8 ? -(I32)len : (I32)len, 0); fetched_isarev=TRUE; } } } } } check_stash: if(stash) { if(SvTYPE(namesv) == SVt_PVAV) { items = AvFILLp((AV *)namesv) + 1; svp = AvARRAY((AV *)namesv); } else { items = 1; svp = &namesv; } while (items--) { const U32 name_utf8 = SvUTF8(*svp); STRLEN len; const char *name = SvPVx_const(*svp++, len); hv_ename_add(stash, name, len, name_utf8); } /* Add it to the big list if it needs * mro_isa_changed_in called on it. That happens if it was * detached from the symbol table (so it had no HvENAME) before * being assigned to the spot named by the 'name' variable, because * its cached isa linearisation is now stale (the effective name * having changed), and subclasses will then use that cache when * mro_package_moved calls mro_isa_changed_in. (See * [perl #77358].) * * If it did have a name, then its previous name is still * used in isa caches, and there is no need for * mro_package_moved to call mro_isa_changed_in. */ entry = (HE *) hv_common( seen_stashes, NULL, (const char *)&stash, sizeof(HV *), 0, HV_FETCH_LVALUE|HV_FETCH_EMPTY_HE, NULL, 0 ); if(HeVAL(entry) == &PL_sv_yes || HeVAL(entry) == &PL_sv_no) stash = NULL; else { HeVAL(entry) = HeVAL(entry) == &PL_sv_undef ? &PL_sv_yes : &PL_sv_no; if(!stash_had_name) { struct mro_meta * const meta = HvMROMETA(stash); (void) hv_store( stashes, (const char *)&stash, sizeof(HV *), meta->isa ? SvREFCNT_inc_simple_NN((SV *)meta->isa) : &PL_sv_yes, 0 ); CLEAR_LINEAR(meta); } } } if(!stash && !oldstash) /* Both stashes have been encountered already. */ return; /* Add all the subclasses to the big list. */ if(!fetched_isarev) { /* If oldstash is not null, then we can use its HvENAME to look up the isarev hash, since all its subclasses will be listed there. It will always have an HvENAME. It the HvENAME was removed above, then fetch_isarev will be true, and this code will not be reached. If oldstash is null, then this is an empty spot with no stash in it, so subclasses could be listed in isarev hashes belonging to any of the names, so we have to check all of them. */ assert(!oldstash || HvENAME(oldstash)); if (oldstash) { /* Extra variable to avoid a compiler warning */ const HEK * const hvename = HvENAME_HEK(oldstash); fetched_isarev = TRUE; svp = hv_fetchhek(PL_isarev, hvename, 0); if (svp) isarev = MUTABLE_HV(*svp); } else if(SvTYPE(namesv) == SVt_PVAV) { items = AvFILLp((AV *)namesv) + 1; svp = AvARRAY((AV *)namesv); } else { items = 1; svp = &namesv; } } if( isarev || !fetched_isarev ) { while (fetched_isarev || items--) { HE *iter; if (!fetched_isarev) { HE * const he = hv_fetch_ent(PL_isarev, *svp++, 0, 0); if (!he || !(isarev = MUTABLE_HV(HeVAL(he)))) continue; } hv_iterinit(isarev); while((iter = hv_iternext(isarev))) { HV* revstash = gv_stashsv(hv_iterkeysv(iter), 0); struct mro_meta * meta; if(!revstash) continue; meta = HvMROMETA(revstash); (void) hv_store( stashes, (const char *)&revstash, sizeof(HV *), meta->isa ? SvREFCNT_inc_simple_NN((SV *)meta->isa) : &PL_sv_yes, 0 ); CLEAR_LINEAR(meta); } if (fetched_isarev) break; } } /* This is partly based on code in hv_iternext_flags. We are not call- ing that here, as we want to avoid resetting the hash iterator. */ /* Skip the entire loop if the hash is empty. */ if(oldstash && HvUSEDKEYS(oldstash)) { xhv = (XPVHV*)SvANY(oldstash); seen = (HV *) sv_2mortal((SV *)newHV()); /* Iterate