static int __init bridge_init(void)
{
	struct data_bridge	*dev;
	int			ret;
	int			i = 0;

	ret = ctrl_bridge_init();
	if (ret)
		return ret;

	bridge_wq  = create_singlethread_workqueue("mdm_bridge");
	if (!bridge_wq) {
		pr_err("%s: Unable to create workqueue:bridge\n", __func__);
		ret = -ENOMEM;
		goto free_ctrl;
	}

	for (i = 0; i < MAX_BRIDGE_DEVICES; i++) {

		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
		if (!dev) {
			err("%s: unable to allocate dev\n", __func__);
			ret = -ENOMEM;
			goto error;
		}

		dev->wq = bridge_wq;

		/*transport name will be set during probe*/
		dev->name = "none";

		init_usb_anchor(&dev->tx_active);
		init_usb_anchor(&dev->rx_active);

		INIT_LIST_HEAD(&dev->rx_idle);

		skb_queue_head_init(&dev->rx_done);

		INIT_WORK(&dev->kevent, defer_kevent);
		INIT_WORK(&dev->process_rx_w, data_bridge_process_rx);

		__dev[i] = dev;
	}

	ret = usb_register(&bridge_driver);
	if (ret) {
		err("%s: unable to register mdm_bridge driver", __func__);
		goto error;
	}

	data_bridge_debugfs_init();
// ASUS_BSP+++ Wenli "tty device for AT command"
#ifndef DISABLE_ASUS_DUN
	gdun_tty_setup();
#endif
// ASUS_BSP--- Wenli "tty device for AT command"
	return 0;

error:
	while (--i >= 0) {
		kfree(__dev[i]);
		__dev[i] = NULL;
	}
	destroy_workqueue(bridge_wq);
free_ctrl:
	ctrl_bridge_exit();
	return ret;
}
Beispiel #2
0
/**
 * hdm_probe - probe function of USB device driver
 * @interface: Interface of the attached USB device
 * @id: Pointer to the USB ID table.
 *
 * This allocates and initializes the device instance, adds the new
 * entry to the internal list, scans the USB descriptors and registers
 * the interface with the core.
 * Additionally, the DCI objects are created and the hardware is sync'd.
 *
 * Return 0 on success. In case of an error a negative number is returned.
 */
static int
hdm_probe(struct usb_interface *interface, const struct usb_device_id *id)
{
	struct usb_host_interface *usb_iface_desc = interface->cur_altsetting;
	struct usb_device *usb_dev = interface_to_usbdev(interface);
	struct device *dev = &usb_dev->dev;
	struct most_dev *mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
	unsigned int i;
	unsigned int num_endpoints;
	struct most_channel_capability *tmp_cap;
	struct usb_endpoint_descriptor *ep_desc;
	int ret = 0;

	if (!mdev)
		goto err_out_of_memory;

	usb_set_intfdata(interface, mdev);
	num_endpoints = usb_iface_desc->desc.bNumEndpoints;
	mutex_init(&mdev->io_mutex);
	INIT_WORK(&mdev->poll_work_obj, wq_netinfo);
	timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0);

	mdev->usb_device = usb_dev;
	mdev->link_stat_timer.expires = jiffies + (2 * HZ);

	mdev->iface.mod = hdm_usb_fops.owner;
	mdev->iface.driver_dev = &interface->dev;
	mdev->iface.interface = ITYPE_USB;
	mdev->iface.configure = hdm_configure_channel;
	mdev->iface.request_netinfo = hdm_request_netinfo;
	mdev->iface.enqueue = hdm_enqueue;
	mdev->iface.poison_channel = hdm_poison_channel;
	mdev->iface.dma_alloc = hdm_dma_alloc;
	mdev->iface.dma_free = hdm_dma_free;
	mdev->iface.description = mdev->description;
	mdev->iface.num_channels = num_endpoints;

	snprintf(mdev->description, sizeof(mdev->description),
		 "%d-%s:%d.%d",
		 usb_dev->bus->busnum,
		 usb_dev->devpath,
		 usb_dev->config->desc.bConfigurationValue,
		 usb_iface_desc->desc.bInterfaceNumber);

	mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL);
	if (!mdev->conf)
		goto err_free_mdev;

	mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL);
	if (!mdev->cap)
		goto err_free_conf;

	mdev->iface.channel_vector = mdev->cap;
	mdev->ep_address =
		kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL);
	if (!mdev->ep_address)
		goto err_free_cap;

	mdev->busy_urbs =
		kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL);
	if (!mdev->busy_urbs)
		goto err_free_ep_address;

	tmp_cap = mdev->cap;
	for (i = 0; i < num_endpoints; i++) {
		ep_desc = &usb_iface_desc->endpoint[i].desc;
		mdev->ep_address[i] = ep_desc->bEndpointAddress;
		mdev->padding_active[i] = false;
		mdev->is_channel_healthy[i] = true;

		snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x",
			 mdev->ep_address[i]);

		tmp_cap->name_suffix = &mdev->suffix[i][0];
		tmp_cap->buffer_size_packet = MAX_BUF_SIZE;
		tmp_cap->buffer_size_streaming = MAX_BUF_SIZE;
		tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE;
		tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE;
		tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC |
				     MOST_CH_ISOC | MOST_CH_SYNC;
		if (usb_endpoint_dir_in(ep_desc))
			tmp_cap->direction = MOST_CH_RX;
		else
			tmp_cap->direction = MOST_CH_TX;
		tmp_cap++;
		init_usb_anchor(&mdev->busy_urbs[i]);
		spin_lock_init(&mdev->channel_lock[i]);
	}
	dev_notice(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n",
		   le16_to_cpu(usb_dev->descriptor.idVendor),
		   le16_to_cpu(usb_dev->descriptor.idProduct),
		   usb_dev->bus->busnum,
		   usb_dev->devnum);

	dev_notice(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n",
		   usb_dev->bus->busnum,
		   usb_dev->devpath,
		   usb_dev->config->desc.bConfigurationValue,
		   usb_iface_desc->desc.bInterfaceNumber);

	ret = most_register_interface(&mdev->iface);
	if (ret)
		goto err_free_busy_urbs;

	mutex_lock(&mdev->io_mutex);
	if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 ||
	    le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 ||
	    le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) {
		mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL);
		if (!mdev->dci) {
			mutex_unlock(&mdev->io_mutex);
			most_deregister_interface(&mdev->iface);
			ret = -ENOMEM;
			goto err_free_busy_urbs;
		}

		mdev->dci->dev.init_name = "dci";
		mdev->dci->dev.parent = &mdev->iface.dev;
		mdev->dci->dev.groups = dci_attr_groups;
		mdev->dci->dev.release = release_dci;
		if (device_register(&mdev->dci->dev)) {
			mutex_unlock(&mdev->io_mutex);
			most_deregister_interface(&mdev->iface);
			ret = -ENOMEM;
			goto err_free_dci;
		}
		mdev->dci->usb_device = mdev->usb_device;
	}
	mutex_unlock(&mdev->io_mutex);
	return 0;
err_free_dci:
	kfree(mdev->dci);
err_free_busy_urbs:
	kfree(mdev->busy_urbs);
err_free_ep_address:
	kfree(mdev->ep_address);
err_free_cap:
	kfree(mdev->cap);
err_free_conf:
	kfree(mdev->conf);
err_free_mdev:
	kfree(mdev);
err_out_of_memory:
	if (ret == 0 || ret == -ENOMEM) {
		ret = -ENOMEM;
		dev_err(dev, "out of memory\n");
	}
	return ret;
}
int
ctrl_bridge_probe(struct usb_interface *ifc, struct usb_host_endpoint *int_in,
		int id)
{
	struct ctrl_bridge		*dev;
	struct usb_device		*udev;
	struct usb_endpoint_descriptor	*ep;
	u16				wMaxPacketSize;
	int				retval = 0;
	int				interval;

	udev = interface_to_usbdev(ifc);

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev) {
		dev_err(&udev->dev, "%s: unable to allocate dev\n",
			__func__);
		return -ENOMEM;
	}
	dev->pdev = platform_device_alloc(ctrl_bridge_names[id], id);
	if (!dev->pdev) {
		dev_err(&dev->udev->dev,
			"%s: unable to allocate platform device\n", __func__);
		retval = -ENOMEM;
		goto nomem;
	}

	dev->udev = udev;
	dev->int_pipe = usb_rcvintpipe(udev,
		int_in->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
	dev->intf = ifc;

	init_usb_anchor(&dev->tx_submitted);
	init_usb_anchor(&dev->tx_deferred);

	/*use max pkt size from ep desc*/
	ep = &dev->intf->cur_altsetting->endpoint[0].desc;

	dev->inturb = usb_alloc_urb(0, GFP_KERNEL);
	if (!dev->inturb) {
		dev_err(&udev->dev, "%s: error allocating int urb\n", __func__);
		retval = -ENOMEM;
		goto pdev_del;
	}

	wMaxPacketSize = le16_to_cpu(ep->wMaxPacketSize);

	dev->intbuf = kmalloc(wMaxPacketSize, GFP_KERNEL);
	if (!dev->intbuf) {
		dev_err(&udev->dev, "%s: error allocating int buffer\n",
			__func__);
		retval = -ENOMEM;
		goto free_inturb;
	}

	interval =
		(udev->speed == USB_SPEED_HIGH) ? HS_INTERVAL : FS_LS_INTERVAL;

	usb_fill_int_urb(dev->inturb, udev, dev->int_pipe,
				dev->intbuf, wMaxPacketSize,
				notification_available_cb, dev, interval);

	dev->readurb = usb_alloc_urb(0, GFP_KERNEL);
	if (!dev->readurb) {
		dev_err(&udev->dev, "%s: error allocating read urb\n",
			__func__);
		retval = -ENOMEM;
		goto free_intbuf;
	}

	dev->readbuf = kmalloc(DEFAULT_READ_URB_LENGTH, GFP_KERNEL);
	if (!dev->readbuf) {
		dev_err(&udev->dev, "%s: error allocating read buffer\n",
			__func__);
		retval = -ENOMEM;
		goto free_rurb;
	}

	dev->in_ctlreq = kmalloc(sizeof(*dev->in_ctlreq), GFP_KERNEL);
	if (!dev->in_ctlreq) {
		dev_err(&udev->dev,
			"%s:error allocating setup packet buffer\n",
			__func__);
		retval = -ENOMEM;
		goto free_rbuf;
	}

	dev->in_ctlreq->bRequestType =
			(USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE);
	dev->in_ctlreq->bRequest  = USB_CDC_GET_ENCAPSULATED_RESPONSE;
	dev->in_ctlreq->wValue = 0;
	dev->in_ctlreq->wIndex =
		dev->intf->cur_altsetting->desc.bInterfaceNumber;
	dev->in_ctlreq->wLength = cpu_to_le16(DEFAULT_READ_URB_LENGTH);

	__dev[id] = dev;

	platform_device_add(dev->pdev);

	ch_id++;

	return ctrl_bridge_start_read(dev);

free_rbuf:
	kfree(dev->readbuf);
free_rurb:
	usb_free_urb(dev->readurb);
free_intbuf:
	kfree(dev->intbuf);
free_inturb:
	usb_free_urb(dev->inturb);
pdev_del:
	platform_device_unregister(dev->pdev);
nomem:
	kfree(dev);

	return retval;
}
Beispiel #4
0
int
usbnet_probe (struct usb_interface *udev, const struct usb_device_id *prod)
{
	struct usbnet			*dev;
	struct net_device		*net;
	struct usb_host_interface	*interface;
	struct driver_info		*info;
	struct usb_device		*xdev;
	int				status;
	const char			*name;
	struct usb_driver 	*driver = to_usb_driver(udev->dev.driver);

	/* usbnet already took usb runtime pm, so have to enable the feature
	 * for usb interface, otherwise usb_autopm_get_interface may return
	 * failure if USB_SUSPEND(RUNTIME_PM) is enabled.
	 */
	if (!driver->supports_autosuspend) {
		driver->supports_autosuspend = 1;
		pm_runtime_enable(&udev->dev);
	}

	name = udev->dev.driver->name;
	info = (struct driver_info *) prod->driver_info;
	if (!info) {
		dev_dbg (&udev->dev, "blacklisted by %s\n", name);
		return -ENODEV;
	}
	xdev = interface_to_usbdev (udev);
	interface = udev->cur_altsetting;

	usb_get_dev (xdev);

	status = -ENOMEM;

	// set up our own records
	net = alloc_etherdev(sizeof(*dev));
	if (!net) {
		dbg ("can't kmalloc dev");
		goto out;
	}

	/* netdev_printk() needs this so do it as early as possible */
	SET_NETDEV_DEV(net, &udev->dev);

	dev = netdev_priv(net);
	dev->udev = xdev;
	dev->intf = udev;
	dev->driver_info = info;
	dev->driver_name = name;
	dev->msg_enable = netif_msg_init (msg_level, NETIF_MSG_DRV
				| NETIF_MSG_PROBE | NETIF_MSG_LINK);
	skb_queue_head_init (&dev->rxq);
	skb_queue_head_init (&dev->txq);
	skb_queue_head_init (&dev->done);
	skb_queue_head_init(&dev->rxq_pause);
	dev->bh.func = usbnet_bh;
	dev->bh.data = (unsigned long) dev;
	INIT_WORK (&dev->kevent, kevent);
	init_usb_anchor(&dev->deferred);
	dev->delay.function = usbnet_bh;
	dev->delay.data = (unsigned long) dev;
	init_timer (&dev->delay);
	mutex_init (&dev->phy_mutex);

	dev->net = net;
	strcpy (net->name, "usb%d");
	memcpy (net->dev_addr, node_id, sizeof node_id);

