ExprList *sqliteExprListDup(ExprList *p){ ExprList *pNew; struct ExprList_item *pItem; int i; if( p==0 ) return 0; pNew = sqliteMalloc( sizeof(*pNew) ); if( pNew==0 ) return 0; pNew->nExpr = pNew->nAlloc = p->nExpr; pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) ); for(i=0; pItem && i<p->nExpr; i++, pItem++){ Expr *pNewExpr, *pOldExpr; pItem->pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr); if( pOldExpr->span.z!=0 && pNewExpr ){ /* Always make a copy of the span for top-level expressions in the ** expression list. The logic in SELECT processing that determines ** the names of columns in the result set needs this information */ sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span); } assert( pNewExpr==0 || pNewExpr->span.z!=0 || pOldExpr->span.z==0 || sqlite_malloc_failed ); pItem->zName = sqliteStrDup(p->a[i].zName); pItem->sortOrder = p->a[i].sortOrder; pItem->isAgg = p->a[i].isAgg; pItem->done = 0; } return pNew; }
/* ** EXPERIMENTAL - This is not an official function. The interface may ** change. This function may disappear. Do not write code that depends ** on this function. ** ** Implementation of the QUOTE() function. This function takes a single ** argument. If the argument is numeric, the return value is the same as ** the argument. If the argument is NULL, the return value is the string ** "NULL". Otherwise, the argument is enclosed in single quotes with ** single-quote escapes. */ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv) { if( argc<1 ) return; switch( sqlite3_value_type(argv[0]) ) { case SQLITE_NULL: { sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC); break; } case SQLITE_INTEGER: case SQLITE_FLOAT: { sqlite3_result_value(context, argv[0]); break; } case SQLITE_BLOB: { char *zText = 0; int nBlob = sqlite3_value_bytes(argv[0]); char const *zBlob = sqlite3_value_blob(argv[0]); zText = (char *)sqliteMalloc((2*nBlob)+4); if( !zText ) { sqlite3_result_error(context, "out of memory", -1); } else { int i; for(i=0; i<nBlob; i++) { zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F]; zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; } zText[(nBlob*2)+2] = '\''; zText[(nBlob*2)+3] = '\0'; zText[0] = 'X'; zText[1] = '\''; sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT); sqliteFree(zText); } break; } case SQLITE_TEXT: { int i,j,n; const unsigned char *zArg = sqlite3_value_text(argv[0]); char *z; for(i=n=0; zArg[i]; i++) { if( zArg[i]=='\'' ) n++; } z = sqliteMalloc( i+n+3 ); if( z==0 ) return; z[0] = '\''; for(i=0, j=1; zArg[i]; i++) { z[j++] = zArg[i]; if( zArg[i]=='\'' ) { z[j++] = '\''; } } z[j++] = '\''; z[j] = 0; sqlite3_result_text(context, z, j, SQLITE_TRANSIENT); sqliteFree(z); } } }
/* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem) { /* In SQLite, a string without a nul terminator occurs when a string ** is loaded from disk (in this case the memory management is ephemeral), ** or when it is supplied by the user as a bound variable or function ** return value. Therefore, the memory management of the string must be ** either ephemeral, static or controlled by a user-supplied destructor. */ assert( !(pMem->flags&MEM_Str) || /* it's not a string, or */ (pMem->flags&MEM_Term) || /* it's nul term. already, or */ (pMem->flags&(MEM_Ephem|MEM_Static)) || /* it's static or ephem, or */ (pMem->flags&MEM_Dyn && pMem->xDel) /* external management */ ); if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ) { return SQLITE_OK; /* Nothing to do */ } if( pMem->flags & (MEM_Static|MEM_Ephem) ) { return sqlite3VdbeMemMakeWriteable(pMem); } else { char *z = sqliteMalloc(pMem->n+2); if( !z ) return SQLITE_NOMEM; memcpy(z, pMem->z, pMem->n); z[pMem->n] = 0; z[pMem->n+1] = 0; pMem->xDel(pMem->z); pMem->xDel = 0; pMem->z = z; } return SQLITE_OK; }
