/*
 * This doesn't necessarily belong here (because it's HAL related, not
 * driver related).
 */
void
ath_sysctl_hal_attach(struct ath_softc *sc)
{
	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);

	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "hal", CTLFLAG_RD,
	    NULL, "Atheros HAL parameters");
	child = SYSCTL_CHILDREN(tree);

	sc->sc_ah->ah_config.ah_debug = 0;
	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "debug", CTLFLAG_RW,
	    &sc->sc_ah->ah_config.ah_debug, 0, "Atheros HAL debugging printfs");

	sc->sc_ah->ah_config.ah_ar5416_biasadj = 0;
	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "ar5416_biasadj", CTLFLAG_RW,
	    &sc->sc_ah->ah_config.ah_ar5416_biasadj, 0,
	    "Enable 2GHz AR5416 direction sensitivity bias adjust");

	sc->sc_ah->ah_config.ah_dma_beacon_response_time = 2;
	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "dma_brt", CTLFLAG_RW,
	    &sc->sc_ah->ah_config.ah_dma_beacon_response_time, 0,
	    "Atheros HAL DMA beacon response time");

	sc->sc_ah->ah_config.ah_sw_beacon_response_time = 10;
	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "sw_brt", CTLFLAG_RW,
	    &sc->sc_ah->ah_config.ah_sw_beacon_response_time, 0,
	    "Atheros HAL software beacon response time");

	sc->sc_ah->ah_config.ah_additional_swba_backoff = 0;
	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "swba_backoff", CTLFLAG_RW,
	    &sc->sc_ah->ah_config.ah_additional_swba_backoff, 0,
	    "Atheros HAL additional SWBA backoff time");
}
Beispiel #2
0
static int
ow_temp_attach(device_t dev)
{
	struct ow_temp_softc *sc;

	sc = device_get_softc(dev);
	sc->dev = dev;
	sc->type = ow_get_family(dev);
	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
	    OID_AUTO, "temperature", CTLFLAG_RD | CTLTYPE_INT,
	    &sc->temp, 0, sysctl_handle_int,
	    "IK3", "Current Temperature");
	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
	    OID_AUTO, "badcrc", CTLFLAG_RD,
	    &sc->bad_crc, 0,
	    "Number of Bad CRC on reading scratchpad");
	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
	    OID_AUTO, "badread", CTLFLAG_RD,
	    &sc->bad_reads, 0,
	    "Number of errors on reading scratchpad");
	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
	    OID_AUTO, "reading_interval", CTLFLAG_RW,
	    &sc->reading_interval, 0,
	    "ticks between reads");
	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
	    OID_AUTO, "parasite", CTLFLAG_RW,
	    &sc->parasite, 0,
	    "In Parasite mode");
	/*
	 * Just do this for unit 0 to avoid locking
	 * the ow bus until that code can be put
	 * into place.
	 */
	sc->temp = -1;
	sc->reading_interval = 10 * hz;
	mtx_init(&sc->temp_lock, "lock for doing temperature", NULL, MTX_DEF);
	/* Start the thread */
	if (kproc_create(ow_temp_event_thread, sc, &sc->event_thread, 0, 0,
	    "%s event thread", device_get_nameunit(dev))) {
		device_printf(dev, "unable to create event thread.\n");
		panic("cbb_create_event_thread");
	}

	return 0;
}
static int
acpi_dock_attach(device_t dev)
{
	struct acpi_dock_softc *sc;
	ACPI_HANDLE	h;

	sc = device_get_softc(dev);
	h = acpi_get_handle(dev);
	if (sc == NULL || h == NULL)
		return (ENXIO);

	sc->status = ACPI_DOCK_STATUS_UNKNOWN;

	AcpiEvaluateObject(h, "_INI", NULL, NULL);

	ACPI_SERIAL_BEGIN(dock);

	acpi_dock_device_check(dev);

	/* Get the sysctl tree */
	sc->sysctl_ctx = device_get_sysctl_ctx(dev);
	sc->sysctl_tree = device_get_sysctl_tree(dev);

	SYSCTL_ADD_INT(sc->sysctl_ctx,
		SYSCTL_CHILDREN(sc->sysctl_tree),
		OID_AUTO, "_sta", CTLFLAG_RD,
		&sc->_sta, 0, "Dock _STA");
	SYSCTL_ADD_INT(sc->sysctl_ctx,
		SYSCTL_CHILDREN(sc->sysctl_tree),
		OID_AUTO, "_bdn", CTLFLAG_RD,
		&sc->_bdn, 0, "Dock _BDN");
	SYSCTL_ADD_INT(sc->sysctl_ctx,
		SYSCTL_CHILDREN(sc->sysctl_tree),
		OID_AUTO, "_uid", CTLFLAG_RD,
		&sc->_uid, 0, "Dock _UID");
	SYSCTL_ADD_PROC(sc->sysctl_ctx,
		SYSCTL_CHILDREN(sc->sysctl_tree),
		OID_AUTO, "status",
		CTLTYPE_INT|CTLFLAG_RW, dev, 0,
		acpi_dock_status_sysctl, "I",
		"Dock/Undock operation");

	ACPI_SERIAL_END(dock);

	AcpiInstallNotifyHandler(h, ACPI_ALL_NOTIFY,
				 acpi_dock_notify_handler, dev);

	return (0);
}
static void
ath_rate_sysctlattach(struct ath_softc *sc, struct sample_softc *osc)
{
	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);

	/* XXX bounds check [0..100] */
	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
		"smoothing_rate", CTLFLAG_RW, &osc->ath_smoothing_rate, 0,
		"rate control: retry threshold to credit rate raise (%%)");
	/* XXX bounds check [2..100] */
	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
		"sample_rate", CTLFLAG_RW, &osc->ath_sample_rate,0,
		"rate control: # good periods before raising rate");
}
Beispiel #5
0
void
ucom_set_pnpinfo_usb(struct ucom_super_softc *ssc, device_t dev)
{
	char buf[64];
	uint8_t iface_index;
	struct usb_attach_arg *uaa;

	snprintf(buf, sizeof(buf), "ttyname=" UCOM_TTY_PREFIX
	    "%d ttyports=%d", ssc->sc_unit, ssc->sc_subunits);

	/* Store the PNP info in the first interface for the device */
	uaa = device_get_ivars(dev);
	iface_index = uaa->info.bIfaceIndex;
    
	if (usbd_set_pnpinfo(uaa->device, iface_index, buf) != 0)
		device_printf(dev, "Could not set PNP info\n");

	/*
	 * The following information is also replicated in the PNP-info
	 * string which is registered above:
	 */
	if (ssc->sc_sysctl_ttyname == NULL) {
		ssc->sc_sysctl_ttyname = SYSCTL_ADD_STRING(NULL,
		    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
		    OID_AUTO, "ttyname", CTLFLAG_RD, ssc->sc_ttyname, 0,
		    "TTY device basename");
	}
	if (ssc->sc_sysctl_ttyports == NULL) {
		ssc->sc_sysctl_ttyports = SYSCTL_ADD_INT(NULL,
		    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
		    OID_AUTO, "ttyports", CTLFLAG_RD,
		    NULL, ssc->sc_subunits, "Number of ports");
	}
}
Beispiel #6
0
static int
canbus_attach(device_t dev)
{
	struct canbus_softc *sc = device_get_softc(dev);
	struct sysctl_oid *canbus_sysctl_tree;

	sc->io_delay_time = CANBE_IO_DELAY_TIME;

	/* I/O resource setup */
	if(alloc_ioresource(dev))
		return (ENXIO);

	/* Dynamic sysctl tree setup */
	sysctl_ctx_init(&sc->canbus_sysctl_ctx);
	canbus_sysctl_tree = SYSCTL_ADD_NODE(&sc->canbus_sysctl_ctx,
	    SYSCTL_STATIC_CHILDREN(/* tree top */), OID_AUTO,
	    "canbus", CTLFLAG_RD, 0, "CanBe I/O Bus");
	SYSCTL_ADD_INT(&sc->canbus_sysctl_ctx,
	    SYSCTL_CHILDREN(canbus_sysctl_tree), OID_AUTO, "io_delay_time",
	    CTLFLAG_RW, &sc->io_delay_time, 0, "CanBe Bus I/O delay time");

	bus_generic_probe(dev);
	bus_generic_attach(dev);

	return (0);
}
Beispiel #7
0
static void
r21a_attach_private(struct rtwn_softc *sc)
{
	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
	struct r12a_softc *rs;

	rs = malloc(sizeof(struct r12a_softc), M_RTWN_PRIV, M_WAITOK | M_ZERO);

	rs->rs_flags			= R12A_RXCKSUM_EN | R12A_RXCKSUM6_EN;

	rs->rs_radar = 0;
	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
	    "radar_detection", CTLFLAG_RDTUN, &rs->rs_radar,
	    rs->rs_radar, "Enable radar detection (untested)");

	rs->rs_fix_spur			= rtwn_nop_softc_chan;
	rs->rs_set_band_2ghz		= r21a_set_band_2ghz;
	rs->rs_set_band_5ghz		= r21a_set_band_5ghz;
	rs->rs_init_burstlen		= r21au_init_burstlen;
	rs->rs_init_ampdu_fwhw		= r21a_init_ampdu_fwhw;
	rs->rs_crystalcap_write		= r21a_crystalcap_write;
#ifndef RTWN_WITHOUT_UCODE
	rs->rs_iq_calib_fw_supported	= r21a_iq_calib_fw_supported;
#endif
	rs->rs_iq_calib_sw		= r21a_iq_calib_sw;

	rs->ampdu_max_time		= 0x5e;

	rs->ac_usb_dma_size		= 0x01;
	rs->ac_usb_dma_time		= 0x10;

	sc->sc_priv			= rs;
}
Beispiel #8
0
static void
amrr_sysctlattach(struct ieee80211_amrr *amrr,
    struct sysctl_ctx_list *ctx, struct sysctl_oid *tree)
{

