Beispiel #1
0
sp_thread_result_t SP_THREAD_CALL wrapper_fn( void * arg )
{
	_thread * thread = (_thread*)arg;
	_threadpool * pool = (_threadpool*)thread->parent;

	for( ; 0 == ((_threadpool*)thread->parent)->tp_stop; ) {
		thread->fn( thread->arg );

		if( 0 != ((_threadpool*)thread->parent)->tp_stop ) break;

		sp_thread_mutex_lock( &thread->mutex );
		if( 0 == save_thread( thread->parent, thread ) ) {
			sp_thread_cond_wait( &thread->cond, &thread->mutex );
			sp_thread_mutex_unlock( &thread->mutex );
		} else {
			sp_thread_mutex_unlock( &thread->mutex );
			sp_thread_cond_destroy( &thread->cond );
			sp_thread_mutex_destroy( &thread->mutex );

			free( thread );
			break;
		}
	}

	sp_thread_mutex_lock( &pool->tp_mutex );
	pool->tp_total--;
	if( pool->tp_total <= 0 ) sp_thread_cond_signal( &pool->tp_empty );
	sp_thread_mutex_unlock( &pool->tp_mutex );

	return 0;
}
Beispiel #2
0
static gboolean alien_job_dispatch (GSource* source, GSourceFunc callback, gpointer user_data)
{
  gpointer message;
  message = g_async_queue_try_pop (darktable.lua_state.alien_job_queue);
  if (message == NULL)
  {
    return TRUE;
  }

  async_call_data* data = (async_call_data*)message;
  dt_lua_lock();
  lua_State* L= darktable.lua_state.state;
  lua_State *new_thread = lua_newthread(L);
  int reference = save_thread(L);
  lua_pushlightuserdata(new_thread,data->cb);
  lua_pushlightuserdata(new_thread,data->cb_data);
  lua_pushinteger(new_thread,data->nresults);
  lua_pushcfunction(new_thread,data->pusher);

  GList* cur_elt = data->extra;
  while(cur_elt) {
    GList * type_type_elt = cur_elt;
    cur_elt = g_list_next(cur_elt);
    GList * type_elt = cur_elt;
    cur_elt = g_list_next(cur_elt);
    GList * data_elt = cur_elt;
    cur_elt = g_list_next(cur_elt);
    switch(GPOINTER_TO_INT(type_type_elt->data)) {
      case LUA_ASYNC_TYPEID_WITH_FREE:
        // skip the destructor
        cur_elt = g_list_next(cur_elt);
        // do not break
      case LUA_ASYNC_TYPEID:
        luaA_push_type(new_thread,GPOINTER_TO_INT(type_elt->data),data_elt->data);
        break;
      case LUA_ASYNC_TYPENAME_WITH_FREE:
        // skip the destructor
        cur_elt = g_list_next(cur_elt);
        // do not break
      case LUA_ASYNC_TYPENAME:
        luaA_push_type(new_thread,luaA_type_find(L,type_elt->data),&data_elt->data);
        break;
      case LUA_ASYNC_DONE:
      default:
        // should never happen
        g_assert(false);
        break;
    }
  }
  run_async_thread(L,reference);
  dt_lua_unlock();
  alien_job_destroy(data);
  return G_SOURCE_CONTINUE;
}
Beispiel #3
0
void dt_lua_async_call_internal(const char* function, int line,lua_State *L, int nargs,int nresults,dt_lua_finish_callback cb, void*data)
{
#ifdef _DEBUG
  dt_print(DT_DEBUG_LUA,"LUA DEBUG : %s called from %s %d, nargs : %d\n",__FUNCTION__,function,line,nargs);
#endif
  
  lua_State *new_thread = lua_newthread(L);
  lua_pushlightuserdata(new_thread,cb);
  lua_pushlightuserdata(new_thread,data);
  lua_pushinteger(new_thread,nresults);
  int reference = save_thread(L);
  lua_xmove(L,new_thread,nargs+1);
  g_async_queue_push(darktable.lua_state.stacked_job_queue,GINT_TO_POINTER(reference));
  g_main_context_wakeup(darktable.lua_state.context);
}
Beispiel #4
0
static gboolean string_job_dispatch (GSource* source, GSourceFunc callback, gpointer user_data)
{
  gpointer message;
  message = g_async_queue_try_pop (darktable.lua_state.string_job_queue);
  if (message == NULL)
  {
    return TRUE;
  }
  string_call_data* data = (string_call_data*)message;

