Beispiel #1
0
runtime·malg(int32 stacksize)
{
	G *newg;
	byte *stk;

	newg = runtime·malloc(sizeof(G));
	if(stacksize >= 0) {
		if(g == m->g0) {
			// running on scheduler stack already.
			stk = runtime·stackalloc(StackSystem + stacksize);
		} else {
			// have to call stackalloc on scheduler stack.
			g->param = (void*)(StackSystem + stacksize);
			runtime·mcall(mstackalloc);
			stk = g->param;
			g->param = nil;
		}
		newg->stack0 = stk;
		newg->stackguard = stk + StackGuard;
		newg->stackbase = stk + StackSystem + stacksize - sizeof(Stktop);
		runtime·memclr(newg->stackbase, sizeof(Stktop));
	}
	return newg;
}
Beispiel #2
0
void CPhysicsSystem::PhysicsSimulate()
{
	CMiniProfilerGuard mpg(&g_mp_PhysicsSimulate);
	VPROF_BUDGET( "CPhysicsSystem::PhysicsSimulate", VPROF_BUDGETGROUP_PHYSICS );
	float frametime = gpGlobals->frametime;

	if ( physenv )
	{
		g_Collisions.BufferTouchEvents( true );
#ifdef _DEBUG
		physenv->DebugCheckContacts();
#endif
		frametime *= cl_phys_timescale.GetFloat();

		int maxTicks = cl_phys_maxticks.GetInt();
		if ( maxTicks )
		{
			float maxFrameTime = physenv->GetDeltaFrameTime( maxTicks ) - 1e-4f;
			frametime = clamp( frametime, 0, maxFrameTime );
		}

		physenv->Simulate( frametime );

		int activeCount = physenv->GetActiveObjectCount();
		g_mp_active_object_count.Add(activeCount);
		IPhysicsObject **pActiveList = NULL;
		if ( activeCount )
		{
			PHYS_PROFILE(aUpdateActiveObjects)
			pActiveList = (IPhysicsObject **)stackalloc( sizeof(IPhysicsObject *)*activeCount );
			physenv->GetActiveObjects( pActiveList );

			for ( int i = 0; i < activeCount; i++ )
			{
				C_BaseEntity *pEntity = reinterpret_cast<C_BaseEntity *>(pActiveList[i]->GetGameData());
				if ( pEntity )
				{
					//const CCollisionProperty *collProp = pEntity->CollisionProp();
					//debugoverlay->AddBoxOverlay( collProp->GetCollisionOrigin(), collProp->OBBMins(), collProp->OBBMaxs(), collProp->GetCollisionAngles(), 190, 190, 0, 0, 0.01 );

					if ( pEntity->CollisionProp()->DoesVPhysicsInvalidateSurroundingBox() )
					{
						pEntity->CollisionProp()->MarkSurroundingBoundsDirty();
					}
					pEntity->VPhysicsUpdate( pActiveList[i] );
					IPhysicsShadowController *pShadow = pActiveList[i]->GetShadowController();
					if ( pShadow )
					{
						// active shadow object, check for error
						Vector pos, targetPos;
						QAngle rot, targetAngles;
						pShadow->GetTargetPosition( &targetPos, &targetAngles );
						pActiveList[i]->GetPosition( &pos, &rot );
						Vector delta = targetPos - pos;
						float dist = VectorNormalize(delta);
						bool bBlocked = false;
						if ( dist > cl_phys_block_dist.GetFloat() )
						{
							Vector vel;
							pActiveList[i]->GetImplicitVelocity( &vel, NULL );
							float proj = DotProduct(vel, delta);
							if ( proj < dist * cl_phys_block_fraction.GetFloat() )
							{
								bBlocked = true;
								//Msg("%s was blocked %.3f (%.3f proj)!\n", pEntity->GetClassname(), dist, proj );
							}
						}
						Vector targetAxis;
						float deltaTargetAngle;
						RotationDeltaAxisAngle( rot, targetAngles, targetAxis, deltaTargetAngle );
						if ( fabsf(deltaTargetAngle) > 0.5f )
						{
							AngularImpulse angVel;
							pActiveList[i]->GetImplicitVelocity( NULL, &angVel );
							float proj = DotProduct( angVel, targetAxis ) * Sign(deltaTargetAngle);
							if ( proj < (fabsf(deltaTargetAngle) * cl_phys_block_fraction.GetFloat()) )
							{
								bBlocked = true;
								//Msg("%s was rot blocked %.3f proj %.3f!\n", pEntity->GetClassname(), deltaTargetAngle, proj );
							}
						}
					
						if ( bBlocked )
						{
							C_BaseEntity *pBlocker = FindPhysicsBlocker( pActiveList[i] );
							if ( pBlocker )
							{
								if ( IsBlockedShouldDisableCollisions( pEntity ) )
								{
									PhysDisableEntityCollisions( pEntity, pBlocker );
									pActiveList[i]->RecheckContactPoints();
									// GetClassname returns a pointer to the same buffer always!
									//Msg("%s blocked !", pEntity->GetClassname() ); Msg("by %s\n", pBlocker->GetClassname() );
								}
							}
						}
					}
				}
			}
		}

#if 0
		if ( cl_visualize_physics_shadows.GetBool() )
		{
			int entityCount = NUM_ENT_ENTRIES;
			for ( int i = 0; i < entityCount; i++ )
			{
				IClientEntity *pClientEnt = cl_entitylist->GetClientEntity(i);
				if ( !pClientEnt )
					continue;
				C_BaseEntity *pEntity = pClientEnt->GetBaseEntity();
				if ( !pEntity )
					continue;

				Vector pos;
				QAngle angle;
				IPhysicsObject *pObj = pEntity->VPhysicsGetObject();
				if ( !pObj || !pObj->GetShadowController() )
					continue;

				pObj->GetShadowPosition( &pos, &angle );
				debugoverlay->AddBoxOverlay( pos, pEntity->CollisionProp()->OBBMins(), pEntity->CollisionProp()->OBBMaxs(), angle, 255, 255, 0, 32, 0 );
				char tmp[256];
				V_snprintf( tmp, sizeof(tmp),"%s, (%s)\n", pEntity->GetClassname(), VecToString(angle) );
				debugoverlay->AddTextOverlay( pos, 0, tmp );
			}
		}
#endif
		g_Collisions.BufferTouchEvents( false );
		g_Collisions.FrameUpdate();
	}
	physicssound::PlayImpactSounds( m_impactSounds );
}
Beispiel #3
0
CBaseEntity	* CASW_Rocket::FindPotentialTarget( void ) const
{
	float		bestdist = 0;		
	CBaseEntity	*bestent = NULL;

	Vector v_forward, v_right, v_up;
	AngleVectors( GetAbsAngles(), &v_forward, &v_right, &v_up );

	// find the aimtarget nearest us
	int count = AimTarget_ListCount();		
	if ( count )
	{
		CBaseEntity **pList = (CBaseEntity **)stackalloc( sizeof(CBaseEntity *) * count );
		AimTarget_ListCopy( pList, count );

		CTraceFilterSkipTwoEntities filter(this, GetOwnerEntity(), COLLISION_GROUP_NONE);

		for ( int i = 0; i < count; i++ )
		{
			CBaseEntity *pEntity = pList[i];

			if (!pEntity || !pEntity->IsAlive() || !pEntity->edict() || !pEntity->IsNPC() )
			{
				//Msg("not alive or not an edict, skipping\n");
				continue;
			}

			if (!pEntity || !pEntity->IsAlive() || !pEntity->edict() || !pEntity->IsNPC() )
			{
				//Msg("not alive or not an edict, skipping\n");
				continue;
			}
	
			// don't autoaim onto marines
			if (pEntity->Classify() == CLASS_ASW_MARINE || pEntity->Classify() == CLASS_ASW_COLONIST)
				continue;

			if ( pEntity->Classify() == CLASS_ASW_PARASITE )
			{
				CASW_Parasite *pParasite = static_cast< CASW_Parasite* >( pEntity );
				if ( pParasite->m_bInfesting )
				{
					continue;
				}
			}

			Vector center = pEntity->BodyTarget( GetAbsOrigin() );
			Vector center_flat = center;
			center_flat.z = GetAbsOrigin().z;

			Vector dir = (center - GetAbsOrigin());
			VectorNormalize( dir );

			Vector dir_flat = (center_flat - GetAbsOrigin());
			VectorNormalize( dir_flat );

			// make sure it's in front of the rocket
			float dot = DotProduct (dir, v_forward );
			//if (dot < 0)
			//{					
			//continue;
			//}

			float dist = (pEntity->GetAbsOrigin() - GetAbsOrigin()).LengthSqr();
			if (dist > ASW_ROCKET_MAX_HOMING_RANGE)
				continue;

			// check another marine isn't between us and the target to reduce FF
			trace_t tr;
			UTIL_TraceLine(GetAbsOrigin(), pEntity->WorldSpaceCenter(), MASK_SHOT, &filter, &tr);
			if (tr.fraction < 1.0f && tr.m_pEnt != pEntity && tr.m_pEnt && tr.m_pEnt->Classify() == CLASS_ASW_MARINE)
				continue;

			// does this critter already have enough rockets to kill it?
			{ 
				CASW_DamageAllocationMgr::IndexType_t assignmentIndex = m_RocketAssigner.Find( pEntity );
				if ( m_RocketAssigner.IsValid(assignmentIndex) )
				{
					if ( m_RocketAssigner[assignmentIndex].m_flAccumulatedDamage > pEntity->GetHealth() )
					{
						continue;
					}
				}
			}


			// check another marine isn't between us and the target to reduce FF
			UTIL_TraceLine(GetAbsOrigin(), pEntity->WorldSpaceCenter(), MASK_SHOT, &filter, &tr);
			if (tr.fraction < 1.0f && tr.m_pEnt != pEntity && tr.m_pEnt && tr.m_pEnt->Classify() == CLASS_ASW_MARINE)
				continue;

			// increase distance if dot isn't towards us
			dist += (1.0f - dot) * 150;	// bias of x units when object is 90 degrees to the side
			if (bestdist == 0 || dist < bestdist)
			{
				bestdist = dist;
				bestent = pEntity;
			}
		}

		if ( bestent && asw_rocket_debug.GetBool() )
		{
			Vector center = bestent->BodyTarget( GetAbsOrigin() );
			Vector center_flat = center;
			center_flat.z = GetAbsOrigin().z;

			Vector dir = (center - GetAbsOrigin());
			VectorNormalize( dir );
			Msg( "Rocket[%d] starting homing in on %s(%d) dir = %f %f %f\n", entindex(), bestent->GetClassname(), bestent->entindex(), VectorExpand( dir ) );
		}
	}

	return bestent;
}
Beispiel #4
0
//-----------------------------------------------------------------------------
// Emits occluder brushes
//-----------------------------------------------------------------------------
static void EmitOccluderBrushes()
{
	char str[64];

	g_OccluderData.RemoveAll();
	g_OccluderPolyData.RemoveAll();
	g_OccluderVertexIndices.RemoveAll();

	tree_t *pOccluderTree = ClipOccluderBrushes();
	if (!pOccluderTree)
		return;

