Beispiel #1
0
void ipp_load_sol(IPP *ipp, LPX *prob)
{     IPPCOL *col;
      int j;
      xassert(lpx_mip_status(prob) != LPX_I_UNDEF);
      ipp->col_stat = xcalloc(1+ipp->ncols, sizeof(int));
      ipp->col_mipx = xcalloc(1+ipp->ncols, sizeof(double));
      for (j = 1; j <= ipp->ncols; j++) ipp->col_stat[j] = 0;
      /* columns in the problem object follow in the same order as in
         the column list (see ipp_build_prob) */
      j = 0;
      for (col = ipp->col_ptr; col != NULL; col = col->next)
      {  j++;
         ipp->col_stat[col->j] = 1;
         ipp->col_mipx[col->j] = lpx_mip_col_val(prob, j);
      }
      return;
}
Beispiel #2
0
int main(int argc, char *argv[])
{     LPX *lp;
      MPL *mpl = NULL;
      int ret;
      double start;
      /* parse command line parameters */
      parse_cmdline(argc, argv);
      /* remove all output files specified in the command line */
      if (display != NULL) remove(display);
      if (out_sol != NULL) remove(out_sol);
      if (out_bnds != NULL) remove(out_bnds);
      if (out_mps != NULL) remove(out_mps);
      if (out_lpt != NULL) remove(out_lpt);
      if (out_txt != NULL) remove(out_txt);
      if (out_glp != NULL) remove(out_glp);
      /* read problem from the input file */
      if (in_file == NULL)
      {  print("No input file specified; try %s --help", argv[0]);
         exit(EXIT_FAILURE);
      }
      switch (format)
      {  case 0:
            lp = lpx_read_mps(in_file);
            if (lp == NULL)
            {  print("MPS file processing error");
               exit(EXIT_FAILURE);
            }
            break;
         case 1:
            lp = lpx_read_lpt(in_file);
            if (lp == NULL)
            {  print("CPLEX LP file processing error");
               exit(EXIT_FAILURE);
            }
            break;
         case 2:
#if 0 /* 01/VIII-2004 */
            lp = lpx_read_model(in_file, in_data, display);
            if (lp == NULL)
            {  print("Model processing error");
               exit(EXIT_FAILURE);
            }
#else
            /* initialize the translator database */
            mpl = mpl_initialize();
            /* read model section and optional data section */
            ret = mpl_read_model(mpl, in_file, in_data != NULL);
            if (ret == 4)
err:        {  print("Model processing error");
               exit(EXIT_FAILURE);
            }
            insist(ret == 1 || ret == 2);
            /* read data section, if necessary */
            if (in_data != NULL)
            {  insist(ret == 1);
               ret = mpl_read_data(mpl, in_data);
               if (ret == 4) goto err;
               insist(ret == 2);
            }
            /* generate model */
            ret = mpl_generate(mpl, display);
            if (ret == 4) goto err;
            /* extract problem instance */
            lp = lpx_extract_prob(mpl);
            insist(lp != NULL);
#endif
            if (lpx_get_num_rows(lp) == 0)
            {  print("Problem has no rows");
               exit(EXIT_FAILURE);
            }
            if (lpx_get_num_cols(lp) == 0)
            {  print("Problem has no columns");
               exit(EXIT_FAILURE);
            }
            break;
         case 3:
            lp = lpx_read_prob(in_file);
            if (lp == NULL)
            {  print("GNU LP file processing error");
               exit(EXIT_FAILURE);
            }
            break;
         default:
            insist(format != format);
      }
      /* change problem name (if required) */
      if (newname != NULL) lpx_set_prob_name(lp, newname);
      /* change optimization direction (if required) */
      if (dir != 0) lpx_set_obj_dir(lp, dir);
      /* write problem in MPS format (if required) */
      if (out_mps != NULL)
      {  lpx_set_int_parm(lp, LPX_K_MPSORIG, orig);
         ret = lpx_write_mps(lp, out_mps);
         if (ret != 0)
         {  print("Unable to write problem in MPS format");
            exit(EXIT_FAILURE);
         }
      }
      /* write problem in CPLEX LP format (if required) */
      if (out_lpt != NULL)
      {  lpx_set_int_parm(lp, LPX_K_LPTORIG, orig);
         ret = lpx_write_lpt(lp, out_lpt);
         if (ret != 0)
         {  print("Unable to write problem in CPLEX LP format");
            exit(EXIT_FAILURE);
         }
      }