  dt_lua_lock();
  lua_State* L= darktable.lua_state.state;
  lua_State *new_thread = lua_newthread(L);
  int reference = save_thread(L);
  lua_pushlightuserdata(new_thread,data->cb);
  lua_pushlightuserdata(new_thread,data->cb_data);
  lua_pushinteger(new_thread,data->nresults);

  int load_result = luaL_loadstring(new_thread, data->function);
  if(load_result != LUA_OK)
  {
    if(data->cb) {
      data->cb(new_thread,load_result,data->cb_data);
    } else {
      dt_lua_check_print_error(new_thread,load_result);
    }
    drop_thread(L,reference);
    dt_lua_unlock();
    string_data_destroy(data);
    return G_SOURCE_CONTINUE;
  }

  run_async_thread(L,reference);
  dt_lua_unlock();
  string_data_destroy(data);
  return G_SOURCE_CONTINUE;
}
Beispiel #5
0
int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry_point, int number_of_arguments) {
  // for sparc changing the number of arguments doesn't change
  // anything about the frame size so we'll always lie and claim that
  // we are only passing 1 argument.
  set_num_rt_args(1);

  assert_not_delayed();
  // bang stack before going to runtime
  set(-os::vm_page_size() + STACK_BIAS, G3_scratch);
  st(G0, SP, G3_scratch);

  // debugging support
  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");

  set_last_Java_frame(SP, noreg);
  if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  save_thread(L7_thread_cache);
  // do the call
  call(entry_point, relocInfo::runtime_call_type);
  if (!VerifyThread) {
    delayed()->mov(G2_thread, O0);  // pass thread as first argument
  } else {
    delayed()->nop();             // (thread already passed)
  }
  int call_offset = offset();  // offset of return address
  restore_thread(L7_thread_cache);
  reset_last_Java_frame();

  // check for pending exceptions
  { Label L;
    Address exception_addr(G2_thread, Thread::pending_exception_offset());
    ld_ptr(exception_addr, Gtemp);
    br_null_short(Gtemp, pt, L);
    Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
    st_ptr(G0, vm_result_addr);
    Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
    st_ptr(G0, vm_result_addr_2);

    if (frame_size() == no_frame_size) {
      // we use O7 linkage so that forward_exception_entry has the issuing PC
      call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
      delayed()->restore();
    } else if (_stub_id == Runtime1::forward_exception_id) {
      should_not_reach_here();
    } else {
      AddressLiteral exc(Runtime1::entry_for(Runtime1::forward_exception_id));
      jump_to(exc, G4);
      delayed()->nop();
    }
    bind(L);
  }

  // get oop result if there is one and reset the value in the thread
  if (oop_result1->is_valid()) {                    // get oop result if there is one and reset it in the thread
    get_vm_result  (oop_result1);
  } else {
    // be a little paranoid and clear the result
    Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
    st_ptr(G0, vm_result_addr);
  }

  // get second result if there is one and reset the value in the thread
  if (metadata_result->is_valid()) {
    get_vm_result_2  (metadata_result);
  } else {
    // be a little paranoid and clear the result
    Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
    st_ptr(G0, vm_result_addr_2);
  }

  return call_offset;
}
Beispiel #6
0
OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {

  OopMapSet* oop_maps = NULL;
  // for better readability
  const bool must_gc_arguments = true;
  const bool dont_gc_arguments = false;

  // stub code & info for the different stubs
  switch (id) {
    case forward_exception_id:
      {
        oop_maps = generate_handle_exception(id, sasm);
      }
      break;

    case new_instance_id:
    case fast_new_instance_id:
    case fast_new_instance_init_check_id:
      {
        Register G5_klass = G5; // Incoming
        Register O0_obj   = O0; // Outgoing

        if (id == new_instance_id) {
          __ set_info("new_instance", dont_gc_arguments);
        } else if (id == fast_new_instance_id) {
          __ set_info("fast new_instance", dont_gc_arguments);
        } else {
          assert(id == fast_new_instance_init_check_id, "bad StubID");
          __ set_info("fast new_instance init check", dont_gc_arguments);
        }

        if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
            UseTLAB && FastTLABRefill) {
          Label slow_path;
          Register G1_obj_size = G1;
          Register G3_t1 = G3;
          Register G4_t2 = G4;
          assert_different_registers(G5_klass, G1_obj_size, G3_t1, G4_t2);