	CUtlVector<face_t*> faceList( 1024, 1024 );
	CUtlVector<side_t*> sideList( 1024, 1024 );
	GenerateOccluderFaceList( pOccluderTree->headnode, faceList );

#ifdef _DEBUG
	int *pEmitted = (int*)stackalloc( faceList.Count() * sizeof(int) );
	memset( pEmitted, 0, faceList.Count() * sizeof(int) );
#endif

	for ( entity_num=1; entity_num < num_entities; ++entity_num )
	{
		if (!IsFuncOccluder(entity_num))
			continue;

		// Output only those parts of the occluder tree which are a part of the brush
		int nOccluder = g_OccluderData.AddToTail();
		doccluderdata_t &occluderData = g_OccluderData[ nOccluder ];
		occluderData.firstpoly = g_OccluderPolyData.Count();
		occluderData.mins.Init( FLT_MAX, FLT_MAX, FLT_MAX );
		occluderData.maxs.Init( -FLT_MAX, -FLT_MAX, -FLT_MAX );
		occluderData.flags = 0;
		occluderData.area = -1;

		// NOTE: If you change the algorithm by which occluder numbers are allocated,
		// then you must also change FixupOnlyEntsOccluderEntities() below
		sprintf (str, "%i", nOccluder);
		SetKeyValue (&entities[entity_num], "occludernumber", str);

		int nIndex = g_OccluderInfo.AddToTail();
		g_OccluderInfo[nIndex].m_nOccluderEntityIndex = entity_num;
		
		sideList.RemoveAll();
		GenerateOccluderSideList( entity_num, sideList );
		for ( int i = faceList.Count(); --i >= 0; )
		{
			// Skip nodraw surfaces, but not triggers that have been marked as nodraw
			face_t *f = faceList[i];
			if ( ( texinfo[f->texinfo].flags & SURF_NODRAW ) &&
				 (( texinfo[f->texinfo].flags & SURF_TRIGGER ) == 0 ) )
				continue;

			// Only emit faces that appear in the side list of the occluder
			for ( int j = sideList.Count(); --j >= 0; )
			{
				if ( sideList[j] != f->originalface )
					continue;

				if ( f->numpoints < 3 )
					continue;

				// not a final face
				Assert ( !f->merged && !f->split[0] && !f->split[1] );

#ifdef _DEBUG
				Assert( !pEmitted[i] );
				pEmitted[i] = entity_num;
#endif

				int k = g_OccluderPolyData.AddToTail();
				doccluderpolydata_t *pOccluderPoly = &g_OccluderPolyData[k];

				pOccluderPoly->planenum = f->planenum;
				pOccluderPoly->vertexcount = f->numpoints;
				pOccluderPoly->firstvertexindex = g_OccluderVertexIndices.Count();
				for( k = 0; k < f->numpoints; ++k )
				{
					g_OccluderVertexIndices.AddToTail( f->vertexnums[k] );

					const Vector &p = dvertexes[f->vertexnums[k]].point; 
					VectorMin( occluderData.mins, p, occluderData.mins );
					VectorMax( occluderData.maxs, p, occluderData.maxs );
				}

				break;
			}
		}

		occluderData.polycount = g_OccluderPolyData.Count() - occluderData.firstpoly;

		// Mark this brush as not having brush geometry so it won't be re-emitted with a brush model
		entities[entity_num].numbrushes = 0;
	}

	FreeTree( pOccluderTree );
}
int CAI_TacticalServices::FindLosNode(const Vector &vThreatPos, const Vector &vThreatEyePos, float flMinThreatDist, float flMaxThreatDist, float flBlockTime, FlankType_t eFlankType, const Vector &vecFlankRefPos, float flFlankParam )
{
	if ( !CAI_NetworkManager::NetworksLoaded() )
		return NO_NODE;

	AI_PROFILE_SCOPE( CAI_TacticalServices_FindLosNode );

	MARK_TASK_EXPENSIVE();

	int iMyNode	= GetPathfinder()->NearestNodeToNPC();
	if ( iMyNode == NO_NODE )
	{
		Vector pos = GetOuter()->GetAbsOrigin();
		DevWarning( 2, "FindCover() - %s has no nearest node! (Check near %f %f %f)\n", GetEntClassname(), pos.x, pos.y, pos.z);
		return NO_NODE;
	}

	// ------------------------------------------------------------------------------------
	// We're going to search for a shoot node by expanding to our current node's neighbors
	// and then their neighbors, until a shooting position is found, or all nodes are beyond MaxDist
	// ------------------------------------------------------------------------------------
	AI_NearNode_t *pBuffer = (AI_NearNode_t *)stackalloc( sizeof(AI_NearNode_t) * GetNetwork()->NumNodes() );
	CNodeList list( pBuffer, GetNetwork()->NumNodes() );
	CVarBitVec wasVisited(GetNetwork()->NumNodes());	// Nodes visited

	// mark start as visited
	wasVisited.Set( iMyNode );
	list.Insert( AI_NearNode_t(iMyNode, 0) );

	static int nSearchRandomizer = 0;		// tries to ensure the links are searched in a different order each time;

	while ( list.Count() )
	{
		int nodeIndex = list.ElementAtHead().nodeIndex;
		// remove this item from the list
		list.RemoveAtHead();

		const Vector &nodeOrigin = GetNetwork()->GetNode(nodeIndex)->GetPosition(GetHullType());

		// HACKHACK: Can't we rework this loop and get rid of this?
		// skip the starting node, or we probably wouldn't have called this function.
		if ( nodeIndex != iMyNode )
		{
			bool skip = false;

			// See if the node satisfies the flanking criteria.
			switch ( eFlankType )
			{
				case FLANKTYPE_NONE:
					break;
					
				case FLANKTYPE_RADIUS:
				{
					Vector vecDist = nodeOrigin - vecFlankRefPos;
					if ( vecDist.Length() < flFlankParam )
					{
						skip = true;
					}
					
					break;
				}
				
				case FLANKTYPE_ARC:
				{
					Vector vecEnemyToRef = vecFlankRefPos - vThreatPos;
					VectorNormalize( vecEnemyToRef );

					Vector vecEnemyToNode = nodeOrigin - vThreatPos;
					VectorNormalize( vecEnemyToNode );
					
					float flDot = DotProduct( vecEnemyToRef, vecEnemyToNode );
					
					if ( RAD2DEG( acos( flDot ) ) < flFlankParam )
					{
						skip = true;
					}
					
					break;
				}
			}

			// Don't accept climb nodes, and assume my nearest node isn't valid because
			// we decided to make this check in the first place.  Keep moving
			if ( !skip && !GetNetwork()->GetNode(nodeIndex)->IsLocked() &&
				GetNetwork()->GetNode(nodeIndex)->GetType() != NODE_CLIMB )
			{
				// Now check its distance and only accept if in range
				float flThreatDist = ( nodeOrigin - vThreatPos ).Length();

				if ( flThreatDist < flMaxThreatDist &&
					 flThreatDist > flMinThreatDist )
				{
					CAI_Node *pNode = GetNetwork()->GetNode(nodeIndex);
					if ( GetOuter()->IsValidShootPosition( nodeOrigin, pNode, pNode->GetHint() ) )
					{
						if (GetOuter()->TestShootPosition(nodeOrigin,vThreatEyePos))
						{
							// Note when this node was used, so we don't try 
							// to use it again right away.
							GetNetwork()->GetNode(nodeIndex)->Lock( flBlockTime );

#if 0
							if ( GetOuter()->GetHintNode() )
							{
								GetOuter()->GetHintNode()->Unlock(GetOuter()->GetHintDelay(GetOuter()->GetHintNode()->HintType()));
								GetOuter()->SetHintNode( NULL );
							}

							// This used to not be set, why? (kenb)
							// @Note (toml 05-19-04): I think because stomping  the hint can lead to
							// unintended side effects. The hint node is primarily a high level
							// tool, and certain NPCs break if it gets slammed here. If we need
							// this, we should propagate it out and let the schedule selector
							// or task decide to set the hint node
							GetOuter()->SetHintNode( GetNetwork()->GetNode(nodeIndex)->GetHint() );
#endif
							if ( ShouldDebugLos( nodeIndex ) )
							{
								NDebugOverlay::Text( nodeOrigin, CFmtStr( "%d:los!", nodeIndex), false, 1 );
							}

							// The next NPC who searches should use a slight different pattern
							nSearchRandomizer = nodeIndex;
							return nodeIndex;
						}
						else
						{
							if ( ShouldDebugLos( nodeIndex ) )
							{
								NDebugOverlay::Text( nodeOrigin, CFmtStr( "%d:!shoot", nodeIndex), false, 1 );
							}
						}
					}
					else
					{
						if ( ShouldDebugLos( nodeIndex ) )
						{
							NDebugOverlay::Text( nodeOrigin, CFmtStr( "%d:!valid", nodeIndex), false, 1 );
						}
					}
				}
				else
				{
					if ( ShouldDebugLos( nodeIndex ) )
					{
						CFmtStr msg( "%d:%s", nodeIndex, ( flThreatDist < flMaxThreatDist ) ? "too close" : "too far" );
						NDebugOverlay::Text( nodeOrigin, msg, false, 1 );
					}
				}
			}
		}

		// Go through each link and add connected nodes to the list
		for (int link=0; link < GetNetwork()->GetNode(nodeIndex)->NumLinks();link++) 
		{
			int index = (link + nSearchRandomizer) % GetNetwork()->GetNode(nodeIndex)->NumLinks();
			CAI_Link *nodeLink = GetNetwork()->GetNode(nodeIndex)->GetLinkByIndex(index);

			if ( !m_pPathfinder->IsLinkUsable( nodeLink, iMyNode ) )
				continue;

			int newID = nodeLink->DestNodeID(nodeIndex);

			// If not already visited, add to the list
			if (!wasVisited.IsBitSet(newID))
			{
				float dist = (GetLocalOrigin() - GetNetwork()->GetNode(newID)->GetPosition(GetHullType())).LengthSqr();
				list.Insert( AI_NearNode_t(newID, dist) );
				wasVisited.Set( newID );
			}
		}
	}
	// We failed.  No range attack node node was found
	return NO_NODE;
}
int CAI_TacticalServices::FindCoverNode(const Vector &vNearPos, const Vector &vThreatPos, const Vector &vThreatEyePos, float flMinDist, float flMaxDist )
{
	if ( !CAI_NetworkManager::NetworksLoaded() )
		return NO_NODE;

	AI_PROFILE_SCOPE( CAI_TacticalServices_FindCoverNode );

	MARK_TASK_EXPENSIVE();