      /* write problem in plain text format (if required) */
      if (out_txt != NULL)
      {  lpx_set_int_parm(lp, LPX_K_LPTORIG, orig);
         ret = lpx_print_prob(lp, out_txt);
         if (ret != 0)
         {  print("Unable to write problem in plain text format");
            exit(EXIT_FAILURE);
         }
      }
      /* write problem in GNU LP format (if required) */
      if (out_glp != NULL)
      {  ret = lpx_write_prob(lp, out_glp);
         if (ret != 0)
         {  print("Unable to write problem in GNU LP format");
            exit(EXIT_FAILURE);
         }
      }
      /* if only data check is required, skip computations */
      if (check) goto skip;
      /* scale the problem data (if required) */
      if (scale && (!presol || method == 1)) lpx_scale_prob(lp);
      /* build advanced initial basis (if required) */
      if (method == 0 && basis && !presol) lpx_adv_basis(lp);
      /* set some control parameters, which might be changed in the
         command line */
      lpx_set_int_parm(lp, LPX_K_PRICE, price);
      if (!relax) lpx_set_real_parm(lp, LPX_K_RELAX, 0.0);
      lpx_set_int_parm(lp, LPX_K_PRESOL, presol);
      lpx_set_int_parm(lp, LPX_K_BRANCH, branch);
      lpx_set_int_parm(lp, LPX_K_BTRACK, btrack);
      lpx_set_real_parm(lp, LPX_K_TMLIM, (double)tmlim);
      /* solve the problem */
      start = utime();
      switch (method)
      {  case 0:
            if (nomip || lpx_get_class(lp) == LPX_LP)
            {  ret = lpx_simplex(lp);
               if (presol && ret != LPX_E_OK && out_sol != NULL)
                  print("If you need actual output for non-optimal solu"
                     "tion, use --nopresol");
            }
            else
            {  method = 2;
               lpx_simplex(lp);
               if (!intopt)
                  lpx_integer(lp);
               else
                  lpx_intopt(lp);
            }
            break;
         case 1:
            if (nomip || lpx_get_class(lp) == LPX_LP)
               lpx_interior(lp);
            else
            {  print("Interior point method is not able to solve MIP pr"
                  "oblem; use --simplex");
               exit(EXIT_FAILURE);
            }
            break;
         default:
            insist(method != method);
      }
      /* display statistics */
      print("Time used:   %.1f secs", utime() - start);
      print("Memory used: %.1fM (%d bytes)",
         (double)lib_env_ptr()->mem_tpeak / (double)(1024 * 1024),
         lib_env_ptr()->mem_tpeak);
#if 1 /* 01/VIII-2004 */
      if (mpl != NULL && mpl_has_solve_stmt(mpl))
      {  int n, j, round;
         /* store the solution to the translator database */
         n = lpx_get_num_cols(lp);
         round = lpx_get_int_parm(lp, LPX_K_ROUND);
         lpx_set_int_parm(lp, LPX_K_ROUND, 1);
         switch (method)
         {  case 0:
               for (j = 1; j <= n; j++)
                  mpl_put_col_value(mpl, j, lpx_get_col_prim(lp, j));
               break;
            case 1:
               for (j = 1; j <= n; j++)
                  mpl_put_col_value(mpl, j, lpx_ipt_col_prim(lp, j));
               break;
            case 2:
               for (j = 1; j <= n; j++)
                  mpl_put_col_value(mpl, j, lpx_mip_col_val(lp, j));
               break;
            default:
               insist(method != method);
         }
         lpx_set_int_parm(lp, LPX_K_ROUND, round);
         /* perform postsolving */
         ret = mpl_postsolve(mpl, display);
         if (ret == 4)
         {  print("Model postsolving error");
            exit(EXIT_FAILURE);
         }
         insist(ret == 3);
      }
#endif
      /* write problem solution found by the solver (if required) */
      if (out_sol != NULL)
      {  switch (method)
         {  case 0:
               ret = lpx_print_sol(lp, out_sol);
               break;
            case 1:
               ret = lpx_print_ips(lp, out_sol);
               break;
            case 2:
               ret = lpx_print_mip(lp, out_sol);
               break;
            default:
               insist(method != method);
         }
         if (ret != 0)
         {  print("Unable to write problem solution");
            exit(EXIT_FAILURE);
         }
      }
      /* write sensitivity bounds information (if required) */
      if (out_bnds != NULL)
      {  if (method != 0)