          // Push a frame since we may do dtrace notification for the
          // allocation which requires calling out and we don't want
          // to stomp the real return address.
          __ save_frame(0);

          if (id == fast_new_instance_init_check_id) {
            // make sure the klass is initialized
            __ ldub(G5_klass, in_bytes(InstanceKlass::init_state_offset()), G3_t1);
            __ cmp_and_br_short(G3_t1, InstanceKlass::fully_initialized, Assembler::notEqual, Assembler::pn, slow_path);
          }
#ifdef ASSERT
          // assert object can be fast path allocated
          {
            Label ok, not_ok;
          __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size);
          // make sure it's an instance (LH > 0)
          __ cmp_and_br_short(G1_obj_size, 0, Assembler::lessEqual, Assembler::pn, not_ok);
          __ btst(Klass::_lh_instance_slow_path_bit, G1_obj_size);
          __ br(Assembler::zero, false, Assembler::pn, ok);
          __ delayed()->nop();
          __ bind(not_ok);
          __ stop("assert(can be fast path allocated)");
          __ should_not_reach_here();
          __ bind(ok);
          }
#endif // ASSERT
          // if we got here then the TLAB allocation failed, so try
          // refilling the TLAB or allocating directly from eden.
          Label retry_tlab, try_eden;
          __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves G5_klass

          __ bind(retry_tlab);

          // get the instance size
          __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size);

          __ tlab_allocate(O0_obj, G1_obj_size, 0, G3_t1, slow_path);

          __ initialize_object(O0_obj, G5_klass, G1_obj_size, 0, G3_t1, G4_t2);
          __ verify_oop(O0_obj);
          __ mov(O0, I0);
          __ ret();
          __ delayed()->restore();

          __ bind(try_eden);
          // get the instance size
          __ ld(G5_klass, in_bytes(Klass::layout_helper_offset()), G1_obj_size);
          __ eden_allocate(O0_obj, G1_obj_size, 0, G3_t1, G4_t2, slow_path);
          __ incr_allocated_bytes(G1_obj_size, G3_t1, G4_t2);

          __ initialize_object(O0_obj, G5_klass, G1_obj_size, 0, G3_t1, G4_t2);
          __ verify_oop(O0_obj);
          __ mov(O0, I0);
          __ ret();
          __ delayed()->restore();

          __ bind(slow_path);

          // pop this frame so generate_stub_call can push it's own
          __ restore();
        }

        oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_instance), G5_klass);
        // I0->O0: new instance
      }

      break;

    case counter_overflow_id:
        // G4 contains bci, G5 contains method
      oop_maps = generate_stub_call(sasm, noreg, CAST_FROM_FN_PTR(address, counter_overflow), G4, G5);
      break;

    case new_type_array_id:
    case new_object_array_id:
      {
        Register G5_klass = G5; // Incoming
        Register G4_length = G4; // Incoming
        Register O0_obj   = O0; // Outgoing

        Address klass_lh(G5_klass, Klass::layout_helper_offset());
        assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
        assert(Klass::_lh_header_size_mask == 0xFF, "bytewise");
        // Use this offset to pick out an individual byte of the layout_helper:
        const int klass_lh_header_size_offset = ((BytesPerInt - 1)  // 3 - 2 selects byte {0,1,0,0}
                                                 - Klass::_lh_header_size_shift / BitsPerByte);

        if (id == new_type_array_id) {
          __ set_info("new_type_array", dont_gc_arguments);
        } else {
          __ set_info("new_object_array", dont_gc_arguments);
        }

#ifdef ASSERT
        // assert object type is really an array of the proper kind
        {
          Label ok;
          Register G3_t1 = G3;
          __ ld(klass_lh, G3_t1);
          __ sra(G3_t1, Klass::_lh_array_tag_shift, G3_t1);
          int tag = ((id == new_type_array_id)
                     ? Klass::_lh_array_tag_type_value
                     : Klass::_lh_array_tag_obj_value);
          __ cmp_and_brx_short(G3_t1, tag, Assembler::equal, Assembler::pt, ok);
          __ stop("assert(is an array klass)");
          __ should_not_reach_here();
          __ bind(ok);
        }
#endif // ASSERT

        if (UseTLAB && FastTLABRefill) {
          Label slow_path;
          Register G1_arr_size = G1;
          Register G3_t1 = G3;
          Register O1_t2 = O1;
          assert_different_registers(G5_klass, G4_length, G1_arr_size, G3_t1, O1_t2);

