void InertiaSensorFilter::covOfSigmaPoints()
{
  cov = tensor(sigmaPoints[0] - x) +
        (tensor(sigmaPoints[1] - x) + tensor(sigmaPoints[2] - x)) +
        (tensor(sigmaPoints[3] - x) + tensor(sigmaPoints[4] - x));
  cov *= 0.5f;
}
static void test_static_index_list()
{
    Tensor<float, 4> tensor(2,3,5,7);
    tensor.setRandom();

    constexpr auto reduction_axis = make_index_list(0, 1, 2);
    VERIFY_IS_EQUAL(internal::array_get<0>(reduction_axis), 0);
    VERIFY_IS_EQUAL(internal::array_get<1>(reduction_axis), 1);
    VERIFY_IS_EQUAL(internal::array_get<2>(reduction_axis), 2);
    VERIFY_IS_EQUAL(static_cast<DenseIndex>(reduction_axis[0]), 0);
    VERIFY_IS_EQUAL(static_cast<DenseIndex>(reduction_axis[1]), 1);
    VERIFY_IS_EQUAL(static_cast<DenseIndex>(reduction_axis[2]), 2);

    EIGEN_STATIC_ASSERT((internal::array_get<0>(reduction_axis) == 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
    EIGEN_STATIC_ASSERT((internal::array_get<1>(reduction_axis) == 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
    EIGEN_STATIC_ASSERT((internal::array_get<2>(reduction_axis) == 2), YOU_MADE_A_PROGRAMMING_MISTAKE);

    Tensor<float, 1> result = tensor.sum(reduction_axis);
    for (int i = 0; i < result.size(); ++i) {
        float expected = 0.0f;
        for (int j = 0; j < 2; ++j) {
            for (int k = 0; k < 3; ++k) {
                for (int l = 0; l < 5; ++l) {
                    expected += tensor(j,k,l,i);
                }
            }
        }
        VERIFY_IS_APPROX(result(i), expected);
    }
}
void InertiaSensorFilter::covOfSigmaReadingsAndSigmaPoints()
{
  readingsSigmaPointsCov = (
    (tensor(sigmaReadings[1] - readingMean, l.c[0]) + tensor(sigmaReadings[2] - readingMean, l.c[1])) +
    (tensor(sigmaReadings[3] - readingMean, -l.c[0]) + tensor(sigmaReadings[4] - readingMean, -l.c[1])));
  readingsSigmaPointsCov *= 0.5f;
}
		/**
		Returns nullptr if settings incorrect.
		*/
		std::unique_ptr<Configurator> FractureConfiguratorFactory::configurator(const Settings& s) const
		{
			std::unique_ptr<Configurator> pConf(nullptr);
			const string c = s.json["configuration"].get<string>();

			if (c == string("uniform")) {
				const double am = s.json["mechanical aperture"].get<double>();
				if (s.json["hydraulic aperture"].size() == 9) // tensor
					pConf.reset(new UniformFractureConfigurator(tensor("hydraulic aperture", s),
																tensor("permeability", s), 
																tensor("conductivity", s),
																am));
				else // scalar
					pConf.reset(new UniformFractureConfigurator(s.json["hydraulic aperture"].get<double>(), am));
			}
			else if (c == string("regional uniform")) {
				const auto ams = s.json["mechanical aperture"].get<vector<double>>();
				const auto frnames = s.json["fracture regions"].get<vector<string>>();
				if (s.json.count("permeability")) { // tensor
					vector<string> props = { "hydraulic aperture" , "permeability", "conductivity" };
					vector<vector<TensorVariable<3>>> vals(props.size(), vector<TensorVariable<3>>(ams.size(), TensorVariable<3>()));
					for (size_t i(0); i < props.size(); ++i) {
						auto jvals = s.json[props[i].c_str()].get<vector<vector<double>>>();
						for (size_t j(0); j < ams.size(); ++j)
							vals[i][j] = tensor(jvals.at(j));
					}
					pConf.reset(new RegionalUniformFractureConfigurator(vals.at(0), vals.at(1), vals.at(2), ams, frnames));
				}
				else { // scalar
					const auto ahs = s.json["hydraulic aperture"].get<vector<double>>();
					pConf.reset(new RegionalUniformFractureConfigurator(ahs, ams, frnames));
				}
			}
			return pConf;
		}
static void test_dynamic_index_list()
{
    Tensor<float, 4> tensor(2,3,5,7);
    tensor.setRandom();

    int dim1 = 2;
    int dim2 = 1;
    int dim3 = 0;

    auto reduction_axis = make_index_list(dim1, dim2, dim3);

    VERIFY_IS_EQUAL(internal::array_get<0>(reduction_axis), 2);
    VERIFY_IS_EQUAL(internal::array_get<1>(reduction_axis), 1);
    VERIFY_IS_EQUAL(internal::array_get<2>(reduction_axis), 0);
    VERIFY_IS_EQUAL(static_cast<DenseIndex>(reduction_axis[0]), 2);
    VERIFY_IS_EQUAL(static_cast<DenseIndex>(reduction_axis[1]), 1);
    VERIFY_IS_EQUAL(static_cast<DenseIndex>(reduction_axis[2]), 0);