/* ** Add a new element to the end of a statement list. If pList is ** initially NULL, then create a new statement list. */ StmtList *sqliteStmtListAppend(StmtList *pList, Stmt *pStmt){ if( pList==0 ){ pList = sqliteMalloc( sizeof(StmtList) ); if( pList==0 ){ /* sqliteStmtDelete(pExpr); // Leak memory if malloc fails */ return 0; } assert( pList->nAlloc==0 ); } if( pList->nAlloc<=pList->nStmt ){ pList->nAlloc = pList->nAlloc*2 + 4; pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0])); if( pList->a==0 ){ /* sqliteStmtDelete(pExpr); // Leak memory if malloc fails */ pList->nStmt = pList->nAlloc = 0; return pList; } } assert( pList->a!=0 ); if( pStmt ){ struct StmtList_item *pItem = &pList->a[pList->nStmt++]; memset(pItem, 0, sizeof(*pItem)); pItem->pStmt = pStmt; } return pList; }
/* ** The parser calls this routine when it sees a SQL statement inside the ** body of a block */ Stmt *sqliteSQLStmt( int op, /* One of TK_SELECT, TK_INSERT, TK_UPDATE, TK_DELETE */ Token *pTableName, /* Name of the table into which we insert */ IdList *pColumn, /* List of columns in pTableName to insert into */ ExprList *pEList, /* The VALUE clause: a list of values to be inserted */ Select *pSelect, /* A SELECT statement that supplies values */ Expr *pWhere, /* The WHERE clause */ int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */ ){ Stmt *pNew; pNew = sqliteMalloc( sizeof(Stmt)+sizeof(SQLStmt) ); if( pNew==0 ){ /* When malloc fails, we leak memory */ return 0; } pNew->pSql = (SQLStmt*) (pNew+1); pNew->op = TK_SQL; pNew->pSql->op = op; pNew->pSql->pSelect = pSelect; if( pTableName ) { pNew->pSql->target = *pTableName; } pNew->pSql->pIdList = pColumn; pNew->pSql->pExprList = pEList; pNew->pSql->pWhere = pWhere; pNew->pSql->orconf = orconf; return pNew; }
/* ** Add a new element to the end of an expression list. If pList is ** initially NULL, then create a new expression list. */ ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){ if( pList==0 ){ pList = sqliteMalloc( sizeof(ExprList) ); if( pList==0 ){ /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */ return 0; } assert( pList->nAlloc==0 ); } if( pList->nAlloc<=pList->nExpr ){ pList->nAlloc = pList->nAlloc*2 + 4; pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0])); if( pList->a==0 ){ /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */ pList->nExpr = pList->nAlloc = 0; return pList; } } assert( pList->a!=0 ); if( pExpr || pName ){ struct ExprList_item *pItem = &pList->a[pList->nExpr++]; memset(pItem, 0, sizeof(*pItem)); pItem->pExpr = pExpr; if( pName ){ sqliteSetNString(&pItem->zName, pName->z, pName->n, 0); sqliteDequote(pItem->zName); } } return pList; }
/* ** Construct a new expression node and return a pointer to it. Memory ** for this node is obtained from sqliteMalloc(). The calling function ** is responsible for making sure the node eventually gets freed. */ Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){ Expr *pNew; pNew = sqliteMalloc( sizeof(Expr) ); if( pNew==0 ){ /* When malloc fails, we leak memory from pLeft and pRight */ return 0; } pNew->op = op; pNew->pLeft = pLeft; pNew->pRight = pRight; if( pToken ){ assert( pToken->dyn==0 ); pNew->token = *pToken; pNew->span = *pToken; }else{ assert( pNew->token.dyn==0 ); assert( pNew->token.z==0 ); assert( pNew->token.n==0 ); if( pLeft && pRight ){ sqliteExprSpan(pNew, &pLeft->span, &pRight->span); }else{ pNew->span = pNew->token; } } return pNew; }