	/* rx and tx sides can use different message sizes;
	 * bind() should set rx_urb_size in that case.
	 */
	dev->hard_mtu = net->mtu + net->hard_header_len;
#if 0
// dma_supported() is deeply broken on almost all architectures
	// possible with some EHCI controllers
	if (dma_supported (&udev->dev, DMA_BIT_MASK(64)))
		net->features |= NETIF_F_HIGHDMA;
#endif

	net->netdev_ops = &usbnet_netdev_ops;
	net->watchdog_timeo = TX_TIMEOUT_JIFFIES;
	net->ethtool_ops = &usbnet_ethtool_ops;

	// allow device-specific bind/init procedures
	// NOTE net->name still not usable ...
	if (info->bind) {
		status = info->bind (dev, udev);
		if (status < 0)
			goto out1;

		// heuristic:  "usb%d" for links we know are two-host,
		// else "eth%d" when there's reasonable doubt.  userspace
		// can rename the link if it knows better.
		if ((dev->driver_info->flags & FLAG_ETHER) != 0 &&
		    ((dev->driver_info->flags & FLAG_POINTTOPOINT) == 0 ||
		     (net->dev_addr [0] & 0x02) == 0))
			strcpy (net->name, "eth%d");
		/* WLAN devices should always be named "wlan%d" */
		if ((dev->driver_info->flags & FLAG_WLAN) != 0)
			strcpy(net->name, "wlan%d");
		/* WWAN devices should always be named "wwan%d" */
		if ((dev->driver_info->flags & FLAG_WWAN) != 0)
			strcpy(net->name, "wwan%d");

		/* maybe the remote can't receive an Ethernet MTU */
		if (net->mtu > (dev->hard_mtu - net->hard_header_len))
			net->mtu = dev->hard_mtu - net->hard_header_len;
	} else if (!info->in || !info->out)
		status = usbnet_get_endpoints (dev, udev);
	else {
		dev->in = usb_rcvbulkpipe (xdev, info->in);
		dev->out = usb_sndbulkpipe (xdev, info->out);
		if (!(info->flags & FLAG_NO_SETINT))
			status = usb_set_interface (xdev,
				interface->desc.bInterfaceNumber,
				interface->desc.bAlternateSetting);
		else
			status = 0;

	}
	if (status >= 0 && dev->status)
		status = init_status (dev, udev);
	if (status < 0)
		goto out3;

	if (!dev->rx_urb_size)
		dev->rx_urb_size = dev->hard_mtu;
	dev->maxpacket = usb_maxpacket (dev->udev, dev->out, 1);

	if ((dev->driver_info->flags & FLAG_WLAN) != 0)
		SET_NETDEV_DEVTYPE(net, &wlan_type);
	if ((dev->driver_info->flags & FLAG_WWAN) != 0)
		SET_NETDEV_DEVTYPE(net, &wwan_type);

	status = register_netdev (net);
	if (status)
		goto out3;
	netif_info(dev, probe, dev->net,
		   "register '%s' at usb-%s-%s, %s, %pM\n",
		   udev->dev.driver->name,
		   xdev->bus->bus_name, xdev->devpath,
		   dev->driver_info->description,
		   net->dev_addr);

	// ok, it's ready to go.
	usb_set_intfdata (udev, dev);

	netif_device_attach (net);

	if (dev->driver_info->flags & FLAG_LINK_INTR)
		netif_carrier_off(net);

	return 0;

out3:
	if (info->unbind)
		info->unbind (dev, udev);
out1:
	free_netdev(net);
out:
	usb_put_dev(xdev);
	return status;
}
Beispiel #5
0
static int skel_probe(struct usb_interface *interface, const struct usb_device_id *id)
{
    struct usb_skel *dev;
    struct usb_host_interface *iface_desc;
    struct usb_endpoint_descriptor *endpoint;
    size_t buffer_size;
    int i;
    int retval = -ENOMEM;

    /* allocate memory for our device state and initialize it */
    dev = kzalloc(sizeof(*dev), GFP_KERNEL);
    if (!dev) {
        err("Out of memory");
        goto error;
    }
    kref_init(&dev->kref);
    sema_init(&dev->limit_sem, WRITES_IN_FLIGHT);
    mutex_init(&dev->io_mutex);
    spin_lock_init(&dev->err_lock);
    init_usb_anchor(&dev->submitted);

    dev->udev = usb_get_dev(interface_to_usbdev(interface));
    dev->interface = interface;

    /* set up the endpoint information */
    /* use only the first bulk-in and bulk-out endpoints */
    iface_desc = interface->cur_altsetting;
    for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
        endpoint = &iface_desc->endpoint[i].desc;

        if (!dev->bulk_in_endpointAddr &&
            usb_endpoint_is_bulk_in(endpoint)) {
            /* we found a bulk in endpoint */
            buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
            dev->bulk_in_size = buffer_size;
            dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;
            dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);
            if (!dev->bulk_in_buffer) {
                err("Could not allocate bulk_in_buffer");
                goto error;
            }
        }

        if (!dev->bulk_out_endpointAddr &&
            usb_endpoint_is_bulk_out(endpoint)) {
            /* we found a bulk out endpoint */
            dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;
        }
    }
    if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) {
        err("Could not find both bulk-in and bulk-out endpoints");
        goto error;
    }

    /* save our data pointer in this interface device */
    usb_set_intfdata(interface, dev);

    /* we can register the device now, as it is ready */
    retval = usb_register_dev(interface, &skel_class);
    if (retval) {
        /* something prevented us from registering this driver */
        err("Not able to get a minor for this device.");
        usb_set_intfdata(interface, NULL);
        goto error;
    }

    /* let the user know what node this device is now attached to */
    info("USB Skeleton device now attached to USBSkel-%d", interface->minor);
    return 0;

error:
    if (dev)
        /* this frees allocated memory */
        kref_put(&dev->kref, skel_delete);
    return retval;
}
Beispiel #6
0
static int
diag_bridge_probe(struct usb_interface *ifc, const struct usb_device_id *id)
{
	struct diag_bridge		*dev;
	struct usb_host_interface	*ifc_desc;
	struct usb_endpoint_descriptor	*ep_desc;
	int				i;
	int				ret = -ENOMEM;
	__u8				ifc_num;

	pr_debug("id:%lu", id->driver_info);

	ifc_num = ifc->cur_altsetting->desc.bInterfaceNumber;

	/* is this interface supported ? */
	if (ifc_num != id->driver_info)
		return -ENODEV;

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev) {
		pr_err("unable to allocate dev");
		return -ENOMEM;
	}
	dev->pdev = platform_device_alloc("diag_bridge", -1);
	if (!dev->pdev) {
		pr_err("unable to allocate platform device");
		kfree(dev);
		return -ENOMEM;
	}
	__dev = dev;

	dev->udev = usb_get_dev(interface_to_usbdev(ifc));
	dev->ifc = ifc;
	kref_init(&dev->kref);
	mutex_init(&dev->ifc_mutex);
	init_usb_anchor(&dev->submitted);

	ifc_desc = ifc->cur_altsetting;
	for (i = 0; i < ifc_desc->desc.bNumEndpoints; i++) {
		ep_desc = &ifc_desc->endpoint[i].desc;

		if (!dev->in_epAddr && usb_endpoint_is_bulk_in(ep_desc))
			dev->in_epAddr = ep_desc->bEndpointAddress;

		if (!dev->out_epAddr && usb_endpoint_is_bulk_out(ep_desc))
			dev->out_epAddr = ep_desc->bEndpointAddress;
	}

	if (!(dev->in_epAddr && dev->out_epAddr)) {
		pr_err("could not find bulk in and bulk out endpoints");
		ret = -ENODEV;
		goto error;
	}

	usb_set_intfdata(ifc, dev);
	diag_bridge_debugfs_init();
	platform_device_add(dev->pdev);

	dev_dbg(&dev->ifc->dev, "%s: complete\n", __func__);

	return 0;

error:
	if (dev)
		kref_put(&dev->kref, diag_bridge_delete);

	return ret;
}
Beispiel #7
0
static int __init bridge_init(void)
{
	struct data_bridge	*dev;
	int			ret;
	int			i = 0;

	ret = ctrl_bridge_init();
	if (ret)
		return ret;

	bridge_wq  = create_singlethread_workqueue("mdm_bridge");
	if (!bridge_wq) {
		pr_err("%s: Unable to create workqueue:bridge\n", __func__);
		ret = -ENOMEM;
		goto free_ctrl;
	}

	for (i = 0; i < MAX_BRIDGE_DEVICES; i++) {

		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
		if (!dev) {
			err("%s: unable to allocate dev\n", __func__);
			ret = -ENOMEM;
			goto error;
		}

		dev->wq = bridge_wq;

		init_usb_anchor(&dev->tx_active);
		init_usb_anchor(&dev->rx_active);
		init_usb_anchor(&dev->delayed);

		INIT_LIST_HEAD(&dev->rx_idle);

		skb_queue_head_init(&dev->rx_done);

		INIT_WORK(&dev->kevent, defer_kevent);
		INIT_WORK(&dev->process_rx_w, data_bridge_process_rx);

		__dev[i] = dev;
	}

	ret = usb_register(&bridge_driver);
	if (ret) {
		err("%s: unable to register mdm_bridge driver", __func__);
		goto error;
	}

	data_bridge_debugfs_init();

	return 0;

error:
	while (--i >= 0) {
		kfree(__dev[i]);
		__dev[i] = NULL;
	}
	destroy_workqueue(bridge_wq);
free_ctrl:
	ctrl_bridge_exit();
	return ret;
}
static int skel_probe(struct usb_interface *interface,
		      const struct usb_device_id *id)
{
	struct usb_skel *dev;
	struct usb_host_interface *iface_desc;
	struct usb_endpoint_descriptor *endpoint;
	size_t buffer_size;
	int i;
	int retval = -ENOMEM;

	
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev) {
		err("Out of memory");
		goto error;
	}
	kref_init(&dev->kref);
	sema_init(&dev->limit_sem, WRITES_IN_FLIGHT);
	mutex_init(&dev->io_mutex);
	spin_lock_init(&dev->err_lock);
	init_usb_anchor(&dev->submitted);
	init_completion(&dev->bulk_in_completion);

	dev->udev = usb_get_dev(interface_to_usbdev(interface));
	dev->interface = interface;

	
	
	iface_desc = interface->cur_altsetting;
	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
		endpoint = &iface_desc->endpoint[i].desc;

		if (!dev->bulk_in_endpointAddr &&
		    usb_endpoint_is_bulk_in(endpoint)) {
			
			buffer_size = usb_endpoint_maxp(endpoint);
			dev->bulk_in_size = buffer_size;
			dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;
			dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);
			if (!dev->bulk_in_buffer) {
				err("Could not allocate bulk_in_buffer");
				goto error;
			}
			dev->bulk_in_urb = usb_alloc_urb(0, GFP_KERNEL);
			if (!dev->bulk_in_urb) {
				err("Could not allocate bulk_in_urb");
				goto error;
			}
		}

		if (!dev->bulk_out_endpointAddr &&
		    usb_endpoint_is_bulk_out(endpoint)) {
			
			dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;
		}
	}
	if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) {
		err("Could not find both bulk-in and bulk-out endpoints");
		goto error;
	}

	
	usb_set_intfdata(interface, dev);

	
	retval = usb_register_dev(interface, &skel_class);
	if (retval) {
		
		err("Not able to get a minor for this device.");
		usb_set_intfdata(interface, NULL);
		goto error;
	}

	
	dev_info(&interface->dev,
		 "USB Skeleton device now attached to USBSkel-%d",
		 interface->minor);
	return 0;

error:
	if (dev)
		
		kref_put(&dev->kref, skel_delete);
	return retval;
}
Beispiel #9
0
static int ar9170_usb_probe(struct usb_interface *intf,
			const struct usb_device_id *id)
{
	struct ar9170_usb *aru;
	struct ar9170 *ar;
	struct usb_device *udev;
	int err;

	aru = ar9170_alloc(sizeof(*aru));
	if (IS_ERR(aru)) {
		err = PTR_ERR(aru);
		goto out;
	}

	udev = interface_to_usbdev(intf);
	usb_get_dev(udev);
	aru->udev = udev;
	aru->intf = intf;
	ar = &aru->common;

	aru->req_one_stage_fw = ar9170_requires_one_stage(id);

	usb_set_intfdata(intf, aru);
	SET_IEEE80211_DEV(ar->hw, &intf->dev);

	init_usb_anchor(&aru->rx_submitted);
	init_usb_anchor(&aru->tx_pending);
	init_usb_anchor(&aru->tx_submitted);
	init_completion(&aru->cmd_wait);
	spin_lock_init(&aru->tx_urb_lock);

	aru->tx_pending_urbs = 0;
	aru->tx_submitted_urbs = 0;

	aru->common.stop = ar9170_usb_stop;
	aru->common.flush = ar9170_usb_flush;
	aru->common.open = ar9170_usb_open;
	aru->common.tx = ar9170_usb_tx;
	aru->common.exec_cmd = ar9170_usb_exec_cmd;
	aru->common.callback_cmd = ar9170_usb_callback_cmd;