through entries in the oldstash, adding them to the list, meanwhile doing the equivalent of $seen{$key} = 1. */ while (++riter <= (I32)xhv->xhv_max) { entry = (HvARRAY(oldstash))[riter]; /* Iterate through the entries in this list */ for(; entry; entry = HeNEXT(entry)) { const char* key; I32 len; /* If this entry is not a glob, ignore it. Try the next. */ if (!isGV(HeVAL(entry))) continue; key = hv_iterkey(entry, &len); if ((len > 1 && key[len-2] == ':' && key[len-1] == ':') || (len == 1 && key[0] == ':')) { HV * const oldsubstash = GvHV(HeVAL(entry)); SV ** const stashentry = stash ? hv_fetch(stash, key, HeUTF8(entry) ? -(I32)len : (I32)len, 0) : NULL; HV *substash = NULL; /* Avoid main::main::main::... */ if(oldsubstash == oldstash) continue; if( ( stashentry && *stashentry && isGV(*stashentry) && (substash = GvHV(*stashentry)) ) || (oldsubstash && HvENAME_get(oldsubstash)) ) { /* Add :: and the key (minus the trailing ::) to each name. */ SV *subname; if(SvTYPE(namesv) == SVt_PVAV) { SV *aname; items = AvFILLp((AV *)namesv) + 1; svp = AvARRAY((AV *)namesv); subname = sv_2mortal((SV *)newAV()); while (items--) { aname = newSVsv(*svp++); if (len == 1) sv_catpvs(aname, ":"); else { sv_catpvs(aname, "::"); sv_catpvn_flags( aname, key, len-2, HeUTF8(entry) ? SV_CATUTF8 : SV_CATBYTES ); } av_push((AV *)subname, aname); } } else { subname = sv_2mortal(newSVsv(namesv)); if (len == 1) sv_catpvs(subname, ":"); else { sv_catpvs(subname, "::"); sv_catpvn_flags( subname, key, len-2, HeUTF8(entry) ? SV_CATUTF8 : SV_CATBYTES ); } } mro_gather_and_rename( stashes, seen_stashes, substash, oldsubstash, subname ); } (void)hv_store(seen, key, HeUTF8(entry) ? -(I32)len : (I32)len, &PL_sv_yes, 0); } } } } /* Skip the entire loop if the hash is empty. */ if (stash && HvUSEDKEYS(stash)) { xhv = (XPVHV*)SvANY(stash); riter = -1; /* Iterate through the new stash, skipping $seen{$key} items, calling mro_gather_and_rename(stashes,seen,entry,NULL, ...). */ while (++riter <= (I32)xhv->xhv_max) { entry = (HvARRAY(stash))[riter]; /* Iterate through the entries in this list */ for(; entry; entry = HeNEXT(entry)) { const char* key; I32 len; /* If this entry is not a glob, ignore it. Try the next. */ if (!isGV(HeVAL(entry))) continue; key = hv_iterkey(entry, &len); if ((len > 1 && key[len-2] == ':' && key[len-1] == ':') || (len == 1 && key[0] == ':')) { HV *substash; /* If this entry was seen when we iterated through the oldstash, skip it. */ if(seen && hv_exists(seen, key, HeUTF8(entry) ? -(I32)len : (I32)len)) continue; /* We get here only if this stash has no corresponding entry in the stash being replaced. */ substash = GvHV(HeVAL(entry)); if(substash) { SV *subname; /* Avoid checking main::main::main::... */ if(substash == stash) continue; /* Add :: and the key (minus the trailing ::) to each name. */ if(SvTYPE(namesv) == SVt_PVAV) { SV *aname; items = AvFILLp((AV *)namesv) + 1; svp = AvARRAY((AV *)namesv); subname = sv_2mortal((SV *)newAV()); while (items--) { aname = newSVsv(*svp++); if (len == 1) sv_catpvs(aname, ":"); else { sv_catpvs(aname, "::"); sv_catpvn_flags( aname, key, len-2, HeUTF8(entry) ? SV_CATUTF8 : SV_CATBYTES ); } av_push((AV *)subname, aname); } } else { subname = sv_2mortal(newSVsv(namesv)); if (len == 1) sv_catpvs(subname, ":"); else { sv_catpvs(subname, "::"); sv_catpvn_flags( subname, key, len-2, HeUTF8(entry) ? SV_CATUTF8 : SV_CATBYTES ); } } mro_gather_and_rename( stashes, seen_stashes, substash, NULL, subname ); } } } } } }