         {  print("Cannot write sensitivity bounds information for inte"
               "rior-point or MIP solution");
            exit(EXIT_FAILURE);
         }
         ret = lpx_print_sens_bnds(lp, out_bnds);
         if (ret != 0)
         {  print("Unable to write sensitivity bounds information");
            exit(EXIT_FAILURE);
         }
      }
skip: /* delete the problem object */
      lpx_delete_prob(lp);
#if 1 /* 01/VIII-2004 */
      /* if the translator database exists, destroy it */
      if (mpl != NULL) mpl_terminate(mpl);
#endif
      /* check that no memory blocks are still allocated */
      insist(lib_env_ptr()->mem_total == 0);
      insist(lib_env_ptr()->mem_count == 0);
      /* return to the control program */
      return 0;
}
int lpx_print_mip(LPX *lp, const char *fname)
{     XFILE *fp;
      int what, round;
#if 0
      if (lpx_get_class(lp) != LPX_MIP)
         fault("lpx_print_mip: error -- not a MIP problem");
#endif
      xprintf(
         "lpx_print_mip: writing MIP problem solution to `%s'...\n",
         fname);
      fp = xfopen(fname, "w");
      if (fp == NULL)
      {  xprintf("lpx_print_mip: can't create `%s' - %s\n", fname,
            strerror(errno));
         goto fail;
      }
      /* problem name */
      {  const char *name;
         name = lpx_get_prob_name(lp);
         if (name == NULL) name = "";
         xfprintf(fp, "%-12s%s\n", "Problem:", name);
      }
      /* number of rows (auxiliary variables) */
      {  int nr;
         nr = lpx_get_num_rows(lp);
         xfprintf(fp, "%-12s%d\n", "Rows:", nr);
      }
      /* number of columns (structural variables) */
      {  int nc, nc_int, nc_bin;
         nc = lpx_get_num_cols(lp);
         nc_int = lpx_get_num_int(lp);
         nc_bin = lpx_get_num_bin(lp);
         xfprintf(fp, "%-12s%d (%d integer, %d binary)\n", "Columns:",
            nc, nc_int, nc_bin);
      }
      /* number of non-zeros (constraint coefficients) */
      {  int nz;
         nz = lpx_get_num_nz(lp);
         xfprintf(fp, "%-12s%d\n", "Non-zeros:", nz);
      }
      /* solution status */
      {  int status;
         status = lpx_mip_status(lp);
         xfprintf(fp, "%-12s%s\n", "Status:",
            status == LPX_I_UNDEF  ? "INTEGER UNDEFINED" :
            status == LPX_I_OPT    ? "INTEGER OPTIMAL" :
            status == LPX_I_FEAS   ? "INTEGER NON-OPTIMAL" :
            status == LPX_I_NOFEAS ? "INTEGER EMPTY" : "???");
      }
      /* objective function */
      {  char *name;
         int dir;
         double mip_obj;
         name = (void *)lpx_get_obj_name(lp);
         dir = lpx_get_obj_dir(lp);
         mip_obj = lpx_mip_obj_val(lp);
         xfprintf(fp, "%-12s%s%s%.10g %s\n", "Objective:",
            name == NULL ? "" : name,
            name == NULL ? "" : " = ", mip_obj,
            dir == LPX_MIN ? "(MINimum)" :
            dir == LPX_MAX ? "(MAXimum)" : "(" "???" ")");
      }
      /* main sheet */
      for (what = 1; what <= 2; what++)
      {  int mn, ij;
         xfprintf(fp, "\n");
         xfprintf(fp, "   No. %-12s      Activity     Lower bound   Upp"
            "er bound\n",
            what == 1 ? "  Row name" : "Column name");
         xfprintf(fp, "------ ------------    ------------- -----------"
            "-- -------------\n");
         mn = (what == 1 ? lpx_get_num_rows(lp) : lpx_get_num_cols(lp));
         for (ij = 1; ij <= mn; ij++)
         {  const char *name;
            int kind, typx;
            double lb, ub, vx;
            if (what == 1)
            {  name = lpx_get_row_name(lp, ij);
               if (name == NULL) name = "";
               kind = LPX_CV;
               lpx_get_row_bnds(lp, ij, &typx, &lb, &ub);
               round = lpx_get_int_parm(lp, LPX_K_ROUND);
               lpx_set_int_parm(lp, LPX_K_ROUND, 1);
               vx = lpx_mip_row_val(lp, ij);
               lpx_set_int_parm(lp, LPX_K_ROUND, round);
            }
            else
            {  name = lpx_get_col_name(lp, ij);
               if (name == NULL) name = "";
               kind = lpx_get_col_kind(lp, ij);
               lpx_get_col_bnds(lp, ij, &typx, &lb, &ub);
               round = lpx_get_int_parm(lp, LPX_K_ROUND);
               lpx_set_int_parm(lp, LPX_K_ROUND, 1);
               vx = lpx_mip_col_val(lp, ij);
               lpx_set_int_parm(lp, LPX_K_ROUND, round);