#ifdef CONFIG_PM
	udev->reset_resume = 1;
#endif /* CONFIG_PM */
	err = ar9170_usb_reset(aru);
	if (err)
		goto err_freehw;

	err = ar9170_usb_request_firmware(aru);
	if (err)
		goto err_freehw;

	err = ar9170_usb_init_device(aru);
	if (err)
		goto err_freefw;

	err = ar9170_usb_open(ar);
	if (err)
		goto err_unrx;

	err = ar9170_register(ar, &udev->dev);

	ar9170_usb_stop(ar);
	if (err)
		goto err_unrx;

	return 0;

err_unrx:
	ar9170_usb_cancel_urbs(aru);

err_freefw:
	release_firmware(aru->init_values);
	release_firmware(aru->firmware);

err_freehw:
	usb_set_intfdata(intf, NULL);
	usb_put_dev(udev);
	ieee80211_free_hw(ar->hw);
out:
	return err;
}
Beispiel #10
0
/**
 * hdm_probe - probe function of USB device driver
 * @interface: Interface of the attached USB device
 * @id: Pointer to the USB ID table.
 *
 * This allocates and initializes the device instance, adds the new
 * entry to the internal list, scans the USB descriptors and registers
 * the interface with the core.
 * Additionally, the DCI objects are created and the hardware is sync'd.
 *
 * Return 0 on success. In case of an error a negative number is returned.
 */
static int
hdm_probe(struct usb_interface *interface, const struct usb_device_id *id)
{
	struct usb_host_interface *usb_iface_desc = interface->cur_altsetting;
	struct usb_device *usb_dev = interface_to_usbdev(interface);
	struct device *dev = &usb_dev->dev;
	struct most_dev *mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
	unsigned int i;
	unsigned int num_endpoints;
	struct most_channel_capability *tmp_cap;
	struct usb_endpoint_descriptor *ep_desc;
	int ret = 0;
	int err;

	if (!mdev)
		goto exit_ENOMEM;

	usb_set_intfdata(interface, mdev);
	num_endpoints = usb_iface_desc->desc.bNumEndpoints;
	mutex_init(&mdev->io_mutex);
	INIT_WORK(&mdev->poll_work_obj, wq_netinfo);
	setup_timer(&mdev->link_stat_timer, link_stat_timer_handler,
		    (unsigned long)mdev);

	mdev->usb_device = usb_dev;
	mdev->link_stat_timer.expires = jiffies + (2 * HZ);

	mdev->iface.mod = hdm_usb_fops.owner;
	mdev->iface.interface = ITYPE_USB;
	mdev->iface.configure = hdm_configure_channel;
	mdev->iface.request_netinfo = hdm_request_netinfo;
	mdev->iface.enqueue = hdm_enqueue;
	mdev->iface.poison_channel = hdm_poison_channel;
	mdev->iface.description = mdev->description;
	mdev->iface.num_channels = num_endpoints;

	snprintf(mdev->description, sizeof(mdev->description),
		 "usb_device %d-%s:%d.%d",
		 usb_dev->bus->busnum,
		 usb_dev->devpath,
		 usb_dev->config->desc.bConfigurationValue,
		 usb_iface_desc->desc.bInterfaceNumber);

	mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL);
	if (!mdev->conf)
		goto exit_free;

	mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL);
	if (!mdev->cap)
		goto exit_free1;

	mdev->iface.channel_vector = mdev->cap;
	mdev->iface.priv = NULL;

	mdev->ep_address =
		kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL);
	if (!mdev->ep_address)
		goto exit_free2;

	mdev->busy_urbs =
		kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL);
	if (!mdev->busy_urbs)
		goto exit_free3;

	tmp_cap = mdev->cap;
	for (i = 0; i < num_endpoints; i++) {
		ep_desc = &usb_iface_desc->endpoint[i].desc;
		mdev->ep_address[i] = ep_desc->bEndpointAddress;
		mdev->padding_active[i] = false;
		mdev->is_channel_healthy[i] = true;

		snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x",
			 mdev->ep_address[i]);

		tmp_cap->name_suffix = &mdev->suffix[i][0];
		tmp_cap->buffer_size_packet = MAX_BUF_SIZE;
		tmp_cap->buffer_size_streaming = MAX_BUF_SIZE;
		tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE;
		tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE;
		tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC |
				     MOST_CH_ISOC | MOST_CH_SYNC;
		if (usb_endpoint_dir_in(ep_desc))
			tmp_cap->direction = MOST_CH_RX;
		else
			tmp_cap->direction = MOST_CH_TX;
		tmp_cap++;
		init_usb_anchor(&mdev->busy_urbs[i]);
		spin_lock_init(&mdev->channel_lock[i]);
		err = drci_wr_reg(usb_dev,
				  DRCI_REG_BASE + DRCI_COMMAND +
				  ep_desc->bEndpointAddress * 16,
				  1);
		if (err < 0)
			dev_warn(dev, "DCI Sync for EP %02x failed",
				 ep_desc->bEndpointAddress);
	}
	dev_notice(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n",
		   le16_to_cpu(usb_dev->descriptor.idVendor),
		   le16_to_cpu(usb_dev->descriptor.idProduct),
		   usb_dev->bus->busnum,
		   usb_dev->devnum);

	dev_notice(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n",
		   usb_dev->bus->busnum,
		   usb_dev->devpath,
		   usb_dev->config->desc.bConfigurationValue,
		   usb_iface_desc->desc.bInterfaceNumber);

	mdev->parent = most_register_interface(&mdev->iface);
	if (IS_ERR(mdev->parent)) {
		ret = PTR_ERR(mdev->parent);
		goto exit_free4;
	}

	mutex_lock(&mdev->io_mutex);
	if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 ||
	    le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 ||
	    le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) {
		/* this increments the reference count of the instance
		 * object of the core
		 */
		mdev->dci = create_most_dci_obj(mdev->parent);
		if (!mdev->dci) {
			mutex_unlock(&mdev->io_mutex);
			most_deregister_interface(&mdev->iface);
			ret = -ENOMEM;
			goto exit_free4;
		}

		kobject_uevent(&mdev->dci->kobj, KOBJ_ADD);
		mdev->dci->usb_device = mdev->usb_device;
	}
	mutex_unlock(&mdev->io_mutex);
	return 0;

exit_free4:
	kfree(mdev->busy_urbs);
exit_free3:
	kfree(mdev->ep_address);
exit_free2:
	kfree(mdev->cap);
exit_free1:
	kfree(mdev->conf);
exit_free:
	kfree(mdev);
exit_ENOMEM:
	if (ret == 0 || ret == -ENOMEM) {
		ret = -ENOMEM;
		dev_err(dev, "out of memory\n");
	}
	return ret;
}
Beispiel #11
0
int rmnet_usb_ctrl_init(void)
{
	struct rmnet_ctrl_dev	*dev;
	int			n;
	int			status;

	
	if (get_radio_flag() & 0x0001)
		usb_pm_debug_enabled  = true;

	if (get_radio_flag() & 0x0002)
		enable_ctl_msg_debug = true;
	

#ifdef HTC_LOG_RMNET_USB_CTRL
	if (get_radio_flag() & 0x0008)
		enable_dbg_rmnet_usb_ctrl = true;
#endif	

	for (n = 0; n < NUM_CTRL_CHANNELS; ++n) {

		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
		if (!dev) {
			status = -ENOMEM;
			goto error0;
		}
		
		snprintf(dev->name, CTRL_DEV_MAX_LEN, "hsicctl%d", n);

		dev->wq = create_singlethread_workqueue(dev->name);
		if (!dev->wq) {
			pr_err("unable to allocate workqueue");
			kfree(dev);
			goto error0;
		}

		mutex_init(&dev->dev_lock);
		spin_lock_init(&dev->rx_lock);
		init_waitqueue_head(&dev->read_wait_queue);
		init_waitqueue_head(&dev->open_wait_queue);
		INIT_LIST_HEAD(&dev->rx_list);
		init_usb_anchor(&dev->tx_submitted);
		init_usb_anchor(&dev->rx_submitted);
		INIT_WORK(&dev->get_encap_work, get_encap_work);

		status = rmnet_usb_ctrl_alloc_rx(dev);
		if (status < 0) {
			kfree(dev);
			goto error0;
		}

		ctrl_dev[n] = dev;
	}

	status = alloc_chrdev_region(&ctrldev_num, 0, NUM_CTRL_CHANNELS,
			DEVICE_NAME);
	if (IS_ERR_VALUE(status)) {
		pr_err("ERROR:%s: alloc_chrdev_region() ret %i.\n",
		       __func__, status);
		goto error0;
	}

	ctrldev_classp = class_create(THIS_MODULE, DEVICE_NAME);
	if (IS_ERR(ctrldev_classp)) {
		pr_err("ERROR:%s: class_create() ENOMEM\n", __func__);
		status = -ENOMEM;
		goto error1;
	}
	for (n = 0; n < NUM_CTRL_CHANNELS; ++n) {
		cdev_init(&ctrl_dev[n]->cdev, &ctrldev_fops);
		ctrl_dev[n]->cdev.owner = THIS_MODULE;

		status = cdev_add(&ctrl_dev[n]->cdev, (ctrldev_num + n), 1);

		if (IS_ERR_VALUE(status)) {
			pr_err("%s: cdev_add() ret %i\n", __func__, status);
			kfree(ctrl_dev[n]);
			goto error2;
		}

		ctrl_dev[n]->devicep =
				device_create(ctrldev_classp, NULL,
				(ctrldev_num + n), NULL,
				DEVICE_NAME "%d", n);

		if (IS_ERR(ctrl_dev[n]->devicep)) {
			pr_err("%s: device_create() ENOMEM\n", __func__);
			status = -ENOMEM;
			cdev_del(&ctrl_dev[n]->cdev);
			kfree(ctrl_dev[n]);
			goto error2;
		}
		
		status = device_create_file(ctrl_dev[n]->devicep,
					&dev_attr_modem_wait);
		if (status) {
			device_destroy(ctrldev_classp,
				MKDEV(MAJOR(ctrldev_num), n));
			cdev_del(&ctrl_dev[n]->cdev);
			kfree(ctrl_dev[n]);
			goto error2;
		}

		dev_set_drvdata(ctrl_dev[n]->devicep, ctrl_dev[n]);
	}

	rmnet_usb_ctrl_debugfs_init();
	pr_info("rmnet usb ctrl Initialized.\n");
	return 0;

error2:
		while (--n >= 0) {
			cdev_del(&ctrl_dev[n]->cdev);
			device_destroy(ctrldev_classp,
				MKDEV(MAJOR(ctrldev_num), n));
		}

		class_destroy(ctrldev_classp);
		n = NUM_CTRL_CHANNELS;
error1:
	unregister_chrdev_region(MAJOR(ctrldev_num), NUM_CTRL_CHANNELS);
error0:
	while (--n >= 0)
		kfree(ctrl_dev[n]);

	return status;
}
Beispiel #12
0
static int lcd_probe(struct usb_interface *interface, const struct usb_device_id *id)
{
    struct usb_lcd *dev = NULL;
    struct usb_host_interface *iface_desc;
    struct usb_endpoint_descriptor *endpoint;
    size_t buffer_size;
    int i;
    int retval = -ENOMEM;

    /* allocate memory for our device state and initialize it */
    dev = kzalloc(sizeof(*dev), GFP_KERNEL);
    if (dev == NULL) {
        err("Out of memory");
        goto error;
    }
    kref_init(&dev->kref);
    sema_init(&dev->limit_sem, USB_LCD_CONCURRENT_WRITES);
    init_usb_anchor(&dev->submitted);

    dev->udev = usb_get_dev(interface_to_usbdev(interface));
    dev->interface = interface;

    if (le16_to_cpu(dev->udev->descriptor.idProduct) != 0x0001) {
        warn(KERN_INFO "USBLCD model not supported.");
        return -ENODEV;
    }

    /* set up the endpoint information */
    /* use only the first bulk-in and bulk-out endpoints */
    iface_desc = interface->cur_altsetting;
    for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
        endpoint = &iface_desc->endpoint[i].desc;

        if (!dev->bulk_in_endpointAddr &&
                usb_endpoint_is_bulk_in(endpoint)) {
            /* we found a bulk in endpoint */
            buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);
            dev->bulk_in_size = buffer_size;
            dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;
            dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);
            if (!dev->bulk_in_buffer) {
                err("Could not allocate bulk_in_buffer");
                goto error;
            }
        }

        if (!dev->bulk_out_endpointAddr &&
                usb_endpoint_is_bulk_out(endpoint)) {
            /* we found a bulk out endpoint */
            dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;
        }
    }
    if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) {
        err("Could not find both bulk-in and bulk-out endpoints");
        goto error;
    }

    /* save our data pointer in this interface device */
    usb_set_intfdata(interface, dev);

    /* we can register the device now, as it is ready */
    retval = usb_register_dev(interface, &lcd_class);
    if (retval) {
        /* something prevented us from registering this driver */
        err("Not able to get a minor for this device.");
        usb_set_intfdata(interface, NULL);
        goto error;
    }

    i = le16_to_cpu(dev->udev->descriptor.bcdDevice);

    info("USBLCD Version %1d%1d.%1d%1d found at address %d",
         (i & 0xF000)>>12,(i & 0xF00)>>8,(i & 0xF0)>>4,(i & 0xF),
         dev->udev->devnum);

    /* let the user know what node this device is now attached to */
    info("USB LCD device now attached to USBLCD-%d", interface->minor);
    return 0;

error:
    if (dev)
        kref_put(&dev->kref, lcd_delete);
    return retval;
}
static int btusb_probe(struct usb_interface *intf,
                       const struct usb_device_id *id)
{
    struct usb_endpoint_descriptor *ep_desc;
    struct btusb_data *data;
    struct hci_dev *hdev;
    int i, err,flag1,flag2;
    struct usb_device *udev;
    udev = interface_to_usbdev(intf);

    /* interface numbers are hardcoded in the spec */
    if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
        return -ENODEV;

    /*******************************/
    flag1=device_can_wakeup(&udev->dev);
    flag2=device_may_wakeup(&udev->dev);
    RTKBT_DBG("btusb_probe 1==========can_wakeup=%x	 flag2=%x",flag1,flag2);
    //device_wakeup_enable(&udev->dev);
    /*device_wakeup_disable(&udev->dev);
    flag1=device_can_wakeup(&udev->dev);
    flag2=device_may_wakeup(&udev->dev);
    RTKBT_DBG("btusb_probe 2==========can_wakeup=%x	 flag2=%x",flag1,flag2);
    */
    err = patch_add(intf);
    if (err < 0) return -1;
    /*******************************/

    data = kzalloc(sizeof(*data), GFP_KERNEL);
    if (!data)
        return -ENOMEM;


    for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
        ep_desc = &intf->cur_altsetting->endpoint[i].desc;

        if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) {
            data->intr_ep = ep_desc;
            continue;
        }

        if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
            data->bulk_tx_ep = ep_desc;
            continue;
        }

        if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
            data->bulk_rx_ep = ep_desc;
            continue;
        }
    }

    if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep) {
        kfree(data);
        return -ENODEV;
    }

    data->cmdreq_type = USB_TYPE_CLASS;

    data->udev = interface_to_usbdev(intf);
    data->intf = intf;

    spin_lock_init(&data->lock);

