Beispiel #1
0
/*
 * Returns the end address of the highest region in the range s..e
 * with required size and alignment that does not conflict with the
 * modules from first_mod to nr_modules.
 *
 * For non-recursive callers first_mod should normally be 0 (all
 * modules and Xen itself) or 1 (all modules but not Xen).
 */
static paddr_t __init consider_modules(paddr_t s, paddr_t e,
                                       uint32_t size, paddr_t align,
                                       int first_mod)
{
    const struct dt_module_info *mi = &early_info.modules;
    int i;
    int nr_rsvd;

    s = (s+align-1) & ~(align-1);
    e = e & ~(align-1);

    if ( s > e ||  e - s < size )
        return 0;

    /* First check the boot modules */
    for ( i = first_mod; i <= mi->nr_mods; i++ )
    {
        paddr_t mod_s = mi->module[i].start;
        paddr_t mod_e = mod_s + mi->module[i].size;

        if ( s < mod_e && mod_s < e )
        {
            mod_e = consider_modules(mod_e, e, size, align, i+1);
            if ( mod_e )
                return mod_e;

            return consider_modules(s, mod_s, size, align, i+1);
        }
    }

    /* Now check any fdt reserved areas. */

    nr_rsvd = fdt_num_mem_rsv(device_tree_flattened);

    for ( ; i < mi->nr_mods + nr_rsvd; i++ )
    {
        paddr_t mod_s, mod_e;

        if ( fdt_get_mem_rsv(device_tree_flattened,
                             i - mi->nr_mods,
                             &mod_s, &mod_e ) < 0 )
            /* If we can't read it, pretend it doesn't exist... */
            continue;

        /* fdt_get_mem_rsv returns length */
        mod_e += mod_s;

        if ( s < mod_e && mod_s < e )
        {
            mod_e = consider_modules(mod_e, e, size, align, i+1);
            if ( mod_e )
                return mod_e;

            return consider_modules(s, mod_s, size, align, i+1);
        }
    }
    return e;
}
Beispiel #2
0
/**
 * get_xen_paddr - get physical address to relocate Xen to
 *
 * Xen is relocated to as near to the top of RAM as possible and
 * aligned to a XEN_PADDR_ALIGN boundary.
 */
static paddr_t __init get_xen_paddr(void)
{
    struct dt_mem_info *mi = &early_info.mem;
    paddr_t min_size;
    paddr_t paddr = 0, last_end;
    int i;

    min_size = (_end - _start + (XEN_PADDR_ALIGN-1)) & ~(XEN_PADDR_ALIGN-1);

    last_end = mi->bank[0].start;

    /* Find the highest bank with enough space. */
    for ( i = 0; i < mi->nr_banks; i++ )
    {
        const struct membank *bank = &mi->bank[i];
        paddr_t s, e;

        /* We can only deal with contiguous memory at the moment */
        if ( last_end != bank->start )
            break;

        last_end = bank->start + bank->size;

        if ( bank->size >= min_size )
        {
            e = consider_modules(bank->start, bank->start + bank->size,
                                 min_size, XEN_PADDR_ALIGN, 1);
            if ( !e )
                continue;

#ifdef CONFIG_ARM_32
            /* Xen must be under 4GB */
            if ( e > 0x100000000ULL )
                e = 0x100000000ULL;
            if ( e < bank->start )
                continue;
#endif

            s = e - min_size;

            if ( s > paddr )
                paddr = s;
        }
    }

    if ( !paddr )
        early_panic("Not enough memory to relocate Xen");

    early_printk("Placing Xen at 0x%"PRIpaddr"-0x%"PRIpaddr"\n",
                 paddr, paddr + min_size);

    early_info.modules.module[MOD_XEN].start = paddr;
    early_info.modules.module[MOD_XEN].size = min_size;

    return paddr;
}
Beispiel #3
0
static void __init setup_mm(unsigned long dtb_paddr, size_t dtb_size)
{
    paddr_t ram_start, ram_end, ram_size;
    paddr_t contig_start, contig_end;
    paddr_t s, e;
    unsigned long ram_pages;
    unsigned long heap_pages, xenheap_pages, domheap_pages;
    unsigned long dtb_pages;
    unsigned long boot_mfn_start, boot_mfn_end;
    int i;
    void *fdt;

    if ( !early_info.mem.nr_banks )
        early_panic("No memory bank");

    /*
     * We are going to accumulate two regions here.
     *
     * The first is the bounds of the initial memory region which is
     * contiguous with the first bank. For simplicity the xenheap is
     * always allocated from this region.
     *
     * The second is the complete bounds of the regions containing RAM
     * (ie. from the lowest RAM address to the highest), which
     * includes any holes.
     *
     * We also track the number of actual RAM pages (i.e. not counting
     * the holes).
     */
    ram_size  = early_info.mem.bank[0].size;

    contig_start = ram_start = early_info.mem.bank[0].start;
    contig_end   = ram_end = ram_start + ram_size;

    for ( i = 1; i < early_info.mem.nr_banks; i++ )
    {
        paddr_t bank_start = early_info.mem.bank[i].start;
        paddr_t bank_size = early_info.mem.bank[i].size;
        paddr_t bank_end = bank_start + bank_size;

        paddr_t new_ram_size = ram_size + bank_size;
        paddr_t new_ram_start = min(ram_start,bank_start);
        paddr_t new_ram_end = max(ram_end,bank_end);