          // check that array length is small enough for fast path
          __ set(C1_MacroAssembler::max_array_allocation_length, G3_t1);
          __ cmp_and_br_short(G4_length, G3_t1, Assembler::greaterUnsigned, Assembler::pn, slow_path);

          // if we got here then the TLAB allocation failed, so try
          // refilling the TLAB or allocating directly from eden.
          Label retry_tlab, try_eden;
          __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves G4_length and G5_klass

          __ bind(retry_tlab);

          // get the allocation size: (length << (layout_helper & 0x1F)) + header_size
          __ ld(klass_lh, G3_t1);
          __ sll(G4_length, G3_t1, G1_arr_size);
          __ srl(G3_t1, Klass::_lh_header_size_shift, G3_t1);
          __ and3(G3_t1, Klass::_lh_header_size_mask, G3_t1);
          __ add(G1_arr_size, G3_t1, G1_arr_size);
          __ add(G1_arr_size, MinObjAlignmentInBytesMask, G1_arr_size);  // align up
          __ and3(G1_arr_size, ~MinObjAlignmentInBytesMask, G1_arr_size);

          __ tlab_allocate(O0_obj, G1_arr_size, 0, G3_t1, slow_path);  // preserves G1_arr_size

          __ initialize_header(O0_obj, G5_klass, G4_length, G3_t1, O1_t2);
          __ ldub(klass_lh, G3_t1, klass_lh_header_size_offset);
          __ sub(G1_arr_size, G3_t1, O1_t2);  // body length
          __ add(O0_obj, G3_t1, G3_t1);       // body start
          __ initialize_body(G3_t1, O1_t2);
          __ verify_oop(O0_obj);
          __ retl();
          __ delayed()->nop();

          __ bind(try_eden);
          // get the allocation size: (length << (layout_helper & 0x1F)) + header_size
          __ ld(klass_lh, G3_t1);
          __ sll(G4_length, G3_t1, G1_arr_size);
          __ srl(G3_t1, Klass::_lh_header_size_shift, G3_t1);
          __ and3(G3_t1, Klass::_lh_header_size_mask, G3_t1);
          __ add(G1_arr_size, G3_t1, G1_arr_size);
          __ add(G1_arr_size, MinObjAlignmentInBytesMask, G1_arr_size);
          __ and3(G1_arr_size, ~MinObjAlignmentInBytesMask, G1_arr_size);

          __ eden_allocate(O0_obj, G1_arr_size, 0, G3_t1, O1_t2, slow_path);  // preserves G1_arr_size
          __ incr_allocated_bytes(G1_arr_size, G3_t1, O1_t2);

          __ initialize_header(O0_obj, G5_klass, G4_length, G3_t1, O1_t2);
          __ ldub(klass_lh, G3_t1, klass_lh_header_size_offset);
          __ sub(G1_arr_size, G3_t1, O1_t2);  // body length
          __ add(O0_obj, G3_t1, G3_t1);       // body start
          __ initialize_body(G3_t1, O1_t2);
          __ verify_oop(O0_obj);
          __ retl();
          __ delayed()->nop();

          __ bind(slow_path);
        }

        if (id == new_type_array_id) {
          oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_type_array), G5_klass, G4_length);
        } else {
          oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_object_array), G5_klass, G4_length);
        }
        // I0 -> O0: new array
      }
      break;

    case new_multi_array_id:
      { // O0: klass
        // O1: rank
        // O2: address of 1st dimension
        __ set_info("new_multi_array", dont_gc_arguments);
        oop_maps = generate_stub_call(sasm, I0, CAST_FROM_FN_PTR(address, new_multi_array), I0, I1, I2);
        // I0 -> O0: new multi array
      }
      break;

    case register_finalizer_id:
      {
        __ set_info("register_finalizer", dont_gc_arguments);

        // load the klass and check the has finalizer flag
        Label register_finalizer;
        Register t = O1;
        __ load_klass(O0, t);
        __ ld(t, in_bytes(Klass::access_flags_offset()), t);
        __ set(JVM_ACC_HAS_FINALIZER, G3);
        __ andcc(G3, t, G0);
        __ br(Assembler::notZero, false, Assembler::pt, register_finalizer);
        __ delayed()->nop();