    INIT_WORK(&data->work, btusb_work);
    INIT_WORK(&data->waker, btusb_waker);
    spin_lock_init(&data->txlock);

    init_usb_anchor(&data->tx_anchor);
    init_usb_anchor(&data->intr_anchor);
    init_usb_anchor(&data->bulk_anchor);
    init_usb_anchor(&data->isoc_anchor);
    init_usb_anchor(&data->deferred);

    hdev = hci_alloc_dev();
    if (!hdev) {
        kfree(data);
        return -ENOMEM;
    }

    HDEV_BUS = HCI_USB;

    data->hdev = hdev;

    SET_HCIDEV_DEV(hdev, &intf->dev);

    hdev->open     = btusb_open;
    hdev->close    = btusb_close;
    hdev->flush    = btusb_flush;
    hdev->send     = btusb_send_frame;
    hdev->notify   = btusb_notify;


#if LINUX_VERSION_CODE > KERNEL_VERSION(3, 4, 0)
    hci_set_drvdata(hdev, data);
#else
    hdev->driver_data = data;
    hdev->destruct = btusb_destruct;
    hdev->owner = THIS_MODULE;
#endif



    /* Interface numbers are hardcoded in the specification */
    data->isoc = usb_ifnum_to_if(data->udev, 1);

    if (data->isoc) {
        err = usb_driver_claim_interface(&btusb_driver,
                                         data->isoc, data);
        if (err < 0) {
            hci_free_dev(hdev);
            kfree(data);
            return err;
        }
    }

    err = hci_register_dev(hdev);
    if (err < 0) {
        hci_free_dev(hdev);
        kfree(data);
        return err;
    }

    usb_set_intfdata(intf, data);

    return 0;
}
Beispiel #14
0
/*
 * probe function for new CPC-USB devices
 */
static int ems_usb_probe(struct usb_interface *intf,
			 const struct usb_device_id *id)
{
	struct net_device *netdev;
	struct ems_usb *dev;
	int i, err = -ENOMEM;

	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
	if (!netdev) {
		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
		return -ENOMEM;
	}

	dev = netdev_priv(netdev);

	dev->udev = interface_to_usbdev(intf);
	dev->netdev = netdev;

	dev->can.state = CAN_STATE_STOPPED;
	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
	dev->can.bittiming_const = &ems_usb_bittiming_const;
	dev->can.do_set_bittiming = ems_usb_set_bittiming;
	dev->can.do_set_mode = ems_usb_set_mode;
	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;

	netdev->netdev_ops = &ems_usb_netdev_ops;

	netdev->flags |= IFF_ECHO; /* we support local echo */

	init_usb_anchor(&dev->rx_submitted);

	init_usb_anchor(&dev->tx_submitted);
	atomic_set(&dev->active_tx_urbs, 0);

	for (i = 0; i < MAX_TX_URBS; i++)
		dev->tx_contexts[i].echo_index = MAX_TX_URBS;

	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
	if (!dev->intr_urb) {
		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
		goto cleanup_candev;
	}

	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
	if (!dev->intr_in_buffer)
		goto cleanup_intr_urb;

	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
	if (!dev->tx_msg_buffer)
		goto cleanup_intr_in_buffer;

	usb_set_intfdata(intf, dev);

	SET_NETDEV_DEV(netdev, &intf->dev);

	init_params_sja1000(&dev->active_params);

	err = ems_usb_command_msg(dev, &dev->active_params);
	if (err) {
		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
		goto cleanup_tx_msg_buffer;
	}

	err = register_candev(netdev);
	if (err) {
		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
		goto cleanup_tx_msg_buffer;
	}

	return 0;

cleanup_tx_msg_buffer:
	kfree(dev->tx_msg_buffer);

cleanup_intr_in_buffer:
	kfree(dev->intr_in_buffer);

cleanup_intr_urb:
	usb_free_urb(dev->intr_urb);

cleanup_candev:
	free_candev(netdev);

	return err;
}
int rmnet_usb_ctrl_init(void)
{
	struct rmnet_ctrl_dev	*dev;
	int			n;
	int			status;

	for (n = 0; n < NUM_CTRL_CHANNELS; ++n) {

		dev = kzalloc(sizeof(*dev), GFP_KERNEL);
		if (!dev) {
			status = -ENOMEM;
			goto error0;
		}
		/*for debug purpose*/
		snprintf(dev->name, CTRL_DEV_MAX_LEN, "hsicctl%d", n);

		mutex_init(&dev->dev_lock);
		spin_lock_init(&dev->rx_lock);
		init_waitqueue_head(&dev->read_wait_queue);
		init_waitqueue_head(&dev->open_wait_queue);
		INIT_LIST_HEAD(&dev->rx_list);
		init_usb_anchor(&dev->tx_submitted);

		status = rmnet_usb_ctrl_alloc_rx(dev);
		if (status < 0) {
			kfree(dev);
			goto error0;
		}

		ctrl_dev[n] = dev;
	}

	status = alloc_chrdev_region(&ctrldev_num, 0, NUM_CTRL_CHANNELS,
			DEVICE_NAME);
	if (IS_ERR_VALUE(status)) {
		pr_err("ERROR:%s: alloc_chrdev_region() ret %i.\n",
		       __func__, status);
		goto error0;
	}

	ctrldev_classp = class_create(THIS_MODULE, DEVICE_NAME);
	if (IS_ERR(ctrldev_classp)) {
		pr_err("ERROR:%s: class_create() ENOMEM\n", __func__);
		status = -ENOMEM;
		goto error1;
	}
	for (n = 0; n < NUM_CTRL_CHANNELS; ++n) {
		cdev_init(&ctrl_dev[n]->cdev, &ctrldev_fops);
		ctrl_dev[n]->cdev.owner = THIS_MODULE;

		status = cdev_add(&ctrl_dev[n]->cdev, (ctrldev_num + n), 1);

		if (IS_ERR_VALUE(status)) {
			pr_err("%s: cdev_add() ret %i\n", __func__, status);
			kfree(ctrl_dev[n]);
			goto error2;
		}

		ctrl_dev[n]->devicep =
				device_create(ctrldev_classp, NULL,
				(ctrldev_num + n), NULL,
				DEVICE_NAME "%d", n);

		if (IS_ERR(ctrl_dev[n]->devicep)) {
			pr_err("%s: device_create() ENOMEM\n", __func__);
			status = -ENOMEM;
			cdev_del(&ctrl_dev[n]->cdev);
			kfree(ctrl_dev[n]);
			goto error2;
		}
		/*create /sys/class/hsicctl/hsicctlx/modem_wait*/
		status = device_create_file(ctrl_dev[n]->devicep,
					&dev_attr_modem_wait);
		if (status) {
			device_destroy(ctrldev_classp,
				MKDEV(MAJOR(ctrldev_num), n));
			cdev_del(&ctrl_dev[n]->cdev);
			kfree(ctrl_dev[n]);
			goto error2;
		}
		dev_set_drvdata(ctrl_dev[n]->devicep, ctrl_dev[n]);
	}

	rmnet_usb_ctrl_debugfs_init();
	pr_info("rmnet usb ctrl Initialized.\n");
	return 0;

error2:
		while (--n >= 0) {
			cdev_del(&ctrl_dev[n]->cdev);
			device_destroy(ctrldev_classp,
				MKDEV(MAJOR(ctrldev_num), n));
		}

		class_destroy(ctrldev_classp);
		n = NUM_CTRL_CHANNELS;
error1:
	unregister_chrdev_region(MAJOR(ctrldev_num), NUM_CTRL_CHANNELS);
error0:
	while (--n >= 0)
		kfree(ctrl_dev[n]);

	return status;
}
Beispiel #16
0
static int synccom_probe(struct usb_interface *interface,
		      const struct usb_device_id *id)
{
	struct synccom_port *port;
	
	struct usb_host_interface *iface_desc;
	struct usb_endpoint_descriptor *endpoint;
	size_t buffer_size;
	int i;
	int retval = -ENOMEM;

	/* allocate memory for our device state and initialize it */
	port = kzalloc(sizeof(*port), GFP_KERNEL);
	if (!port) {
		dev_err(&interface->dev, "Out of memory\n");
		goto error;
	}
	kref_init(&port->kref);
	sema_init(&port->limit_sem, WRITES_IN_FLIGHT);
	mutex_init(&port->io_mutex);
	spin_lock_init(&port->err_lock);
	init_usb_anchor(&port->submitted);
	init_waitqueue_head(&port->bulk_in_wait);

	port->udev = usb_get_dev(interface_to_usbdev(interface));
	port->interface = interface;

	/* set up the endpoint information */
	/* use only the first bulk-in and bulk-out endpoints */
	iface_desc = interface->cur_altsetting;
	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
		endpoint = &iface_desc->endpoint[i].desc;

		if (!port->bulk_in_endpointAddr &&
		    usb_endpoint_is_bulk_in(endpoint)) {
			/* we found a bulk in endpoint */
			buffer_size = endpoint->wMaxPacketSize;
						port->bulk_in_size = buffer_size;
			port->bulk_in_endpointAddr = endpoint->bEndpointAddress;
			port->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);
			if (!port->bulk_in_buffer) {
				dev_err(&interface->dev,
					"Could not allocate bulk_in_buffer\n");
				goto error;
			}
			port->bulk_in_urb = usb_alloc_urb(0, GFP_KERNEL);
			if (!port->bulk_in_urb) {
				dev_err(&interface->dev,
					"Could not allocate bulk_in_urb\n");
				goto error;
			}
		}

		if (!port->bulk_out_endpointAddr &&
		    usb_endpoint_is_bulk_out(endpoint)) {
			/* we found a bulk out endpoint */
			port->bulk_out_endpointAddr = endpoint->bEndpointAddress;
			
		}

                if (port->bulk_out_endpointAddr &&
		    usb_endpoint_is_bulk_out(endpoint)) {
			/* we found a bulk out endpoint */
			port->bulk_out_endpointAddr2 = endpoint->bEndpointAddress;
		}

	}
	if (!(port->bulk_in_endpointAddr && port->bulk_out_endpointAddr)) {
		dev_err(&interface->dev,
			"Could not find both bulk-in and bulk-out endpoints\n");
		goto error;
	}

	/* save our data pointer in this interface device */
	usb_set_intfdata(interface, port);

	/* we can register the device now, as it is ready */
	retval = usb_register_dev(interface, &synccom_class);
	if (retval) {
		/* something prevented us from registering this driver */
		dev_err(&interface->dev,
			"Not able to get a minor for this device.\n");
		usb_set_intfdata(interface, NULL);
		goto error;
	}

	/* let the user know what node this device is now attached to */
	dev_info(&interface->dev,
		 "USB synccom device now attached to synccom%d\n",
		 interface->minor);
    
	initialize(port);
	
	return 0;

error:
	if (port)
		/* this frees allocated memory */
		kref_put(&port->kref, synccom_delete);
	return retval;
}
Beispiel #17
0
static int btusb_probe(struct usb_interface *intf,
				const struct usb_device_id *id)
{
	struct usb_endpoint_descriptor *ep_desc;
	struct btusb_data *data;
	struct hci_dev *hdev;
	int i, version, err;

	BT_DBG("intf %p id %p", intf, id);

	/* interface numbers are hardcoded in the spec */
	if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
		return -ENODEV;

	if (!id->driver_info) {
		const struct usb_device_id *match;
		match = usb_match_id(intf, blacklist_table);
		if (match)
			id = match;
	}

	if (id->driver_info == BTUSB_IGNORE)
		return -ENODEV;

	if (ignore_dga && id->driver_info & BTUSB_DIGIANSWER)
		return -ENODEV;

	if (ignore_csr && id->driver_info & BTUSB_CSR)
		return -ENODEV;

	if (ignore_sniffer && id->driver_info & BTUSB_SNIFFER)
		return -ENODEV;

	if (id->driver_info & BTUSB_ATH3012) {
		struct usb_device *udev = interface_to_usbdev(intf);

		version = get_rome_version(udev);
		BT_INFO("Rome Version: 0x%x",  version);
		/* Old firmware would otherwise let ath3k driver load
		 * patch and sysconfig files */
		if (version)
			rome_download(udev);
		else if (le16_to_cpu(udev->descriptor.bcdDevice) <= 0x0001) {
			BT_INFO("FW for ar3k is yet to be downloaded");
			return -ENODEV;
		}
	}
	data = devm_kzalloc(&intf->dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
		ep_desc = &intf->cur_altsetting->endpoint[i].desc;

		if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) {
			data->intr_ep = ep_desc;
			continue;
		}

		if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
			data->bulk_tx_ep = ep_desc;
			continue;
		}

		if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
			data->bulk_rx_ep = ep_desc;
			continue;
		}
	}

	if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep)
		return -ENODEV;

	data->cmdreq_type = USB_TYPE_CLASS;

	data->udev = interface_to_usbdev(intf);
	data->intf = intf;

	spin_lock_init(&data->lock);