	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
	    "amrr_rate_interval", CTLTYPE_INT | CTLFLAG_RW, amrr,
	    0, amrr_sysctl_interval, "I", "amrr operation interval (ms)");
	/* XXX bounds check values */
	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
	    "amrr_max_sucess_threshold", CTLFLAG_RW,
	    &amrr->amrr_max_success_threshold, 0, "");
	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
	    "amrr_min_sucess_threshold", CTLFLAG_RW,
	    &amrr->amrr_min_success_threshold, 0, "");
}
Beispiel #9
0
static void
vmm_init(void)
{
	sysctl_ctx_init(&vmm_sysctl_ctx);
	vmm_sysctl_tree = SYSCTL_ADD_NODE(&vmm_sysctl_ctx,
	    SYSCTL_STATIC_CHILDREN(_hw),
	    OID_AUTO, "vmm",
	    CTLFLAG_RD, 0, "VMM options");

	if (cpu_vendor_id == CPU_VENDOR_INTEL) {
		ctl = get_ctl_intel();
	} else if (cpu_vendor_id == CPU_VENDOR_AMD) {
		ctl = get_ctl_amd();
	}

	if (ctl->init()) {
		SYSCTL_ADD_INT(&vmm_sysctl_ctx,
		    SYSCTL_CHILDREN(vmm_sysctl_tree),
		    OID_AUTO, "enable", CTLFLAG_RD,
		    &vmm_enabled, 0,
		    "enable not supported");
	} else {
		SYSCTL_ADD_STRING(&vmm_sysctl_ctx,
		    SYSCTL_CHILDREN(vmm_sysctl_tree),
		    OID_AUTO, "type", CTLFLAG_RD,
		    ctl->name, 0,
		    "Type of the VMM");
		SYSCTL_ADD_PROC(&vmm_sysctl_ctx,
		    SYSCTL_CHILDREN(vmm_sysctl_tree),
		    OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_WR,
		    NULL, sizeof vmm_enabled, sysctl_vmm_enable, "I",
		    "Control the state of the VMM");
		SYSCTL_ADD_INT(&vmm_sysctl_ctx,
		    SYSCTL_CHILDREN(vmm_sysctl_tree),
		    OID_AUTO, "debug", CTLTYPE_INT | CTLFLAG_RW,
		    &vmm_debug, 0,
		    "vmm debugging");

		if (ctl->enable()) {
			kprintf("VMM: vmm enable() failed\n");
		} else {
			vmm_enabled = 1;
		}

		EVENTHANDLER_REGISTER(shutdown_pre_sync, vmm_shutdown, NULL, SHUTDOWN_PRI_DEFAULT-1);
	}
}
Beispiel #10
0
/*
 * Initialize a new timecounter and possibly use it.
 */
void
tc_init(struct timecounter *tc)
{
	u_int u;
	struct sysctl_oid *tc_root;

	u = tc->tc_frequency / tc->tc_counter_mask;
	/* XXX: We need some margin here, 10% is a guess */
	u *= 11;
	u /= 10;
	if (u > hz && tc->tc_quality >= 0) {
		tc->tc_quality = -2000;
		if (bootverbose) {
			printf("Timecounter \"%s\" frequency %ju Hz",
			    tc->tc_name, (uintmax_t)tc->tc_frequency);
			printf(" -- Insufficient hz, needs at least %u\n", u);
		}
	} else if (tc->tc_quality >= 0 || bootverbose) {
		printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
		    tc->tc_name, (uintmax_t)tc->tc_frequency,
		    tc->tc_quality);
	}

	tc->tc_next = timecounters;
	timecounters = tc;
	/*
	 * Set up sysctl tree for this counter.
	 */
	tc_root = SYSCTL_ADD_NODE(NULL,
	    SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
	    CTLFLAG_RW, 0, "timecounter description");
	SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
	    "mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
	    "mask for implemented bits");
	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
	    "counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
	    sysctl_kern_timecounter_get, "IU", "current timecounter value");
	SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
	    "frequency", CTLTYPE_U64 | CTLFLAG_RD, tc, sizeof(*tc),
	     sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
	    "quality", CTLFLAG_RD, &(tc->tc_quality), 0,
	    "goodness of time counter");
	/*
	 * Never automatically use a timecounter with negative quality.
	 * Even though we run on the dummy counter, switching here may be
	 * worse since this timecounter may not be monotonous.
	 */
	if (tc->tc_quality < 0)
		return;
	if (tc->tc_quality < timecounter->tc_quality)
		return;
	if (tc->tc_quality == timecounter->tc_quality &&
	    tc->tc_frequency < timecounter->tc_frequency)
		return;
	(void)tc->tc_get_timecount(tc);
	(void)tc->tc_get_timecount(tc);
	timecounter = tc;
}
Beispiel #11
0
static void
ath_rate_sysctlattach(struct ath_softc *sc)
{
	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);

	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
		"rate_interval", CTLFLAG_RW, &ath_rateinterval, 0,
		"rate control: operation interval (ms)");
	/* XXX bounds check values */
	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
		"rate_raise", CTLFLAG_RW, &ath_rate_raise, 0,
		"rate control: retry threshold to credit rate raise (%%)");
	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
		"rate_raise_threshold", CTLFLAG_RW, &ath_rate_raise_threshold,0,
		"rate control: # good periods before raising rate");
}
Beispiel #12
0
static void
ath_rate_sysctlattach(struct ath_softc *sc)
{
    struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
    struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);

    SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
                   "rate_interval", CTLFLAG_RW, &ath_rateinterval, 0,
                   "rate control: operation interval (ms)");
    /* XXX bounds check values */
    SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
                   "max_sucess_threshold", CTLFLAG_RW,
                   &ath_rate_max_success_threshold, 0, "");
    SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
                   "min_sucess_threshold", CTLFLAG_RW,
                   &ath_rate_min_success_threshold, 0, "");
}
Beispiel #13
0
static void
iopoll_add_sysctl(struct sysctl_ctx_list *ctx, struct sysctl_oid_list *parent,
    struct iopoll_ctx *io_ctx, int poll_type)
{
	if (poll_type == IFPOLL_RX) {
		SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "burst_max",
		    CTLTYPE_UINT | CTLFLAG_RW, io_ctx, 0, sysctl_burstmax,
		    "IU", "Max Polling burst size");

		SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "each_burst",
		    CTLTYPE_UINT | CTLFLAG_RW, io_ctx, 0, sysctl_eachburst,
		    "IU", "Max size of each burst");

		SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "burst", CTLFLAG_RD,
		    &io_ctx->poll_burst, 0, "Current polling burst size");

		SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "user_frac", CTLFLAG_RW,
		    &io_ctx->user_frac, 0, "Desired user fraction of cpu time");

		SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "kern_frac", CTLFLAG_RD,
		    &io_ctx->kern_frac, 0, "Kernel fraction of cpu time");

		SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "residual_burst", CTLFLAG_RD,
		    &io_ctx->residual_burst, 0,
		    "# of residual cycles in burst");
	}

	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "phase", CTLFLAG_RD,
	    &io_ctx->phase, 0, "Polling phase");

	SYSCTL_ADD_ULONG(ctx, parent, OID_AUTO, "suspect", CTLFLAG_RW,
	    &io_ctx->suspect, "Suspected events");

	SYSCTL_ADD_ULONG(ctx, parent, OID_AUTO, "stalled", CTLFLAG_RW,
	    &io_ctx->stalled, "Potential stalls");

	SYSCTL_ADD_ULONG(ctx, parent, OID_AUTO, "short_ticks", CTLFLAG_RW,
	    &io_ctx->short_ticks,
	    "Hardclock ticks shorter than they should be");

	SYSCTL_ADD_ULONG(ctx, parent, OID_AUTO, "lost_polls", CTLFLAG_RW,
	    &io_ctx->lost_polls,
	    "How many times we would have lost a poll tick");