	DebugFindCover( NO_NODE, GetOuter()->EyePosition(), vThreatEyePos, 0, 255, 255 );

	int iMyNode = GetPathfinder()->NearestNodeToPoint( vNearPos );

	if ( iMyNode == NO_NODE )
	{
		Vector pos = GetOuter()->GetAbsOrigin();
		DevWarning( 2, "FindCover() - %s has no nearest node! (Check near %f %f %f)\n", GetEntClassname(), pos.x, pos.y, pos.z);
		return NO_NODE;
	}

	if ( !flMaxDist )
	{
		// user didn't supply a MaxDist, so work up a crazy one.
		flMaxDist = 784;
	}

	if ( flMinDist > 0.5 * flMaxDist)
	{
		flMinDist = 0.5 * flMaxDist;
	}

	// ------------------------------------------------------------------------------------
	// We're going to search for a cover node by expanding to our current node's neighbors
	// and then their neighbors, until cover is found, or all nodes are beyond MaxDist
	// ------------------------------------------------------------------------------------
	AI_NearNode_t *pBuffer = (AI_NearNode_t *)stackalloc( sizeof(AI_NearNode_t) * GetNetwork()->NumNodes() );
	CNodeList list( pBuffer, GetNetwork()->NumNodes() );
	CVarBitVec wasVisited(GetNetwork()->NumNodes());	// Nodes visited

	// mark start as visited
	list.Insert( AI_NearNode_t(iMyNode, 0) ); 
	wasVisited.Set( iMyNode );
	float flMinDistSqr = flMinDist*flMinDist;
	float flMaxDistSqr = flMaxDist*flMaxDist;

	static int nSearchRandomizer = 0;		// tries to ensure the links are searched in a different order each time;

	// Search until the list is empty
	while( list.Count() )
	{
		// Get the node that is closest in the number of steps and remove from the list
		int nodeIndex = list.ElementAtHead().nodeIndex;
		list.RemoveAtHead();

		CAI_Node *pNode = GetNetwork()->GetNode(nodeIndex);
		Vector nodeOrigin = pNode->GetPosition(GetHullType());

		float dist = (vNearPos - nodeOrigin).LengthSqr();
		if (dist >= flMinDistSqr && dist < flMaxDistSqr)
		{
			Activity nCoverActivity = GetOuter()->GetCoverActivity( pNode->GetHint() );
			Vector vEyePos = nodeOrigin + GetOuter()->EyeOffset(nCoverActivity);

			if ( GetOuter()->IsValidCover( nodeOrigin, pNode->GetHint() ) )
			{
				// Check if this location will block the threat's line of sight to me
				if (GetOuter()->IsCoverPosition(vThreatEyePos, vEyePos))
				{
					// --------------------------------------------------------
					// Don't let anyone else use this node for a while
					// --------------------------------------------------------
					pNode->Lock( 1.0 );

					if ( pNode->GetHint() && ( pNode->GetHint()->HintType() == HINT_TACTICAL_COVER_MED || pNode->GetHint()->HintType() == HINT_TACTICAL_COVER_LOW ) )
					{
						if ( GetOuter()->GetHintNode() )
						{
							GetOuter()->GetHintNode()->Unlock(GetOuter()->GetHintDelay(GetOuter()->GetHintNode()->HintType()));
							GetOuter()->SetHintNode( NULL );
						}

						GetOuter()->SetHintNode( pNode->GetHint() );
					}

					// The next NPC who searches should use a slight different pattern
					nSearchRandomizer = nodeIndex;
					DebugFindCover( pNode->GetId(), vEyePos, vThreatEyePos, 0, 255, 0 );
					return nodeIndex;
				}
				else
				{
					DebugFindCover( pNode->GetId(), vEyePos, vThreatEyePos, 255, 0, 0 );
				}
			}
			else
			{
				DebugFindCover( pNode->GetId(), vEyePos, vThreatEyePos, 0, 0, 255 );
			}
		}

		// Add its children to the search list
		// Go through each link
		// UNDONE: Pass in a cost function to measure each link?
		for ( int link = 0; link < GetNetwork()->GetNode(nodeIndex)->NumLinks(); link++ ) 
		{
			int index = (link + nSearchRandomizer) % GetNetwork()->GetNode(nodeIndex)->NumLinks();
			CAI_Link *nodeLink = GetNetwork()->GetNode(nodeIndex)->GetLinkByIndex(index);

			if ( !m_pPathfinder->IsLinkUsable( nodeLink, iMyNode ) )
				continue;

			int newID = nodeLink->DestNodeID(nodeIndex);

			// If not already on the closed list, add to it and set its distance
			if (!wasVisited.IsBitSet(newID))
			{
				// Don't accept climb nodes or nodes that aren't ready to use yet
				if ( GetNetwork()->GetNode(newID)->GetType() != NODE_CLIMB && !GetNetwork()->GetNode(newID)->IsLocked() )
				{
					// UNDONE: Shouldn't we really accumulate the distance by path rather than
					// absolute distance.  After all, we are performing essentially an A* here.
					nodeOrigin = GetNetwork()->GetNode(newID)->GetPosition(GetHullType());
					dist = (vNearPos - nodeOrigin).LengthSqr();

					// use distance to threat as a heuristic to keep AIs from running toward
					// the threat in order to take cover from it.
					float threatDist = (vThreatPos - nodeOrigin).LengthSqr();

					// Now check this node is not too close towards the threat
					if ( dist < threatDist * 1.5 )
					{
						list.Insert( AI_NearNode_t(newID, dist) );
					}
				}
				// mark visited
				wasVisited.Set(newID);
			}
		}
	}

	// We failed.  Not cover node was found
	// Clear hint node used to set ducking
	GetOuter()->ClearHintNode();
	return NO_NODE;
}
Beispiel #7
0
int
kproc(char *name, void (*func)(void*), void *arg, int flags)
{
	Proc *p;
	Pgrp *pg;
	Fgrp *fg;
	Egrp *eg;
	int pid;
	void *tos;

	p = newproc();

	if(flags & KPDUPPG) {
		pg = up->env->pgrp;
		incref(&pg->r);
		p->env->pgrp = pg;
	}
	if(flags & KPDUPFDG) {
		fg = up->env->fgrp;
		incref(&fg->r);
		p->env->fgrp = fg;
	}
	if(flags & KPDUPENVG) {
		eg = up->env->egrp;
		incref(&eg->r);
		p->env->egrp = eg;
	}

	p->env->uid = up->env->uid;
	p->env->gid = up->env->gid;
	kstrdup(&p->env->user, up->env->user);

	strcpy(p->text, name);

	p->func = func;
	p->arg = arg;

	lock(&procs.l);
	if(procs.tail != nil) {
		p->prev = procs.tail;
		procs.tail->next = p;
	}
	else {
		procs.head = p;
		p->prev = nil;
	}
	procs.tail = p;
	unlock(&procs.l);

	if(flags & KPX11){
		p->kstack = nil;	/* never freed; also up not defined */
		tos = (char*)mallocz(X11STACK, 0) + X11STACK - sizeof(void*);
	}else
		p->kstack = stackalloc(p, &tos);
	pid = rfork_thread(RFPROC|RFMEM|RFNOWAIT, tos, tramp, p);
	if(pid < 0)
		panic("ourfork");
		
	return pid;

}
Beispiel #8
0
// Called from reflect·call or from runtime·morestack when a new
// stack segment is needed.  Allocate a new stack big enough for
// m->moreframesize bytes, copy m->moreargsize bytes to the new frame,
// and then act as though runtime·lessstack called the function at
// m->morepc.
void
runtime·newstack(void)
{
	int32 framesize, argsize;
	Stktop *top;
	byte *stk, *sp;
	G *g1;
	Gobuf label;
	bool reflectcall;
	uintptr free;

	framesize = m->moreframesize;
	argsize = m->moreargsize;
	g1 = m->curg;

	if(m->morebuf.sp < g1->stackguard - StackGuard) {
		runtime·printf("runtime: split stack overflow: %p < %p\n", m->morebuf.sp, g1->stackguard - StackGuard);
		runtime·throw("runtime: split stack overflow");
	}
	if(argsize % sizeof(uintptr) != 0) {
		runtime·printf("runtime: stack split with misaligned argsize %d\n", argsize);
		runtime·throw("runtime: stack split argsize");
	}

	reflectcall = framesize==1;
	if(reflectcall)
		framesize = 0;

	if(reflectcall && m->morebuf.sp - sizeof(Stktop) - argsize - 32 > g1->stackguard) {
		// special case: called from reflect.call (framesize==1)
		// to call code with an arbitrary argument size,
		// and we have enough space on the current stack.
		// the new Stktop* is necessary to unwind, but
		// we don't need to create a new segment.
		top = (Stktop*)(m->morebuf.sp - sizeof(*top));
		stk = g1->stackguard - StackGuard;
		free = 0;
	} else {
		// allocate new segment.
		framesize += argsize;
		framesize += StackExtra;	// room for more functions, Stktop.
		if(framesize < StackMin)
			framesize = StackMin;
		framesize += StackSystem;
		stk = runtime·stackalloc(framesize);
		top = (Stktop*)(stk+framesize-sizeof(*top));
		free = framesize;
	}

//runtime·printf("newstack framesize=%d argsize=%d morepc=%p moreargp=%p gobuf=%p, %p top=%p old=%p\n",
//framesize, argsize, m->morepc, m->moreargp, m->morebuf.pc, m->morebuf.sp, top, g1->stackbase);

	top->stackbase = g1->stackbase;
	top->stackguard = g1->stackguard;
	top->gobuf = m->morebuf;
	top->argp = m->moreargp;
	top->argsize = argsize;
	top->free = free;
	m->moreargp = nil;
	m->morebuf.pc = nil;
	m->morebuf.sp = nil;

	// copy flag from panic
	top->panic = g1->ispanic;
	g1->ispanic = false;

	g1->stackbase = (byte*)top;
	g1->stackguard = stk + StackGuard;

	sp = (byte*)top;
	if(argsize > 0) {
		sp -= argsize;
		runtime·memmove(sp, top->argp, argsize);
	}
	if(thechar == '5') {
		// caller would have saved its LR below args.
		sp -= sizeof(void*);
		*(void**)sp = nil;
	}

	// Continue as if lessstack had just called m->morepc
	// (the PC that decided to grow the stack).
	label.sp = sp;
	label.pc = (byte*)runtime·lessstack;
	label.g = m->curg;
	runtime·gogocall(&label, m->morepc);

	*(int32*)345 = 123;	// never return
}
Beispiel #9
0
//-----------------------------------------------------------------------------
// Purpose: Spawn the entities I contain
// Input  : &vecOrigin - 
//			&vecAngles - 
//			pEntities - 
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CPointTemplate::CreateInstance( const Vector &vecOrigin, const QAngle &vecAngles, CUtlVector<CBaseEntity*> *pEntities )
{
	// Go through all our templated map data and spawn all the entities in it
	int iTemplates = m_hTemplates.Count();
	if ( !iTemplates )
	{
		Msg("CreateInstance called on a point_template that has no templates: %s\n", STRING(GetEntityName()) );
		return false;
	}