	INIT_WORK(&data->work, btusb_work);
	INIT_WORK(&data->waker, btusb_waker);
	spin_lock_init(&data->txlock);

	init_usb_anchor(&data->tx_anchor);
	init_usb_anchor(&data->intr_anchor);
	init_usb_anchor(&data->bulk_anchor);
	init_usb_anchor(&data->isoc_anchor);
	init_usb_anchor(&data->deferred);

	hdev = hci_alloc_dev();
	if (!hdev)
		return -ENOMEM;

	hdev->bus = HCI_USB;
	hci_set_drvdata(hdev, data);

	data->hdev = hdev;

	SET_HCIDEV_DEV(hdev, &intf->dev);

	hdev->open   = btusb_open;
	hdev->close  = btusb_close;
	hdev->flush  = btusb_flush;
	hdev->send   = btusb_send_frame;
	hdev->notify = btusb_notify;

	if (id->driver_info & BTUSB_BCM92035)
		hdev->setup = btusb_setup_bcm92035;

	if (id->driver_info & BTUSB_INTEL)
		hdev->setup = btusb_setup_intel;

	/* Interface numbers are hardcoded in the specification */
	data->isoc = usb_ifnum_to_if(data->udev, 1);

	if (!reset)
		set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);

	if (force_scofix || id->driver_info & BTUSB_WRONG_SCO_MTU) {
		if (!disable_scofix)
			set_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_BROKEN_ISOC)
		data->isoc = NULL;

	if (id->driver_info & BTUSB_DIGIANSWER) {
		data->cmdreq_type = USB_TYPE_VENDOR;
		set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_CSR) {
		struct usb_device *udev = data->udev;

		/* Old firmware would otherwise execute USB reset */
		if (le16_to_cpu(udev->descriptor.bcdDevice) < 0x117)
			set_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_SNIFFER) {
		struct usb_device *udev = data->udev;

		/* New sniffer firmware has crippled HCI interface */
		if (le16_to_cpu(udev->descriptor.bcdDevice) > 0x997)
			set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);

		data->isoc = NULL;
	}

	if (data->isoc) {
		err = usb_driver_claim_interface(&btusb_driver,
							data->isoc, data);
		if (err < 0) {
			hci_free_dev(hdev);
			return err;
		}
	}

	err = hci_register_dev(hdev);
	if (err < 0) {
		hci_free_dev(hdev);
		return err;
	}

	usb_set_intfdata(intf, data);
	usb_enable_autosuspend(data->udev);

	return 0;
}
Beispiel #18
0
static int sinosims_probe(struct usb_interface *interface,
                const struct usb_device_id *id)
{
    struct usb_sinosims *dev;
    struct usb_host_interface *iface_desc;
    struct usb_endpoint_descriptor *endpoint;
    size_t buffer_size;
    int i;
    int retval = -ENOMEM;

    /* allocate memory for our device stat and initialize it */    
    dev = kzalloc(sizeof(*dev), GFP_KERNEL);
    if (!dev) {
        dev_err(&interface->dev, "Out of memory\n");
        goto error;
    }
    kref_init(&dev->kref);
    sema_init(&dev->limit_sem, WRITES_IN_FLIGHT);
    mutex_init(&dev->io_mutex);
    spin_lock_init(&dev->err_lock);
    init_usb_anchor(&dev->submitted);
    init_waitqueue_head(&dev->bulk_in_wait);

    dev->udev = usb_get_dev(interface_to_usbdev(interface));
    dev->interface = interface;

    /* set up the endpint information */
    /* our device have only one configuration, in this configuration we have three interface.
       for each interface, there are tow endpints(one is bulk-in, and the other one is bulk-out) */ 
    iface_desc = interface->cur_altsetting;
    for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
        endpoint = &iface_desc->endpoint[i].desc;
        
        if (!dev->bulk_in_endpointAddr && 
            usb_endpoint_is_bulk_in(endpoint)) {
            /* we found a bulk in endpoint */
            buffer_size = usb_endpoint_maxp(endpoint);
            dev->bulk_in_size = buffer_size;
            dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;
            dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);
            if (!dev->bulk_in_buffer) {
                dev_err(&interface->dev, "Could not allocate bulk_in_buffer\n");
                goto error;
            }
            dev->bulk_in_urb = usb_alloc_urb(0, GFP_KERNEL);
            if (!dev->bulk_in_urb) {
                dev_err(&interface->dev, "Could not allocate bulk_in_urb\n");
                goto error;
            }
        }
        
        if (!dev->bulk_out_endpointAddr && 
            usb_endpoint_is_bulk_out(endpoint)) {
            /* we found a bulk out endpoint */
            dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;
        }
    }
    if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) {
        dev_err(&interface->dev, "Could not find both bulk-in and bulk-out endpoints\n");
        goto error;
    }
    
    /* save our data pointer in this interface device */
    usb_set_intfdata(interface, dev);
    
    /* we can register the device now, as it is ready */
    retval = usb_register_dev(interface, &sinosims_class);
    if (retval) {
        /* something prevented us from registering this driver */
        dev_err(&interface->dev, "Not albe to get a minor for this device\n");
        usb_set_intfdata(interface, NULL);
        goto error;
    }

    /* let the user know what node this device is now attached to */
    dev_info(&interface->dev, "USB Sinosims device now attached to USBSino-%d", interface->minor);
    return 0;

error:
    if (dev) {
        /* this frees allocated memory */
        kref_put(&dev->kref, sinosims_delete);
    }
    return retval;
}
Beispiel #19
0
static struct gs_can *gs_make_candev(unsigned int channel,
				     struct usb_interface *intf,
				     struct gs_device_config *dconf)
{
	struct gs_can *dev;
	struct net_device *netdev;
	int rc;
	struct gs_device_bt_const *bt_const;

	bt_const = kmalloc(sizeof(*bt_const), GFP_KERNEL);
	if (!bt_const)
		return ERR_PTR(-ENOMEM);

	/* fetch bit timing constants */
	rc = usb_control_msg(interface_to_usbdev(intf),
			     usb_rcvctrlpipe(interface_to_usbdev(intf), 0),
			     GS_USB_BREQ_BT_CONST,
			     USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			     channel,
			     0,
			     bt_const,
			     sizeof(*bt_const),
			     1000);

	if (rc < 0) {
		dev_err(&intf->dev,
			"Couldn't get bit timing const for channel (err=%d)\n",
			rc);
		kfree(bt_const);
		return ERR_PTR(rc);
	}

	/* create netdev */
	netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS);
	if (!netdev) {
		dev_err(&intf->dev, "Couldn't allocate candev\n");
		kfree(bt_const);
		return ERR_PTR(-ENOMEM);
	}

	dev = netdev_priv(netdev);

	netdev->netdev_ops = &gs_usb_netdev_ops;

	netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */

	/* dev settup */
	strcpy(dev->bt_const.name, "gs_usb");
	dev->bt_const.tseg1_min = bt_const->tseg1_min;
	dev->bt_const.tseg1_max = bt_const->tseg1_max;
	dev->bt_const.tseg2_min = bt_const->tseg2_min;
	dev->bt_const.tseg2_max = bt_const->tseg2_max;
	dev->bt_const.sjw_max = bt_const->sjw_max;
	dev->bt_const.brp_min = bt_const->brp_min;
	dev->bt_const.brp_max = bt_const->brp_max;
	dev->bt_const.brp_inc = bt_const->brp_inc;

	dev->udev = interface_to_usbdev(intf);
	dev->iface = intf;
	dev->netdev = netdev;
	dev->channel = channel;

	init_usb_anchor(&dev->tx_submitted);
	atomic_set(&dev->active_tx_urbs, 0);
	spin_lock_init(&dev->tx_ctx_lock);
	for (rc = 0; rc < GS_MAX_TX_URBS; rc++) {
		dev->tx_context[rc].dev = dev;
		dev->tx_context[rc].echo_id = GS_MAX_TX_URBS;
	}

	/* can settup */
	dev->can.state = CAN_STATE_STOPPED;
	dev->can.clock.freq = bt_const->fclk_can;
	dev->can.bittiming_const = &dev->bt_const;
	dev->can.do_set_bittiming = gs_usb_set_bittiming;

	dev->can.ctrlmode_supported = 0;

	if (bt_const->feature & GS_CAN_FEATURE_LISTEN_ONLY)
		dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY;

	if (bt_const->feature & GS_CAN_FEATURE_LOOP_BACK)
		dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK;

	if (bt_const->feature & GS_CAN_FEATURE_TRIPLE_SAMPLE)
		dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES;

	if (bt_const->feature & GS_CAN_FEATURE_ONE_SHOT)
		dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;

	SET_NETDEV_DEV(netdev, &intf->dev);

	if (dconf->sw_version > 1)
		if (bt_const->feature & GS_CAN_FEATURE_IDENTIFY)
			netdev->ethtool_ops = &gs_usb_ethtool_ops;

	kfree(bt_const);

	rc = register_candev(dev->netdev);
	if (rc) {
		free_candev(dev->netdev);
		dev_err(&intf->dev, "Couldn't register candev (err=%d)\n", rc);
		return ERR_PTR(rc);
	}

	return dev;
}
static int usb_net_raw_ip_init(void)
{
	int i;
	int err;
	char name[32];

	pr_debug("usb_net_raw_ip_init {\n");

	/* create multiple raw-ip network devices */
	for (i = 0; i < max_intfs; i++) {
		/* open baseband usb */
		g_i = i;
		baseband_usb_net[i] = baseband_usb_open(i, usb_net_raw_ip_vid,
			usb_net_raw_ip_pid, usb_net_raw_ip_intf[i]);
		if (!baseband_usb_net[i]) {
			pr_err("cannot open baseband usb net\n");
			err = -1;
			goto error_exit;
		}
		/* register network device */
		usb_net_raw_ip_dev[i] = alloc_netdev(0,
			BASEBAND_USB_NET_DEV_NAME,
			ether_setup);
		if (!usb_net_raw_ip_dev[i]) {
			pr_err("alloc_netdev() failed\n");
			err = -ENOMEM;
			goto error_exit;
		}
		usb_net_raw_ip_dev[i]->netdev_ops = &usb_net_raw_ip_ops;
		usb_net_raw_ip_dev[i]->watchdog_timeo = TX_TIMEOUT;
		random_ether_addr(usb_net_raw_ip_dev[i]->dev_addr);
		err = register_netdev(usb_net_raw_ip_dev[i]);
		if (err < 0) {
			pr_err("cannot register network device - %d\n", err);
			goto error_exit;
		}
		pr_debug("registered baseband usb network device"
				" - dev %p name %s\n", usb_net_raw_ip_dev[i],
				 BASEBAND_USB_NET_DEV_NAME);
		/* start usb rx */
		err = usb_net_raw_ip_setup_rx_urb(baseband_usb_net[i]);
		if (err < 0) {
			pr_err("setup reusable rx urb failed - err %d\n", err);
			goto error_exit;
		}
		err = usb_net_raw_ip_rx_urb_submit(baseband_usb_net[i]);
		if (err < 0) {
			pr_err("submit rx failed - err %d\n", err);
			goto error_exit;
		}
		/* start usb tx */
		init_usb_anchor(&baseband_usb_net[i]->usb.tx_urb_deferred);
		sprintf(name, "raw_ip_tx_wq-%d",
			baseband_usb_net[i]->baseband_index);
		baseband_usb_net[i]->usb.tx_workqueue
			= create_singlethread_workqueue(name);
		if (!baseband_usb_net[i]->usb.tx_workqueue) {
			pr_err("cannot create workqueue\n");
			goto error_exit;
		}
		INIT_WORK(&baseband_usb_net[i]->usb.tx_work,
			usb_net_raw_ip_tx_urb_work);
	}

	pr_debug("usb_net_raw_ip_init }\n");
	return 0;

error_exit:
	/* destroy multiple raw-ip network devices */
	for (i = 0; i < max_intfs; i++) {
		/* unregister network device */
		if (usb_net_raw_ip_dev[i]) {
			unregister_netdev(usb_net_raw_ip_dev[i]);
			free_netdev(usb_net_raw_ip_dev[i]);
			usb_net_raw_ip_dev[i] = (struct net_device *) 0;
		}
		/* close baseband usb */
		if (baseband_usb_net[i]) {
			/* stop usb tx */
			if (baseband_usb_net[i]->usb.tx_workqueue) {
				destroy_workqueue(baseband_usb_net[i]
					->usb.tx_workqueue);
				baseband_usb_net[i]->usb.tx_workqueue
					= (struct workqueue_struct *) 0;
			}
			if (baseband_usb_net[i]->usb.tx_urb) {
				usb_kill_urb(baseband_usb_net[i]->usb.tx_urb);
				baseband_usb_net[i]->usb.tx_urb
					= (struct urb *) 0;
			}
			/* stop usb rx */
			if (baseband_usb_net[i]->usb.rx_urb) {
				usb_kill_urb(baseband_usb_net[i]->usb.rx_urb);
				baseband_usb_net[i]->usb.rx_urb
					= (struct urb *) 0;
			}
			usb_net_raw_ip_free_rx_urb(baseband_usb_net[i]);
			/* close usb */
			baseband_usb_close(baseband_usb_net[i]);
			baseband_usb_net[i] = (struct baseband_usb *) 0;
		}
	}

	return err;
}
Beispiel #21
0
static int gs_usb_probe(struct usb_interface *intf,
			const struct usb_device_id *id)
{
	struct gs_usb *dev;
	int rc = -ENOMEM;
	unsigned int icount, i;
	struct gs_host_config *hconf;
	struct gs_device_config *dconf;

	hconf = kmalloc(sizeof(*hconf), GFP_KERNEL);
	if (!hconf)
		return -ENOMEM;

	hconf->byte_order = 0x0000beef;