/* ** Locate and return an entry from the db.aCollSeq hash table. If the entry ** specified by zName and nName is not found and parameter 'create' is ** true, then create a new entry. Otherwise return NULL. ** ** Each pointer stored in the sqlite3.aCollSeq hash table contains an ** array of three CollSeq structures. The first is the collation sequence ** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be. ** ** Stored immediately after the three collation sequences is a copy of ** the collation sequence name. A pointer to this string is stored in ** each collation sequence structure. */ static CollSeq * findCollSeqEntry( sqlite3 *db, const char *zName, int nName, int create ){ CollSeq *pColl; if( nName<0 ) nName = strlen(zName); pColl = sqlite3HashFind(&db->aCollSeq, zName, nName); if( 0==pColl && create ){ pColl = sqliteMalloc( 3*sizeof(*pColl) + nName + 1 ); if( pColl ){ CollSeq *pDel = 0; pColl[0].zName = (char*)&pColl[3]; pColl[0].enc = SQLITE_UTF8; pColl[1].zName = (char*)&pColl[3]; pColl[1].enc = SQLITE_UTF16LE; pColl[2].zName = (char*)&pColl[3]; pColl[2].enc = SQLITE_UTF16BE; memcpy(pColl[0].zName, zName, nName); pColl[0].zName[nName] = 0; pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl); /* If a malloc() failure occured in sqlite3HashInsert(), it will ** return the pColl pointer to be deleted (because it wasn't added ** to the hash table). */ assert( !pDel || (sqlite3_malloc_failed && pDel==pColl) ); sqliteFree(pDel); } } return pColl; }
/* ** EXPERIMENTAL - This is not an official function. The interface may ** change. This function may disappear. Do not write code that depends ** on this function. ** ** Implementation of the QUOTE() function. This function takes a single ** argument. If the argument is numeric, the return value is the same as ** the argument. If the argument is NULL, the return value is the string ** "NULL". Otherwise, the argument is enclosed in single quotes with ** single-quote escapes. */ static void quoteFunc(sqlite_func *context, int argc, const char **argv){ if( argc<1 ) return; if( argv[0]==0 ){ sqlite_set_result_string(context, "NULL", 4); }else if( sqliteIsNumber(argv[0]) ){ sqlite_set_result_string(context, argv[0], -1); }else{ int i,j,n; char *z; for(i=n=0; argv[0][i]; i++){ if( argv[0][i]=='\'' ) n++; } z = sqliteMalloc( i+n+3 ); if( z==0 ) return; z[0] = '\''; for(i=0, j=1; argv[0][i]; i++){ z[j++] = argv[0][i]; if( argv[0][i]=='\'' ){ z[j++] = '\''; } } z[j++] = '\''; z[j] = 0; sqlite_set_result_string(context, z, j); sqliteFree(z); } }
/* ** Routines to implement min() and max() aggregate functions. */ static void minmaxStep(sqlite_func *context, int argc, const char **argv){ MinMaxCtx *p; int (*xCompare)(const char*, const char*); int mask; /* 0 for min() or 0xffffffff for max() */ assert( argc==2 ); if( argv[0]==0 ) return; /* Ignore NULL values */ if( argv[1][0]=='n' ){ xCompare = sqliteCompare; }else{ xCompare = strcmp; } mask = (int)sqlite_user_data(context); assert( mask==0 || mask==-1 ); p = sqlite_aggregate_context(context, sizeof(*p)); if( p==0 || argc<1 ) return; if( p->z==0 || (xCompare(argv[0],p->z)^mask)<0 ){ int len; if( p->zBuf[0] ){ sqliteFree(p->z); } len = strlen(argv[0]); if( len < sizeof(p->zBuf)-1 ){ p->z = &p->zBuf[1]; p->zBuf[0] = 0; }else{ p->z = sqliteMalloc( len+1 ); p->zBuf[0] = 1; if( p->z==0 ) return; } strcpy(p->z, argv[0]); } }