	// Tell the template system we're about to start a new template
	Templates_StartUniqueInstance();

	HierarchicalSpawn_t *pSpawnList = (HierarchicalSpawn_t*)stackalloc( iTemplates * sizeof(HierarchicalSpawn_t) );

	int i;
	for ( i = 0; i < iTemplates; i++ )
	{
		CBaseEntity *pEntity = NULL;
		char *pMapData;
		int iTemplateIndex = m_hTemplates[i].iTemplateIndex;

		// Some templates have Entity I/O connecting the entities within the template.
		// Unique versions of these templates need to be created whenever they're instanced.
		if ( AllowNameFixup() && Templates_IndexRequiresEntityIOFixup( iTemplateIndex ) )
		{
			// This template requires instancing. 
			// Create a new mapdata block and ask the template system to fill it in with
			// a unique version (with fixed Entity I/O connections).
			pMapData = Templates_GetEntityIOFixedMapData( iTemplateIndex );
		}
		else
		{
			// Use the unmodified mapdata
			pMapData = (char*)STRING( Templates_FindByIndex( iTemplateIndex ) );
		}

		// Create the entity from the mapdata
		MapEntity_ParseEntity( pEntity, pMapData, NULL );
		if ( pEntity == NULL )
		{
			Msg("Failed to initialize templated entity with mapdata: %s\n", pMapData );
			return false;
		}

		// Get a matrix that'll convert from world to the new local space
		VMatrix matNewTemplateToWorld, matStoredLocalToWorld;
		matNewTemplateToWorld.SetupMatrixOrgAngles( vecOrigin, vecAngles );
		MatrixMultiply( matNewTemplateToWorld, m_hTemplates[i].matEntityToTemplate, matStoredLocalToWorld );

		// Get the world origin & angles from the stored local coordinates
		Vector vecNewOrigin;
		QAngle vecNewAngles;
		vecNewOrigin = matStoredLocalToWorld.GetTranslation();
		MatrixToAngles( matStoredLocalToWorld, vecNewAngles );

		// Set its origin & angles
		pEntity->SetAbsOrigin( vecNewOrigin );
		pEntity->SetAbsAngles( vecNewAngles );

		pSpawnList[i].m_pEntity = pEntity;
		pSpawnList[i].m_nDepth = 0;
	}

	SpawnHierarchicalList( iTemplates, pSpawnList, true );

	for ( i = 0; i < iTemplates; ++i )
	{
		if ( pSpawnList[i].m_pEntity )
		{
			pEntities->AddToTail( pSpawnList[i].m_pEntity );
		}
	}

	return true;
}
Beispiel #10
0
Datei: os.c Projekt: 8l/inferno
void
kproc(char *name, void (*func)(void*), void *arg, int flags)
{
	int pid;
	Proc *p;
	Pgrp *pg;
	Fgrp *fg;
	Egrp *eg;
	void *tos;

	p = newproc();
	if(0)
		print("start %s:%.8lx\n", name, p);
	if(p == nil) {
		print("kproc(%s): no memory", name);
		panic("kproc: no memory");
	}

	if(flags & KPDUPPG) {
		pg = up->env->pgrp;
		incref(&pg->r);
		p->env->pgrp = pg;
	}
	if(flags & KPDUPFDG) {
		fg = up->env->fgrp;
		incref(&fg->r);
		p->env->fgrp = fg;
	}
	if(flags & KPDUPENVG) {
		eg = up->env->egrp;
		incref(&eg->r);
		p->env->egrp = eg;
	}

	p->env->uid = up->env->uid;
	p->env->gid = up->env->gid;
	kstrdup(&p->env->user, up->env->user);

	strcpy(p->text, name);

	p->func = func;
	p->arg = arg;

	if(flags & KPX11){
		p->kstack = nil;	/* never freed; also up not defined */
		tos = (char*)mallocz(X11STACK, 0) + X11STACK - sizeof(void*);
	}else
		p->kstack = stackalloc(p, &tos);

	lock(&procs.l);
	if(procs.tail != nil) {
		p->prev = procs.tail;
		procs.tail->next = p;
	}
	else {
		procs.head = p;
		p->prev = nil;
	}
	procs.tail = p;
	unlock(&procs.l);

	if (__clone(tramp, tos, /*CLONE_PTRACE|*/CLONE_VM|CLONE_FS|CLONE_FILES|SIGCHLD, p) <= 0) {
		fprint(2, "emu: clone failed: %s\n", strerror(errno));
		panic("kproc: clone failed");
	}
}
Beispiel #11
0
Datei: os.c Projekt: 8l/inferno
void
libinit(char *imod)
{
	struct termios t;
	struct sigaction act;
	sigset_t mask;
	struct passwd *pw;
	Proc *p;
	void *tos;
	char sys[64];

	setsid();

	gethostname(sys, sizeof(sys));
	kstrdup(&ossysname, sys);

	pw = getpwnam("nobody");
	if(pw != nil) {
		uidnobody = pw->pw_uid;
		gidnobody = pw->pw_gid;
	}

	if(dflag == 0)
		termset();

	memset(&act, 0 , sizeof(act));
	act.sa_handler = trapUSR1;
	sigaction(SIGUSR1, &act, nil);

	sigemptyset(&mask);
	sigaddset(&mask, SIGUSR2);
	sigprocmask(SIG_BLOCK, &mask, NULL);

	memset(&act, 0 , sizeof(act));
	act.sa_handler = trapUSR2;
	sigaction(SIGUSR2, &act, nil);

	act.sa_handler = SIG_IGN;
	sigaction(SIGCHLD, &act, nil);

	/*
	 * For the correct functioning of devcmd in the
	 * face of exiting slaves
	 */
	signal(SIGPIPE, SIG_IGN);
	if(signal(SIGTERM, SIG_IGN) != SIG_IGN)
		signal(SIGTERM, cleanexit);
	if(signal(SIGINT, SIG_IGN) != SIG_IGN)
		signal(SIGINT, cleanexit);

	if(sflag == 0) {
		act.sa_handler = trapBUS;
		sigaction(SIGBUS, &act, nil);
		act.sa_handler = trapILL;
		sigaction(SIGILL, &act, nil);
		act.sa_handler = trapSEGV;
		sigaction(SIGSEGV, &act, nil);
		act.sa_handler = trapFPE;
		sigaction(SIGFPE, &act, nil);
	}

	p = newproc();
	p->kstack = stackalloc(p, &tos);

	pw = getpwuid(getuid());
	if(pw != nil)
		kstrdup(&eve, pw->pw_name);
	else
		print("cannot getpwuid\n");

	p->env->uid = getuid();
	p->env->gid = getgid();

	executeonnewstack(tos, emuinit, imod);
}
void UserMessages::OnMessageEnd_Pre()
{
	if (!m_InHook)
	{
		UM_RETURN_META(MRES_IGNORED);
	}

	MsgList *pList;
	MsgIter iter;
	ListenerInfo *pInfo;

	ResultType res;
	bool intercepted = false;
	bool handled = false;

	pList = &m_msgIntercepts[m_CurId];
	for (iter=pList->begin(); iter!=pList->end(); )
	{
		pInfo = (*iter);
		pInfo->IsHooked = true;
#ifdef USE_PROTOBUF_USERMESSAGES
		res = pInfo->Callback->InterceptUserMessage(m_CurId, m_InterceptBuffer, m_CurRecFilter);
#else
		res = pInfo->Callback->InterceptUserMessage(m_CurId, &m_InterceptBuffer, m_CurRecFilter);
#endif

		intercepted = true;

		switch (res)
		{
		case Pl_Stop:
			{
				if (pInfo->KillMe)
				{
					pList->erase(iter);
					m_FreeListeners.push(pInfo);
					_DecRefCounter();
					goto supercede;
				}
				pInfo->IsHooked = false;
				goto supercede;
			}
		case Pl_Handled:
			{
				handled = true;
				if (pInfo->KillMe)
				{
					iter = pList->erase(iter);
					m_FreeListeners.push(pInfo);
					_DecRefCounter();
					continue;
				}
				break;
			}
		default:
			{
				if (pInfo->KillMe)
				{
					iter = pList->erase(iter);
					m_FreeListeners.push(pInfo);
					_DecRefCounter();
					continue;
				}
				break;
			}
		}
		pInfo->IsHooked = false;
		iter++;
	}

	if (!handled && intercepted)
	{
#if SOURCE_ENGINE == SE_CSGO
		ENGINE_CALL(SendUserMessage)(static_cast<IRecipientFilter &>(*m_CurRecFilter), m_CurId, *m_InterceptBuffer);
#else
		bf_write *engine_bfw;
#if SOURCE_ENGINE >= SE_LEFT4DEAD
		engine_bfw = ENGINE_CALL(UserMessageBegin)(m_CurRecFilter, m_CurId, g_SMAPI->GetUserMessage(m_CurId));
#else
		engine_bfw = ENGINE_CALL(UserMessageBegin)(m_CurRecFilter, m_CurId);
#endif
		m_ReadBuffer.StartReading(m_InterceptBuffer.GetBasePointer(), m_InterceptBuffer.GetNumBytesWritten());
		engine_bfw->WriteBitsFromBuffer(&m_ReadBuffer, m_InterceptBuffer.GetNumBitsWritten());
		ENGINE_CALL(MessageEnd)();
#endif // SE_CSGO
	}