	/* send host config */
	rc = usb_control_msg(interface_to_usbdev(intf),
			     usb_sndctrlpipe(interface_to_usbdev(intf), 0),
			     GS_USB_BREQ_HOST_FORMAT,
			     USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			     1,
			     intf->altsetting[0].desc.bInterfaceNumber,
			     hconf,
			     sizeof(*hconf),
			     1000);

	kfree(hconf);

	if (rc < 0) {
		dev_err(&intf->dev, "Couldn't send data format (err=%d)\n",
			rc);
		return rc;
	}

	dconf = kmalloc(sizeof(*dconf), GFP_KERNEL);
	if (!dconf)
		return -ENOMEM;

	/* read device config */
	rc = usb_control_msg(interface_to_usbdev(intf),
			     usb_rcvctrlpipe(interface_to_usbdev(intf), 0),
			     GS_USB_BREQ_DEVICE_CONFIG,
			     USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			     1,
			     intf->altsetting[0].desc.bInterfaceNumber,
			     dconf,
			     sizeof(*dconf),
			     1000);
	if (rc < 0) {
		dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n",
			rc);
		kfree(dconf);
		return rc;
	}

	icount = dconf->icount + 1;
	dev_info(&intf->dev, "Configuring for %d interfaces\n", icount);

	if (icount > GS_MAX_INTF) {
		dev_err(&intf->dev,
			"Driver cannot handle more that %d CAN interfaces\n",
			GS_MAX_INTF);
		kfree(dconf);
		return -EINVAL;
	}

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev) {
		kfree(dconf);
		return -ENOMEM;
	}

	init_usb_anchor(&dev->rx_submitted);

	atomic_set(&dev->active_channels, 0);

	usb_set_intfdata(intf, dev);
	dev->udev = interface_to_usbdev(intf);

	for (i = 0; i < icount; i++) {
		dev->canch[i] = gs_make_candev(i, intf, dconf);
		if (IS_ERR_OR_NULL(dev->canch[i])) {
			/* save error code to return later */
			rc = PTR_ERR(dev->canch[i]);

			/* on failure destroy previously created candevs */
			icount = i;
			for (i = 0; i < icount; i++)
				gs_destroy_candev(dev->canch[i]);

			usb_kill_anchored_urbs(&dev->rx_submitted);
			kfree(dconf);
			kfree(dev);
			return rc;
		}
		dev->canch[i]->parent = dev;
	}

	kfree(dconf);

	return 0;
}
Beispiel #22
0
static int acm_probe(struct usb_interface *intf,
		     const struct usb_device_id *id)
{
	struct usb_cdc_union_desc *union_header = NULL;
	struct usb_cdc_country_functional_desc *cfd = NULL;
	unsigned char *buffer = intf->altsetting->extra;
	int buflen = intf->altsetting->extralen;
	struct usb_interface *control_interface;
	struct usb_interface *data_interface;
	struct usb_endpoint_descriptor *epctrl = NULL;
	struct usb_endpoint_descriptor *epread = NULL;
	struct usb_endpoint_descriptor *epwrite = NULL;
	struct usb_device *usb_dev = interface_to_usbdev(intf);
	struct acm *acm;
	int minor;
	int ctrlsize, readsize;
	u8 *buf;
	u8 ac_management_function = 0;
	u8 call_management_function = 0;
	int call_interface_num = -1;
	int data_interface_num = -1;
	unsigned long quirks;
	int num_rx_buf;
	int i;
	int combined_interfaces = 0;

	/* normal quirks */
	quirks = (unsigned long)id->driver_info;
	num_rx_buf = (quirks == SINGLE_RX_URB) ? 1 : ACM_NR;

	/* not a real CDC ACM device */
	if (quirks & NOT_REAL_ACM)
		return -ENODEV;

	/* handle quirks deadly to normal probing*/
	if (quirks & NO_UNION_NORMAL) {
		data_interface = usb_ifnum_to_if(usb_dev, 1);
		control_interface = usb_ifnum_to_if(usb_dev, 0);
		goto skip_normal_probe;
	}

	/* normal probing*/
	if (!buffer) {
		dev_err(&intf->dev, "Weird descriptor references\n");
		return -EINVAL;
	}

	if (!buflen) {
		if (intf->cur_altsetting->endpoint &&
				intf->cur_altsetting->endpoint->extralen &&
				intf->cur_altsetting->endpoint->extra) {
			dev_dbg(&intf->dev,
				"Seeking extra descriptors on endpoint\n");
			buflen = intf->cur_altsetting->endpoint->extralen;
			buffer = intf->cur_altsetting->endpoint->extra;
		} else {
			dev_err(&intf->dev,
				"Zero length descriptor references\n");
			return -EINVAL;
		}
	}

	while (buflen > 0) {
		if (buffer[1] != USB_DT_CS_INTERFACE) {
			dev_err(&intf->dev, "skipping garbage\n");
			goto next_desc;
		}

		switch (buffer[2]) {
		case USB_CDC_UNION_TYPE: /* we've found it */
			if (union_header) {
				dev_err(&intf->dev, "More than one "
					"union descriptor, skipping ...\n");
				goto next_desc;
			}
			union_header = (struct usb_cdc_union_desc *)buffer;
			break;
		case USB_CDC_COUNTRY_TYPE: /* export through sysfs*/
			cfd = (struct usb_cdc_country_functional_desc *)buffer;
			break;
		case USB_CDC_HEADER_TYPE: /* maybe check version */
			break; /* for now we ignore it */
		case USB_CDC_ACM_TYPE:
			ac_management_function = buffer[3];
			break;
		case USB_CDC_CALL_MANAGEMENT_TYPE:
			call_management_function = buffer[3];
			call_interface_num = buffer[4];
			if ( (quirks & NOT_A_MODEM) == 0 && (call_management_function & 3) != 3)
				dev_err(&intf->dev, "This device cannot do calls on its own. It is not a modem.\n");
			break;
		default:
			/* there are LOTS more CDC descriptors that
			 * could legitimately be found here.
			 */
			dev_dbg(&intf->dev, "Ignoring descriptor: "
					"type %02x, length %d\n",
					buffer[2], buffer[0]);
			break;
		}
next_desc:
		buflen -= buffer[0];
		buffer += buffer[0];
	}

	if (!union_header) {
		if (call_interface_num > 0) {
			dev_dbg(&intf->dev, "No union descriptor, using call management descriptor\n");
			/* quirks for Droids MuIn LCD */
			if (quirks & NO_DATA_INTERFACE)
				data_interface = usb_ifnum_to_if(usb_dev, 0);
			else
				data_interface = usb_ifnum_to_if(usb_dev, (data_interface_num = call_interface_num));
			control_interface = intf;
		} else {
			if (intf->cur_altsetting->desc.bNumEndpoints != 3) {
				dev_dbg(&intf->dev,"No union descriptor, giving up\n");
				return -ENODEV;
			} else {
				dev_warn(&intf->dev,"No union descriptor, testing for castrated device\n");
				combined_interfaces = 1;
				control_interface = data_interface = intf;
				goto look_for_collapsed_interface;
			}
		}
	} else {
		control_interface = usb_ifnum_to_if(usb_dev, union_header->bMasterInterface0);
		data_interface = usb_ifnum_to_if(usb_dev, (data_interface_num = union_header->bSlaveInterface0));
		if (!control_interface || !data_interface) {
			dev_dbg(&intf->dev, "no interfaces\n");
			return -ENODEV;
		}
	}

	if (data_interface_num != call_interface_num)
		dev_dbg(&intf->dev, "Separate call control interface. That is not fully supported.\n");

	if (control_interface == data_interface) {
		/* some broken devices designed for windows work this way */
		dev_warn(&intf->dev,"Control and data interfaces are not separated!\n");
		combined_interfaces = 1;
		/* a popular other OS doesn't use it */
		quirks |= NO_CAP_LINE;
		if (data_interface->cur_altsetting->desc.bNumEndpoints != 3) {
			dev_err(&intf->dev, "This needs exactly 3 endpoints\n");
			return -EINVAL;
		}
look_for_collapsed_interface:
		for (i = 0; i < 3; i++) {
			struct usb_endpoint_descriptor *ep;
			ep = &data_interface->cur_altsetting->endpoint[i].desc;

			if (usb_endpoint_is_int_in(ep))
				epctrl = ep;
			else if (usb_endpoint_is_bulk_out(ep))
				epwrite = ep;
			else if (usb_endpoint_is_bulk_in(ep))
				epread = ep;
			else
				return -EINVAL;
		}
		if (!epctrl || !epread || !epwrite)
			return -ENODEV;
		else
			goto made_compressed_probe;
	}

skip_normal_probe:

	/*workaround for switched interfaces */
	if (data_interface->cur_altsetting->desc.bInterfaceClass
						!= CDC_DATA_INTERFACE_TYPE) {
		if (control_interface->cur_altsetting->desc.bInterfaceClass
						== CDC_DATA_INTERFACE_TYPE) {
			struct usb_interface *t;
			dev_dbg(&intf->dev,
				"Your device has switched interfaces.\n");
			t = control_interface;
			control_interface = data_interface;
			data_interface = t;
		} else {
			return -EINVAL;
		}
	}

	/* Accept probe requests only for the control interface */
	if (!combined_interfaces && intf != control_interface)
		return -ENODEV;

	if (!combined_interfaces && usb_interface_claimed(data_interface)) {
		/* valid in this context */
		dev_dbg(&intf->dev, "The data interface isn't available\n");
		return -EBUSY;
	}


	if (data_interface->cur_altsetting->desc.bNumEndpoints < 2)
		return -EINVAL;

	epctrl = &control_interface->cur_altsetting->endpoint[0].desc;
	epread = &data_interface->cur_altsetting->endpoint[0].desc;
	epwrite = &data_interface->cur_altsetting->endpoint[1].desc;


	/* workaround for switched endpoints */
	if (!usb_endpoint_dir_in(epread)) {
		/* descriptors are swapped */
		struct usb_endpoint_descriptor *t;
		dev_dbg(&intf->dev,
			"The data interface has switched endpoints\n");
		t = epread;
		epread = epwrite;
		epwrite = t;
	}
made_compressed_probe:
	dbg("interfaces are valid");
	for (minor = 0; minor < ACM_TTY_MINORS && acm_table[minor]; minor++);

	if (minor == ACM_TTY_MINORS) {
		dev_err(&intf->dev, "no more free acm devices\n");
		return -ENODEV;
	}

	acm = kzalloc(sizeof(struct acm), GFP_KERNEL);
	if (acm == NULL) {
		dev_dbg(&intf->dev, "out of memory (acm kzalloc)\n");
		goto alloc_fail;
	}

	ctrlsize = le16_to_cpu(epctrl->wMaxPacketSize);
	readsize = le16_to_cpu(epread->wMaxPacketSize) *
				(quirks == SINGLE_RX_URB ? 1 : 2);
	acm->combined_interfaces = combined_interfaces;
	acm->writesize = le16_to_cpu(epwrite->wMaxPacketSize) * 20;
	acm->control = control_interface;
	acm->data = data_interface;
	acm->minor = minor;
	acm->dev = usb_dev;
	acm->ctrl_caps = ac_management_function;
	if (quirks & NO_CAP_LINE)
		acm->ctrl_caps &= ~USB_CDC_CAP_LINE;
	acm->ctrlsize = ctrlsize;
	acm->readsize = readsize;
	acm->rx_buflimit = num_rx_buf;
	acm->urb_task.func = acm_rx_tasklet;
	acm->urb_task.data = (unsigned long) acm;
	INIT_WORK(&acm->work, acm_softint);
	init_usb_anchor(&acm->deferred);
	init_waitqueue_head(&acm->drain_wait);
	spin_lock_init(&acm->throttle_lock);
	spin_lock_init(&acm->write_lock);
	spin_lock_init(&acm->read_lock);
	mutex_init(&acm->mutex);
	acm->rx_endpoint = usb_rcvbulkpipe(usb_dev, epread->bEndpointAddress);
	acm->is_int_ep = usb_endpoint_xfer_int(epread);
	if (acm->is_int_ep)
		acm->bInterval = epread->bInterval;
	if (quirks & NO_HANGUP_IN_RESET_RESUME)
		acm->no_hangup_in_reset_resume = 1;
	tty_port_init(&acm->port);
	acm->port.ops = &acm_port_ops;

	buf = usb_alloc_coherent(usb_dev, ctrlsize, GFP_KERNEL, &acm->ctrl_dma);
	if (!buf) {
		dev_dbg(&intf->dev, "out of memory (ctrl buffer alloc)\n");
		goto alloc_fail2;
	}
	acm->ctrl_buffer = buf;

	if (acm_write_buffers_alloc(acm) < 0) {
		dev_dbg(&intf->dev, "out of memory (write buffer alloc)\n");
		goto alloc_fail4;
	}

	acm->ctrlurb = usb_alloc_urb(0, GFP_KERNEL);
	if (!acm->ctrlurb) {
		dev_dbg(&intf->dev, "out of memory (ctrlurb kmalloc)\n");
		goto alloc_fail5;
	}
	for (i = 0; i < num_rx_buf; i++) {
		struct acm_ru *rcv = &(acm->ru[i]);

		rcv->urb = usb_alloc_urb(0, GFP_KERNEL);
		if (rcv->urb == NULL) {
			dev_dbg(&intf->dev,
				"out of memory (read urbs usb_alloc_urb)\n");
			goto alloc_fail6;
		}

		rcv->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
		rcv->instance = acm;
	}
	for (i = 0; i < num_rx_buf; i++) {
		struct acm_rb *rb = &(acm->rb[i]);

		rb->base = usb_alloc_coherent(acm->dev, readsize,
				GFP_KERNEL, &rb->dma);
		if (!rb->base) {
			dev_dbg(&intf->dev,
				"out of memory (read bufs usb_alloc_coherent)\n");
			goto alloc_fail7;
		}
	}
	for (i = 0; i < ACM_NW; i++) {
		struct acm_wb *snd = &(acm->wb[i]);

		snd->urb = usb_alloc_urb(0, GFP_KERNEL);
		if (snd->urb == NULL) {
			dev_dbg(&intf->dev,
				"out of memory (write urbs usb_alloc_urb)");
			goto alloc_fail8;
		}