/* ** Set the values of all variables. Variable $1 in the original SQL will ** be the string azValue[0]. $2 will have the value azValue[1]. And ** so forth. If a value is out of range (for example $3 when nValue==2) ** then its value will be NULL. ** ** This routine overrides any prior call. */ int sqlite_bind(sqlite_vm *pVm, int i, const char *zVal, int len, int copy){ Vdbe *p = (Vdbe*)pVm; if( p->magic!=VDBE_MAGIC_RUN || p->pc!=0 ){ return SQLITE_MISUSE; } if( i<1 || i>p->nVar ){ return SQLITE_RANGE; } i--; if( p->abVar[i] ){ sqliteFree(p->azVar[i]); } if( zVal==0 ){ copy = 0; len = 0; } if( len<0 ){ len = strlen(zVal)+1; } if( copy ){ p->azVar[i] = sqliteMalloc( len ); if( p->azVar[i] ) memcpy(p->azVar[i], zVal, len); }else{ p->azVar[i] = (char*)zVal; } p->abVar[i] = copy; p->anVar[i] = len; return SQLITE_OK; }
/* ** Build a trigger step out of an INSERT statement. Return a pointer ** to the new trigger step. ** ** The parser calls this routine when it sees an INSERT inside the ** body of a trigger. */ TriggerStep *sqlite3TriggerInsertStep( Token *pTableName, /* Name of the table into which we insert */ IdList *pColumn, /* List of columns in pTableName to insert into */ ExprList *pEList, /* The VALUE clause: a list of values to be inserted */ Select *pSelect, /* A SELECT statement that supplies values */ int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */ ){ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep)); assert(pEList == 0 || pSelect == 0); assert(pEList != 0 || pSelect != 0); if( pTriggerStep ){ pTriggerStep->op = TK_INSERT; pTriggerStep->pSelect = pSelect; pTriggerStep->target = *pTableName; pTriggerStep->pIdList = pColumn; pTriggerStep->pExprList = pEList; pTriggerStep->orconf = orconf; sqlitePersistTriggerStep(pTriggerStep); }else{ sqlite3IdListDelete(pColumn); sqlite3ExprListDelete(pEList); sqlite3SelectDup(pSelect); } return pTriggerStep; }
int sqliteRbtreeOpen( const char *zFilename, int mode, int nPg, Btree **ppBtree ){ Rbtree **ppRbtree = (Rbtree**)ppBtree; *ppRbtree = (Rbtree *)sqliteMalloc(sizeof(Rbtree)); if( sqlite_malloc_failed ) goto open_no_mem; sqliteHashInit(&(*ppRbtree)->tblHash, SQLITE_HASH_INT, 0); /* Create a binary tree for the SQLITE_MASTER table at location 2 */ btreeCreateTable(*ppRbtree, 2); if( sqlite_malloc_failed ) goto open_no_mem; (*ppRbtree)->next_idx = 3; (*ppRbtree)->pOps = &sqliteRbtreeOps; /* Set file type to 4; this is so that "attach ':memory:' as ...." does not ** think that the database in uninitialised and refuse to attach */ (*ppRbtree)->aMetaData[2] = 4; return SQLITE_OK; open_no_mem: *ppBtree = 0; return SQLITE_NOMEM; }
/* ** Locate a user function given a name and a number of arguments. ** Return a pointer to the FuncDef structure that defines that ** function, or return NULL if the function does not exist. ** ** If the createFlag argument is true, then a new (blank) FuncDef ** structure is created and liked into the "db" structure if a ** no matching function previously existed. When createFlag is true ** and the nArg parameter is -1, then only a function that accepts ** any number of arguments will be returned. ** ** If createFlag is false and nArg is -1, then the first valid ** function found is returned. A function is valid if either xFunc ** or xStep is non-zero. */ FuncDef *sqliteFindFunction( sqlite *db, /* An open database */ const char *zName, /* Name of the function. Not null-terminated */ int nName, /* Number of characters in the name */ int nArg, /* Number of arguments. -1 means any number */ int createFlag /* Create new entry if true and does not otherwise exist */ ){ FuncDef *pFirst, *p, *pMaybe; pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName); if( p && !createFlag && nArg<0 ){ while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; } return p; } pMaybe = 0; while( p && p->nArg!