	{
#if SOURCE_ENGINE == SE_CSGO
		int size = m_OrigBuffer->ByteSize();
		uint8 *data = (uint8 *)stackalloc(size);
		m_OrigBuffer->SerializePartialToArray(data, size);

		protobuf::Message *pTempMsg = GetMessagePrototype(m_CurId)->New();
		pTempMsg->ParsePartialFromArray(data, size);
#else
		bf_write *pTempMsg = m_OrigBuffer;
#endif

		pList = &m_msgHooks[m_CurId];
		for (iter=pList->begin(); iter!=pList->end(); )
		{
			pInfo = (*iter);
			pInfo->IsHooked = true;
			pInfo->Callback->OnUserMessage(m_CurId, pTempMsg, m_CurRecFilter);

			if (pInfo->KillMe)
			{
				iter = pList->erase(iter);
				m_FreeListeners.push(pInfo);
				_DecRefCounter();
				continue;
			}

			pInfo->IsHooked = false;
			iter++;
		}

#if SOURCE_ENGINE == SE_CSGO
		delete pTempMsg;
#endif
	}

	UM_RETURN_META((intercepted) ? MRES_SUPERCEDE : MRES_IGNORED);
supercede:
	m_BlockEndPost = true;
	UM_RETURN_META(MRES_SUPERCEDE);
}
Beispiel #13
0
// Called from reflect·call or from runtime·morestack when a new
// stack segment is needed.  Allocate a new stack big enough for
// m->moreframesize bytes, copy m->moreargsize bytes to the new frame,
// and then act as though runtime·lessstack called the function at
// m->morepc.
void
runtime·newstack(void)
{
	int32 framesize, minalloc, argsize;
	Stktop *top;
	byte *stk, *sp;
	uintptr *src, *dst, *dstend;
	G *gp;
	Gobuf label;
	bool reflectcall;
	uintptr free;

	framesize = m->moreframesize;
	argsize = m->moreargsize;
	gp = m->curg;

	if(m->morebuf.sp < gp->stackguard - StackGuard) {
		runtime·printf("runtime: split stack overflow: %p < %p\n", m->morebuf.sp, gp->stackguard - StackGuard);
		runtime·throw("runtime: split stack overflow");
	}
	if(argsize % sizeof(uintptr) != 0) {
		runtime·printf("runtime: stack split with misaligned argsize %d\n", argsize);
		runtime·throw("runtime: stack split argsize");
	}

	minalloc = 0;
	reflectcall = framesize==1;
	if(reflectcall) {
		framesize = 0;
		// moreframesize_minalloc is only set in runtime·gc(),
		// that calls newstack via reflect·call().
		minalloc = m->moreframesize_minalloc;
		m->moreframesize_minalloc = 0;
		if(framesize < minalloc)
			framesize = minalloc;
	}

	if(reflectcall && minalloc == 0 && m->morebuf.sp - sizeof(Stktop) - argsize - 32 > gp->stackguard) {
		// special case: called from reflect.call (framesize==1)
		// to call code with an arbitrary argument size,
		// and we have enough space on the current stack.
		// the new Stktop* is necessary to unwind, but
		// we don't need to create a new segment.
		top = (Stktop*)(m->morebuf.sp - sizeof(*top));
		stk = (byte*)gp->stackguard - StackGuard;
		free = 0;
	} else {
		// allocate new segment.
		framesize += argsize;
		framesize += StackExtra;	// room for more functions, Stktop.
		if(framesize < StackMin)
			framesize = StackMin;
		framesize += StackSystem;
		stk = runtime·stackalloc(framesize);
		top = (Stktop*)(stk+framesize-sizeof(*top));
		free = framesize;
	}

	if(0) {
		runtime·printf("newstack framesize=%d argsize=%d morepc=%p moreargp=%p gobuf=%p, %p top=%p old=%p\n",
			framesize, argsize, m->morepc, m->moreargp, m->morebuf.pc, m->morebuf.sp, top, gp->stackbase);
	}

	top->stackbase = (byte*)gp->stackbase;
	top->stackguard = (byte*)gp->stackguard;
	top->gobuf = m->morebuf;
	top->argp = m->moreargp;
	top->argsize = argsize;
	top->free = free;
	m->moreargp = nil;
	m->morebuf.pc = nil;
	m->morebuf.sp = (uintptr)nil;

	// copy flag from panic
	top->panic = gp->ispanic;
	gp->ispanic = false;

	gp->stackbase = (uintptr)top;
	gp->stackguard = (uintptr)stk + StackGuard;

	sp = (byte*)top;
	if(argsize > 0) {
		sp -= argsize;
		dst = (uintptr*)sp;
		dstend = dst + argsize/sizeof(*dst);
		src = (uintptr*)top->argp;
		while(dst < dstend)
			*dst++ = *src++;
	}
	if(thechar == '5') {
		// caller would have saved its LR below args.
		sp -= sizeof(void*);
		*(void**)sp = nil;
	}

	// Continue as if lessstack had just called m->morepc
	// (the PC that decided to grow the stack).
	label.sp = (uintptr)sp;
	label.pc = (byte*)runtime·lessstack;
	label.g = m->curg;
	if(reflectcall)
		runtime·gogocallfn(&label, (FuncVal*)m->morepc);
	else
		runtime·gogocall(&label, m->morepc, m->cret);

	*(int32*)345 = 123;	// never return
}
//-----------------------------------------------------------------------------
// Purpose: Tests all portals in the turret's vis for possible routes to see it's target point
// Input  : pOutVec - The location to aim at in order to hit the target ent, choosing least rotation if multiple
//			bConsiderNonPortalAimPoint - Output in pOutVec the non portal (direct) aimpoint if it requires the least rotation
// Output : Returns true on success, false on failure.
//-----------------------------------------------------------------------------
bool CNPC_RocketTurret::TestPortalsForLOS( Vector* pOutVec, bool bConsiderNonPortalAimPoint = false )
{
	// Aim at the target through the world
	CBaseEntity* pTarget = GetEnemy();
	if ( !pTarget )
	{
		return false;
	}
	Vector vAimPoint = pTarget->GetAbsOrigin() + (pTarget->WorldAlignMins() + pTarget->WorldAlignMaxs()) * 0.5f;

	int iPortalCount = CProp_Portal_Shared::AllPortals.Count();
	if( iPortalCount == 0 )
	{
		*pOutVec = vAimPoint;
		return false;
	}

	Vector vCurAim;
	AngleVectors( m_vecCurrentAngles.m_Value, &vCurAim );
	vCurAim.NormalizeInPlace();

	CProp_Portal **pPortals = CProp_Portal_Shared::AllPortals.Base();
	Vector *portalAimPoints = (Vector *)stackalloc( sizeof( Vector ) * iPortalCount );
	bool *bUsable = (bool *)stackalloc( sizeof( bool ) * iPortalCount );
	float *fPortalDot = (float *)stackalloc( sizeof( float ) * iPortalCount );

	// Test through any active portals: This may be a shorter distance to the target
	for( int i = 0; i != iPortalCount; ++i )
	{
		CProp_Portal *pTempPortal = pPortals[i];

		if( !pTempPortal->m_bActivated ||
			(pTempPortal->m_hLinkedPortal.Get() == NULL) )
		{
			//portalAimPoints[i] = vec3_invalid;
			bUsable[i] = false;
			continue;
		}

		
		bUsable[i] = FindAimPointThroughPortal( pPortals[ i ], &portalAimPoints[ i ] );
		if ( 1 )
		{
			QAngle goalAngles;
			Vector vecToEnemy = portalAimPoints[ i ] - EyePosition();
			vecToEnemy.NormalizeInPlace();

			// This value is for choosing the easiest aim point for the turret to see through.
			// 'Easiest' is the least rotation needed.
			fPortalDot[i] = DotProduct( vecToEnemy, vCurAim );
		}
	}
	

	int iCountPortalsThatSeeTarget = 0;
	
	float fHighestDot = -1.0;
	if ( bConsiderNonPortalAimPoint )
	{
		QAngle enemyRotToFace;
		Vector vecToEnemy = vAimPoint - EyePosition();
		vecToEnemy.NormalizeInPlace();
	
		fHighestDot			= DotProduct( vecToEnemy, vCurAim );
	}

	// Compare aim points, use the closest aim point which has direct LOS
	for( int i = 0; i != iPortalCount; ++i )
	{
		if( bUsable[i] )
		{
			// This aim point has direct LOS
			if ( TestLOS( portalAimPoints[ i ] ) && fHighestDot < fPortalDot[ i ] )
			{
				*pOutVec = portalAimPoints[ i ];
				fHighestDot = fPortalDot[ i ];

				++iCountPortalsThatSeeTarget;
			}
		}
	}

	return (iCountPortalsThatSeeTarget != 0);
}
AI_Waypoint_t *CAI_Pathfinder::FindBestPath(int startID, int endID) 
{
	if ( !GetNetwork()->NumNodes() )
		return NULL;

	int nNodes = GetNetwork()->NumNodes();
	CAI_Node **pAInode = GetNetwork()->AccessNodes();

	CVarBitVec	openBS(nNodes);
	CVarBitVec	closeBS(nNodes);

	// ------------- INITIALIZE ------------------------
	float* nodeG = (float *)stackalloc( nNodes * sizeof(float) );
	float* nodeH = (float *)stackalloc( nNodes * sizeof(float) );
	float* nodeF = (float *)stackalloc( nNodes * sizeof(float) );
	int*   nodeP = (int *)stackalloc( nNodes * sizeof(int) );		// Node parent 

	for (int node=0;node<nNodes;node++)
	{
		nodeG[node] = FLT_MAX;
		nodeP[node] = -1;
	}

	nodeG[startID] = 0;

	nodeH[startID] = 0.1*(pAInode[startID]->GetPosition(GetHullType())-pAInode[endID]->GetPosition(GetHullType())).Length(); // Don't want to over estimate
	nodeF[startID] = nodeG[startID] + nodeH[startID];

	openBS.Set(startID);
	closeBS.Set( startID );

	// --------------- FIND BEST PATH ------------------
	while (!openBS.IsAllClear()) 
	{
		int smallestID = CAI_Network::FindBSSmallest(&openBS,nodeF,nNodes);
	
		openBS.Clear(smallestID);

		CAI_Node *pSmallestNode = pAInode[smallestID];
		
		if (GetOuter()->IsUnusableNode(smallestID, pSmallestNode->m_pHint))
			continue;

		if (smallestID == endID) 
		{
			AI_Waypoint_t* route = MakeRouteFromParents(&nodeP[0], endID);
			return route;
		}

		// Check this if the node is immediately in the path after the startNode 
		// that it isn't blocked
		for (int link=0; link < pSmallestNode->NumLinks();link++) 
		{
			CAI_Link *nodeLink = pSmallestNode->GetLinkByIndex(link);
			
			if (!IsLinkUsable(nodeLink,smallestID))
				continue;

			// FIXME: the cost function should take into account Node costs (danger, flanking, etc).
			int moveType = nodeLink->m_iAcceptedMoveTypes[GetHullType()] & CapabilitiesGet();
			int testID	 = nodeLink->DestNodeID(smallestID);

			Vector r1 = pSmallestNode->GetPosition(GetHullType());
			Vector r2 = pAInode[testID]->GetPosition(GetHullType());
			float dist   = GetOuter()->GetNavigator()->MovementCost( moveType, r1, r2 ); // MovementCost takes ref parameters!!