		if (usb_endpoint_xfer_int(epwrite))
			usb_fill_int_urb(snd->urb, usb_dev,
				usb_sndbulkpipe(usb_dev, epwrite->bEndpointAddress),
				NULL, acm->writesize, acm_write_bulk, snd, epwrite->bInterval);
		else
			usb_fill_bulk_urb(snd->urb, usb_dev,
				usb_sndbulkpipe(usb_dev, epwrite->bEndpointAddress),
				NULL, acm->writesize, acm_write_bulk, snd);
		snd->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
		snd->instance = acm;
	}

	usb_set_intfdata(intf, acm);

	i = device_create_file(&intf->dev, &dev_attr_bmCapabilities);
	if (i < 0)
		goto alloc_fail8;

	if (cfd) { /* export the country data */
		acm->country_codes = kmalloc(cfd->bLength - 4, GFP_KERNEL);
		if (!acm->country_codes)
			goto skip_countries;
		acm->country_code_size = cfd->bLength - 4;
		memcpy(acm->country_codes, (u8 *)&cfd->wCountyCode0,
							cfd->bLength - 4);
		acm->country_rel_date = cfd->iCountryCodeRelDate;

		i = device_create_file(&intf->dev, &dev_attr_wCountryCodes);
		if (i < 0) {
			kfree(acm->country_codes);
			goto skip_countries;
		}

		i = device_create_file(&intf->dev,
						&dev_attr_iCountryCodeRelDate);
		if (i < 0) {
			device_remove_file(&intf->dev, &dev_attr_wCountryCodes);
			kfree(acm->country_codes);
			goto skip_countries;
		}
	}

skip_countries:
	usb_fill_int_urb(acm->ctrlurb, usb_dev,
			 usb_rcvintpipe(usb_dev, epctrl->bEndpointAddress),
			 acm->ctrl_buffer, ctrlsize, acm_ctrl_irq, acm,
			 /* works around buggy devices */
			 epctrl->bInterval ? epctrl->bInterval : 0xff);
	acm->ctrlurb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
	acm->ctrlurb->transfer_dma = acm->ctrl_dma;

	dev_info(&intf->dev, "ttyACM%d: USB ACM device\n", minor);

	acm_set_control(acm, acm->ctrlout);

	acm->line.dwDTERate = cpu_to_le32(9600);
	acm->line.bDataBits = 8;
	acm_set_line(acm, &acm->line);

	usb_driver_claim_interface(&acm_driver, data_interface, acm);
	usb_set_intfdata(data_interface, acm);

	usb_get_intf(control_interface);
	tty_register_device(acm_tty_driver, minor, &control_interface->dev);

	acm_table[minor] = acm;

	return 0;
alloc_fail8:
	for (i = 0; i < ACM_NW; i++)
		usb_free_urb(acm->wb[i].urb);
alloc_fail7:
	acm_read_buffers_free(acm);
alloc_fail6:
	for (i = 0; i < num_rx_buf; i++)
		usb_free_urb(acm->ru[i].urb);
	usb_free_urb(acm->ctrlurb);
alloc_fail5:
	acm_write_buffers_free(acm);
alloc_fail4:
	usb_free_coherent(usb_dev, ctrlsize, acm->ctrl_buffer, acm->ctrl_dma);
alloc_fail2:
	kfree(acm);
alloc_fail:
	return -ENOMEM;
}
static int __init ksb_init(void)
{
	struct ks_bridge *ksb;
	int num_instances = 0;
	int ret = 0;
	int i;

	dbg_dir = debugfs_create_dir("ks_bridge", NULL);
	if (IS_ERR(dbg_dir))
		pr_err("unable to create debug dir");

	for (i = 0; i < NO_BRIDGE_INSTANCES; i++) {
		ksb = kzalloc(sizeof(struct ks_bridge), GFP_KERNEL);
		if (!ksb) {
			pr_err("unable to allocat mem for ks_bridge");
			ret =  -ENOMEM;
			goto dev_free;
		}
		__ksb[i] = ksb;

		ksb->name = kasprintf(GFP_KERNEL, "ks_bridge:%i", i + 1);
		if (!ksb->name) {
			pr_info("unable to allocate name");
			kfree(ksb);
			ret = -ENOMEM;
			goto dev_free;
		}

		spin_lock_init(&ksb->lock);
		INIT_LIST_HEAD(&ksb->to_mdm_list);
		INIT_LIST_HEAD(&ksb->to_ks_list);
		init_waitqueue_head(&ksb->ks_wait_q);
		ksb->wq = create_singlethread_workqueue(ksb->name);
		if (!ksb->wq) {
			pr_err("unable to allocate workqueue");
			kfree(ksb->name);
			kfree(ksb);
			ret = -ENOMEM;
			goto dev_free;
		}

		INIT_WORK(&ksb->to_mdm_work, ksb_tomdm_work);
		INIT_WORK(&ksb->start_rx_work, ksb_start_rx_work);
		init_usb_anchor(&ksb->submitted);

		ksb->dbg_idx = 0;
		ksb->dbg_lock = __RW_LOCK_UNLOCKED(lck);

		if (!IS_ERR(dbg_dir))
			debugfs_create_file(ksb->name, S_IRUGO, dbg_dir,
					ksb, &dbg_fops);

		num_instances++;
	}

	ret = usb_register(&ksb_usb_driver);
	if (ret) {
		pr_err("unable to register ks bridge driver");
		goto dev_free;
	}

	pr_info("init done");

	return 0;

dev_free:
	if (!IS_ERR(dbg_dir))
		debugfs_remove_recursive(dbg_dir);

	for (i = 0; i < num_instances; i++) {
		ksb = __ksb[i];

		destroy_workqueue(ksb->wq);
		kfree(ksb->name);
		kfree(ksb);
	}

	return ret;

}
static int usblp_probe(struct usb_interface *intf,
		       const struct usb_device_id *id)
{
	struct usb_device *dev = interface_to_usbdev(intf);
	struct usblp *usblp;
	int protocol;
	int retval;

	/* Malloc and start initializing usblp structure so we can use it
	 * directly. */
	usblp = kzalloc(sizeof(struct usblp), GFP_KERNEL);
	if (!usblp) {
		retval = -ENOMEM;
		goto abort_ret;
	}
	usblp->dev = dev;
	mutex_init(&usblp->wmut);
	mutex_init(&usblp->mut);
	spin_lock_init(&usblp->lock);
	init_waitqueue_head(&usblp->rwait);
	init_waitqueue_head(&usblp->wwait);
	init_usb_anchor(&usblp->urbs);
	usblp->ifnum = intf->cur_altsetting->desc.bInterfaceNumber;
	usblp->intf = intf;

	/* Malloc device ID string buffer to the largest expected length,
	 * since we can re-query it on an ioctl and a dynamic string
	 * could change in length. */
	if (!(usblp->device_id_string = kmalloc(USBLP_DEVICE_ID_SIZE, GFP_KERNEL))) {
		retval = -ENOMEM;
		goto abort;
	}

	/*
	 * Allocate read buffer. We somewhat wastefully
	 * malloc both regardless of bidirectionality, because the
	 * alternate setting can be changed later via an ioctl.
	 */
	if (!(usblp->readbuf = kmalloc(USBLP_BUF_SIZE_IN, GFP_KERNEL))) {
		retval = -ENOMEM;
		goto abort;
	}

	/* Allocate buffer for printer status */
	usblp->statusbuf = kmalloc(STATUS_BUF_SIZE, GFP_KERNEL);
	if (!usblp->statusbuf) {
		retval = -ENOMEM;
		goto abort;
	}

	/* Lookup quirks for this printer. */
	usblp->quirks = usblp_quirks(
		le16_to_cpu(dev->descriptor.idVendor),
		le16_to_cpu(dev->descriptor.idProduct));

	/* Analyze and pick initial alternate settings and endpoints. */
	protocol = usblp_select_alts(usblp);
	if (protocol < 0) {
		dev_dbg(&intf->dev,
			"incompatible printer-class device 0x%4.4X/0x%4.4X\n",
			le16_to_cpu(dev->descriptor.idVendor),
			le16_to_cpu(dev->descriptor.idProduct));
		retval = -ENODEV;
		goto abort;
	}

	/* Setup the selected alternate setting and endpoints. */
	if (usblp_set_protocol(usblp, protocol) < 0) {
		retval = -ENODEV;	/* ->probe isn't ->ioctl */
		goto abort;
	}

	/* Retrieve and store the device ID string. */
	usblp_cache_device_id_string(usblp);
	retval = device_create_file(&intf->dev, &dev_attr_ieee1284_id);
	if (retval)
		goto abort_intfdata;

#ifdef DEBUG
	usblp_check_status(usblp, 0);
#endif

	usb_set_intfdata(intf, usblp);

	usblp->present = 1;

	retval = usb_register_dev(intf, &usblp_class);
	if (retval) {
		dev_err(&intf->dev,
			"usblp: Not able to get a minor (base %u, slice default): %d\n",
			USBLP_MINOR_BASE, retval);
		goto abort_intfdata;
	}
	usblp->minor = intf->minor;
	dev_info(&intf->dev,
		"usblp%d: USB %sdirectional printer dev %d if %d alt %d proto %d vid 0x%4.4X pid 0x%4.4X\n",
		usblp->minor, usblp->bidir ? "Bi" : "Uni", dev->devnum,
		usblp->ifnum,
		usblp->protocol[usblp->current_protocol].alt_setting,
		usblp->current_protocol,
		le16_to_cpu(usblp->dev->descriptor.idVendor),
		le16_to_cpu(usblp->dev->descriptor.idProduct));

	return 0;

abort_intfdata:
	usb_set_intfdata(intf, NULL);
	device_remove_file(&intf->dev, &dev_attr_ieee1284_id);
abort:
	kfree(usblp->readbuf);
	kfree(usblp->statusbuf);
	kfree(usblp->device_id_string);
	kfree(usblp);
abort_ret:
	return retval;
}
Beispiel #25
0
static int carl9170_usb_probe(struct usb_interface *intf,
			      const struct usb_device_id *id)
{
	struct usb_endpoint_descriptor *ep;
	struct ar9170 *ar;
	struct usb_device *udev;
	int i, err;

	err = usb_reset_device(interface_to_usbdev(intf));
	if (err)
		return err;

	ar = carl9170_alloc(sizeof(*ar));
	if (IS_ERR(ar))
		return PTR_ERR(ar);

	udev = interface_to_usbdev(intf);
	usb_get_dev(udev);
	ar->udev = udev;
	ar->intf = intf;
	ar->features = id->driver_info;

	/* We need to remember the type of endpoint 4 because it differs
	 * between high- and full-speed configuration. The high-speed
	 * configuration specifies it as interrupt and the full-speed
	 * configuration as bulk endpoint. This information is required
	 * later when sending urbs to that endpoint.
	 */
	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; ++i) {
		ep = &intf->cur_altsetting->endpoint[i].desc;

		if (usb_endpoint_num(ep) == AR9170_USB_EP_CMD &&
		    usb_endpoint_dir_out(ep) &&
		    usb_endpoint_type(ep) == USB_ENDPOINT_XFER_BULK)
			ar->usb_ep_cmd_is_bulk = true;
	}

	usb_set_intfdata(intf, ar);
	SET_IEEE80211_DEV(ar->hw, &intf->dev);

	init_usb_anchor(&ar->rx_anch);
	init_usb_anchor(&ar->rx_pool);
	init_usb_anchor(&ar->rx_work);
	init_usb_anchor(&ar->tx_wait);
	init_usb_anchor(&ar->tx_anch);
	init_usb_anchor(&ar->tx_cmd);
	init_usb_anchor(&ar->tx_err);
	init_completion(&ar->cmd_wait);
	init_completion(&ar->fw_boot_wait);
	init_completion(&ar->fw_load_wait);
	tasklet_init(&ar->usb_tasklet, carl9170_usb_tasklet,
		     (unsigned long)ar);

	atomic_set(&ar->tx_cmd_urbs, 0);
	atomic_set(&ar->tx_anch_urbs, 0);
	atomic_set(&ar->rx_work_urbs, 0);
	atomic_set(&ar->rx_anch_urbs, 0);
	atomic_set(&ar->rx_pool_urbs, 0);

	usb_get_dev(ar->udev);

	carl9170_set_state(ar, CARL9170_STOPPED);

	return request_firmware_nowait(THIS_MODULE, 1, CARL9170FW_NAME,
		&ar->udev->dev, GFP_KERNEL, ar, carl9170_usb_firmware_step2);
}
int rmnet_usb_ctrl_init(int no_rmnet_devs, int no_rmnet_insts_per_dev)
{
	struct rmnet_ctrl_dev	*dev;
	int			i, n;
	int			status;

	num_devs = no_rmnet_devs;
	insts_per_dev = no_rmnet_insts_per_dev;

	ctrl_devs = kzalloc(num_devs * sizeof(*ctrl_devs), GFP_KERNEL);
	if (!ctrl_devs)
		return -ENOMEM;

	for (i = 0; i < num_devs; i++) {
		ctrl_devs[i] = kzalloc(insts_per_dev * sizeof(*ctrl_devs[i]),
				       GFP_KERNEL);
		if (!ctrl_devs[i])
			return -ENOMEM;

		status = alloc_chrdev_region(&ctrldev_num[i], 0, insts_per_dev,
					     rmnet_dev_names[i]);
		if (IS_ERR_VALUE(status)) {
			pr_err("ERROR:%s: alloc_chrdev_region() ret %i.\n",
				__func__, status);
			return status;
		}

		ctrldev_classp[i] = class_create(THIS_MODULE,
						 rmnet_dev_names[i]);
		if (IS_ERR(ctrldev_classp[i])) {
			pr_err("ERROR:%s: class_create() ENOMEM\n", __func__);
			status = PTR_ERR(ctrldev_classp[i]);
			return status;
		}

		for (n = 0; n < insts_per_dev; n++) {
			dev = &ctrl_devs[i][n];