            }
            /* row/column ordinal number */
            xfprintf(fp, "%6d ", ij);
            /* row column/name */
            if (strlen(name) <= 12)
               xfprintf(fp, "%-12s ", name);
            else
               xfprintf(fp, "%s\n%20s", name, "");
            /* row/column kind */
            xfprintf(fp, "%s  ",
               kind == LPX_CV ? " " : kind == LPX_IV ? "*" : "?");
            /* row/column primal activity */
            xfprintf(fp, "%13.6g", vx);
            /* row/column lower and upper bounds */
            switch (typx)
            {  case LPX_FR:
                  break;
               case LPX_LO:
                  xfprintf(fp, " %13.6g", lb);
                  break;
               case LPX_UP:
                  xfprintf(fp, " %13s %13.6g", "", ub);
                  break;
               case LPX_DB:
                  xfprintf(fp, " %13.6g %13.6g", lb, ub);
                  break;
               case LPX_FX:
                  xfprintf(fp, " %13.6g %13s", lb, "=");
                  break;
               default:
                  xassert(typx != typx);
            }
            /* end of line */
            xfprintf(fp, "\n");
         }
      }
      xfprintf(fp, "\n");
#if 1
      if (lpx_mip_status(lp) != LPX_I_UNDEF)
      {  int m = lpx_get_num_rows(lp);
         LPXKKT kkt;
         xfprintf(fp, "Integer feasibility conditions:\n\n");
         lpx_check_int(lp, &kkt);
         xfprintf(fp, "INT.PE: max.abs.err. = %.2e on row %d\n",
            kkt.pe_ae_max, kkt.pe_ae_row);
         xfprintf(fp, "        max.rel.err. = %.2e on row %d\n",
            kkt.pe_re_max, kkt.pe_re_row);
         switch (kkt.pe_quality)
         {  case 'H':
               xfprintf(fp, "        High quality\n");
               break;
            case 'M':
               xfprintf(fp, "        Medium quality\n");
               break;
            case 'L':
               xfprintf(fp, "        Low quality\n");
               break;
            default:
               xfprintf(fp, "        SOLUTION IS WRONG\n");
               break;
         }
         xfprintf(fp, "\n");
         xfprintf(fp, "INT.PB: max.abs.err. = %.2e on %s %d\n",
            kkt.pb_ae_max, kkt.pb_ae_ind <= m ? "row" : "column",
            kkt.pb_ae_ind <= m ? kkt.pb_ae_ind : kkt.pb_ae_ind - m);
         xfprintf(fp, "        max.rel.err. = %.2e on %s %d\n",
            kkt.pb_re_max, kkt.pb_re_ind <= m ? "row" : "column",
            kkt.pb_re_ind <= m ? kkt.pb_re_ind : kkt.pb_re_ind - m);
         switch (kkt.pb_quality)
         {  case 'H':
               xfprintf(fp, "        High quality\n");
               break;
            case 'M':
               xfprintf(fp, "        Medium quality\n");
               break;
            case 'L':
               xfprintf(fp, "        Low quality\n");
               break;
            default:
               xfprintf(fp, "        SOLUTION IS INFEASIBLE\n");
               break;
         }
         xfprintf(fp, "\n");
      }
#endif
      xfprintf(fp, "End of output\n");
      xfflush(fp);
      if (xferror(fp))
      {  xprintf("lpx_print_mip: can't write to `%s' - %s\n", fname,
            strerror(errno));
         goto fail;
      }
      xfclose(fp);
      return 0;
fail: if (fp != NULL) xfclose(fp);
      return 1;
}
Beispiel #4
0
int main(int argc, char *argv[])
{     LPX *lp;
      MPL *mpl = NULL;
      int ret;
      ulong_t start;
      /* parse command line parameters */
      parse_cmdline(argc, argv);
      /* set available memory limit */
      if (memlim >= 0)
         lib_mem_limit(ulmul(ulset(0, 1048576), ulset(0, memlim)));
      /* remove all output files specified in the command line */
      if (display != NULL) remove(display);
      if (out_bas != NULL) remove(out_bas);
      if (out_sol != NULL) remove(out_sol);
      if (out_bnds != NULL) remove(out_bnds);
      if (out_mps != NULL) remove(out_mps);
      if (out_freemps != NULL) remove(out_freemps);
      if (out_cpxlp != NULL) remove(out_cpxlp);
      if (out_txt != NULL) remove(out_txt);
      if (out_glp != NULL) remove(out_glp);
      if (log_file != NULL) remove(log_file);
      /* open hardcopy file, if necessary */
      if (log_file != NULL)
      {  if (lib_open_log(log_file))
         {  print("Unable to create log file");