			if ( dist == FLT_MAX )
				continue;

			float new_g  = nodeG[smallestID] + dist;

			if ( !closeBS.IsBitSet(testID) || (new_g < nodeG[testID]) ) 
			{
				nodeP[testID] = smallestID;
				nodeG[testID] = new_g;
				nodeH[testID] = (pAInode[testID]->GetPosition(GetHullType())-pAInode[endID]->GetPosition(GetHullType())).Length();
				nodeF[testID] = nodeG[testID] + nodeH[testID];

				closeBS.Set( testID );
				openBS.Set( testID );
			}
		}
	}

	return NULL;   
}
Beispiel #16
0
int main( int argc, char **argv )
{
	SpewOutputFunc( VTF2TGAOutputFunc );
	CommandLine()->CreateCmdLine( argc, argv );
	MathLib_Init( 2.2f, 2.2f, 0.0f, 1.0f, false, false, false, false );
	InitDefaultFileSystem();

	const char *pVTFFileName = CommandLine()->ParmValue( "-i" );
	const char *pTGAFileName = CommandLine()->ParmValue( "-o" );
	bool bGenerateMipLevels = CommandLine()->CheckParm( "-mip" ) != NULL;
	if ( !pVTFFileName )
	{
		Usage();
	}

	if ( !pTGAFileName )
	{
		pTGAFileName = pVTFFileName;
	}

	char pCurrentDirectory[MAX_PATH];
	if ( _getcwd( pCurrentDirectory, sizeof(pCurrentDirectory) ) == NULL )
	{
		fprintf( stderr, "Unable to get the current directory\n" );
		return -1;
	}
	Q_StripTrailingSlash( pCurrentDirectory );

	char pBuf[MAX_PATH];
	if ( !Q_IsAbsolutePath( pTGAFileName ) )
	{
		Q_snprintf( pBuf, sizeof(pBuf), "%s\\%s", pCurrentDirectory, pTGAFileName );
	}
	else
	{
		Q_strncpy( pBuf, pTGAFileName, sizeof(pBuf) );
	}
	Q_FixSlashes( pBuf );

	char pOutFileNameBase[MAX_PATH];
	Q_StripExtension( pBuf, pOutFileNameBase, MAX_PATH );

	char pActualVTFFileName[MAX_PATH];
	Q_strncpy( pActualVTFFileName, pVTFFileName, MAX_PATH );
	if ( !Q_strstr( pActualVTFFileName, ".vtf" ) )
	{
		Q_strcat( pActualVTFFileName, ".vtf", MAX_PATH ); 
	}

	FILE *vtfFp = fopen( pActualVTFFileName, "rb" );
	if( !vtfFp )
	{
		Error( "Can't open %s\n", pActualVTFFileName );
		exit( -1 );
	}

	fseek( vtfFp, 0, SEEK_END );
	int srcVTFLength = ftell( vtfFp );
	fseek( vtfFp, 0, SEEK_SET );

	CUtlBuffer buf;
	buf.EnsureCapacity( srcVTFLength );
	int nBytesRead = fread( buf.Base(), 1, srcVTFLength, vtfFp );
	fclose( vtfFp );
	buf.SeekPut( CUtlBuffer::SEEK_HEAD, nBytesRead );

	IVTFTexture *pTex = CreateVTFTexture();
	if (!pTex->Unserialize( buf ))
	{
		Error( "*** Error reading in .VTF file %s\n", pActualVTFFileName );
		exit(-1);
	}
	
	Msg( "vtf width: %d\n", pTex->Width() );
	Msg( "vtf height: %d\n", pTex->Height() );
	Msg( "vtf numFrames: %d\n", pTex->FrameCount() );

	Msg( "TEXTUREFLAGS_POINTSAMPLE=%s\n", ( pTex->Flags() & TEXTUREFLAGS_POINTSAMPLE ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_TRILINEAR=%s\n", ( pTex->Flags() & TEXTUREFLAGS_TRILINEAR ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_CLAMPS=%s\n", ( pTex->Flags() & TEXTUREFLAGS_CLAMPS ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_CLAMPT=%s\n", ( pTex->Flags() & TEXTUREFLAGS_CLAMPT ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_CLAMPU=%s\n", ( pTex->Flags() & TEXTUREFLAGS_CLAMPU ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_BORDER=%s\n", ( pTex->Flags() & TEXTUREFLAGS_BORDER ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_ANISOTROPIC=%s\n", ( pTex->Flags() & TEXTUREFLAGS_ANISOTROPIC ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_HINT_DXT5=%s\n", ( pTex->Flags() & TEXTUREFLAGS_HINT_DXT5 ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_SRGB=%s\n", ( pTex->Flags() & TEXTUREFLAGS_SRGB ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_NORMAL=%s\n", ( pTex->Flags() & TEXTUREFLAGS_NORMAL ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_NOMIP=%s\n", ( pTex->Flags() & TEXTUREFLAGS_NOMIP ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_NOLOD=%s\n", ( pTex->Flags() & TEXTUREFLAGS_NOLOD ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_ALL_MIPS=%s\n", ( pTex->Flags() & TEXTUREFLAGS_ALL_MIPS ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_PROCEDURAL=%s\n", ( pTex->Flags() & TEXTUREFLAGS_PROCEDURAL ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_ONEBITALPHA=%s\n", ( pTex->Flags() & TEXTUREFLAGS_ONEBITALPHA ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_EIGHTBITALPHA=%s\n", ( pTex->Flags() & TEXTUREFLAGS_EIGHTBITALPHA ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_ENVMAP=%s\n", ( pTex->Flags() & TEXTUREFLAGS_ENVMAP ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_RENDERTARGET=%s\n", ( pTex->Flags() & TEXTUREFLAGS_RENDERTARGET ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_DEPTHRENDERTARGET=%s\n", ( pTex->Flags() & TEXTUREFLAGS_DEPTHRENDERTARGET ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_NODEBUGOVERRIDE=%s\n", ( pTex->Flags() & TEXTUREFLAGS_NODEBUGOVERRIDE ) ? "true" : "false" );
	Msg( "TEXTUREFLAGS_SINGLECOPY=%s\n", ( pTex->Flags() & TEXTUREFLAGS_SINGLECOPY ) ? "true" : "false" );
	
	Vector vecReflectivity = pTex->Reflectivity();
	Msg( "vtf reflectivity: %f %f %f\n", vecReflectivity[0], vecReflectivity[1], vecReflectivity[2] );
	Msg( "transparency: " );
	if( pTex->Flags() & TEXTUREFLAGS_EIGHTBITALPHA )
	{
		Msg( "eightbitalpha\n" );
	}
	else if( pTex->Flags() & TEXTUREFLAGS_ONEBITALPHA )
	{
		Msg( "onebitalpha\n" );
	}
	else
	{
		Msg( "noalpha\n" );
	}
	ImageFormat srcFormat = pTex->Format();
	Msg( "vtf format: %s\n", ImageLoader::GetName( srcFormat ) );
		
	int iTGANameLen = Q_strlen( pOutFileNameBase );

	int iFaceCount = pTex->FaceCount();
	int nFrameCount = pTex->FrameCount();
	bool bIsCubeMap = pTex->IsCubeMap();

	int iLastMipLevel = bGenerateMipLevels ? pTex->MipCount() - 1 : 0;
	for( int iFrame = 0; iFrame < nFrameCount; ++iFrame )
	{
		for ( int iMipLevel = 0; iMipLevel <= iLastMipLevel; ++iMipLevel )
		{
			int iWidth, iHeight, iDepth;
			pTex->ComputeMipLevelDimensions( iMipLevel, &iWidth, &iHeight, &iDepth );

			for (int iCubeFace = 0; iCubeFace < iFaceCount; ++iCubeFace)
			{
				for ( int z = 0; z < iDepth; ++z )
				{
					// Construct output filename
					char *pTempNameBuf = (char *)stackalloc( iTGANameLen + 13 );
					Q_strncpy( pTempNameBuf, pOutFileNameBase, iTGANameLen + 1 );
					char *pExt = Q_strrchr( pTempNameBuf, '.' );
					if ( pExt )
					{
						pExt = 0;
					}

					if ( bIsCubeMap )
					{
						Assert( pTex->Depth() == 1 ); // shouldn't this be 1 instead of 0?
						static const char *pCubeFaceName[7] = { "rt", "lf", "bk", "ft", "up", "dn", "sph" };
						Q_strcat( pTempNameBuf, pCubeFaceName[iCubeFace], iTGANameLen + 13 ); 
					}

					if ( nFrameCount > 1 )
					{
						char pTemp[4];
						Q_snprintf( pTemp, 4, "%03d", iFrame );
						Q_strcat( pTempNameBuf, pTemp, iTGANameLen + 13 ); 
					}

					if ( iLastMipLevel != 0 )
					{
						char pTemp[8];
						Q_snprintf( pTemp, 8, "_mip%d", iMipLevel );
						Q_strcat( pTempNameBuf, pTemp, iTGANameLen + 13 ); 
					}

					if ( pTex->Depth() > 1 )
					{
						char pTemp[6];
						Q_snprintf( pTemp, 6, "_z%03d", z );
						Q_strcat( pTempNameBuf, pTemp, iTGANameLen + 13 ); 
					}

					if( srcFormat == IMAGE_FORMAT_RGBA16161616F )
					{
						Q_strcat( pTempNameBuf, ".pfm", iTGANameLen + 13 ); 
					}
					else
					{
						Q_strcat( pTempNameBuf, ".tga", iTGANameLen + 13 ); 
					}

					unsigned char *pSrcImage = pTex->ImageData( iFrame, iCubeFace, iMipLevel, 0, 0, z );

					ImageFormat dstFormat;
					if( srcFormat == IMAGE_FORMAT_RGBA16161616F )
					{
						dstFormat = IMAGE_FORMAT_RGB323232F;
					}
					else
					{
						if( ImageLoader::IsTransparent( srcFormat ) || (srcFormat == IMAGE_FORMAT_ATI1N ) || (srcFormat == IMAGE_FORMAT_ATI2N ))
						{
							dstFormat = IMAGE_FORMAT_BGRA8888;
						}
						else
						{
							dstFormat = IMAGE_FORMAT_BGR888;
						}
					}
				//	dstFormat = IMAGE_FORMAT_RGBA8888;
				//	dstFormat = IMAGE_FORMAT_RGB888;
				//	dstFormat = IMAGE_FORMAT_BGRA8888;
				//	dstFormat = IMAGE_FORMAT_BGR888;
				//	dstFormat = IMAGE_FORMAT_BGRA5551;
				//	dstFormat = IMAGE_FORMAT_BGR565;
				//	dstFormat = IMAGE_FORMAT_BGRA4444;
				//	printf( "dstFormat: %s\n", ImageLoader::GetName( dstFormat ) );
					unsigned char *pDstImage = new unsigned char[ImageLoader::GetMemRequired( iWidth, iHeight, 1, dstFormat, false )];
					if( !ImageLoader::ConvertImageFormat( pSrcImage, srcFormat, 
						pDstImage, dstFormat, iWidth, iHeight, 0, 0 ) )
					{
						Error( "Error converting from %s to %s\n",
							ImageLoader::GetName( srcFormat ), ImageLoader::GetName( dstFormat ) );
						exit( -1 );
					}

					if( dstFormat != IMAGE_FORMAT_RGB323232F )
					{
						if( ImageLoader::IsTransparent( dstFormat ) && ( dstFormat != IMAGE_FORMAT_RGBA8888 ) )
						{
							unsigned char *tmpImage = pDstImage;
							pDstImage = new unsigned char[ImageLoader::GetMemRequired( iWidth, iHeight, 1, IMAGE_FORMAT_RGBA8888, false )];
							if( !ImageLoader::ConvertImageFormat( tmpImage, dstFormat, pDstImage, IMAGE_FORMAT_RGBA8888,
								iWidth, iHeight, 0, 0 ) )
							{
								Error( "Error converting from %s to %s\n",
									ImageLoader::GetName( dstFormat ), ImageLoader::GetName( IMAGE_FORMAT_RGBA8888 ) );
							}
							dstFormat = IMAGE_FORMAT_RGBA8888;
						}
						else if( !ImageLoader::IsTransparent( dstFormat ) && ( dstFormat != IMAGE_FORMAT_RGB888 ) )
						{
							unsigned char *tmpImage = pDstImage;
							pDstImage = new unsigned char[ImageLoader::GetMemRequired( iWidth, iHeight, 1, IMAGE_FORMAT_RGB888, false )];
							if( !ImageLoader::ConvertImageFormat( tmpImage, dstFormat, pDstImage, IMAGE_FORMAT_RGB888,
								iWidth, iHeight, 0, 0 ) )
							{
								Error( "Error converting from %s to %s\n",
									ImageLoader::GetName( dstFormat ), ImageLoader::GetName( IMAGE_FORMAT_RGB888 ) );
							}
							dstFormat = IMAGE_FORMAT_RGB888;
						}