	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "pending_polls", CTLFLAG_RD,
	    &io_ctx->pending_polls, 0, "Do we need to poll again");

	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "handlers", CTLFLAG_RD,
	    &io_ctx->poll_handlers, 0, "Number of registered poll handlers");
}
Beispiel #14
0
int
sfxge_mcdi_init(struct sfxge_softc *sc)
{
	efx_nic_t *enp;
	struct sfxge_mcdi *mcdi;
	efx_mcdi_transport_t *emtp;
	efsys_mem_t *esmp;
	int max_msg_size;
	int rc;

	enp = sc->enp;
	mcdi = &sc->mcdi;
	emtp = &mcdi->transport;
	esmp = &mcdi->mem;
	max_msg_size = sizeof (uint32_t) + MCDI_CTL_SDU_LEN_MAX_V2;

	KASSERT(mcdi->state == SFXGE_MCDI_UNINITIALIZED,
	    ("MCDI already initialized"));

	SFXGE_MCDI_LOCK_INIT(mcdi, device_get_nameunit(sc->dev));

	mcdi->state = SFXGE_MCDI_INITIALIZED;

	if ((rc = sfxge_dma_alloc(sc, max_msg_size, esmp)) != 0)
		goto fail;

	emtp->emt_context = sc;
	emtp->emt_dma_mem = esmp;
	emtp->emt_execute = sfxge_mcdi_execute;
	emtp->emt_ev_cpl = sfxge_mcdi_ev_cpl;
	emtp->emt_exception = sfxge_mcdi_exception;
#if EFSYS_OPT_MCDI_LOGGING
	emtp->emt_logger = sfxge_mcdi_logger;
	SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->dev),
		       SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
		       OID_AUTO, "mcdi_logging", CTLFLAG_RW,
		       &sc->mcdi_logging, 0,
		       "MCDI logging");
#endif

	if ((rc = efx_mcdi_init(enp, emtp)) != 0)
		goto fail;

	return (0);

fail:
	SFXGE_MCDI_LOCK_DESTROY(mcdi);
	mcdi->state = SFXGE_MCDI_UNINITIALIZED;
	return (rc);
}
Beispiel #15
0
static void
vchi_audio_sysctl_init(struct bcm2835_audio_info *sc)
{
	struct sysctl_ctx_list *ctx;
	struct sysctl_oid *tree_node;
	struct sysctl_oid_list *tree;

	/*
	 * Add system sysctl tree/handlers.
	 */
	ctx = device_get_sysctl_ctx(sc->dev);
	tree_node = device_get_sysctl_tree(sc->dev);
	tree = SYSCTL_CHILDREN(tree_node);
	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "dest",
	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
	    sysctl_bcm2835_audio_dest, "IU", "audio destination, "
	    "0 - auto, 1 - headphones, 2 - HDMI");
	SYSCTL_ADD_UQUAD(ctx, tree, OID_AUTO, "callbacks",
			CTLFLAG_RD, &sc->pch.callbacks,
			"callbacks total");
	SYSCTL_ADD_UQUAD(ctx, tree, OID_AUTO, "submitted",
			CTLFLAG_RD, &sc->pch.submitted_samples,
			"last play submitted samples");
	SYSCTL_ADD_UQUAD(ctx, tree, OID_AUTO, "retrieved",
			CTLFLAG_RD, &sc->pch.retrieved_samples,
			"last play retrieved samples");
	SYSCTL_ADD_UQUAD(ctx, tree, OID_AUTO, "underruns",
			CTLFLAG_RD, &sc->pch.underruns,
			"callback underruns");
	SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "freebuffer",
			CTLFLAG_RD, &sc->pch.available_space,
			sc->pch.available_space, "callbacks total");
	SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "starved",
			CTLFLAG_RD, &sc->pch.starved,
			sc->pch.starved, "number of starved conditions");
}
Beispiel #16
0
static void
ti_adc_sysctl_init(struct ti_adc_softc *sc)
{
	char pinbuf[3];
	struct sysctl_ctx_list *ctx;
	struct sysctl_oid *tree_node, *inp_node, *inpN_node;
	struct sysctl_oid_list *tree, *inp_tree, *inpN_tree;
	int ain;

	/*
	 * Add per-pin sysctl tree/handlers.
	 */
	ctx = device_get_sysctl_ctx(sc->sc_dev);
	tree_node = device_get_sysctl_tree(sc->sc_dev);
	tree = SYSCTL_CHILDREN(tree_node);
	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clockdiv",
	    CTLFLAG_RW | CTLTYPE_UINT,  sc, 0,
	    ti_adc_clockdiv_proc, "IU", "ADC clock prescaler");
	inp_node = SYSCTL_ADD_NODE(ctx, tree, OID_AUTO, "ain",
	    CTLFLAG_RD, NULL, "ADC inputs");
	inp_tree = SYSCTL_CHILDREN(inp_node);

	for (ain = 0; ain < TI_ADC_NPINS; ain++) {

		snprintf(pinbuf, sizeof(pinbuf), "%d", ain);
		inpN_node = SYSCTL_ADD_NODE(ctx, inp_tree, OID_AUTO, pinbuf,
		    CTLFLAG_RD, NULL, "ADC input");
		inpN_tree = SYSCTL_CHILDREN(inpN_node);

		SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "enable",
		    CTLFLAG_RW | CTLTYPE_UINT, &ti_adc_inputs[ain], 0,
		    ti_adc_enable_proc, "IU", "Enable ADC input");
		SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "open_delay",
		    CTLFLAG_RW | CTLTYPE_UINT,  &ti_adc_inputs[ain], 0,
		    ti_adc_open_delay_proc, "IU", "ADC open delay");
		SYSCTL_ADD_PROC(ctx, inpN_tree, OID_AUTO, "samples_avg",
		    CTLFLAG_RW | CTLTYPE_UINT,  &ti_adc_inputs[ain], 0,
		    ti_adc_samples_avg_proc, "IU", "ADC samples average");
		SYSCTL_ADD_INT(ctx, inpN_tree, OID_AUTO, "input",
		    CTLFLAG_RD, &ti_adc_inputs[ain].value, 0,
		    "Converted raw value for the ADC input");
	}
}
Beispiel #17
0
static int
zy7_devcfg_init_fclk_sysctl(struct zy7_devcfg_softc *sc)
{
	struct sysctl_oid *fclk_node;
	char fclk_num[4];
	int i;

	sysctl_ctx_init(&sc->sysctl_tree);
	sc->sysctl_tree_top = SYSCTL_ADD_NODE(&sc->sysctl_tree,
	    SYSCTL_STATIC_CHILDREN(_hw_fpga), OID_AUTO, "fclk",
	    CTLFLAG_RD, 0, "");
	if (sc->sysctl_tree_top == NULL) {
		sysctl_ctx_free(&sc->sysctl_tree);
		return (-1);
	}

	for (i = 0; i < FCLK_NUM; i++) {
		snprintf(fclk_num, sizeof(fclk_num), "%d", i);
		fclk_node = SYSCTL_ADD_NODE(&sc->sysctl_tree,
		    SYSCTL_CHILDREN(sc->sysctl_tree_top), OID_AUTO, fclk_num,
		    CTLFLAG_RD, 0, "");

		SYSCTL_ADD_INT(&sc->sysctl_tree,
		    SYSCTL_CHILDREN(fclk_node), OID_AUTO,
		    "actual_freq", CTLFLAG_RD, 
		    &fclk_configs[i].actual_frequency, i,
		    "Actual frequency");
		SYSCTL_ADD_PROC(&sc->sysctl_tree,
		    SYSCTL_CHILDREN(fclk_node), OID_AUTO,
		    "freq", CTLFLAG_RW | CTLTYPE_INT, 
		    &fclk_configs[i], i,
		    zy7_devcfg_fclk_sysctl_freq,
		    "I", "Configured frequency");
		SYSCTL_ADD_PROC(&sc->sysctl_tree,
		    SYSCTL_CHILDREN(fclk_node), OID_AUTO,
		    "source", CTLFLAG_RW | CTLTYPE_STRING, 
		    &fclk_configs[i], i, 
		    zy7_devcfg_fclk_sysctl_source,
		    "A", "Clock source");
	}

	return (0);
}
Beispiel #18
0
int
acpi_machdep_init(device_t dev)
{
	struct acpi_softc *sc;

	sc = device_get_softc(dev);

	acpi_apm_init(sc);

	if (intr_model != ACPI_INTR_PIC)
		acpi_SetIntrModel(intr_model);

	SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx,
	    SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO,
	    "reset_video", CTLFLAG_RW, &acpi_reset_video, 0,
	    "Call the VESA reset BIOS vector on the resume path");

	return (0);
}
Beispiel #19
0
int
drm_add_busid_modesetting(struct drm_device *dev, struct sysctl_ctx_list *ctx,
    struct sysctl_oid *top)
{
	struct sysctl_oid *oid;

	snprintf(dev->busid_str, sizeof(dev->busid_str),
	     "pci:%04x:%02x:%02x.%d", dev->pci_domain, dev->pci_bus,
	     dev->pci_slot, dev->pci_func);
	oid = SYSCTL_ADD_STRING(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "busid",
	    CTLFLAG_RD, dev->busid_str, 0, NULL);
	if (oid == NULL)
		return (-ENOMEM);
	dev->modesetting = (dev->driver->driver_features & DRIVER_MODESET) != 0;
	oid = SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(top), OID_AUTO,
	    "modesetting", CTLFLAG_RD, &dev->modesetting, 0, NULL);
	if (oid == NULL)
		return (-ENOMEM);

	return (0);
}
Beispiel #20
0
static void
spigen_sysctl_init(struct spigen_softc *sc)
{
    struct sysctl_ctx_list *ctx;
    struct sysctl_oid *tree_node;
    struct sysctl_oid_list *tree;

    /*
     * Add system sysctl tree/handlers.
     */
    ctx = device_get_sysctl_ctx(sc->sc_dev);
    tree_node = device_get_sysctl_tree(sc->sc_dev);
    tree = SYSCTL_CHILDREN(tree_node);
    SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "command_length_max",
                    CTLFLAG_MPSAFE | CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
                    spigen_command_length_max_proc, "IU", "SPI command header portion (octets)");
    SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "data_length_max",
                    CTLFLAG_MPSAFE | CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
                    spigen_data_length_max_proc, "IU", "SPI data trailer portion (octets)");
    SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "data", CTLFLAG_RW,
                   &sc->sc_debug, 0, "debug flags");

}
Beispiel #21
0
static void
rtwn_usb_sysctlattach(struct rtwn_softc *sc)
{
	struct rtwn_usb_softc *uc = RTWN_USB_SOFTC(sc);
	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
	char str[64];
	int ret;

	ret = snprintf(str, sizeof(str),
	    "Rx buffer size, 512-byte units [%d...%d]",
	    RTWN_USB_RXBUFSZ_MIN, RTWN_USB_RXBUFSZ_MAX);
	KASSERT(ret > 0, ("ret (%d) <= 0!\n", ret));
	(void) ret;

	uc->uc_rx_buf_size = RTWN_USB_RXBUFSZ_DEF;
	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
	    "rx_buf_size", CTLFLAG_RDTUN, &uc->uc_rx_buf_size,
	    uc->uc_rx_buf_size, str);
	if (uc->uc_rx_buf_size < RTWN_USB_RXBUFSZ_MIN)
		uc->uc_rx_buf_size = RTWN_USB_RXBUFSZ_MIN;
	if (uc->uc_rx_buf_size > RTWN_USB_RXBUFSZ_MAX)
		uc->uc_rx_buf_size = RTWN_USB_RXBUFSZ_MAX;
}
Beispiel #22
0
static int
uhso_attach(device_t self)
{
	struct uhso_softc *sc = device_get_softc(self);
	struct usb_attach_arg *uaa = device_get_ivars(self);
	struct usb_interface_descriptor *id;
	struct sysctl_ctx_list *sctx;
	struct sysctl_oid *soid;
	struct sysctl_oid *tree = NULL, *tty_node;
	struct ucom_softc *ucom;
	struct uhso_tty *ht;
	int i, error, port;
	void *probe_f;
	usb_error_t uerr;
	char *desc;

	sc->sc_dev = self;
	sc->sc_udev = uaa->device;
	mtx_init(&sc->sc_mtx, "uhso", NULL, MTX_DEF);
	ucom_ref(&sc->sc_super_ucom);

	sc->sc_ucom = NULL;
	sc->sc_ttys = 0;
	sc->sc_radio = 1;

	id = usbd_get_interface_descriptor(uaa->iface);
	sc->sc_ctrl_iface_no = id->bInterfaceNumber;

	sc->sc_iface_no = uaa->info.bIfaceNum;
	sc->sc_iface_index = uaa->info.bIfaceIndex;

	/* Setup control pipe */
	uerr = usbd_transfer_setup(uaa->device,
	    &sc->sc_iface_index, sc->sc_ctrl_xfer,
	    uhso_ctrl_config, UHSO_CTRL_MAX, sc, &sc->sc_mtx);
	if (uerr) {
		device_printf(self, "Failed to setup control pipe: %s\n",
		    usbd_errstr(uerr));
		goto out;
	}

	if (USB_GET_DRIVER_INFO(uaa) == UHSO_STATIC_IFACE)
		probe_f = uhso_probe_iface_static;
	else if (USB_GET_DRIVER_INFO(uaa) == UHSO_AUTO_IFACE)
		probe_f = uhso_probe_iface_auto;
	else
		goto out;

	error = uhso_probe_iface(sc, uaa->info.bIfaceNum, probe_f);
	if (error != 0)
		goto out;

	sctx = device_get_sysctl_ctx(sc->sc_dev);
	soid = device_get_sysctl_tree(sc->sc_dev);

	SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "type",
	    CTLFLAG_RD, uhso_port[UHSO_IFACE_PORT(sc->sc_type)], 0,
	    "Port available at this interface");
	SYSCTL_ADD_PROC(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "radio",
	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, uhso_radio_sysctl, "I", "Enable radio");

	/*
	 * The default interface description on most Option devices isn't
	 * very helpful. So we skip device_set_usb_desc and set the
	 * device description manually.
	 */
	device_set_desc_copy(self, uhso_port_type[UHSO_IFACE_PORT_TYPE(sc->sc_type)]); 
	/* Announce device */
	device_printf(self, "<%s port> at <%s %s> on %s\n",
	    uhso_port_type[UHSO_IFACE_PORT_TYPE(sc->sc_type)],
	    usb_get_manufacturer(uaa->device),
	    usb_get_product(uaa->device),
	    device_get_nameunit(device_get_parent(self)));

	if (sc->sc_ttys > 0) {
		SYSCTL_ADD_INT(sctx, SYSCTL_CHILDREN(soid), OID_AUTO, "ports",
		    CTLFLAG_RD, &sc->sc_ttys, 0, "Number of attached serial ports");

		tree = SYSCTL_ADD_NODE(sctx, SYSCTL_CHILDREN(soid), OID_AUTO,
		    "port", CTLFLAG_RD, NULL, "Serial ports");
	}

	/*
	 * Loop through the number of found TTYs and create sysctl
	 * nodes for them.
	 */
	for (i = 0; i < sc->sc_ttys; i++) {
		ht = &sc->sc_tty[i];
		ucom = &sc->sc_ucom[i];

		if (UHSO_IFACE_USB_TYPE(sc->sc_type) & UHSO_IF_MUX)
			port = uhso_mux_port_map[ht->ht_muxport];
		else
			port = UHSO_IFACE_PORT_TYPE(sc->sc_type);

		desc = uhso_port_type_sysctl[port];

		tty_node = SYSCTL_ADD_NODE(sctx, SYSCTL_CHILDREN(tree), OID_AUTO,
		    desc, CTLFLAG_RD, NULL, "");

		ht->ht_name[0] = 0;
		if (sc->sc_ttys == 1)
			snprintf(ht->ht_name, 32, "cuaU%d", ucom->sc_super->sc_unit);
		else {
			snprintf(ht->ht_name, 32, "cuaU%d.%d",
			    ucom->sc_super->sc_unit, ucom->sc_subunit);
		}

		desc = uhso_port_type[port];
		SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(tty_node), OID_AUTO,
		    "tty", CTLFLAG_RD, ht->ht_name, 0, "");
		SYSCTL_ADD_STRING(sctx, SYSCTL_CHILDREN(tty_node), OID_AUTO,
		    "desc", CTLFLAG_RD, desc, 0, "");

		if (bootverbose)
			device_printf(sc->sc_dev,
			    "\"%s\" port at %s\n", desc, ht->ht_name);
	}

	return (0);
out:
	uhso_detach(sc->sc_dev);
	return (ENXIO);
}
Beispiel #23
0
static void
cpufreq_initialize(struct imx6_anatop_softc *sc)
{
	uint32_t cfg3speed;
	struct oppt * op;

	SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
	    OID_AUTO, "cpu_mhz", CTLFLAG_RD, &sc->cpu_curmhz, 0, 
	    "CPU frequency");

	SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6), 
	    OID_AUTO, "cpu_minmhz", CTLTYPE_INT | CTLFLAG_RWTUN, sc, 0,
	    cpufreq_sysctl_minmhz, "IU", "Minimum CPU frequency");

	SYSCTL_ADD_PROC(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
	    OID_AUTO, "cpu_maxmhz", CTLTYPE_INT | CTLFLAG_RWTUN, sc, 0,
	    cpufreq_sysctl_maxmhz, "IU", "Maximum CPU frequency");

	SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
	    OID_AUTO, "cpu_maxmhz_hw", CTLFLAG_RD, &sc->cpu_maxmhz_hw, 0, 
	    "Maximum CPU frequency allowed by hardware");

	SYSCTL_ADD_INT(NULL, SYSCTL_STATIC_CHILDREN(_hw_imx6),
	    OID_AUTO, "cpu_overclock_enable", CTLFLAG_RWTUN, 
	    &sc->cpu_overclock_enable, 0, 
	    "Allow setting CPU frequency higher than cpu_maxmhz_hw");

	/*
	 * XXX 24mhz shouldn't be hard-coded, should get this from imx6_ccm
	 * (even though in the real world it will always be 24mhz).  Oh wait a
	 * sec, I never wrote imx6_ccm.
	 */
	sc->refosc_mhz = 24;

	/*
	 * Get the maximum speed this cpu can be set to.  The values in the
	 * OCOTP CFG3 register are not documented in the reference manual.
	 * The following info was in an archived email found via web search:
	 *   - 2b'11: 1200000000Hz;
	 *   - 2b'10: 996000000Hz;
	 *   - 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
	 *   - 2b'00: 792000000Hz;
	 * The default hardware max speed can be overridden by a tunable.
	 */
	cfg3speed = (fsl_ocotp_read_4(FSL_OCOTP_CFG3) & 
	    FSL_OCOTP_CFG3_SPEED_MASK) >> FSL_OCOTP_CFG3_SPEED_SHIFT;
	sc->cpu_maxmhz_hw = imx6_ocotp_mhz_tab[cfg3speed];
	sc->cpu_maxmhz = sc->cpu_maxmhz_hw;

	TUNABLE_INT_FETCH("hw.imx6.cpu_overclock_enable",
	    &sc->cpu_overclock_enable);

	TUNABLE_INT_FETCH("hw.imx6.cpu_minmhz", &sc->cpu_minmhz);
	op = cpufreq_nearest_oppt(sc, sc->cpu_minmhz);
	sc->cpu_minmhz = op->mhz;
	sc->cpu_minmv = op->mv;

	TUNABLE_INT_FETCH("hw.imx6.cpu_maxmhz", &sc->cpu_maxmhz);
	op = cpufreq_nearest_oppt(sc, sc->cpu_maxmhz);
	sc->cpu_maxmhz = op->mhz;
	sc->cpu_maxmv = op->mv;

	/*
	 * Set the CPU to maximum speed.
	 *
	 * We won't have thermal throttling until interrupts are enabled, but we
	 * want to run at full speed through all the device init stuff.  This
	 * basically assumes that a single core can't overheat before interrupts
	 * are enabled; empirical testing shows that to be a safe assumption.
	 */
	cpufreq_set_clock(sc, op);
}
Beispiel #24
0
void
ieee80211_sysctl_vattach(struct ieee80211vap *vap)
{
	struct ifnet *ifp = vap->iv_ifp;
	struct sysctl_ctx_list *ctx;
	struct sysctl_oid *oid;
	char num[14];			/* sufficient for 32 bits */

	ctx = (struct sysctl_ctx_list *) malloc(sizeof(struct sysctl_ctx_list),
		M_DEVBUF, M_NOWAIT | M_ZERO);
	if (ctx == NULL) {
		if_printf(ifp, "%s: cannot allocate sysctl context!\n",
			__func__);
		return;
	}
	sysctl_ctx_init(ctx);
	snprintf(num, sizeof(num), "%u", ifp->if_dunit);
	oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
		OID_AUTO, num, CTLFLAG_RD, NULL, "");
	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
		"%parent", CTLTYPE_STRING | CTLFLAG_RD, vap->iv_ic, 0,
		ieee80211_sysctl_parent, "A", "parent device");
	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
		"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
		"driver capabilities");
#ifdef IEEE80211_DEBUG
	vap->iv_debug = ieee80211_debug;
	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
		"debug", CTLFLAG_RW, &vap->iv_debug, 0,
		"control debugging printfs");
#endif
	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
		"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
		"consecutive beacon misses before scanning");
	/* XXX inherit from tunables */
	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
		"inact_run", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_run, 0,
		ieee80211_sysctl_inact, "I",
		"station inactivity timeout (sec)");
	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
		"inact_probe", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_probe, 0,
		ieee80211_sysctl_inact, "I",
		"station inactivity probe timeout (sec)");
	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
		"inact_auth", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_auth, 0,
		ieee80211_sysctl_inact, "I",
		"station authentication timeout (sec)");
	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
		"inact_init", CTLTYPE_INT | CTLFLAG_RW, &vap->iv_inact_init, 0,
		ieee80211_sysctl_inact, "I",
		"station initial state timeout (sec)");
	if (vap->iv_htcaps & IEEE80211_HTC_HT) {
		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
			"ampdu_mintraffic_bk", CTLFLAG_RW,
			&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
			"BK traffic tx aggr threshold (pps)");
		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
			"ampdu_mintraffic_be", CTLFLAG_RW,
			&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
			"BE traffic tx aggr threshold (pps)");
		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
			"ampdu_mintraffic_vo", CTLFLAG_RW,
			&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
			"VO traffic tx aggr threshold (pps)");
		SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
			"ampdu_mintraffic_vi", CTLFLAG_RW,
			&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
			"VI traffic tx aggr threshold (pps)");
	}
	if (vap->iv_caps & IEEE80211_C_DFS) {
		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
			"radar", CTLTYPE_INT | CTLFLAG_RW, vap->iv_ic, 0,
			ieee80211_sysctl_radar, "I", "simulate radar event");
	}
	vap->iv_sysctl = ctx;
	vap->iv_oid = oid;
}
Beispiel #25
0
static int
acpi_tz_attach(device_t dev)
{
    struct acpi_tz_softc	*sc;
    struct acpi_softc		*acpi_sc;
    int				error;
    char			oidname[8];

    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);

    sc = device_get_softc(dev);
    sc->tz_dev = dev;
    sc->tz_handle = acpi_get_handle(dev);
    sc->tz_requested = TZ_ACTIVE_NONE;
    sc->tz_active = TZ_ACTIVE_UNKNOWN;
    sc->tz_thflags = TZ_THFLAG_NONE;
    sc->tz_cooling_proc = NULL;
    sc->tz_cooling_proc_running = FALSE;
    sc->tz_cooling_active = FALSE;
    sc->tz_cooling_updated = FALSE;
    sc->tz_cooling_enabled = FALSE;

    /*
     * Parse the current state of the thermal zone and build control
     * structures.  We don't need to worry about interference with the
     * control thread since we haven't fully attached this device yet.
     */
    if ((error = acpi_tz_establish(sc)) != 0)
	return (error);

    /*
     * Register for any Notify events sent to this zone.
     */
    AcpiInstallNotifyHandler(sc->tz_handle, ACPI_DEVICE_NOTIFY,
			     acpi_tz_notify_handler, sc);

    /*
     * Create our sysctl nodes.
     *
     * XXX we need a mechanism for adding nodes under ACPI.
     */
    if (device_get_unit(dev) == 0) {
	acpi_sc = acpi_device_get_parent_softc(dev);
	sysctl_ctx_init(&acpi_tz_sysctl_ctx);
	acpi_tz_sysctl_tree = SYSCTL_ADD_NODE(&acpi_tz_sysctl_ctx,
			      SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree),
			      OID_AUTO, "thermal", CTLFLAG_RD, 0, "");
	SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx,
		       SYSCTL_CHILDREN(acpi_tz_sysctl_tree),
		       OID_AUTO, "min_runtime", CTLFLAG_RW,
		       &acpi_tz_min_runtime, 0,
		       "minimum cooling run time in sec");
	SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx,
		       SYSCTL_CHILDREN(acpi_tz_sysctl_tree),
		       OID_AUTO, "polling_rate", CTLFLAG_RW,
		       &acpi_tz_polling_rate, 0, "monitor polling interval in seconds");
	SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx,
		       SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO,
		       "user_override", CTLFLAG_RW, &acpi_tz_override, 0,
		       "allow override of thermal settings");
    }
    sysctl_ctx_init(&sc->tz_sysctl_ctx);
    sprintf(oidname, "tz%d", device_get_unit(dev));
    sc->tz_sysctl_tree = SYSCTL_ADD_NODE(&sc->tz_sysctl_ctx,
					 SYSCTL_CHILDREN(acpi_tz_sysctl_tree),
					 OID_AUTO, oidname, CTLFLAG_RD, 0, "");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD,
		    &sc->tz_temperature, 0, sysctl_handle_int,
		    "IK", "current thermal zone temperature");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "active", CTLTYPE_INT | CTLFLAG_RW,
		    sc, 0, acpi_tz_active_sysctl, "I", "cooling is active");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "passive_cooling", CTLTYPE_INT | CTLFLAG_RW,
		    sc, 0, acpi_tz_cooling_sysctl, "I",
		    "enable passive (speed reduction) cooling");