            exit(EXIT_FAILURE);
         }
      }
      /* read problem data from the input file */
      if (in_file == NULL)
      {  print("No input file specified; try %s --help", argv[0]);
         exit(EXIT_FAILURE);
      }
      switch (format)
      {  case 0:
            lp = lpx_read_mps(in_file);
            if (lp == NULL)
            {  print("MPS file processing error");
               exit(EXIT_FAILURE);
            }
            orig = 1;
            break;
         case 1:
            lp = lpx_read_cpxlp(in_file);
            if (lp == NULL)
            {  print("CPLEX LP file processing error");
               exit(EXIT_FAILURE);
            }
            break;
         case 2:
            /* initialize the translator database */
            mpl = mpl_initialize();
            /* read model section and optional data section */
            ret = mpl_read_model(mpl, in_file, in_data != NULL);
            if (ret == 4)
err:        {  print("Model processing error");
               exit(EXIT_FAILURE);
            }
            xassert(ret == 1 || ret == 2);
            /* read data section, if necessary */
            if (in_data != NULL)
            {  xassert(ret == 1);
               ret = mpl_read_data(mpl, in_data);
               if (ret == 4) goto err;
               xassert(ret == 2);
            }
            /* generate model */
            ret = mpl_generate(mpl, display);
            if (ret == 4) goto err;
            /* extract problem instance */
            lp = lpx_extract_prob(mpl);
            xassert(lp != NULL);
            break;
         case 3:
            lp = lpx_read_prob(in_file);
            if (lp == NULL)
            {  print("GNU LP file processing error");
               exit(EXIT_FAILURE);
            }
            break;
         case 4:
            lp = lpx_read_freemps(in_file);
            if (lp == NULL)
            {  print("MPS file processing error");
               exit(EXIT_FAILURE);
            }
            break;
         default:
            xassert(format != format);
      }
      /* order rows and columns of the constraint matrix */
      lpx_order_matrix(lp);
      /* change problem name (if required) */
      if (newname != NULL) lpx_set_prob_name(lp, newname);
      /* change optimization direction (if required) */
      if (dir != 0) lpx_set_obj_dir(lp, dir);
      /* write problem in fixed MPS format (if required) */
      if (out_mps != NULL)
      {  lpx_set_int_parm(lp, LPX_K_MPSORIG, orig);
         ret = lpx_write_mps(lp, out_mps);
         if (ret != 0)
         {  print("Unable to write problem in fixed MPS format");
            exit(EXIT_FAILURE);
         }
      }
      /* write problem in free MPS format (if required) */
      if (out_freemps != NULL)
      {  ret = lpx_write_freemps(lp, out_freemps);
         if (ret != 0)
         {  print("Unable to write problem in free MPS format");
            exit(EXIT_FAILURE);
         }
      }
      /* write problem in CPLEX LP format (if required) */
      if (out_cpxlp != NULL)
      {  ret = lpx_write_cpxlp(lp, out_cpxlp);
         if (ret != 0)
         {  print("Unable to write problem in CPLEX LP format");
            exit(EXIT_FAILURE);
         }
      }
      /* write problem in plain text format (if required) */
      if (out_txt != NULL)
      {  lpx_set_int_parm(lp, LPX_K_LPTORIG, orig);
         ret = lpx_print_prob(lp, out_txt);
         if (ret != 0)
         {  print("Unable to write problem in plain text format");
            exit(EXIT_FAILURE);
         }
      }
      /* write problem in GNU LP format (if required) */
      if (out_glp != NULL)
      {  ret = lpx_write_prob(lp, out_glp);
         if (ret != 0)
         {  print("Unable to write problem in GNU LP format");
            exit(EXIT_FAILURE);
         }
      }
      /* if only data check is required, skip computations */
      if (check) goto skip;
      /* scale the problem data (if required) */
      if (scale && (!presol || method == 1)) lpx_scale_prob(lp);
      /* build initial LP basis */
      if (method == 0 && !presol && in_bas == NULL)
      {  switch (basis)
         {  case 0:
               lpx_std_basis(lp);
               break;
            case 1:
               if (lpx_get_num_rows(lp) > 0 && lpx_get_num_cols(lp) > 0)
                  lpx_adv_basis(lp);
               break;
