Beispiel #1
0
void Display_SetupSPI() {
	// Setup output pins
	PA0 = 0;
	GPIO_SetMode(PA, BIT0, GPIO_MODE_OUTPUT);
	PA1 = 0;
	GPIO_SetMode(PA, BIT1, GPIO_MODE_OUTPUT);
	PC4 = 0;
	GPIO_SetMode(PC, BIT4, GPIO_MODE_OUTPUT);
	PE10 = 0;
	GPIO_SetMode(PE, BIT10, GPIO_MODE_OUTPUT);
	PE12 = 0;
	GPIO_SetMode(PE, BIT12, GPIO_MODE_OUTPUT);

	// Setup MFP
	SYS->GPB_MFPL &= ~(SYS_GPE_MFPH_PE11MFP_Msk | SYS_GPE_MFPH_PE12MFP_Msk | SYS_GPE_MFPH_PE13MFP_Msk);
	SYS->GPE_MFPH |= SYS_GPE_MFPH_PE11MFP_SPI0_MOSI0 | SYS_GPE_MFPH_PE12MFP_SPI0_SS | SYS_GPE_MFPH_PE13MFP_SPI0_CLK;

	// SPI0 master, MSB first, 8bit transaction, SPI Mode-0 timing, 4MHz clock
	SPI_Open(SPI0, SPI_MASTER, SPI_MODE_0, 8, 4000000);

	// Low level active
	SPI_EnableAutoSS(SPI0, SPI_SS, SPI_SS_ACTIVE_LOW);

	// Start SPI
	SPI_ENABLE(SPI0);
}
Beispiel #2
0
void SPI_Init(void)
{
    /*---------------------------------------------------------------------------------------------------------*/
    /* Init SPI                                                                                                */
    /*---------------------------------------------------------------------------------------------------------*/
    /* Configure as a master, clock idle low, 32-bit transaction, drive output on falling clock edge and latch input on rising edge. */
    /* Set IP clock divider. SPI clock rate = 1 MHz */
    SPI_Open(SPI0, SPI_MASTER, SPI_MODE_0, 32, 1000000);

    /* Enable the automatic hardware slave select function. Select the SS pin and configure as low-active. */
    SPI_EnableAutoSS(SPI0, SPI_SS, SPI_SS_ACTIVE_LOW);
}
Beispiel #3
0
/* Main */
int main(void)
{
    uint32_t u32ByteCount, u32FlashAddress, u32PageNumber;
    uint32_t nError = 0;
    uint16_t u16ID;

    /* Init System, IP clock and multi-function I/O */
    SYS_Init();

    /* Init UART to 115200-8n1 for print message */
    UART_Open(UART0, 115200);

    /* Configure SPI_FLASH_PORT as a master, MSB first, 8-bit transaction, SPI Mode-0 timing, clock is 2MHz */
    SPI_Open(SPI_FLASH_PORT, SPI_MASTER, SPI_MODE_0, 8, 2000000);

    /* Enable the automatic hardware slave select function. Select the SS0 pin and configure as low-active. */
    SPI_EnableAutoSS(SPI_FLASH_PORT, SPI_SS0, SPI_SS_ACTIVE_LOW);
    SPI_TRIGGER(SPI_FLASH_PORT);

    printf("\n+------------------------------------------------------------------------+\n");
    printf("|             NUC472/NUC442 SPI Dual Mode with Flash Sample Code         |\n");
    printf("+------------------------------------------------------------------------+\n");

    /* Wait ready */
    SpiFlash_WaitReady();

    if((u16ID = SpiFlash_ReadMidDid()) != 0x1C14) {
        printf("Wrong ID, 0x%x\n", u16ID);
        return -1;
    } else
        printf("Flash found: EN25QH16 ...\n");

    printf("Erase chip ...");

    /* Erase SPI flash */
    SpiFlash_ChipErase();

    /* Wait ready */
    SpiFlash_WaitReady();

    printf("[OK]\n");

    /* init source data buffer */
    for(u32ByteCount=0; u32ByteCount<TEST_LENGTH; u32ByteCount++) {
        SrcArray[u32ByteCount] = u32ByteCount;
    }

    printf("Start to normal write data to Flash ...");
    /* Program SPI flash */
    u32FlashAddress = 0;
    for(u32PageNumber=0; u32PageNumber<TEST_NUMBER; u32PageNumber++) {
        /* page program */
        SpiFlash_NormalPageProgram(u32FlashAddress, SrcArray);
        SpiFlash_WaitReady();
        u32FlashAddress += 0x100;
    }

    printf("[OK]\n");

    /* clear destination data buffer */
    for(u32ByteCount=0; u32ByteCount<TEST_LENGTH; u32ByteCount++) {
        DestArray[u32ByteCount] = 0;
    }

    printf("Dual Read & Compare ...");