    SYSCTL_ADD_INT(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		   OID_AUTO, "thermal_flags", CTLFLAG_RD,
		   &sc->tz_thflags, 0, "thermal zone flags");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_PSV", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.psv),
		    acpi_tz_temp_sysctl, "IK", "passive cooling temp setpoint");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_HOT", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.hot),
		    acpi_tz_temp_sysctl, "IK",
		    "too hot temp setpoint (suspend now)");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_CRT", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.crt),
		    acpi_tz_temp_sysctl, "IK",
		    "critical temp setpoint (shutdown now)");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_ACx", CTLTYPE_INT | CTLFLAG_RD,
		    &sc->tz_zone.ac, sizeof(sc->tz_zone.ac),
		    sysctl_handle_opaque, "IK", "");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_TC1", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.tc1),
		    acpi_tz_passive_sysctl, "I",
		    "thermal constant 1 for passive cooling");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_TC2", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.tc2),
		    acpi_tz_passive_sysctl, "I",
		    "thermal constant 2 for passive cooling");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_TSP", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.tsp),
		    acpi_tz_passive_sysctl, "I",
		    "thermal sampling period for passive cooling");

    /*
     * Create thread to service all of the thermal zones.  Register
     * our power profile event handler.
     */
    sc->tz_event = EVENTHANDLER_REGISTER(power_profile_change,
	acpi_tz_power_profile, sc, 0);
    if (acpi_tz_proc == NULL) {
	error = kproc_create(acpi_tz_thread, NULL, &acpi_tz_proc,
	    RFHIGHPID, 0, "acpi_thermal");
	if (error != 0) {
	    device_printf(sc->tz_dev, "could not create thread - %d", error);
	    goto out;
	}
    }

    /*
     * Create a thread to handle passive cooling for 1st zone which
     * has _PSV, _TSP, _TC1 and _TC2.  Users can enable it for other
     * zones manually for now.
     *
     * XXX We enable only one zone to avoid multiple zones conflict
     * with each other since cpufreq currently sets all CPUs to the
     * given frequency whereas it's possible for different thermal
     * zones to specify independent settings for multiple CPUs.
     */
    if (acpi_tz_cooling_unit < 0 && acpi_tz_cooling_is_available(sc))
	sc->tz_cooling_enabled = TRUE;
    if (sc->tz_cooling_enabled) {
	error = acpi_tz_cooling_thread_start(sc);
	if (error != 0) {
	    sc->tz_cooling_enabled = FALSE;
	    goto out;
	}
	acpi_tz_cooling_unit = device_get_unit(dev);
    }

    /*
     * Flag the event handler for a manual invocation by our timeout.
     * We defer it like this so that the rest of the subsystem has time
     * to come up.  Don't bother evaluating/printing the temperature at
     * this point; on many systems it'll be bogus until the EC is running.
     */
    sc->tz_flags |= TZ_FLAG_GETPROFILE;

out:
    if (error != 0) {
	EVENTHANDLER_DEREGISTER(power_profile_change, sc->tz_event);
	AcpiRemoveNotifyHandler(sc->tz_handle, ACPI_DEVICE_NOTIFY,
	    acpi_tz_notify_handler);
	sysctl_ctx_free(&sc->tz_sysctl_ctx);
    }
    return_VALUE (error);
}
Beispiel #26
0
/*
 * The function called at load/unload.
 */
static int
load(module_t mod, int cmd, void *arg)
{
	int error;

	error = 0;
	switch (cmd) {
	case MOD_LOAD:
		/* Initialize the contexts */
		printf("Initializing contexts and creating subtrees.\n\n");
		sysctl_ctx_init(&clist);
		sysctl_ctx_init(&clist1);
		sysctl_ctx_init(&clist2);
		/*
		 * Create two partially overlapping subtrees, belonging
		 * to different contexts.
		 */
		printf("TREE		ROOT		  NAME\n");
		a_root = SYSCTL_ADD_NODE(&clist,
			SYSCTL_STATIC_CHILDREN(/* top of sysctl tree */),
			OID_AUTO, "dyn_sysctl", CTLFLAG_RW, 0,
			"dyn_sysctl root node");
		a_root = SYSCTL_ADD_NODE(&clist1,
			SYSCTL_STATIC_CHILDREN(/* top of sysctl tree */),
			OID_AUTO, "dyn_sysctl", CTLFLAG_RW, 0,
			"dyn_sysctl root node");
		if (a_root == NULL) {
			printf("SYSCTL_ADD_NODE failed!\n");
			return (EINVAL);
		}
		SYSCTL_ADD_LONG(&clist, SYSCTL_CHILDREN(a_root),
		    OID_AUTO, "long_a", CTLFLAG_RW, &a, "just to try");
		SYSCTL_ADD_INT(&clist, SYSCTL_CHILDREN(a_root),
		    OID_AUTO, "int_b", CTLFLAG_RW, &b, 0, "just to try 1");
		a_root1 = SYSCTL_ADD_NODE(&clist, SYSCTL_CHILDREN(a_root),
		    OID_AUTO, "nextlevel", CTLFLAG_RD, 0, "one level down");
		SYSCTL_ADD_STRING(&clist, SYSCTL_CHILDREN(a_root1),
		    OID_AUTO, "string_c", CTLFLAG_RD, c, 0, "just to try 2");
		printf("1. (%p)	/		  dyn_sysctl\n", &clist);

		/* Add a subtree under already existing category */
		a_root1 = SYSCTL_ADD_NODE(&clist, SYSCTL_STATIC_CHILDREN(_kern),
		    OID_AUTO, "dyn_sysctl", CTLFLAG_RW, 0, "dyn_sysctl root node");
		if (a_root1 == NULL) {
			printf("SYSCTL_ADD_NODE failed!\n");
			return (EINVAL);
		}
		SYSCTL_ADD_PROC(&clist, SYSCTL_CHILDREN(a_root1),
		    OID_AUTO, "procedure", CTLTYPE_STRING | CTLFLAG_RD,
		    NULL, 0, sysctl_dyn_sysctl_test, "A",
		    "I can be here, too");
		printf("   (%p)	/kern		  dyn_sysctl\n", &clist);

		/* Overlap second tree with the first. */
		b_root = SYSCTL_ADD_NODE(&clist1, SYSCTL_CHILDREN(a_root),
		    OID_AUTO, "nextlevel", CTLFLAG_RD, 0, "one level down");
		SYSCTL_ADD_STRING(&clist1, SYSCTL_CHILDREN(b_root),
		    OID_AUTO, "string_c1", CTLFLAG_RD, c, 0, "just to try 2");
		printf("2. (%p)	/		  dyn_sysctl	(overlapping #1)\n", &clist1);

		/*
		 * And now do something stupid. Connect another subtree to
		 * dynamic oid.
		 * WARNING: this is an example of WRONG use of dynamic sysctls.
		 */
		b_root=SYSCTL_ADD_NODE(&clist2, SYSCTL_CHILDREN(a_root1),
		    OID_AUTO, "bad", CTLFLAG_RW, 0, "dependent node");
		SYSCTL_ADD_STRING(&clist2, SYSCTL_CHILDREN(b_root),
		    OID_AUTO, "string_c", CTLFLAG_RD, c, 0, "shouldn't panic");
		printf("3. (%p)	/kern/dyn_sysctl  bad		(WRONG!)\n", &clist2);
		break;
	case MOD_UNLOAD:
		printf("1. Try to free ctx1 (%p): ", &clist);
		if (sysctl_ctx_free(&clist) != 0)
			printf("failed: expected. Need to remove ctx3 first.\n");
		else
			printf("HELP! sysctl_ctx_free(%p) succeeded. EXPECT PANIC!!!\n", &clist);
		printf("2. Try to free ctx3 (%p): ", &clist2);
		if (sysctl_ctx_free(&clist2) != 0) {
			printf("sysctl_ctx_free(%p) failed!\n", &clist2);
			/* Remove subtree forcefully... */
			sysctl_remove_oid(b_root, 1, 1);
			printf("sysctl_remove_oid(%p) succeeded\n", b_root);
		} else
			printf("Ok\n");
		printf("3. Try to free ctx1 (%p) again: ", &clist);
		if (sysctl_ctx_free(&clist) != 0) {
			printf("sysctl_ctx_free(%p) failed!\n", &clist);
			/* Remove subtree forcefully... */
			sysctl_remove_oid(a_root1, 1, 1);
			printf("sysctl_remove_oid(%p) succeeded\n", a_root1);
		} else
			printf("Ok\n");
		printf("4. Try to free ctx2 (%p): ", &clist1);
		if (sysctl_ctx_free(&clist1) != 0) {
			printf("sysctl_ctx_free(%p) failed!\n", &clist1);
			/* Remove subtree forcefully... */
			sysctl_remove_oid(a_root, 1, 1);
		} else
			printf("Ok\n");
		break;
	default:
		error = EOPNOTSUPP;
		break;
	}
	return (error);
}
Beispiel #27
0
static int
acpi_tz_attach(device_t dev)
{
    struct acpi_tz_softc	*sc;
    struct acpi_softc		*acpi_sc;
    int				error;
    char			oidname[8];