/* This callback is only ever called for single operation, single key results */ static void callback_common(lcb_t instance, int cbtype, const lcb_RESPBASE *resp) { AV *resobj = NULL; PLCB_t *parent; SV *ctxrv = (SV *)resp->cookie; plcb_OPCTX *ctx = NUM2PTR(plcb_OPCTX*, SvIVX(SvRV(ctxrv))); if (cbtype == LCB_CALLBACK_STATS || cbtype == LCB_CALLBACK_OBSERVE || cbtype == LCB_CALLBACK_HTTP) { HE *tmp; hv_iterinit(ctx->docs); tmp = hv_iternext(ctx->docs); if (tmp && HeVAL(tmp) && SvROK(HeVAL(tmp))) { resobj = (AV *)SvRV(HeVAL(tmp)); } } else { SV **tmp = hv_fetch(ctx->docs, resp->key, resp->nkey, 0); if (tmp && SvROK(*tmp)) { resobj = (AV*)SvRV(*tmp); } } if (!resobj) { warn("Couldn't find matching object!"); return; } parent = (PLCB_t *)lcb_get_cookie(instance); plcb_doc_set_err(parent, resobj, resp->rc); switch (cbtype) { case LCB_CALLBACK_GET: { const lcb_RESPGET *gresp = (const lcb_RESPGET *)resp; if (resp->rc == LCB_SUCCESS) { SV *newval = plcb_convert_retrieval(parent, resobj, gresp->value, gresp->nvalue, gresp->itmflags); av_store(resobj, PLCB_RETIDX_VALUE, newval); plcb_doc_set_cas(parent, resobj, &resp->cas); } break; } case LCB_CALLBACK_TOUCH: case LCB_CALLBACK_REMOVE: case LCB_CALLBACK_UNLOCK: case LCB_CALLBACK_STORE: case LCB_CALLBACK_ENDURE: if (resp->cas && resp->rc == LCB_SUCCESS) { plcb_doc_set_cas(parent, resobj, &resp->cas); } if (cbtype == LCB_CALLBACK_STORE && resp->rc == LCB_SUCCESS && chain_endure(parent, resobj, (const lcb_RESPSTORE *)resp)) { return; /* Will be handled already */ } break; case LCB_CALLBACK_COUNTER: { const lcb_RESPCOUNTER *cresp = (const lcb_RESPCOUNTER*)resp; plcb_doc_set_numval(parent, resobj, cresp->value, resp->cas); break; } case LCB_CALLBACK_STATS: { const lcb_RESPSTATS *sresp = (const void *)resp; if (sresp->server) { call_helper(resobj, cbtype, (const lcb_RESPBASE *)sresp); return; } break; } case LCB_CALLBACK_OBSERVE: { const lcb_RESPOBSERVE *oresp = (const lcb_RESPOBSERVE*)resp; if (oresp->nkey) { call_helper(resobj, cbtype, (const lcb_RESPBASE*)oresp); return; } break; } case LCB_CALLBACK_HTTP: { const lcb_RESPHTTP *htresp = (const lcb_RESPHTTP *)resp; /* Store the CAS */ av_store(resobj, PLCB_HTIDX_STATUS, newSViv(htresp->htstatus)); if (htresp->headers) { const char * const * hdr_cur; HV *headers = newHV(); av_store(resobj, PLCB_HTIDX_HEADERS, newRV_noinc((SV*)headers)); for (hdr_cur = htresp->headers; *hdr_cur; hdr_cur += 2) { const char *hdrkey = hdr_cur[0]; const char *hdrval = hdr_cur[1]; SV *valsv = newSVpv(hdrval, 0); hv_store(headers, hdrkey, 0, valsv, 0); } } if (htresp->nbody) { lcb_U32 fmtflags = PLCB_CF_JSON; SV *body; SV *fmtspec = *av_fetch(resobj, PLCB_RETIDX_VALUE, 1); if (SvIOK(fmtspec)) { fmtflags = SvUV(fmtspec); } body = plcb_convert_retrieval_ex(parent, resobj, htresp->body, htresp->nbody, fmtflags, PLCB_CONVERT_NOCUSTOM); av_store(resobj, PLCB_RETIDX_VALUE, body); } break; } default: abort(); break; } ctx->nremaining--; if (parent->async) { call_async(ctx, resobj); } else if (ctx->flags & PLCB_OPCTXf_WAITONE) { av_push(ctx->u.ctxqueue, newRV_inc( (SV* )resobj)); plcb_kv_waitdone(parent); } if (!ctx->nremaining) { SvREFCNT_dec(ctxrv); plcb_kv_waitdone(parent); plcb_opctx_clear(parent); } }