        // do a leaf return
        __ retl();
        __ delayed()->nop();

        __ bind(register_finalizer);
        OopMap* oop_map = save_live_registers(sasm);
        int call_offset = __ call_RT(noreg, noreg,
                                     CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), I0);
        oop_maps = new OopMapSet();
        oop_maps->add_gc_map(call_offset, oop_map);

        // Now restore all the live registers
        restore_live_registers(sasm);

        __ ret();
        __ delayed()->restore();
      }
      break;

    case throw_range_check_failed_id:
      { __ set_info("range_check_failed", dont_gc_arguments); // arguments will be discarded
        // G4: index
        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
      }
      break;

    case throw_index_exception_id:
      { __ set_info("index_range_check_failed", dont_gc_arguments); // arguments will be discarded
        // G4: index
        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
      }
      break;

    case throw_div0_exception_id:
      { __ set_info("throw_div0_exception", dont_gc_arguments);
        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
      }
      break;

    case throw_null_pointer_exception_id:
      { __ set_info("throw_null_pointer_exception", dont_gc_arguments);
        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
      }
      break;

    case handle_exception_id:
      { __ set_info("handle_exception", dont_gc_arguments);
        oop_maps = generate_handle_exception(id, sasm);
      }
      break;

    case handle_exception_from_callee_id:
      { __ set_info("handle_exception_from_callee", dont_gc_arguments);
        oop_maps = generate_handle_exception(id, sasm);
      }
      break;

    case unwind_exception_id:
      {
        // O0: exception
        // I7: address of call to this method

        __ set_info("unwind_exception", dont_gc_arguments);
        __ mov(Oexception, Oexception->after_save());
        __ add(I7, frame::pc_return_offset, Oissuing_pc->after_save());

        __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
                        G2_thread, Oissuing_pc->after_save());
        __ verify_not_null_oop(Oexception->after_save());

        // Restore SP from L7 if the exception PC is a method handle call site.
        __ mov(O0, G5);  // Save the target address.
        __ lduw(Address(G2_thread, JavaThread::is_method_handle_return_offset()), L0);
        __ tst(L0);  // Condition codes are preserved over the restore.
        __ restore();

        __ jmp(G5, 0);
        __ delayed()->movcc(Assembler::notZero, false, Assembler::icc, L7_mh_SP_save, SP);  // Restore SP if required.
      }
      break;

    case throw_array_store_exception_id:
      {
        __ set_info("throw_array_store_exception", dont_gc_arguments);
        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
      }
      break;

    case throw_class_cast_exception_id:
      {
        // G4: object
        __ set_info("throw_class_cast_exception", dont_gc_arguments);
        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
      }
      break;

    case throw_incompatible_class_change_error_id:
      {
        __ set_info("throw_incompatible_class_cast_exception", dont_gc_arguments);
        oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
      }
      break;

    case slow_subtype_check_id:
      { // Support for uint StubRoutine::partial_subtype_check( Klass sub, Klass super );
        // Arguments :
        //
        //      ret  : G3
        //      sub  : G3, argument, destroyed
        //      super: G1, argument, not changed
        //      raddr: O7, blown by call
        Label miss;

        __ save_frame(0);               // Blow no registers!

        __ check_klass_subtype_slow_path(G3, G1, L0, L1, L2, L4, NULL, &miss);

        __ mov(1, G3);
        __ ret();                       // Result in G5 is 'true'
        __ delayed()->restore();        // free copy or add can go here

        __ bind(miss);
        __ mov(0, G3);
        __ ret();                       // Result in G5 is 'false'
        __ delayed()->restore();        // free copy or add can go here
      }

    case monitorenter_nofpu_id:
    case monitorenter_id:
      { // G4: object
        // G5: lock address
        __ set_info("monitorenter", dont_gc_arguments);

        int save_fpu_registers = (id == monitorenter_id);
        // make a frame and preserve the caller's caller-save registers
        OopMap* oop_map = save_live_registers(sasm, save_fpu_registers);

        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), G4, G5);

        oop_maps = new OopMapSet();
        oop_maps->add_gc_map(call_offset, oop_map);
        restore_live_registers(sasm, save_fpu_registers);