    /* Read SPI flash */
    u32FlashAddress = 0;
    for(u32PageNumber=0; u32PageNumber<TEST_NUMBER; u32PageNumber++) {
        /* page read */
        SpiFlash_DualFastRead(u32FlashAddress, DestArray);
        u32FlashAddress += 0x100;

        for(u32ByteCount=0; u32ByteCount<TEST_LENGTH; u32ByteCount++) {
            if(DestArray[u32ByteCount] != SrcArray[u32ByteCount])
                nError ++;
        }
    }

    if(nError == 0)
        printf("[OK]\n");
    else
        printf("[FAIL]\n");

    while(1);
}
Beispiel #4
0
int main(void)
{
    uint32_t u32DataCount, u32TestCount, u32Err;

    /* Init System, IP clock and multi-function I/O */
    SYS_Init();

    /* Init UART to 115200-8n1 for print message */
    UART_Open(UART0, 115200);

    /* Configure SPI0 as a master, MSB first, 32-bit transaction, SPI Mode-0 timing, clock is 2MHz */
    SPI_Open(SPI0, SPI_MASTER, SPI_MODE_0, 32, 2000000);

    /* Enable the automatic hardware slave select function. Select the SPI0_SS0 pin and configure as low-active. */
    SPI_EnableAutoSS(SPI0, SPI_SS0, SPI_SS_ACTIVE_LOW);

    /* Configure SPI1 as a slave, MSB first, 32-bit transaction, SPI Mode-0 timing, clock is 4Mhz */
    SPI_Open(SPI1, SPI_SLAVE, SPI_MODE_0, 32, 4000000);

    /* Configure SPI1 as a low level active device. */
    SPI_SET_SS0_LOW(SPI1);

    printf("\n\n");
    printf("+----------------------------------------------------------------------+\n");
    printf("|                       SPI Driver Sample Code                         |\n");
    printf("+----------------------------------------------------------------------+\n");
    printf("\n");

    printf("Configure SPI0 as a master and SPI1 as a slave.\n");
    printf("Data width of a transaction: 32\n");
    printf("SPI clock rate: %d Hz\n", SPI_GetBusClock(SPI0));
    printf("The I/O connection for SPI0/SPI1 loopback:\n");
    printf("    SPI0_SS  (PE.4) <--> SPI1_SS(PC.12)\n    SPI0_CLK(PE.5)  <--> SPI1_CLK(PD.1)\n");
    printf("    SPI0_MISO(PE.2) <--> SPI1_MISO(PD.0)\n    SPI0_MOSI(PE.3) <--> SPI1_MOSI(PC.15)\n\n");
    printf("Please connect SPI0 with SPI1, and press any key to start transmission ...");
    getchar();
    printf("\n");

    printf("\nSPI0/1 Loopback test ");

    /* Enable the SPI1 unit transfer interrupt. */
    SPI_EnableInt(SPI1, SPI_UNITIEN_MASK);
    NVIC_EnableIRQ(SPI1_IRQn);
    SPI_TRIGGER(SPI1);

    u32Err = 0;
    for(u32TestCount=0; u32TestCount<10000; u32TestCount++) {
        /* set the source data and clear the destination buffer */
        for(u32DataCount=0; u32DataCount<TEST_COUNT; u32DataCount++) {
            g_au32SourceData[u32DataCount] = u32DataCount;
            g_au32DestinationData[u32DataCount] = 0;
        }

        u32DataCount=0;
        SPI1_INT_Flag = 0;

        if((u32TestCount&0x1FF) == 0) {
            putchar('.');
        }

        SPI_TRIGGER(SPI0);
        /* write the first data of source buffer to Tx register of SPI0. And start transmission. */
        SPI_WRITE_TX(SPI0, g_au32SourceData[0]);

        while(1) {
            if(SPI1_INT_Flag==1) {
                SPI1_INT_Flag = 0;

                if(u32DataCount<(TEST_COUNT-1)) {
                    /* Read the previous retrieved data and trigger next transfer. */
                    g_au32DestinationData[u32DataCount] = SPI_READ_RX(SPI1);
                    u32DataCount++;
                    /* Write data to SPI0 Tx buffer and trigger the transfer */
                    SPI_WRITE_TX(SPI0, g_au32SourceData[u32DataCount]);
                } else {
                    /* Just read the previous retrieved data but trigger next transfer, because this is the last transfer. */
                    g_au32DestinationData[u32DataCount] = SPI_READ_RX(SPI1);
                    break;
                }
            }
        }

        /*  Check the received data */
        for(u32DataCount=0; u32DataCount<TEST_COUNT; u32DataCount++) {
            if(g_au32DestinationData[u32DataCount]!=g_au32SourceData[u32DataCount])
                u32Err = 1;
        }

        if(u32Err)
            break;
    }
    /* Disable the SPI1 unit transfer interrupt. */
    SPI_DisableInt(SPI1, SPI_UNITIEN_MASK);
    NVIC_DisableIRQ(SPI1_IRQn);

    if(u32Err)
        printf(" [FAIL]\n\n");
    else
        printf(" [PASS]\n\n");


    printf("\n\nExit SPI driver sample code.\n");

    while(1);
}