			/*for debug purpose*/
			snprintf(dev->name, CTRL_DEV_MAX_LEN, "%s%d",
				 rmnet_dev_names[i], n);

			dev->wq = create_singlethread_workqueue(dev->name);
			if (!dev->wq) {
				pr_err("unable to allocate workqueue");
				kfree(dev);
				return -ENOMEM;
			}

			dev->ch_id = n;

			mutex_init(&dev->dev_lock);
			spin_lock_init(&dev->rx_lock);
			init_waitqueue_head(&dev->read_wait_queue);
			init_waitqueue_head(&dev->open_wait_queue);
			INIT_LIST_HEAD(&dev->rx_list);
			init_usb_anchor(&dev->tx_submitted);
			init_usb_anchor(&dev->rx_submitted);
			INIT_WORK(&dev->get_encap_work, get_encap_work);

			cdev_init(&dev->cdev, &ctrldev_fops);
			dev->cdev.owner = THIS_MODULE;

			status = cdev_add(&dev->cdev, (ctrldev_num[i] + n), 1);
			if (status) {
				pr_err("%s: cdev_add() ret %i\n", __func__,
					status);
				destroy_workqueue(dev->wq);
				kfree(dev);
				return status;
			}

			dev->devicep = device_create(ctrldev_classp[i], NULL,
						     (ctrldev_num[i] + n), NULL,
						     "%s%d", rmnet_dev_names[i],
						     n);
			if (IS_ERR(dev->devicep)) {
				pr_err("%s: device_create() returned %ld\n",
					__func__, PTR_ERR(dev->devicep));
				cdev_del(&dev->cdev);
				destroy_workqueue(dev->wq);
				kfree(dev);
				return PTR_ERR(dev->devicep);
			}

			/*create /sys/class/hsicctl/hsicctlx/modem_wait*/
			status = device_create_file(dev->devicep,
						    &dev_attr_modem_wait);
			if (status) {
				device_destroy(dev->devicep->class,
					       dev->devicep->devt);
				cdev_del(&dev->cdev);
				destroy_workqueue(dev->wq);
				kfree(dev);
				return status;
			}
			dev_set_drvdata(dev->devicep, dev);

			status = rmnet_usb_ctrl_alloc_rx(dev);
			if (status) {
				device_remove_file(dev->devicep,
						   &dev_attr_modem_wait);
				device_destroy(dev->devicep->class,
					       dev->devicep->devt);
				cdev_del(&dev->cdev);
				destroy_workqueue(dev->wq);
				kfree(dev);
				return status;
			}
		}
	}

	rmnet_usb_ctrl_debugfs_init();
	pr_info("rmnet usb ctrl Initialized.\n");
	return 0;
}
static int
diag_bridge_probe(struct usb_interface *ifc, const struct usb_device_id *id)
{
	struct diag_bridge		*dev;
	struct usb_host_interface	*ifc_desc;
	struct usb_endpoint_descriptor	*ep_desc;
	int				i, devid, ret = -ENOMEM;

	pr_debug("id:%lu", id->driver_info);

	devid = id->driver_info & 0xFF;
	if (devid < 0 || devid >= MAX_DIAG_BRIDGE_DEVS)
		return -ENODEV;

	/* already probed? */
	if (__dev[devid]) {
		pr_err("Diag device already probed");
		return -ENODEV;
	}

	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
	if (!dev) {
		pr_err("unable to allocate dev");
		return -ENOMEM;
	}

	__dev[devid] = dev;
	dev->id = devid;

	dev->udev = usb_get_dev(interface_to_usbdev(ifc));
	dev->ifc = ifc;
	kref_init(&dev->kref);
	mutex_init(&dev->ifc_mutex);
	init_usb_anchor(&dev->submitted);

	ifc_desc = ifc->cur_altsetting;
	for (i = 0; i < ifc_desc->desc.bNumEndpoints; i++) {
		ep_desc = &ifc_desc->endpoint[i].desc;

		if (!dev->in_epAddr && usb_endpoint_is_bulk_in(ep_desc))
			dev->in_epAddr = ep_desc->bEndpointAddress;

		if (!dev->out_epAddr && usb_endpoint_is_bulk_out(ep_desc))
			dev->out_epAddr = ep_desc->bEndpointAddress;
	}

	if (!(dev->in_epAddr && dev->out_epAddr)) {
		pr_err("could not find bulk in and bulk out endpoints");
		ret = -ENODEV;
		goto error;
	}

	usb_set_intfdata(ifc, dev);
	diag_bridge_debugfs_init();
	dev->pdev = platform_device_register_simple("diag_bridge", devid,
						    NULL, 0);
	if (IS_ERR(dev->pdev)) {
		pr_err("unable to allocate platform device");
		ret = PTR_ERR(dev->pdev);
		goto error;
	}

	dev_dbg(&dev->ifc->dev, "%s: complete\n", __func__);

	return 0;

error:
	if (dev)
		kref_put(&dev->kref, diag_bridge_delete);

	return ret;
}
static int btusb_probe(struct usb_interface *intf,
				const struct usb_device_id *id)
{
	struct usb_endpoint_descriptor *ep_desc;
	struct btusb_data *data;
	struct hci_dev *hdev;
	int i, err;

	BT_DBG("intf %p id %p", intf, id);

	/* interface numbers are hardcoded in the spec */
	if (intf->cur_altsetting->desc.bInterfaceNumber != 0)
		return -ENODEV;

	if (!id->driver_info) {
		const struct usb_device_id *match;
		match = usb_match_id(intf, blacklist_table);
		if (match)
			id = match;
	}

	if (id->driver_info == BTUSB_IGNORE)
		return -ENODEV;

	if (ignore_dga && id->driver_info & BTUSB_DIGIANSWER)
		return -ENODEV;

	if (ignore_csr && id->driver_info & BTUSB_CSR)
		return -ENODEV;

	if (ignore_sniffer && id->driver_info & BTUSB_SNIFFER)
		return -ENODEV;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	for (i = 0; i < intf->cur_altsetting->desc.bNumEndpoints; i++) {
		ep_desc = &intf->cur_altsetting->endpoint[i].desc;

		if (!data->intr_ep && usb_endpoint_is_int_in(ep_desc)) {
			data->intr_ep = ep_desc;
			continue;
		}

		if (!data->bulk_tx_ep && usb_endpoint_is_bulk_out(ep_desc)) {
			data->bulk_tx_ep = ep_desc;
			continue;
		}

		if (!data->bulk_rx_ep && usb_endpoint_is_bulk_in(ep_desc)) {
			data->bulk_rx_ep = ep_desc;
			continue;
		}
	}

	if (!data->intr_ep || !data->bulk_tx_ep || !data->bulk_rx_ep) {
		kfree(data);
		return -ENODEV;
	}

	data->cmdreq_type = USB_TYPE_CLASS;

	data->udev = interface_to_usbdev(intf);
	data->intf = intf;

	spin_lock_init(&data->lock);

	INIT_WORK(&data->work, btusb_work);
	INIT_WORK(&data->waker, btusb_waker);
	spin_lock_init(&data->txlock);

	init_usb_anchor(&data->tx_anchor);
	init_usb_anchor(&data->intr_anchor);
	init_usb_anchor(&data->bulk_anchor);
	init_usb_anchor(&data->isoc_anchor);
	init_usb_anchor(&data->deferred);

	hdev = hci_alloc_dev();
	if (!hdev) {
		kfree(data);
		return -ENOMEM;
	}

	hdev->bus = HCI_USB;
	hdev->driver_data = data;

	data->hdev = hdev;

	SET_HCIDEV_DEV(hdev, &intf->dev);

	hdev->open     = btusb_open;
	hdev->close    = btusb_close;
	hdev->flush    = btusb_flush;
	hdev->send     = btusb_send_frame;
	hdev->destruct = btusb_destruct;
	hdev->notify   = btusb_notify;

	hdev->owner = THIS_MODULE;

	/* Interface numbers are hardcoded in the specification */
	data->isoc = usb_ifnum_to_if(data->udev, 1);

	if (!reset)
		set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks);

	if (force_scofix || id->driver_info & BTUSB_WRONG_SCO_MTU) {
		if (!disable_scofix)
			set_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_BROKEN_ISOC)
		data->isoc = NULL;

	if (id->driver_info & BTUSB_DIGIANSWER) {
		data->cmdreq_type = USB_TYPE_VENDOR;
		set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_CSR) {
		struct usb_device *udev = data->udev;

		/* Old firmware would otherwise execute USB reset */
		if (le16_to_cpu(udev->descriptor.bcdDevice) < 0x117)
			set_bit(HCI_QUIRK_NO_RESET, &hdev->quirks);
	}

	if (id->driver_info & BTUSB_SNIFFER) {
		struct usb_device *udev = data->udev;

		/* New sniffer firmware has crippled HCI interface */
		if (le16_to_cpu(udev->descriptor.bcdDevice) > 0x997)
			set_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks);

		data->isoc = NULL;
	}

	if (id->driver_info & BTUSB_BCM92035) {
		unsigned char cmd[] = { 0x3b, 0xfc, 0x01, 0x00 };
		struct sk_buff *skb;

		skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
		if (skb) {
			memcpy(skb_put(skb, sizeof(cmd)), cmd, sizeof(cmd));
			skb_queue_tail(&hdev->driver_init, skb);
		}
	}

	if (data->isoc) {
		err = usb_driver_claim_interface(&btusb_driver,
							data->isoc, data);
		if (err < 0) {
			hci_free_dev(hdev);
			kfree(data);
			return err;
		}
	}

	err = hci_register_dev(hdev);
	if (err < 0) {
		hci_free_dev(hdev);
		kfree(data);
		return err;
	}

	usb_set_intfdata(intf, data);

	return 0;
}
Beispiel #29
0
/*
 * probe function for usb devices
 */
static int sam4e_usb_probe(struct usb_interface *intf,
		const struct usb_device_id *id)
{
	struct usb_host_interface *usb_hi;
	struct usb_interface_descriptor *usb_if_desc;
	struct usb_device *udev;
	int err = 0;
	u8 if_num;
	struct net_device *netdev;
	struct sam4e_usb *dev;
	struct sam4e_usb_handle *sam4e_usb_hnd;
	int cnt = 0;

	usb_hi = intf->cur_altsetting;
	usb_if_desc = &usb_hi->desc;
	if_num = usb_if_desc->bInterfaceNumber;
	if (DEBUG_SAM4E) {
		dev_info(&intf->dev, "probe %p %p if_num %d id if_num %d\n",
			intf, id, if_num, id->bInterfaceNumber);
	}

	if (if_num != 1)
		return -ENODEV;

	dev = kzalloc(sizeof(struct sam4e_usb), GFP_KERNEL);
	if (!dev) {
		dev_err(&intf->dev, "Couldn't alloc sam4e_usb\n");
		err = -ENOMEM;
		goto cleanup_candev;
	}
	atomic_set(&dev->netif_queue_stop, 0);
	while (cnt < MAX_CAN_INTF) {
		netdev = alloc_candev(sizeof(struct sam4e_usb_handle),
				MAX_TX_URBS);
		if (!netdev) {
			dev_err(&intf->dev, "Couldn't alloc candev\n");
			err = -ENOMEM;
			goto cleanup_candev;
		}

		sam4e_usb_hnd = netdev_priv(netdev);
		sam4e_usb_hnd->sam4e_dev = dev;
		sam4e_usb_hnd->owner_netdev_index = cnt;
		dev->udev = interface_to_usbdev(intf);
		if (cnt == 0)
			dev->netdev1 = netdev;
		else
			dev->netdev2 = netdev;

		dev->assembly_buffer = kzalloc(RX_ASSEMBLY_BUFFER_SIZE,
				GFP_KERNEL);

		netdev->netdev_ops = &sam4e_usb_netdev_ops;

		init_usb_anchor(&dev->rx_submitted);
		init_usb_anchor(&dev->tx_submitted);
		atomic_set(&dev->active_tx_urbs, 0);
		atomic_set(&dev->msg_seq, 0);

		usb_set_intfdata(intf, dev);
		SET_NETDEV_DEV(netdev, &intf->dev);

		err = register_candev(netdev);
		if (err) {
			pr_err("fail reg.CAN device: %d", err);
			goto cleanup_candev;
		}

		udev = interface_to_usbdev(intf);

		if (cnt == 0) {
			/*use mail box 7 and 6 for e/s frames on can0*/
			setup_mailbox(7, 0, CAN_EFF_FLAG, CAN_EFF_FLAG,
					intf, udev, dev);
			setup_mailbox(6, 0, CAN_EFF_FLAG, 0,
					intf, udev, dev);
		} else {
			/*use mail box 5 and 4 for e/s frames on can1*/
			setup_mailbox(5, 1, CAN_EFF_FLAG, CAN_EFF_FLAG,
					intf, udev, dev);
			setup_mailbox(4, 1, CAN_EFF_FLAG, 0,
					intf, udev, dev);
		}
		cnt++;
	}
	sam4e_read_fw_version(dev);
	err = sam4e_init_urbs(dev);
	if (err) {
		if (err == -ENODEV) {
			netif_device_detach(dev->netdev1);
			netif_device_detach(dev->netdev2);
		}
		pr_err("couldn't start device: %d\n", err);
		close_candev(dev->netdev1);
		close_candev(dev->netdev2);
		goto cleanup_candev;
	}
	return 0; /*ok. it's ours */

cleanup_candev:
	if (dev) {
		kfree(dev->assembly_buffer);
		if (dev->netdev1)
			free_candev(dev->netdev1);
		if (dev->netdev2)
			free_candev(dev->netdev2);
		kfree(dev);
	}
	return err;
}