        __ ret();
        __ delayed()->restore();
      }
      break;

    case monitorexit_nofpu_id:
    case monitorexit_id:
      { // G4: lock address
        // note: really a leaf routine but must setup last java sp
        //       => use call_RT for now (speed can be improved by
        //       doing last java sp setup manually)
        __ set_info("monitorexit", dont_gc_arguments);

        int save_fpu_registers = (id == monitorexit_id);
        // make a frame and preserve the caller's caller-save registers
        OopMap* oop_map = save_live_registers(sasm, save_fpu_registers);

        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), G4);

        oop_maps = new OopMapSet();
        oop_maps->add_gc_map(call_offset, oop_map);
        restore_live_registers(sasm, save_fpu_registers);

        __ ret();
        __ delayed()->restore();
      }
      break;

    case deoptimize_id:
      {
        __ set_info("deoptimize", dont_gc_arguments);
        OopMap* oop_map = save_live_registers(sasm);
        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize));
        oop_maps = new OopMapSet();
        oop_maps->add_gc_map(call_offset, oop_map);
        restore_live_registers(sasm);
        DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
        assert(deopt_blob != NULL, "deoptimization blob must have been created");
        AddressLiteral dest(deopt_blob->unpack_with_reexecution());
        __ jump_to(dest, O0);
        __ delayed()->restore();
      }
      break;

    case access_field_patching_id:
      { __ set_info("access_field_patching", dont_gc_arguments);
        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
      }
      break;

    case load_klass_patching_id:
      { __ set_info("load_klass_patching", dont_gc_arguments);
        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
      }
      break;

    case load_mirror_patching_id:
      { __ set_info("load_mirror_patching", dont_gc_arguments);
        oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
      }
      break;

    case dtrace_object_alloc_id:
      { // O0: object
        __ set_info("dtrace_object_alloc", dont_gc_arguments);
        // we can't gc here so skip the oopmap but make sure that all
        // the live registers get saved.
        save_live_registers(sasm);

        __ save_thread(L7_thread_cache);
        __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc),
                relocInfo::runtime_call_type);
        __ delayed()->mov(I0, O0);
        __ restore_thread(L7_thread_cache);

        restore_live_registers(sasm);
        __ ret();
        __ delayed()->restore();
      }
      break;

#if INCLUDE_ALL_GCS
    case g1_pre_barrier_slow_id:
      { // G4: previous value of memory
        BarrierSet* bs = Universe::heap()->barrier_set();
        if (bs->kind() != BarrierSet::G1SATBCTLogging) {
          __ save_frame(0);
          __ set((int)id, O1);
          __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), I0);
          __ should_not_reach_here();
          break;
        }

        __ set_info("g1_pre_barrier_slow_id", dont_gc_arguments);

        Register pre_val = G4;
        Register tmp  = G1_scratch;
        Register tmp2 = G3_scratch;

        Label refill, restart;
        bool with_frame = false; // I don't know if we can do with-frame.
        int satb_q_index_byte_offset =
          in_bytes(JavaThread::satb_mark_queue_offset() +
                   PtrQueue::byte_offset_of_index());
        int satb_q_buf_byte_offset =
          in_bytes(JavaThread::satb_mark_queue_offset() +
                   PtrQueue::byte_offset_of_buf());

        __ bind(restart);
        // Load the index into the SATB buffer. PtrQueue::_index is a
        // size_t so ld_ptr is appropriate
        __ ld_ptr(G2_thread, satb_q_index_byte_offset, tmp);

        // index == 0?
        __ cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pn, refill);

        __ ld_ptr(G2_thread, satb_q_buf_byte_offset, tmp2);
        __ sub(tmp, oopSize, tmp);

        __ st_ptr(pre_val, tmp2, tmp);  // [_buf + index] := <address_of_card>
        // Use return-from-leaf
        __ retl();
        __ delayed()->st_ptr(tmp, G2_thread, satb_q_index_byte_offset);

        __ bind(refill);
        __ save_frame(0);

        __ mov(pre_val, L0);
        __ mov(tmp,     L1);
        __ mov(tmp2,    L2);

        __ call_VM_leaf(L7_thread_cache,
                        CAST_FROM_FN_PTR(address,
                                         SATBMarkQueueSet::handle_zero_index_for_thread),
                                         G2_thread);