    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);

    sc = device_get_softc(dev);
    sc->tz_dev = dev;
    sc->tz_handle = acpi_get_handle(dev);
    sc->tz_requested = TZ_ACTIVE_NONE;
    sc->tz_active = TZ_ACTIVE_UNKNOWN;
    sc->tz_thflags = TZ_THFLAG_NONE;
    sc->tz_cooling_proc = NULL;
    sc->tz_cooling_proc_running = FALSE;
    sc->tz_cooling_active = FALSE;
    sc->tz_cooling_updated = FALSE;
    sc->tz_cooling_enabled = FALSE;

    /*
     * Parse the current state of the thermal zone and build control
     * structures.  We don't need to worry about interference with the
     * control thread since we haven't fully attached this device yet.
     */
    if ((error = acpi_tz_establish(sc)) != 0)
	return (error);

    /*
     * Register for any Notify events sent to this zone.
     */
    AcpiInstallNotifyHandler(sc->tz_handle, ACPI_DEVICE_NOTIFY,
			     acpi_tz_notify_handler, sc);

    /*
     * Create our sysctl nodes.
     *
     * XXX we need a mechanism for adding nodes under ACPI.
     */
    if (device_get_unit(dev) == 0) {
	acpi_sc = acpi_device_get_parent_softc(dev);
	sysctl_ctx_init(&acpi_tz_sysctl_ctx);
	acpi_tz_sysctl_tree = SYSCTL_ADD_NODE(&acpi_tz_sysctl_ctx,
			      SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree),
			      OID_AUTO, "thermal", CTLFLAG_RD, 0, "");
	SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx,
		       SYSCTL_CHILDREN(acpi_tz_sysctl_tree),
		       OID_AUTO, "min_runtime", CTLFLAG_RW,
		       &acpi_tz_min_runtime, 0,
		       "minimum cooling run time in sec");
	SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx,
		       SYSCTL_CHILDREN(acpi_tz_sysctl_tree),
		       OID_AUTO, "polling_rate", CTLFLAG_RW,
		       &acpi_tz_polling_rate, 0, "monitor polling interval in seconds");
	SYSCTL_ADD_INT(&acpi_tz_sysctl_ctx,
		       SYSCTL_CHILDREN(acpi_tz_sysctl_tree), OID_AUTO,
		       "user_override", CTLFLAG_RW, &acpi_tz_override, 0,
		       "allow override of thermal settings");
    }
    sysctl_ctx_init(&sc->tz_sysctl_ctx);
    sprintf(oidname, "tz%d", device_get_unit(dev));
    sc->tz_sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&sc->tz_sysctl_ctx,
			 SYSCTL_CHILDREN(acpi_tz_sysctl_tree),
			 OID_AUTO, oidname, CTLFLAG_RD, 0, "", "thermal_zone");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "temperature", CTLTYPE_INT | CTLFLAG_RD,
		    &sc->tz_temperature, 0, sysctl_handle_int,
		    "IK", "current thermal zone temperature");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "active", CTLTYPE_INT | CTLFLAG_RW,
		    sc, 0, acpi_tz_active_sysctl, "I", "cooling is active");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "passive_cooling", CTLTYPE_INT | CTLFLAG_RW,
		    sc, 0, acpi_tz_cooling_sysctl, "I",
		    "enable passive (speed reduction) cooling");

    SYSCTL_ADD_INT(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		   OID_AUTO, "thermal_flags", CTLFLAG_RD,
		   &sc->tz_thflags, 0, "thermal zone flags");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_PSV", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.psv),
		    acpi_tz_temp_sysctl, "IK", "passive cooling temp setpoint");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_HOT", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.hot),
		    acpi_tz_temp_sysctl, "IK",
		    "too hot temp setpoint (suspend now)");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_CRT", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.crt),
		    acpi_tz_temp_sysctl, "IK",
		    "critical temp setpoint (shutdown now)");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_ACx", CTLTYPE_INT | CTLFLAG_RD,
		    &sc->tz_zone.ac, sizeof(sc->tz_zone.ac),
		    sysctl_handle_opaque, "IK", "");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_TC1", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.tc1),
		    acpi_tz_passive_sysctl, "I",
		    "thermal constant 1 for passive cooling");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_TC2", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.tc2),
		    acpi_tz_passive_sysctl, "I",
		    "thermal constant 2 for passive cooling");
    SYSCTL_ADD_PROC(&sc->tz_sysctl_ctx, SYSCTL_CHILDREN(sc->tz_sysctl_tree),
		    OID_AUTO, "_TSP", CTLTYPE_INT | CTLFLAG_RW,
		    sc, offsetof(struct acpi_tz_softc, tz_zone.tsp),
		    acpi_tz_passive_sysctl, "I",
		    "thermal sampling period for passive cooling");

    /*
     * Register our power profile event handler.
     */
    sc->tz_event = EVENTHANDLER_REGISTER(power_profile_change,
	acpi_tz_power_profile, sc, 0);

    /*
     * Flag the event handler for a manual invocation by our timeout.
     * We defer it like this so that the rest of the subsystem has time
     * to come up.  Don't bother evaluating/printing the temperature at
     * this point; on many systems it'll be bogus until the EC is running.
     */
    sc->tz_flags |= TZ_FLAG_GETPROFILE;

    return_VALUE (0);
}
static int
acpi_battery_init(void)
{
    struct acpi_softc	*sc;
    device_t		 dev;
    int	 		 error;

    ACPI_SERIAL_ASSERT(battery);

    error = ENXIO;
    dev = devclass_get_device(devclass_find("acpi"), 0);
    if (dev == NULL)
	goto out;
    sc = device_get_softc(dev);

    error = acpi_register_ioctl(ACPIIO_BATT_GET_UNITS, acpi_battery_ioctl,
	NULL);
    if (error != 0)
	goto out;
    error = acpi_register_ioctl(ACPIIO_BATT_GET_BATTINFO, acpi_battery_ioctl,
	NULL);
    if (error != 0)
	goto out;
    error = acpi_register_ioctl(ACPIIO_BATT_GET_BIF, acpi_battery_ioctl, NULL);
    if (error != 0)
	goto out;
    error = acpi_register_ioctl(ACPIIO_BATT_GET_BST, acpi_battery_ioctl, NULL);
    if (error != 0)
	goto out;

    sysctl_ctx_init(&acpi_battery_sysctl_ctx);
    acpi_battery_sysctl_tree = SYSCTL_ADD_NODE(&acpi_battery_sysctl_ctx,
	SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "battery", CTLFLAG_RD,
	0, "battery status and info");
    SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx,
	SYSCTL_CHILDREN(acpi_battery_sysctl_tree),
	OID_AUTO, "life", CTLTYPE_INT | CTLFLAG_RD,
	&acpi_battery_battinfo.cap, 0, acpi_battery_sysctl, "I",
	"percent capacity remaining");
    SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx,
	SYSCTL_CHILDREN(acpi_battery_sysctl_tree),
	OID_AUTO, "time", CTLTYPE_INT | CTLFLAG_RD,
	&acpi_battery_battinfo.min, 0, acpi_battery_sysctl, "I",
	"remaining time in minutes");
    SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx,
	SYSCTL_CHILDREN(acpi_battery_sysctl_tree),
	OID_AUTO, "state", CTLTYPE_INT | CTLFLAG_RD,
	&acpi_battery_battinfo.state, 0, acpi_battery_sysctl, "I",
	"current status flags");
    SYSCTL_ADD_PROC(&acpi_battery_sysctl_ctx,
	SYSCTL_CHILDREN(acpi_battery_sysctl_tree),
	OID_AUTO, "units", CTLTYPE_INT | CTLFLAG_RD,
	NULL, 0, acpi_battery_units_sysctl, "I", "number of batteries");
    SYSCTL_ADD_INT(&acpi_battery_sysctl_ctx,
	SYSCTL_CHILDREN(acpi_battery_sysctl_tree),
	OID_AUTO, "info_expire", CTLFLAG_RW,
	&acpi_battery_info_expire, 0,
	"time in seconds until info is refreshed");

    acpi_batteries_initted = TRUE;

out:
    if (error != 0) {
	acpi_deregister_ioctl(ACPIIO_BATT_GET_UNITS, acpi_battery_ioctl);
	acpi_deregister_ioctl(ACPIIO_BATT_GET_BATTINFO, acpi_battery_ioctl);
	acpi_deregister_ioctl(ACPIIO_BATT_GET_BIF, acpi_battery_ioctl);
	acpi_deregister_ioctl(ACPIIO_BATT_GET_BST, acpi_battery_ioctl);
    }
    return (error);
}
Beispiel #29
0
void
oce_add_sysctls(POCE_SOFTC sc)
{

	struct sysctl_ctx_list *ctx = &sc->sysctl_ctx;
	struct sysctl_oid *tree = sc->sysctl_tree;
	struct sysctl_oid_list *child = SYSCTL_CHILDREN(tree);
	struct sysctl_oid *stats_node;