            case 2:
               if (lpx_get_num_rows(lp) > 0 && lpx_get_num_cols(lp) > 0)
                  lpx_cpx_basis(lp);
               break;
            default:
               xassert(basis != basis);
         }
      }
      /* or read initial basis from input text file in MPS format */
      if (in_bas != NULL)
      {  if (method != 0)
         {  print("Initial LP basis is useless for interior-point solve"
               "r and therefore ignored");
            goto nobs;
         }
         lpx_set_int_parm(lp, LPX_K_MPSORIG, orig);
         ret = lpx_read_bas(lp, in_bas);
         if (ret != 0)
         {  print("Unable to read initial LP basis");
            exit(EXIT_FAILURE);
         }
         if (presol)
         {  presol = 0;
            print("LP presolver disabled because initial LP basis has b"
               "een provided");
         }
nobs:    ;
      }
      /* set some control parameters, which might be changed in the
         command line */
      lpx_set_int_parm(lp, LPX_K_BFTYPE, bf_type);
      lpx_set_int_parm(lp, LPX_K_PRICE, price);
      if (!relax) lpx_set_real_parm(lp, LPX_K_RELAX, 0.0);
      lpx_set_int_parm(lp, LPX_K_PRESOL, presol);
      lpx_set_int_parm(lp, LPX_K_BRANCH, branch);
      lpx_set_int_parm(lp, LPX_K_BTRACK, btrack);
      lpx_set_real_parm(lp, LPX_K_TMLIM, (double)tmlim);
      lpx_set_int_parm(lp, LPX_K_BINARIZE, binarize);
      lpx_set_int_parm(lp, LPX_K_USECUTS, use_cuts);
      /* solve the problem */
      start = xtime();
      switch (method)
      {  case 0:
            if (nomip || lpx_get_class(lp) == LPX_LP)
            {  ret = (!exact ? lpx_simplex(lp) : lpx_exact(lp));
               if (xcheck)
               {  if (!presol || ret == LPX_E_OK)
                     lpx_exact(lp);
                  else
                     print("If you need checking final basis for non-op"
                        "timal solution, use --nopresol");
               }
               if (presol && ret != LPX_E_OK && (out_bas != NULL ||
                  out_sol != NULL))
                  print("If you need actual output for non-optimal solu"
                     "tion, use --nopresol");
            }
            else
            {  method = 2;
               if (!intopt)
               {  ret = (!exact ? lpx_simplex(lp) : lpx_exact(lp));
                  if (xcheck && (!presol || ret == LPX_E_OK))
                     lpx_exact(lp);
                  lpx_integer(lp);
               }
               else
                  lpx_intopt(lp);
            }
            break;
         case 1:
            if (nomip || lpx_get_class(lp) == LPX_LP)
               lpx_interior(lp);
            else
            {  print("Interior-point method is not able to solve MIP pr"
                  "oblem; use --simplex");
               exit(EXIT_FAILURE);
            }
            break;
         default:
            xassert(method != method);
      }
      /* display statistics */
      print("Time used:   %.1f secs", xdifftime(xtime(), start));
      {  ulong_t tpeak;
         char buf[50];
         lib_mem_usage(NULL, NULL, NULL, &tpeak);
         print("Memory used: %.1f Mb (%s bytes)",
            (4294967296.0 * tpeak.hi + tpeak.lo) / 1048576.0,
            ultoa(tpeak, buf, 10));
      }
      if (mpl != NULL && mpl_has_solve_stmt(mpl))
      {  int n, j, round;
         /* store the solution to the translator database */
         n = lpx_get_num_cols(lp);
         round = lpx_get_int_parm(lp, LPX_K_ROUND);
         lpx_set_int_parm(lp, LPX_K_ROUND, 1);
         switch (method)
         {  case 0:
               for (j = 1; j <= n; j++)
                  mpl_put_col_value(mpl, j, lpx_get_col_prim(lp, j));
               break;
            case 1:
               for (j = 1; j <= n; j++)
                  mpl_put_col_value(mpl, j, lpx_ipt_col_prim(lp, j));
               break;
            case 2:
               for (j = 1; j <= n; j++)
                  mpl_put_col_value(mpl, j, lpx_mip_col_val(lp, j));
               break;
            default:
               xassert(method != method);
         }
         lpx_set_int_parm(lp, LPX_K_ROUND, round);
         /* perform postsolving */
         ret = mpl_postsolve(mpl);
         if (ret == 4)
         {  print("Model postsolving error");
            exit(EXIT_FAILURE);
         }