        __ mov(L0, pre_val);
        __ mov(L1, tmp);
        __ mov(L2, tmp2);

        __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
        __ delayed()->restore();
      }
      break;

    case g1_post_barrier_slow_id:
      {
        BarrierSet* bs = Universe::heap()->barrier_set();
        if (bs->kind() != BarrierSet::G1SATBCTLogging) {
          __ save_frame(0);
          __ set((int)id, O1);
          __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), I0);
          __ should_not_reach_here();
          break;
        }

        __ set_info("g1_post_barrier_slow_id", dont_gc_arguments);

        Register addr = G4;
        Register cardtable = G5;
        Register tmp  = G1_scratch;
        Register tmp2 = G3_scratch;
        jbyte* byte_map_base = ((CardTableModRefBS*)bs)->byte_map_base;

        Label not_already_dirty, restart, refill;

#ifdef _LP64
        __ srlx(addr, CardTableModRefBS::card_shift, addr);
#else
        __ srl(addr, CardTableModRefBS::card_shift, addr);
#endif

        AddressLiteral rs(byte_map_base);
        __ set(rs, cardtable);         // cardtable := <card table base>
        __ ldub(addr, cardtable, tmp); // tmp := [addr + cardtable]

        assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
        __ cmp_and_br_short(tmp, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);

        // We didn't take the branch, so we're already dirty: return.
        // Use return-from-leaf
        __ retl();
        __ delayed()->nop();

        // Not dirty.
        __ bind(not_already_dirty);

        // Get cardtable + tmp into a reg by itself
        __ add(addr, cardtable, tmp2);

        // First, dirty it.
        __ stb(G0, tmp2, 0);  // [cardPtr] := 0  (i.e., dirty).

        Register tmp3 = cardtable;
        Register tmp4 = tmp;

        // these registers are now dead
        addr = cardtable = tmp = noreg;

        int dirty_card_q_index_byte_offset =
          in_bytes(JavaThread::dirty_card_queue_offset() +
                   PtrQueue::byte_offset_of_index());
        int dirty_card_q_buf_byte_offset =
          in_bytes(JavaThread::dirty_card_queue_offset() +
                   PtrQueue::byte_offset_of_buf());

        __ bind(restart);

        // Get the index into the update buffer. PtrQueue::_index is
        // a size_t so ld_ptr is appropriate here.
        __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, tmp3);

        // index == 0?
        __ cmp_and_brx_short(tmp3, G0, Assembler::equal,  Assembler::pn, refill);

        __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, tmp4);
        __ sub(tmp3, oopSize, tmp3);

        __ st_ptr(tmp2, tmp4, tmp3);  // [_buf + index] := <address_of_card>
        // Use return-from-leaf
        __ retl();
        __ delayed()->st_ptr(tmp3, G2_thread, dirty_card_q_index_byte_offset);

        __ bind(refill);
        __ save_frame(0);

        __ mov(tmp2, L0);
        __ mov(tmp3, L1);
        __ mov(tmp4, L2);

        __ call_VM_leaf(L7_thread_cache,
                        CAST_FROM_FN_PTR(address,
                                         DirtyCardQueueSet::handle_zero_index_for_thread),
                                         G2_thread);

        __ mov(L0, tmp2);
        __ mov(L1, tmp3);
        __ mov(L2, tmp4);

        __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
        __ delayed()->restore();
      }
      break;
#endif // INCLUDE_ALL_GCS

    case predicate_failed_trap_id:
      {
        __ set_info("predicate_failed_trap", dont_gc_arguments);
        OopMap* oop_map = save_live_registers(sasm);

        int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));

        oop_maps = new OopMapSet();
        oop_maps->add_gc_map(call_offset, oop_map);

        DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
        assert(deopt_blob != NULL, "deoptimization blob must have been created");
        restore_live_registers(sasm);