        /*
         * If the new bank is contiguous with the initial contiguous
         * region then incorporate it into the contiguous region.
         *
         * Otherwise we allow non-contigious regions so long as at
         * least half of the total RAM region actually contains
         * RAM. We actually fudge this slightly and require that
         * adding the current bank does not cause us to violate this
         * restriction.
         *
         * This restriction ensures that the frametable (which is not
         * currently sparse) does not consume all available RAM.
         */
        if ( bank_start == contig_end )
            contig_end = bank_end;
        else if ( bank_end == contig_start )
            contig_start = bank_start;
        else if ( 2 * new_ram_size < new_ram_end - new_ram_start )
            /* Would create memory map which is too sparse, so stop here. */
            break;

        ram_size = new_ram_size;
        ram_start = new_ram_start;
        ram_end = new_ram_end;
    }

    if ( i != early_info.mem.nr_banks )
    {
        early_printk("WARNING: only using %d out of %d memory banks\n",
                     i, early_info.mem.nr_banks);
        early_info.mem.nr_banks = i;
    }

    total_pages = ram_pages = ram_size >> PAGE_SHIFT;

    /*
     * Locate the xenheap using these constraints:
     *
     *  - must be 32 MiB aligned
     *  - must not include Xen itself or the boot modules
     *  - must be at most 1/8 the total RAM in the system
     *  - must be at least 128M
     *
     * We try to allocate the largest xenheap possible within these
     * constraints.
     */
    heap_pages = ram_pages;
    xenheap_pages = (heap_pages/8 + 0x1fffUL) & ~0x1fffUL;
    xenheap_pages = max(xenheap_pages, 128UL<<(20-PAGE_SHIFT));

    do
    {
        /* xenheap is always in the initial contiguous region */
        e = consider_modules(contig_start, contig_end,
                             pfn_to_paddr(xenheap_pages),
                             32<<20, 0);
        if ( e )
            break;

        xenheap_pages >>= 1;
    } while ( xenheap_pages > 128<<(20-PAGE_SHIFT) );

    if ( ! e )
        early_panic("Not not enough space for xenheap");

    domheap_pages = heap_pages - xenheap_pages;

    early_printk("Xen heap: %"PRIpaddr"-%"PRIpaddr" (%lu pages)\n",
                 e - (pfn_to_paddr(xenheap_pages)), e,
                 xenheap_pages);
    early_printk("Dom heap: %lu pages\n", domheap_pages);

    setup_xenheap_mappings((e >> PAGE_SHIFT) - xenheap_pages, xenheap_pages);

    /*
     * Need a single mapped page for populating bootmem_region_list
     * and enough mapped pages for copying the DTB.
     */
    dtb_pages = (dtb_size + PAGE_SIZE-1) >> PAGE_SHIFT;
    boot_mfn_start = xenheap_mfn_end - dtb_pages - 1;
    boot_mfn_end = xenheap_mfn_end;

    init_boot_pages(pfn_to_paddr(boot_mfn_start), pfn_to_paddr(boot_mfn_end));

    /* Copy the DTB. */
    fdt = mfn_to_virt(alloc_boot_pages(dtb_pages, 1));
    copy_from_paddr(fdt, dtb_paddr, dtb_size, BUFFERABLE);
    device_tree_flattened = fdt;

    /* Add non-xenheap memory */
    for ( i = 0; i < early_info.mem.nr_banks; i++ )
    {
        paddr_t bank_start = early_info.mem.bank[i].start;
        paddr_t bank_end = bank_start + early_info.mem.bank[i].size;

        s = bank_start;
        while ( s < bank_end )
        {
            paddr_t n = bank_end;

            e = next_module(s, &n);

            if ( e == ~(paddr_t)0 )
            {
                e = n = ram_end;
            }

            /*
             * Module in a RAM bank other than the one which we are
             * not dealing with here.
             */
            if ( e > bank_end )
                e = bank_end;

            /* Avoid the xenheap */
            if ( s < pfn_to_paddr(xenheap_mfn_start+xenheap_pages)
                 && pfn_to_paddr(xenheap_mfn_start) < e )
            {
                e = pfn_to_paddr(xenheap_mfn_start);
                n = pfn_to_paddr(xenheap_mfn_start+xenheap_pages);
            }

            dt_unreserved_regions(s, e, init_boot_pages, 0);

            s = n;
        }
    }

    /* Frame table covers all of RAM region, including holes */
    setup_frametable_mappings(ram_start, ram_end);
    max_page = PFN_DOWN(ram_end);