=nArg ){ if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p; p = p->pNext; } if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){ return 0; } if( p==0 && pMaybe ){ assert( createFlag==0 ); return pMaybe; } if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){ p->nArg = nArg; p->pNext = pFirst; p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC; sqliteHashInsert(&db->aFunc, zName, nName, (void*)p); } return p; }
static void test_destructor( sqlite3_context *pCtx, int nArg, sqlite3_value **argv ){ char *zVal; int len; sqlite3 *db = sqlite3_user_data(pCtx); test_destructor_count_var++; assert( nArg==1 ); if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; len = sqlite3ValueBytes(argv[0], ENC(db)); zVal = sqliteMalloc(len+3); zVal[len] = 0; zVal[len-1] = 0; assert( zVal ); zVal++; memcpy(zVal, sqlite3ValueText(argv[0], ENC(db)), len); if( ENC(db)==SQLITE_UTF8 ){ sqlite3_result_text(pCtx, zVal, -1, destructor); #ifndef SQLITE_OMIT_UTF16 }else if( ENC(db)==SQLITE_UTF16LE ){ sqlite3_result_text16le(pCtx, zVal, -1, destructor); }else{ sqlite3_result_text16be(pCtx, zVal, -1, destructor); #endif /* SQLITE_OMIT_UTF16 */ } }
static void test_auxdata( sqlite3_context *pCtx, int nArg, sqlite3_value **argv ){ int i; char *zRet = sqliteMalloc(nArg*2); if( !zRet ) return; for(i=0; i<nArg; i++){ char const *z = (char*)sqlite3_value_text(argv[i]); if( z ){ char *zAux = sqlite3_get_auxdata(pCtx, i); if( zAux ){ zRet[i*2] = '1'; if( strcmp(zAux, z) ){ sqlite3_result_error(pCtx, "Auxilary data corruption", -1); return; } }else{ zRet[i*2] = '0'; zAux = sqliteStrDup(z); sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata); } zRet[i*2+1] = ' '; } } sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata); }
/* ** Load block 'blk' into the cache of pFile. */ static int cacheBlock(OsTestFile *pFile, int blk){ if( blk>=pFile->nBlk ){ int n = ((pFile->nBlk * 2) + 100 + blk); /* if( pFile->nBlk==0 ){ printf("DIRTY %s\n", pFile->zName); } */ pFile->apBlk = (u8 **)sqliteRealloc(pFile->apBlk, n * sizeof(u8*)); if( !pFile->apBlk ) return SQLITE_NOMEM; memset(&pFile->apBlk[pFile->nBlk], 0, (n - pFile->nBlk)*sizeof(u8*)); pFile->nBlk = n; } if( !pFile->apBlk[blk] ){ i64 filesize; int rc; u8 *p = sqliteMalloc(BLOCKSIZE); if( !p ) return SQLITE_NOMEM; pFile->apBlk[blk] = p; rc = sqlite3RealFileSize(&pFile->fd, &filesize); if( rc!=SQLITE_OK ) return rc; if( BLOCK_OFFSET(blk)<filesize ){ int len = BLOCKSIZE; rc = sqlite3RealSeek(&pFile->fd, blk*BLOCKSIZE); if( BLOCK_OFFSET(blk+1)>filesize ){ len = filesize - BLOCK_OFFSET(blk); } if( rc!=SQLITE_OK ) return rc; rc = sqlite3RealRead(&pFile->fd, p, len); if( rc!=SQLITE_OK ) return rc; } } return SQLITE_OK; }
/* ** Set P3 of the most recently inserted opcode to a column affinity ** string for table pTab. A column affinity string has one character ** for each column indexed by the index, according to the affinity of the ** column: ** ** Character Column affinity ** ------------------------------ ** 'a' TEXT ** 'b' NONE ** 'c' NUMERIC ** 'd' INTEGER ** 'e' REAL */ void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ /* The first time a column affinity string for a particular table ** is required, it is allocated and populated here. It is then ** stored as a member of the Table structure for subsequent use. ** ** The column affinity string will eventually be deleted by ** sqlite3DeleteTable() when the Table structure itself is cleaned up. */ if( !pTab->zColAff ){ char *zColAff; int i; zColAff = (char *)sqliteMalloc(pTab->nCol+1); if( !zColAff ){ return; } for(i=0; i<pTab->nCol; i++){ zColAff[i] = pTab->aCol[i].affinity; } zColAff[pTab->nCol] = '\0'; pTab->zColAff = zColAff; } sqlite3VdbeChangeP3(v, -1, pTab->zColAff, 0); }