        AddressLiteral dest(deopt_blob->unpack_with_reexecution());
        __ jump_to(dest, O0);
        __ delayed()->restore();
      }
      break;

    default:
      { __ set_info("unimplemented entry", dont_gc_arguments);
        __ save_frame(0);
        __ set((int)id, O1);
        __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), O1);
        __ should_not_reach_here();
      }
      break;
  }
  return oop_maps;
}
//------------------------------ generate_exception_blob ---------------------------
// creates exception blob at the end
// Using exception blob, this code is jumped from a compiled method.
// (see emit_exception_handler in sparc.ad file)
//
// Given an exception pc at a call we call into the runtime for the
// handler in this method. This handler might merely restore state
// (i.e. callee save registers) unwind the frame and jump to the
// exception handler for the nmethod if there is no Java level handler
// for the nmethod.
//
// This code is entered with a jmp.
//
// Arguments:
//   O0: exception oop
//   O1: exception pc
//
// Results:
//   O0: exception oop
//   O1: exception pc in caller or ???
//   destination: exception handler of caller
//
// Note: the exception pc MUST be at a call (precise debug information)
//
void OptoRuntime::generate_exception_blob() {
  // allocate space for code
  ResourceMark rm;
  int pad = VerifyThread ? 256 : 0;// Extra slop space for more verify code

  // setup code generation tools
  // Measured 8/7/03 at 256 in 32bit debug build (no VerifyThread)
  // Measured 8/7/03 at 528 in 32bit debug build (VerifyThread)
  CodeBuffer buffer("exception_blob", 600+pad, 512);
  MacroAssembler* masm     = new MacroAssembler(&buffer);

  int framesize_in_bytes = __ total_frame_size_in_bytes(0);
  int framesize_in_words = framesize_in_bytes / wordSize;
  int framesize_in_slots = framesize_in_bytes / sizeof(jint);

  Label L;

  int start = __ offset();

  __ verify_thread();
  __ st_ptr(Oexception,  G2_thread, JavaThread::exception_oop_offset());
  __ st_ptr(Oissuing_pc, G2_thread, JavaThread::exception_pc_offset());

  // This call does all the hard work. It checks if an exception catch
  // exists in the method.
  // If so, it returns the handler address.
  // If the nmethod has been deoptimized and it had a handler the handler
  // address is the deopt blob unpack_with_exception entry.
  //
  // If no handler exists it prepares for stack-unwinding, restoring the callee-save
  // registers of the frame being removed.
  //
  __ save_frame(0);

  __ mov(G2_thread, O0);
  __ set_last_Java_frame(SP, noreg);
  __ save_thread(L7_thread_cache);

  // This call can block at exit and nmethod can be deoptimized at that
  // point. If the nmethod had a catch point we would jump to the
  // now deoptimized catch point and fall thru the vanilla deopt
  // path and lose the exception
  // Sure would be simpler if this call didn't block!
  __ call(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C), relocInfo::runtime_call_type);
  __ delayed()->mov(L7_thread_cache, O0);

  // Set an oopmap for the call site.  This oopmap will only be used if we
  // are unwinding the stack.  Hence, all locations will be dead.
  // Callee-saved registers will be the same as the frame above (i.e.,
  // handle_exception_stub), since they were restored when we got the
  // exception.

  OopMapSet *oop_maps = new OopMapSet();
  oop_maps->add_gc_map( __ offset()-start, new OopMap(framesize_in_slots, 0));

  __ bind(L);
  __ restore_thread(L7_thread_cache);
  __ reset_last_Java_frame();

  __ mov(O0, G3_scratch);             // Move handler address to temp
  __ restore();

  // Restore SP from L7 if the exception PC is a MethodHandle call site.
  __ lduw(Address(G2_thread, JavaThread::is_method_handle_return_offset()), O7);
  __ tst(O7);
  __ movcc(Assembler::notZero, false, Assembler::icc, L7_mh_SP_save, SP);

  // G3_scratch contains handler address
  // Since this may be the deopt blob we must set O7 to look like we returned
  // from the original pc that threw the exception

  __ ld_ptr(G2_thread, JavaThread::exception_pc_offset(), O7);
  __ sub(O7, frame::pc_return_offset, O7);


  assert(Assembler::is_simm13(in_bytes(JavaThread::exception_oop_offset())), "exception offset overflows simm13, following ld instruction cannot be in delay slot");
  __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception); // O0
#ifdef ASSERT
  __ st_ptr(G0, G2_thread, JavaThread::exception_handler_pc_offset());
  __ st_ptr(G0, G2_thread, JavaThread::exception_pc_offset());
#endif
  __ JMP(G3_scratch, 0);
  // Clear the exception oop so GC no longer processes it as a root.
  __ delayed()->st_ptr(G0, G2_thread, JavaThread::exception_oop_offset());

  // -------------
  // make sure all code is generated
  masm->flush();

  _exception_blob = ExceptionBlob::create(&buffer, oop_maps, framesize_in_words);
}