    /* Add xenheap memory that was not already added to the boot
       allocator. */
    init_xenheap_pages(pfn_to_paddr(xenheap_mfn_start),
                       pfn_to_paddr(boot_mfn_start));

    end_boot_allocator();
}
Beispiel #4
0
Datei: setup.c Projekt: caomw/xen
static void __init setup_mm(unsigned long dtb_paddr, size_t dtb_size)
{
    paddr_t ram_start, ram_end, ram_size;
    paddr_t s, e;
    unsigned long ram_pages;
    unsigned long heap_pages, xenheap_pages, domheap_pages;
    unsigned long dtb_pages;
    unsigned long boot_mfn_start, boot_mfn_end;
    int i;
    void *fdt;

    if ( !bootinfo.mem.nr_banks )
        panic("No memory bank");

    init_pdx();

    ram_start = bootinfo.mem.bank[0].start;
    ram_size  = bootinfo.mem.bank[0].size;
    ram_end   = ram_start + ram_size;

    for ( i = 1; i < bootinfo.mem.nr_banks; i++ )
    {
        paddr_t bank_start = bootinfo.mem.bank[i].start;
        paddr_t bank_size = bootinfo.mem.bank[i].size;
        paddr_t bank_end = bank_start + bank_size;

        ram_size  = ram_size + bank_size;
        ram_start = min(ram_start,bank_start);
        ram_end   = max(ram_end,bank_end);
    }

    total_pages = ram_pages = ram_size >> PAGE_SHIFT;

    /*
     * If the user has not requested otherwise via the command line
     * then locate the xenheap using these constraints:
     *
     *  - must be 32 MiB aligned
     *  - must not include Xen itself or the boot modules
     *  - must be at most 1GB or 1/32 the total RAM in the system if less
     *  - must be at least 32M
     *
     * We try to allocate the largest xenheap possible within these
     * constraints.
     */
    heap_pages = ram_pages;
    if ( opt_xenheap_megabytes )
        xenheap_pages = opt_xenheap_megabytes << (20-PAGE_SHIFT);
    else
    {
        xenheap_pages = (heap_pages/32 + 0x1fffUL) & ~0x1fffUL;
        xenheap_pages = max(xenheap_pages, 32UL<<(20-PAGE_SHIFT));
        xenheap_pages = min(xenheap_pages, 1UL<<(30-PAGE_SHIFT));
    }

    do
    {
        e = consider_modules(ram_start, ram_end,
                             pfn_to_paddr(xenheap_pages),
                             32<<20, 0);
        if ( e )
            break;

        xenheap_pages >>= 1;
    } while ( !opt_xenheap_megabytes && xenheap_pages > 32<<(20-PAGE_SHIFT) );

    if ( ! e )
        panic("Not not enough space for xenheap");

    domheap_pages = heap_pages - xenheap_pages;

    printk("Xen heap: %"PRIpaddr"-%"PRIpaddr" (%lu pages%s)\n",
           e - (pfn_to_paddr(xenheap_pages)), e, xenheap_pages,
           opt_xenheap_megabytes ? ", from command-line" : "");
    printk("Dom heap: %lu pages\n", domheap_pages);

    setup_xenheap_mappings((e >> PAGE_SHIFT) - xenheap_pages, xenheap_pages);

    /*
     * Need a single mapped page for populating bootmem_region_list
     * and enough mapped pages for copying the DTB.
     */
    dtb_pages = (dtb_size + PAGE_SIZE-1) >> PAGE_SHIFT;
    boot_mfn_start = xenheap_mfn_end - dtb_pages - 1;
    boot_mfn_end = xenheap_mfn_end;

    init_boot_pages(pfn_to_paddr(boot_mfn_start), pfn_to_paddr(boot_mfn_end));

    /* Copy the DTB. */
    fdt = mfn_to_virt(alloc_boot_pages(dtb_pages, 1));
    copy_from_paddr(fdt, dtb_paddr, dtb_size);
    device_tree_flattened = fdt;

    /* Add non-xenheap memory */
    for ( i = 0; i < bootinfo.mem.nr_banks; i++ )
    {
        paddr_t bank_start = bootinfo.mem.bank[i].start;
        paddr_t bank_end = bank_start + bootinfo.mem.bank[i].size;

        s = bank_start;
        while ( s < bank_end )
        {
            paddr_t n = bank_end;

            e = next_module(s, &n);

            if ( e == ~(paddr_t)0 )
            {
                e = n = ram_end;
            }

            /*
             * Module in a RAM bank other than the one which we are
             * not dealing with here.
             */
            if ( e > bank_end )
                e = bank_end;

            /* Avoid the xenheap */
            if ( s < pfn_to_paddr(xenheap_mfn_start+xenheap_pages)
                 && pfn_to_paddr(xenheap_mfn_start) < e )
            {
                e = pfn_to_paddr(xenheap_mfn_start);
                n = pfn_to_paddr(xenheap_mfn_start+xenheap_pages);
            }

            dt_unreserved_regions(s, e, init_boot_pages, 0);

            s = n;
        }
    }

    /* Frame table covers all of RAM region, including holes */
    setup_frametable_mappings(ram_start, ram_end);
    max_page = PFN_DOWN(ram_end);

    /* Add xenheap memory that was not already added to the boot
       allocator. */
    init_xenheap_pages(pfn_to_paddr(xenheap_mfn_start),
                       pfn_to_paddr(boot_mfn_start));
}