/* ** Create a new sqlite3_value object. */ sqlite3_value* sqlite3ValueNew() { Mem *p = sqliteMalloc(sizeof(*p)); if( p ) { p->flags = MEM_Null; p->type = SQLITE_NULL; } return p; }
/* ** The first parameter (pDef) is a function implementation. The ** second parameter (pExpr) is the first argument to this function. ** If pExpr is a column in a virtual table, then let the virtual ** table implementation have an opportunity to overload the function. ** ** This routine is used to allow virtual table implementations to ** overload MATCH, LIKE, GLOB, and REGEXP operators. ** ** Return either the pDef argument (indicating no change) or a ** new FuncDef structure that is marked as ephemeral using the ** SQLITE_FUNC_EPHEM flag. */ FuncDef *sqlite3VtabOverloadFunction( FuncDef *pDef, /* Function to possibly overload */ int nArg, /* Number of arguments to the function */ Expr *pExpr /* First argument to the function */ ){ Table *pTab; sqlite3_vtab *pVtab; sqlite3_module *pMod; void (*xFunc)(sqlite3_context*,int,sqlite3_value**); void *pArg; FuncDef *pNew; int rc; char *zLowerName; unsigned char *z; /* Check to see the left operand is a column in a virtual table */ if( pExpr==0 ) return pDef; if( pExpr->op!=TK_COLUMN ) return pDef; pTab = pExpr->pTab; if( pTab==0 ) return pDef; if( !pTab->isVirtual ) return pDef; pVtab = pTab->pVtab; assert( pVtab!=0 ); assert( pVtab->pModule!=0 ); pMod = (sqlite3_module *)pVtab->pModule; if( pMod->xFindFunction==0 ) return pDef; /* Call the xFuncFunction method on the virtual table implementation ** to see if the implementation wants to overload this function */ zLowerName = sqlite3StrDup(pDef->zName); for(z=(unsigned char*)zLowerName; *z; z++){ *z = sqlite3UpperToLower[*z]; } rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); sqliteFree(zLowerName); if( rc==0 ){ return pDef; } /* Create a new ephemeral function definition for the overloaded ** function */ pNew = sqliteMalloc( sizeof(*pNew) + strlen(pDef->zName) ); if( pNew==0 ){ return pDef; } *pNew = *pDef; strcpy(pNew->zName, pDef->zName); pNew->xFunc = xFunc; pNew->pUserData = pArg; pNew->flags |= SQLITE_FUNC_EPHEM; return pNew; }
/* ** Turn a SELECT statement (that the pSelect parameter points to) into ** a trigger step. Return a pointer to a TriggerStep structure. ** ** The parser calls this routine when it finds a SELECT statement in ** body of a TRIGGER. */ TriggerStep *sqlite3TriggerSelectStep(Select *pSelect){ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep)); if( pTriggerStep==0 ) return 0; pTriggerStep->op = TK_SELECT; pTriggerStep->pSelect = pSelect; pTriggerStep->orconf = OE_Default; sqlitePersistTriggerStep(pTriggerStep); return pTriggerStep; }
/* ** Set the number of result columns that will be returned by this SQL ** statement. This is now set at compile time, rather than during ** execution of the vdbe program so that sqlite3_column_count() can ** be called on an SQL statement before sqlite3_step(). */ void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ Mem *pColName; int n; assert( 0==p->nResColumn ); p->nResColumn = nResColumn; n = nResColumn*2; p->aColName = pColName = (Mem*)sqliteMalloc( sizeof(Mem)*n ); if( p->aColName==0 ) return; while( n-- > 0 ){ (pColName++)->flags = MEM_Null; } }