						CUtlBuffer outBuffer;
						TGAWriter::WriteToBuffer( pDstImage, outBuffer, iWidth, iHeight,
							dstFormat, dstFormat );
						if ( !g_pFullFileSystem->WriteFile( pTempNameBuf, NULL, outBuffer ) )
						{
							fprintf( stderr, "unable to write %s\n", pTempNameBuf );
						}
					}
					else
					{
						PFMWrite( ( float * )pDstImage, pTempNameBuf, iWidth, iHeight );
					}
				}
			}
		}
	}

	// leak leak leak leak leak, leak leak, leak leak (Blue Danube)
	return 0;
}
FSReturnCode_t FileSystem_LoadSearchPaths( CFSSearchPathsInit &initInfo )
{
	if ( !initInfo.m_pFileSystem || !initInfo.m_pDirectoryName )
		return SetupFileSystemError( false, FS_INVALID_PARAMETERS, "FileSystem_LoadSearchPaths: Invalid parameters specified." );

	KeyValues *pMainFile, *pFileSystemInfo, *pSearchPaths;
	FSReturnCode_t retVal = LoadGameInfoFile( initInfo.m_pDirectoryName, pMainFile, pFileSystemInfo, pSearchPaths );
	if ( retVal != FS_OK )
		return retVal;
	
	// All paths except those marked with |gameinfo_path| are relative to the base dir.
	char baseDir[MAX_PATH];
	if ( !FileSystem_GetBaseDir( baseDir, sizeof( baseDir ) ) )
		return SetupFileSystemError( false, FS_INVALID_PARAMETERS, "FileSystem_GetBaseDir failed." );

	initInfo.m_ModPath[0] = 0;

	#define GAMEINFOPATH_TOKEN		"|gameinfo_path|"
	#define BASESOURCEPATHS_TOKEN	"|all_source_engine_paths|"

	bool bLowViolence = IsLowViolenceBuild();
	bool bFirstGamePath = true;
	
	for ( KeyValues *pCur=pSearchPaths->GetFirstValue(); pCur; pCur=pCur->GetNextValue() )
	{
		const char *pPathID = pCur->GetName();
		const char *pLocation = pCur->GetString();
		
		if ( Q_stristr( pLocation, GAMEINFOPATH_TOKEN ) == pLocation )
		{
			pLocation += strlen( GAMEINFOPATH_TOKEN );
			FileSystem_AddLoadedSearchPath( initInfo, pPathID, &bFirstGamePath, initInfo.m_pDirectoryName, pLocation, bLowViolence );
		}
		else if ( Q_stristr( pLocation, BASESOURCEPATHS_TOKEN ) == pLocation )
		{
			// This is a special identifier that tells it to add the specified path for all source engine versions equal to or prior to this version.
			// So in Orange Box, if they specified:
			//		|all_source_engine_paths|hl2
			// it would add the ep2\hl2 folder and the base (ep1-era) hl2 folder.
			//
			// We need a special identifier in the gameinfo.txt here because the base hl2 folder exists in different places.
			// In the case of a game or a Steam-launched dedicated server, all the necessary prior engine content is mapped in with the Steam depots,
			// so we can just use the path as-is.

			// In the case of an hldsupdatetool dedicated server, the base hl2 folder is "..\..\hl2" (since we're up in the 'orangebox' folder).
												   
			pLocation += strlen( BASESOURCEPATHS_TOKEN );

			// Add the Orange-box path (which also will include whatever the depots mapped in as well if we're 
			// running a Steam-launched app).
			FileSystem_AddLoadedSearchPath( initInfo, pPathID, &bFirstGamePath, baseDir, pLocation, bLowViolence );

			if ( FileSystem_IsHldsUpdateToolDedicatedServer() )
			{			
				// If we're using the hldsupdatetool dedicated server, then go up a directory to get the ep1-era files too.
				char ep1EraPath[MAX_PATH];
				V_snprintf( ep1EraPath, sizeof( ep1EraPath ), "..%c%s", CORRECT_PATH_SEPARATOR, pLocation );
				FileSystem_AddLoadedSearchPath( initInfo, pPathID, &bFirstGamePath, baseDir, ep1EraPath, bLowViolence );
			}
		}
		else
		{
			FileSystem_AddLoadedSearchPath( initInfo, pPathID, &bFirstGamePath, baseDir, pLocation, bLowViolence );
		}
	}

	pMainFile->deleteThis();

	//
	// Set up search paths for add-ons
	//
	if ( IsPC() )
	{
#ifdef ENGINE_DLL
		FileSystem_UpdateAddonSearchPaths( initInfo.m_pFileSystem );
#endif
	}

	// these specialized tool paths are not used on 360 and cause a costly constant perf tax, so inhibited
	if ( IsPC() )
	{
		// Create a content search path based on the game search path
		const char *pGameRoot = getenv( GAMEROOT_TOKEN );
		const char *pContentRoot = getenv( CONTENTROOT_TOKEN );

		if ( pGameRoot && pContentRoot )
		{
			int nLen = initInfo.m_pFileSystem->GetSearchPath( "GAME", false, NULL, 0 );
			char *pSearchPath = (char*)stackalloc( nLen * sizeof(char) );
			initInfo.m_pFileSystem->GetSearchPath( "GAME", false, pSearchPath, nLen );
			char *pPath = pSearchPath;
			while( pPath )
			{
				char *pSemiColon = strchr( pPath, ';' );
				if ( pSemiColon )
				{
					*pSemiColon = 0;
				}

				Q_StripTrailingSlash( pPath );
				Q_FixSlashes( pPath );

				const char *pCurPath = pPath;
				pPath = pSemiColon ? pSemiColon + 1 : NULL;

				char pRelativePath[MAX_PATH];
				char pContentPath[MAX_PATH];
				if ( !Q_MakeRelativePath( pCurPath, pGameRoot, pRelativePath, sizeof(pRelativePath) ) )
					continue;

				Q_ComposeFileName( pContentRoot, pRelativePath, pContentPath, sizeof(pContentPath) );
				initInfo.m_pFileSystem->AddSearchPath( pContentPath, "CONTENT" );
			}

			// Add the "platform" directory as a game searchable path
			char pPlatformPath[MAX_PATH];
			Q_ComposeFileName( pGameRoot, "platform", pPlatformPath, sizeof(pPlatformPath) );
			initInfo.m_pFileSystem->AddSearchPath( pPlatformPath, "GAME", PATH_ADD_TO_TAIL );

			initInfo.m_pFileSystem->AddSearchPath( pContentRoot, "CONTENTROOT" );
			initInfo.m_pFileSystem->AddSearchPath( pGameRoot, "GAMEROOT" );
		}
		else
		{
			// Come up with some reasonable default
			int nLen = initInfo.m_pFileSystem->GetSearchPath( "MOD", false, NULL, 0 );
			char *pSearchPath = (char*)stackalloc( nLen * sizeof(char) );
			initInfo.m_pFileSystem->GetSearchPath( "MOD", false, pSearchPath, nLen );
			char *pSemiColon = strchr( pSearchPath, ';' );
			if ( pSemiColon )
			{
				*pSemiColon = 0;
			}

			char pGameRootPath[MAX_PATH];
			Q_strncpy( pGameRootPath, pSearchPath, sizeof(pGameRootPath) );
			Q_StripTrailingSlash( pGameRootPath );
			Q_StripFilename( pGameRootPath );

			char pContentRootPath[MAX_PATH];
			Q_strncpy( pContentRootPath, pGameRootPath, sizeof(pContentRootPath) );
			char *pGame = Q_stristr( pContentRootPath, "game" );

			if ( pGame )
			{
				Q_strcpy( pGame, "content" );
			}

			initInfo.m_pFileSystem->AddSearchPath( pContentRootPath, "CONTENTROOT" );
			initInfo.m_pFileSystem->AddSearchPath( pGameRootPath, "GAMEROOT" );
		}

		// Also, mark specific path IDs as "by request only". That way, we won't waste time searching in them
		// when people forget to specify a search path.
		initInfo.m_pFileSystem->MarkPathIDByRequestOnly( "contentroot", true );
		initInfo.m_pFileSystem->MarkPathIDByRequestOnly( "gameroot", true );
		initInfo.m_pFileSystem->MarkPathIDByRequestOnly( "content", true );
	}

	// Also, mark specific path IDs as "by request only". That way, we won't waste time searching in them
	// when people forget to specify a search path.
	initInfo.m_pFileSystem->MarkPathIDByRequestOnly( "executable_path", true );
	initInfo.m_pFileSystem->MarkPathIDByRequestOnly( "gamebin", true );
	initInfo.m_pFileSystem->MarkPathIDByRequestOnly( "mod", true );

	// Add the write path last.
	if ( initInfo.m_ModPath[0] != 0 )
	{
		initInfo.m_pFileSystem->AddSearchPath( initInfo.m_ModPath, "DEFAULT_WRITE_PATH", PATH_ADD_TO_TAIL );
	}