	SYSCTL_ADD_STRING(ctx, child,
			OID_AUTO, "component_revision",
			CTLTYPE_INT | CTLFLAG_RD,
			&component_revision,
			sizeof(component_revision),
			"EMULEX One-Connect device driver revision");

	SYSCTL_ADD_STRING(ctx, child,
			OID_AUTO, "firmware_version",
			CTLTYPE_INT | CTLFLAG_RD,
			&sc->fw_version,
			sizeof(sc->fw_version),
			"EMULEX One-Connect Firmware Version");

	SYSCTL_ADD_INT(ctx, child,
			OID_AUTO, "max_rsp_handled",
			CTLTYPE_INT | CTLFLAG_RW,
			&oce_max_rsp_handled,
			sizeof(oce_max_rsp_handled),
			"Maximum receive frames handled per interrupt");

	if ((sc->function_mode & FNM_FLEX10_MODE) ||
	    (sc->function_mode & FNM_UMC_MODE))
		SYSCTL_ADD_UINT(ctx, child,
				OID_AUTO, "speed",
				CTLFLAG_RD,
				&sc->qos_link_speed,
				0,"QOS Speed");
	else
		SYSCTL_ADD_UINT(ctx, child,
				OID_AUTO, "speed",
				CTLFLAG_RD,
				&sc->speed,
				0,"Link Speed");

	if (sc->function_mode & FNM_UMC_MODE)
		SYSCTL_ADD_UINT(ctx, child,
				OID_AUTO, "pvid",
				CTLFLAG_RD,
				&sc->pvid,
				0,"PVID");

	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "loop_back",
		CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0,
		oce_sysctl_loopback, "I", "Loop Back Tests");

	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "fw_upgrade",
		CTLTYPE_STRING | CTLFLAG_RW, (void *)sc, 0,
		oce_sys_fwupgrade, "A", "Firmware ufi file");

        /*
         *  Dumps Transceiver data
	 *  "sysctl hw.oce0.sfp_vpd_dump=0"
         *  "sysctl -x hw.oce0.sfp_vpd_dump_buffer" for hex dump
         *  "sysctl -b hw.oce0.sfp_vpd_dump_buffer > sfp.bin" for binary dump
         */
	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "sfp_vpd_dump",
			CTLTYPE_INT | CTLFLAG_RW, (void *)sc, 0, oce_sysctl_sfp_vpd_dump,
			"I", "Initiate a sfp_vpd_dump operation");
	SYSCTL_ADD_OPAQUE(ctx, child, OID_AUTO, "sfp_vpd_dump_buffer",
			CTLFLAG_RD, sfp_vpd_dump_buffer,
			TRANSCEIVER_DATA_SIZE, "IU", "Access sfp_vpd_dump buffer");

	stats_node = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats",
				CTLFLAG_RD, NULL, "Ethernet Statistics");

	if (IS_BE(sc) || IS_SH(sc))
		oce_add_stats_sysctls_be3(sc, ctx, stats_node);
	else
		oce_add_stats_sysctls_xe201(sc, ctx, stats_node);


}
Beispiel #30
0
static void
ioat_setup_sysctl(device_t device)
{
	struct sysctl_oid_list *par, *statpar, *state, *hammer;
	struct sysctl_ctx_list *ctx;
	struct sysctl_oid *tree, *tmp;
	struct ioat_softc *ioat;

	ioat = DEVICE2SOFTC(device);
	ctx = device_get_sysctl_ctx(device);
	tree = device_get_sysctl_tree(device);
	par = SYSCTL_CHILDREN(tree);

	SYSCTL_ADD_INT(ctx, par, OID_AUTO, "version", CTLFLAG_RD,
	    &ioat->version, 0, "HW version (0xMM form)");
	SYSCTL_ADD_UINT(ctx, par, OID_AUTO, "max_xfer_size", CTLFLAG_RD,
	    &ioat->max_xfer_size, 0, "HW maximum transfer size");
	SYSCTL_ADD_INT(ctx, par, OID_AUTO, "intrdelay_supported", CTLFLAG_RD,
	    &ioat->intrdelay_supported, 0, "Is INTRDELAY supported");
	SYSCTL_ADD_U16(ctx, par, OID_AUTO, "intrdelay_max", CTLFLAG_RD,
	    &ioat->intrdelay_max, 0,
	    "Maximum configurable INTRDELAY on this channel (microseconds)");

	tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "state", CTLFLAG_RD, NULL,
	    "IOAT channel internal state");
	state = SYSCTL_CHILDREN(tmp);

	SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "ring_size_order", CTLFLAG_RD,
	    &ioat->ring_size_order, 0, "SW descriptor ring size order");
	SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "head", CTLFLAG_RD, &ioat->head,
	    0, "SW descriptor head pointer index");
	SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "tail", CTLFLAG_RD, &ioat->tail,
	    0, "SW descriptor tail pointer index");
	SYSCTL_ADD_UINT(ctx, state, OID_AUTO, "hw_head", CTLFLAG_RD,
	    &ioat->hw_head, 0, "HW DMACOUNT");

	SYSCTL_ADD_UQUAD(ctx, state, OID_AUTO, "last_completion", CTLFLAG_RD,
	    ioat->comp_update, "HW addr of last completion");

	SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_resize_pending", CTLFLAG_RD,
	    &ioat->is_resize_pending, 0, "resize pending");
	SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_completion_pending",
	    CTLFLAG_RD, &ioat->is_completion_pending, 0, "completion pending");
	SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_reset_pending", CTLFLAG_RD,
	    &ioat->is_reset_pending, 0, "reset pending");
	SYSCTL_ADD_INT(ctx, state, OID_AUTO, "is_channel_running", CTLFLAG_RD,
	    &ioat->is_channel_running, 0, "channel running");

	SYSCTL_ADD_PROC(ctx, state, OID_AUTO, "chansts",
	    CTLTYPE_STRING | CTLFLAG_RD, ioat, 0, sysctl_handle_chansts, "A",
	    "String of the channel status");

	SYSCTL_ADD_U16(ctx, state, OID_AUTO, "intrdelay", CTLFLAG_RD,
	    &ioat->cached_intrdelay, 0,
	    "Current INTRDELAY on this channel (cached, microseconds)");

	tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "hammer", CTLFLAG_RD, NULL,
	    "Big hammers (mostly for testing)");
	hammer = SYSCTL_CHILDREN(tmp);

	SYSCTL_ADD_PROC(ctx, hammer, OID_AUTO, "force_hw_reset",
	    CTLTYPE_INT | CTLFLAG_RW, ioat, 0, sysctl_handle_reset, "I",
	    "Set to non-zero to reset the hardware");
	SYSCTL_ADD_PROC(ctx, hammer, OID_AUTO, "force_hw_error",
	    CTLTYPE_INT | CTLFLAG_RW, ioat, 0, sysctl_handle_error, "I",
	    "Set to non-zero to inject a recoverable hardware error");

	tmp = SYSCTL_ADD_NODE(ctx, par, OID_AUTO, "stats", CTLFLAG_RD, NULL,
	    "IOAT channel statistics");
	statpar = SYSCTL_CHILDREN(tmp);

	SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "interrupts", CTLFLAG_RW,
	    &ioat->stats.interrupts,
	    "Number of interrupts processed on this channel");
	SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "descriptors", CTLFLAG_RW,
	    &ioat->stats.descriptors_processed,
	    "Number of descriptors processed on this channel");
	SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "submitted", CTLFLAG_RW,
	    &ioat->stats.descriptors_submitted,
	    "Number of descriptors submitted to this channel");
	SYSCTL_ADD_UQUAD(ctx, statpar, OID_AUTO, "errored", CTLFLAG_RW,
	    &ioat->stats.descriptors_error,
	    "Number of descriptors failed by channel errors");
	SYSCTL_ADD_U32(ctx, statpar, OID_AUTO, "halts", CTLFLAG_RW,
	    &ioat->stats.channel_halts, 0,
	    "Number of times the channel has halted");
	SYSCTL_ADD_U32(ctx, statpar, OID_AUTO, "last_halt_chanerr", CTLFLAG_RW,
	    &ioat->stats.last_halt_chanerr, 0,
	    "The raw CHANERR when the channel was last halted");

	SYSCTL_ADD_PROC(ctx, statpar, OID_AUTO, "desc_per_interrupt",
	    CTLTYPE_STRING | CTLFLAG_RD, ioat, 0, sysctl_handle_dpi, "A",
	    "Descriptors per interrupt");
}