/* ** Initialise the os_test.c specific fields of pFile. */ static void initFile(OsFile *id, char const *zName){ OsTestFile *pFile = (OsTestFile *) sqliteMalloc(sizeof(OsTestFile) + strlen(zName)+1); pFile->nMaxWrite = 0; pFile->nBlk = 0; pFile->apBlk = 0; pFile->zName = (char *)(&pFile[1]); strcpy(pFile->zName, zName); *id = pFile; pFile->pNext = pAllFiles; pAllFiles = pFile; }
/* ** Construct a trigger step that implements a DELETE statement and return ** a pointer to that trigger step. The parser calls this routine when it ** sees a DELETE statement inside the body of a CREATE TRIGGER. */ TriggerStep *sqlite3TriggerDeleteStep(Token *pTableName, Expr *pWhere){ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep)); if( pTriggerStep==0 ) return 0; pTriggerStep->op = TK_DELETE; pTriggerStep->target = *pTableName; pTriggerStep->pWhere = pWhere; pTriggerStep->orconf = OE_Default; sqlitePersistTriggerStep(pTriggerStep); return pTriggerStep; }
/* ** Allocate or return the aggregate context for a user function. A new ** context is allocated on the first call. Subsequent calls return the ** same context that was returned on prior calls. ** ** This routine is defined here in vdbe.c because it depends on knowing ** the internals of the sqlite_func structure which is only defined in ** this source file. */ void *sqlite_aggregate_context(sqlite_func *p, int nByte){ assert( p && p->pFunc && p->pFunc->xStep ); if( p->pAgg==0 ){ if( nByte<=NBFS ){ p->pAgg = (void*)p->s.z; memset(p->pAgg, 0, nByte); }else{ p->pAgg = sqliteMalloc( nByte ); } } return p->pAgg; }
Delete* sqlite3DeleteNew(SrcList *pTabList, Expr *pWhere, Expr *pLimit, Expr *pOffset) { Delete* pNew = NULL; pNew = (Delete*) sqliteMalloc(sizeof(*pNew)); if (pNew == NULL) { return NULL; } pNew->pTabList = pTabList; pNew->pWhere = pWhere; pNew->pLimit = pLimit; pNew->pOffset = pOffset; return pNew; }
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ unsigned char *z; int i; if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return; z = sqliteMalloc(sqlite3_value_bytes(argv[0])+1); if( z==0 ) return; strcpy((char*)z, (char*)sqlite3_value_text(argv[0])); for(i=0; z[i]; i++){ z[i] = tolower(z[i]); } sqlite3_result_text(context, (char*)z, -1, SQLITE_TRANSIENT); sqliteFree(z); }
/* ** Create a new virtual database engine. */ Vdbe *sqlite3VdbeCreate(sqlite3 *db){ Vdbe *p; p = sqliteMalloc( sizeof(Vdbe) ); if( p==0 ) return 0; p->db = db; if( db->pVdbe ){ db->pVdbe->pPrev = p; } p->pNext = db->pVdbe; p->pPrev = 0; db->pVdbe = p; p->magic = VDBE_MAGIC_INIT; return p; }
/* ** Find and return the schema associated with a BTree. Create ** a new one if necessary. */ Schema *sqlite3SchemaGet(Btree *pBt){ Schema * p; if( pBt ){ p = (Schema *)sqlite3BtreeSchema(pBt,sizeof(Schema),sqlite3SchemaFree); }else{ p = (Schema *)sqliteMalloc(sizeof(Schema)); } if( p && 0==p->file_format ){ sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0); sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1); } return p; }
/* ** Resize a prior allocation. If p==0, then this routine ** works just like sqliteMalloc(). If n==0, then this routine ** works just like sqliteFree(). */ void *sqlite3Realloc(void *p, int n){ void *p2; if( p==0 ){ return sqliteMalloc(n); } if( n==0 ){ sqliteFree(p); return 0; } p2 = realloc(p, n); if( p2==0 ){ if( n>0 ) sqlite3_malloc_failed++; } return p2; }