#ifdef _DEBUG	
	initInfo.m_pFileSystem->PrintSearchPaths();
#endif

#if defined( ENABLE_RUNTIME_STACK_TRANSLATION ) && !defined( _X360 )
	//copy search paths to stack tools so it can grab pdb's from all over. But only on P4 or Steam Beta builds
	if( (CommandLine()->FindParm( "-steam" ) == 0) || //not steam
		(CommandLine()->FindParm( "-internalbuild" ) != 0) ) //steam beta is ok
	{
		char szSearchPaths[4096];
		//int CBaseFileSystem::GetSearchPath( const char *pathID, bool bGetPackFiles, char *pPath, int nMaxLen )
		int iLength1 = initInfo.m_pFileSystem->GetSearchPath( "EXECUTABLE_PATH", false, szSearchPaths, 4096 );
		if( iLength1 == 1 )
			iLength1 = 0;

		int iLength2 = initInfo.m_pFileSystem->GetSearchPath( "GAMEBIN", false, szSearchPaths + iLength1, 4096 - iLength1 );
		if( (iLength2 > 1) && (iLength1 > 1) )
		{
			szSearchPaths[iLength1 - 1] = ';'; //replace first null terminator
		}

		const char *szAdditionalPath = CommandLine()->ParmValue( "-AdditionalPDBSearchPath" );
		if( szAdditionalPath && szAdditionalPath[0] )
		{
			int iLength = iLength1;
			if( iLength2 > 1 )
				iLength += iLength2;

			if( iLength != 0 )
			{
				szSearchPaths[iLength - 1] = ';'; //replaces null terminator
			}
			V_strncpy( &szSearchPaths[iLength], szAdditionalPath, 4096 - iLength );			
		}

		//Append the perforce symbol server last. Documentation says that "srv*\\perforce\symbols" should work, but it doesn't.
		//"symsrv*symsrv.dll*\\perforce\symbols" which the docs say is the same statement, works.
		{
			V_strncat( szSearchPaths, ";symsrv*symsrv.dll*\\\\perforce\\symbols", 4096 );
		}

		SetStackTranslationSymbolSearchPath( szSearchPaths );
		//MessageBox( NULL, szSearchPaths, "Search Paths", 0 );
	}
#endif

	return FS_OK;
}
Beispiel #18
0
// Called from reflect·call or from runtime·morestack when a new
// stack segment is needed.  Allocate a new stack big enough for
// m->moreframesize bytes, copy m->moreargsize bytes to the new frame,
// and then act as though runtime·lessstack called the function at
// m->morepc.
// 当需要一个新的栈段时调用,被reflect.call或者runtime.morestack调用
// 分配一个足够大的新栈,至少大于m->moreframesize。将m->moreargsize字节复制到新的栈帧。
// 然后伪装成在m->morepc处调用函数runtime.lessstack的样子。
void
runtime·newstack(void)
{
	int32 framesize, minalloc, argsize;
	Stktop *top;
	byte *stk, *sp;
	uintptr *src, *dst, *dstend;
	G *gp;
	Gobuf label;
	bool reflectcall;
	uintptr free;

	framesize = m->moreframesize;
	argsize = m->moreargsize;
	gp = m->curg;

	if(m->morebuf.sp < gp->stackguard - StackGuard) { //栈已经溢出
		runtime·printf("runtime: split stack overflow: %p < %p\n", m->morebuf.sp, gp->stackguard - StackGuard);
		runtime·throw("runtime: split stack overflow");
	}
	if(argsize % sizeof(uintptr) != 0) { //参数未对齐
		runtime·printf("runtime: stack split with misaligned argsize %d\n", argsize);
		runtime·throw("runtime: stack split argsize");
	}

	minalloc = 0;
	reflectcall = framesize==1;
	if(reflectcall) {
		framesize = 0;
		// moreframesize_minalloc is only set in runtime·gc(),
		// that calls newstack via reflect·call().
		minalloc = m->moreframesize_minalloc;
		m->moreframesize_minalloc = 0;
		if(framesize < minalloc)
			framesize = minalloc;
	}

	if(reflectcall && minalloc == 0 && m->morebuf.sp - sizeof(Stktop) - argsize - 32 > gp->stackguard) {
		// special case: called from reflect.call (framesize==1)
		// to call code with an arbitrary argument size,
		// and we have enough space on the current stack.
		// the new Stktop* is necessary to unwind, but
		// we don't need to create a new segment.
		top = (Stktop*)(m->morebuf.sp - sizeof(*top));
		stk = (byte*)gp->stackguard - StackGuard;
		free = 0;
	} else {
		// 分配新空间
		// framesize大小,必须包含参数大小部分,为调用runtime.morestack保留部分,并且至少大于StackMin。然后还要加上StackSystem部分
		framesize += argsize;
		framesize += StackExtra;	// room for more functions, Stktop.
		if(framesize < StackMin)
			framesize = StackMin;
		framesize += StackSystem;
		stk = runtime·stackalloc(framesize);
		top = (Stktop*)(stk+framesize-sizeof(*top)); 
		free = framesize;
	}

	if(0) {
		runtime·printf("newstack framesize=%d argsize=%d morepc=%p moreargp=%p gobuf=%p, %p top=%p old=%p\n",
			framesize, argsize, m->morepc, m->moreargp, m->morebuf.pc, m->morebuf.sp, top, gp->stackbase);
	}

	//将一些重要信息从结构体g中移到栈顶Stktop中
	top->stackbase = (byte*)gp->stackbase;
	top->stackguard = (byte*)gp->stackguard; 
	top->gobuf = m->morebuf; //只是借助m结构体临时传了一下参数,morebuf中记录的是栈空间不够的那个函数的pc,sp,g
	top->argp = m->moreargp; //参数
	top->argsize = argsize; //参数大小
	top->free = free; //可用空间大小
	m->moreargp = nil;
	m->morebuf.pc = nil;
	m->morebuf.sp = (uintptr)nil;

	// copy flag from panic
	top->panic = gp->ispanic;
	gp->ispanic = false;

	gp->stackbase = (uintptr)top;
	gp->stackguard = (uintptr)stk + StackGuard; //每个goroutine的g->stackguard设置成指向栈底上面StackGuard的位置。

	//装饰栈顶的参数区域
	sp = (byte*)top;
	if(argsize > 0) { //将参数移过来
		sp -= argsize;
		dst = (uintptr*)sp;
		dstend = dst + argsize/sizeof(*dst);
		src = (uintptr*)top->argp;
		while(dst < dstend)
			*dst++ = *src++;
	}
	if(thechar == '5') { //编译器标识
		// caller would have saved its LR below args.
		sp -= sizeof(void*);
		*(void**)sp = nil;
	}

	// Continue as if lessstack had just called m->morepc
	// (the PC that decided to grow the stack).
	// 继续,伪装成好像是从m->morepc中调用lessstack函数的状态
	// 跳转
	label.sp = (uintptr)sp;
	label.pc = (byte*)runtime·lessstack;
	label.g = m->curg;
	if(reflectcall)
		runtime·gogocallfn(&label, (FuncVal*)m->morepc);
	else
		runtime·gogocall(&label, m->morepc, m->cret); //gogocall相当于一个直接的jmp,不是按函数协议跳转的

	*(int32*)345 = 123;	// never return
}
Beispiel #19
0
// Hook used by runtime·malg to call runtime·stackalloc on the
// scheduler stack.  This exists because runtime·stackalloc insists
// on being called on the scheduler stack, to avoid trying to grow
// the stack while allocating a new stack segment.
static void
mstackalloc(G *gp)
{
	gp->param = runtime·stackalloc((uintptr)gp->param);
	runtime·gogo(&gp->sched, 0);
}
Beispiel #20
0
void EmitDispLMAlphaAndNeighbors()
{
	int i;

	Msg( "Finding displacement neighbors...\n" );

	// Build the CCoreDispInfos.
	CUtlVector<dface_t*> faces;

	// Create the core dispinfos and init them for use as CDispUtilsHelpers.
	for ( int iDisp = 0; iDisp < nummapdispinfo; ++iDisp )
	{
		CCoreDispInfo *pDisp = new CCoreDispInfo;
		if ( !pDisp )
		{
			g_CoreDispInfos.Purge();
			return;
		}

		int nIndex = g_CoreDispInfos.AddToTail();
		pDisp->SetListIndex( nIndex );
		g_CoreDispInfos[nIndex] = pDisp;
	}

	for ( i=0; i < nummapdispinfo; i++ )
	{
		g_CoreDispInfos[i]->SetDispUtilsHelperInfo( g_CoreDispInfos.Base(), nummapdispinfo );
	}

	faces.SetSize( nummapdispinfo );

	int nMemSize = texinfo.Count() * sizeof(int);
	int *pSwappedTexInfos = (int*)stackalloc( nMemSize );
	memset( pSwappedTexInfos, 0xFF, nMemSize );
	for( i = 0; i < numfaces; i++ )
	{
        dface_t *pFace = &dfaces[i];

		if( pFace->dispinfo == -1 )
			continue;

		mapdispinfo_t *pMapDisp = &mapdispinfo[pFace->dispinfo];
		
		// Set the displacement's face index.
		ddispinfo_t *pDisp = &g_dispinfo[pFace->dispinfo];
		pDisp->m_iMapFace = i;

		// Get a CCoreDispInfo. All we need is the triangles and lightmap texture coordinates.
		CCoreDispInfo *pCoreDispInfo = g_CoreDispInfos[pFace->dispinfo];
		DispMapToCoreDispInfo( pMapDisp, pCoreDispInfo, pFace, pSwappedTexInfos );
		
		faces[pFace->dispinfo] = pFace;
	}
	stackfree( pSwappedTexInfos );
	
	// Generate and export neighbor data.
	ExportNeighborData( g_CoreDispInfos.Base(), g_dispinfo.Base(), nummapdispinfo );

	// Generate and export the active vert lists.
	ExportAllowedVertLists( g_CoreDispInfos.Base(), g_dispinfo.Base(), nummapdispinfo );

	
	// Now that we know which vertices are actually going to be around, snap the ones that won't
	// be around onto the slightly-reduced mesh. This is so the engine's ray test code and 
	// overlay code works right.
	SnapRemainingVertsToSurface( g_CoreDispInfos.Base(), g_dispinfo.Base(), nummapdispinfo );

	Msg( "Finding lightmap sample positions...\n" );
	for ( i=0; i < nummapdispinfo; i++ )
	{
		dface_t *pFace = faces[i];
		ddispinfo_t *pDisp = &g_dispinfo[pFace->dispinfo];
		CCoreDispInfo *pCoreDispInfo = g_CoreDispInfos[i];

		pDisp->m_iLightmapSamplePositionStart = g_DispLightmapSamplePositions.Count();

		CalculateLightmapSamplePositions( pCoreDispInfo, pFace, g_DispLightmapSamplePositions );
	}

	StartPacifier( "Displacement Alpha : ");

	// Build lightmap alphas.
	int dispCount = 0;	// How many we've processed.
	for( i = 0; i < nummapdispinfo; i++ )
	{
        dface_t *pFace = faces[i];

		Assert( pFace->dispinfo == i );
		ddispinfo_t *pDisp = &g_dispinfo[pFace->dispinfo];

		// Allocate space for the alpha values.
		pDisp->m_iLightmapAlphaStart = 0; // not used anymore
		
		++dispCount;
	}

	EndPacifier();
}