         xassert(ret == 3);
      }
      /* write final LP basis (if required) */
      if (out_bas != NULL)
      {  lpx_set_int_parm(lp, LPX_K_MPSORIG, orig);
         ret = lpx_write_bas(lp, out_bas);
         if (ret != 0)
         {  print("Unable to write final LP basis");
            exit(EXIT_FAILURE);
         }
      }
      /* write problem solution found by the solver (if required) */
      if (out_sol != NULL)
      {  switch (method)
         {  case 0:
               ret = lpx_print_sol(lp, out_sol);
               break;
            case 1:
               ret = lpx_print_ips(lp, out_sol);
               break;
            case 2:
               ret = lpx_print_mip(lp, out_sol);
               break;
            default:
               xassert(method != method);
         }
         if (ret != 0)
         {  print("Unable to write problem solution");
            exit(EXIT_FAILURE);
         }
      }
      /* write sensitivity bounds information (if required) */
      if (out_bnds != NULL)
      {  if (method != 0)
         {  print("Cannot write sensitivity bounds information for inte"
               "rior-point or MIP solution");
            exit(EXIT_FAILURE);
         }
         ret = lpx_print_sens_bnds(lp, out_bnds);
         if (ret != 0)
         {  print("Unable to write sensitivity bounds information");
            exit(EXIT_FAILURE);
         }
      }
skip: /* delete the problem object */
      lpx_delete_prob(lp);
      /* if the translator database exists, destroy it */
      if (mpl != NULL) mpl_terminate(mpl);
      xassert(gmp_pool_count() == 0);
      gmp_free_mem();
      /* close the hardcopy file */
      if (log_file != NULL) lib_close_log();
      /* check that no memory blocks are still allocated */
      {  int count;
         ulong_t total;
         lib_mem_usage(&count, NULL, &total, NULL);
         xassert(count == 0);
         xassert(total.lo == 0 && total.hi == 0);
      }
      /* free the library environment */
      lib_free_env();
      /* return to the control program */
      return 0;
}
Beispiel #5
0
void lpx_check_int(LPX *lp, LPXKKT *kkt)
{     int m = lpx_get_num_rows(lp);
      int n = lpx_get_num_cols(lp);
      int *ind, i, len, t, j, k, type;
      double *val, xR_i, g_i, xS_j, temp, lb, ub, x_k, h_k;
      /*--------------------------------------------------------------*/
      /* compute largest absolute and relative errors and corresponding
         row indices for the condition (KKT.PE) */
      kkt->pe_ae_max = 0.0, kkt->pe_ae_row = 0;
      kkt->pe_re_max = 0.0, kkt->pe_re_row = 0;
      ind = xcalloc(1+n, sizeof(int));
      val = xcalloc(1+n, sizeof(double));
      for (i = 1; i <= m; i++)
      {  /* determine xR[i] */
         xR_i = lpx_mip_row_val(lp, i);
         /* g[i] := xR[i] */
         g_i = xR_i;
         /* g[i] := g[i] - (i-th row of A) * xS */
         len = lpx_get_mat_row(lp, i, ind, val);
         for (t = 1; t <= len; t++)
         {  j = ind[t];
            /* determine xS[j] */
            xS_j = lpx_mip_col_val(lp, j);
            /* g[i] := g[i] - a[i,j] * xS[j] */
            g_i -= val[t] * xS_j;
         }
         /* determine absolute error */
         temp = fabs(g_i);
         if (kkt->pe_ae_max < temp)
            kkt->pe_ae_max = temp, kkt->pe_ae_row = i;
         /* determine relative error */
         temp /= (1.0 + fabs(xR_i));
         if (kkt->pe_re_max < temp)
            kkt->pe_re_max = temp, kkt->pe_re_row = i;
      }
      xfree(ind);
      xfree(val);
      /* estimate the solution quality */
      if (kkt->pe_re_max <= 1e-9)
         kkt->pe_quality = 'H';
      else if (kkt->pe_re_max <= 1e-6)
         kkt->pe_quality = 'M';
      else if (kkt->pe_re_max <= 1e-3)
         kkt->pe_quality = 'L';
      else
         kkt->pe_quality = '?';
      /*--------------------------------------------------------------*/
      /* compute largest absolute and relative errors and corresponding
         variable indices for the condition (KKT.PB) */
      kkt->pb_ae_max = 0.0, kkt->pb_ae_ind = 0;
      kkt->pb_re_max = 0.0, kkt->pb_re_ind = 0;
      for (k = 1; k <= m+n; k++)
      {  /* determine x[k] */
         if (k <= m)
         {  i = k;
            type = lpx_get_row_type(lp, i);
            lb = lpx_get_row_lb(lp, i);
            ub = lpx_get_row_ub(lp, i);
            x_k = lpx_mip_row_val(lp, i);
         }
         else
         {  j = k - m;
            type = lpx_get_col_type(lp, j);
            lb = lpx_get_col_lb(lp, j);
            ub = lpx_get_col_ub(lp, j);
            x_k = lpx_mip_col_val(lp, j);
         }
         /* compute h[k] */
         h_k = 0.0;
         switch (type)
         {  case LPX_FR:
               break;
            case LPX_LO:
               if (x_k < lb) h_k = x_k - lb;
               break;
            case LPX_UP:
               if (x_k > ub) h_k = x_k - ub;
               break;
            case LPX_DB:
            case LPX_FX:
               if (x_k < lb) h_k = x_k - lb;
               if (x_k > ub) h_k = x_k - ub;
               break;
            default:
               xassert(type != type);
         }
         /* determine absolute error */
         temp = fabs(h_k);
         if (kkt->pb_ae_max < temp)
            kkt->pb_ae_max = temp, kkt->pb_ae_ind = k;
         /* determine relative error */
         temp /= (1.0 + fabs(x_k));
         if (kkt->pb_re_max < temp)
            kkt->pb_re_max = temp, kkt->pb_re_ind = k;
      }
      /* estimate the solution quality */
      if (kkt->pb_re_max <= 1e-9)
         kkt->pb_quality = 'H';
      else if (kkt->pb_re_max <= 1e-6)
         kkt->pb_quality = 'M';
      else if (kkt->pb_re_max <= 1e-3)
         kkt->pb_quality = 'L';
      else
         kkt->pb_quality = '?';
      return;
}
Beispiel #6
0
OptSolutionData* GLPKRunSolver(int ProbType) {
	OptSolutionData* NewSolution = NULL;

	int NumVariables = lpx_get_num_cols(GLPKModel);

	int Status = 0;
	if (ProbType == MILP) {
		Status = lpx_simplex(GLPKModel);
		if (Status != LPX_E_OK) {
			FErrorFile() << "Failed to optimize problem." << endl;
			FlushErrorFile();
			return NULL;
		}
		Status = lpx_integer(GLPKModel);
		if (Status != LPX_E_OK) {
			FErrorFile() << "Failed to optimize problem." << endl;
			FlushErrorFile();
			return NULL;
		}
		NewSolution = new OptSolutionData;

		Status = lpx_mip_status(GLPKModel);
		if (Status == LPX_I_UNDEF || Status == LPX_I_NOFEAS) {
			NewSolution->Status = INFEASIBLE;
			return NewSolution;
		} else if (Status == LPX_I_FEAS) {
			NewSolution->Status = UNBOUNDED;
			return NewSolution;
		} else if (Status == LPX_I_OPT) {
			NewSolution->Status = SUCCESS;
		} else {
			delete NewSolution;
			FErrorFile() << "Problem status unrecognized." << endl;
			FlushErrorFile();
			return NULL;
		}

		NewSolution->Objective = lpx_mip_obj_val(GLPKModel);
	
		NewSolution->SolutionData.resize(NumVariables);
		for (int i=0; i < NumVariables; i++) {
			NewSolution->SolutionData[i] = lpx_mip_col_val(GLPKModel, i+1);
		}
	} else if (ProbType == LP) {
		//First we check the basis matrix to ensure it is not sigular
		if (lpx_warm_up(GLPKModel) != LPX_E_OK) {
			lpx_adv_basis(GLPKModel);
		}
		Status = lpx_simplex(GLPKModel);
		if (Status == LPX_E_FAULT) {
			Status = lpx_warm_up(GLPKModel);
			if (Status == LPX_E_BADB) {  /* the basis is invalid; build some valid basis */
				lpx_adv_basis(GLPKModel);
				Status = lpx_simplex(GLPKModel);
			}
		}
		if (Status != LPX_E_OK) {
			FErrorFile() << "Failed to optimize problem." << endl;
			FlushErrorFile();
			return NULL;
		}
		NewSolution = new OptSolutionData;

		Status = lpx_get_status(GLPKModel);
		if (Status == LPX_INFEAS || Status == LPX_NOFEAS || Status == LPX_UNDEF) {
			cout << "Model is infeasible" << endl;
			FErrorFile() << "Model is infeasible" << endl;
			FlushErrorFile();
			NewSolution->Status = INFEASIBLE;
			return NewSolution;
		} else if (Status == LPX_FEAS || Status == LPX_UNBND) {
			cout << "Model is unbounded" << endl;
			FErrorFile() << "Model is unbounded" << endl;
			FlushErrorFile();
			NewSolution->Status = UNBOUNDED;
			return NewSolution;
		} else if (Status == LPX_OPT) {
			NewSolution->Status = SUCCESS;
		} else {
			delete NewSolution;
			FErrorFile() << "Problem status unrecognized." << endl;
			FlushErrorFile();
			return NULL;
		}

		NewSolution->Objective = lpx_get_obj_val(GLPKModel);
	
		NewSolution->SolutionData.resize(NumVariables);
		for (int i=0; i < NumVariables; i++) {
			NewSolution->SolutionData[i] = lpx_get_col_prim(GLPKModel, i+1);
		}
	} else {
		FErrorFile() << "Optimization problem type cannot be handled by GLPK solver." << endl;
		FlushErrorFile();
		return NULL;
	}

	return NewSolution;
}