    Tensor<float, 1> result = tensor.sum(reduction_axis);
    for (int i = 0; i < result.size(); ++i) {
        float expected = 0.0f;
        for (int j = 0; j < 2; ++j) {
            for (int k = 0; k < 3; ++k) {
                for (int l = 0; l < 5; ++l) {
                    expected += tensor(j,k,l,i);
                }
            }
        }
        VERIFY_IS_APPROX(result(i), expected);
    }
}
void InertiaSensorFilter::covOfSigmaReadings()
{
  readingsCov = (tensor(sigmaReadings[0] - readingMean) +
                 (tensor(sigmaReadings[1] - readingMean) + tensor(sigmaReadings[2] - readingMean)) +
                 (tensor(sigmaReadings[3] - readingMean) + tensor(sigmaReadings[4] - readingMean)));
  readingsCov *= 0.5f;
}
void InertialDataFilter::covOfSigmaPoints()
{
  cov = tensor(sigmaPoints[0] - mean) +
    tensor(sigmaPoints[1] - mean) +
    tensor(sigmaPoints[2] - mean) +
    tensor(sigmaPoints[3] - mean) +
    tensor(sigmaPoints[4] - mean);
  cov *= 0.5f;
}
Beispiel #8
0
Matrix2x2<> AngleEstimator::covOfSigmaPZgyroAndSigmaPX(const Vector2<>& mean) const
{
  Matrix2x2<> result(tensor(sigmaPZgyro[1] - mean, l.c[0]));
  result += tensor(sigmaPZgyro[2] - mean, l.c[1]);
  result += tensor(sigmaPZgyro[3] - mean, -l.c[0]);
  result += tensor(sigmaPZgyro[4] - mean, -l.c[1]);
  result /= 2.;
  return result;
}
Beispiel #9
0
Matrix3x2<> AngleEstimator::covOfSigmaPZaccAndSigmaPX(const Vector3<>& mean) const
{
  Matrix3x2<> result(tensor(sigmaPZacc[1] - mean, l.c[0]));
  result += tensor(sigmaPZacc[2] - mean, l.c[1]);
  result += tensor(sigmaPZacc[3] - mean, -l.c[0]);
  result += tensor(sigmaPZacc[4] - mean, -l.c[1]);
  result /= 2.;
  return result;
}
Matrix3x2f InertialDataFilter::covOfSigmaReadingsAndSigmaPoints()
{
  Matrix3x2f readingsSigmaPointsCov =
    tensor(sigmaReadings[1] - readingMean, l.col(0)) +
    tensor(sigmaReadings[2] - readingMean, l.col(1)) +
    tensor(sigmaReadings[3] - readingMean, -l.col(0)) +
    tensor(sigmaReadings[4] - readingMean, -l.col(1));
  readingsSigmaPointsCov *= 0.5f;
  return readingsSigmaPointsCov;
}
Beispiel #11
0
Matrix3x3<> AngleEstimator::covOfSigmaPZacc(const Vector3<>& mean) const
{
  Matrix3x3<> result(tensor(sigmaPZacc[0] - mean));
  result += tensor(sigmaPZacc[1] - mean);
  result += tensor(sigmaPZacc[2] - mean);
  result += tensor(sigmaPZacc[3] - mean);
  result += tensor(sigmaPZacc[4] - mean);
  result /= 2.;
  return result;
}
Beispiel #12
0
Matrix2x2<> AngleEstimator::covOfSigmaPX(const RotationMatrix& mean) const
{
  Matrix2x2<> result(tensor(sigmaPX[0] - mean));
  result += tensor(sigmaPX[1] - mean);
  result += tensor(sigmaPX[2] - mean);
  result += tensor(sigmaPX[3] - mean);
  result += tensor(sigmaPX[4] - mean);
  result /= 2.;
  return result;
}
Matrix3f InertialDataFilter::covOfSigmaReadings()
{
  Matrix3f readingsCov = 
    tensor(Vector3f(sigmaReadings[0] - readingMean)) +
    tensor(Vector3f(sigmaReadings[1] - readingMean)) +
    tensor(Vector3f(sigmaReadings[2] - readingMean)) +
    tensor(Vector3f(sigmaReadings[3] - readingMean)) +
    tensor(Vector3f(sigmaReadings[4] - readingMean));
  readingsCov *= 0.5f;
  return readingsCov;
}
void Foam::coordinateRotationOFext::calcTransform
(
    const vector& axis1,
    const vector& axis2,
    const axisOrder& order
)
{
    vector a = axis1 / mag(axis1);
    vector b = axis2;

    // Absorb minor non-orthogonality into axis2
    b = b - (b & a)*a;

    if (mag(b) < SMALL)
    {
        FatalErrorIn("coordinateRotation::calcTransform()")
            << "axis1, axis2 appear co-linear: "
            << axis1 << ", " << axis2 << endl
            << abort(FatalError);
    }

    b = b / mag(b);
    vector c = a ^ b;

    // the global -> local transformation
    tensor Rtr;
    switch (order)
    {
        case e1e2:
            Rtr = tensor(a, b, c);
            break;

        case e2e3:
            Rtr = tensor(c, a, b);
            break;

        case e3e1:
            Rtr = tensor(b, c, a);
            break;

        default:
            FatalErrorIn("coordinateRotation::calcTransform()")
                << "programmer error" << endl
                << abort(FatalError);
            // To satisfy compiler warnings
            Rtr = tensor::zero;
            break;
    }

    // the local -> global transformation
    tensor::operator=( Rtr.T() );
}
Beispiel #15
0
bool MxQuadric3::optimize(Vec3& v, const Vec3& v1,
			  const Vec3& v2, const Vec3& v3) const
{
    Vec3 d13 = v1 - v3;
    Vec3 d23 = v2 - v3;
    Mat3 A = tensor();
    Vec3 B = vector();

    Vec3 Ad13 = A*d13;
    Vec3 Ad23 = A*d23;
    Vec3 Av3  = A*v3;

    double d13_d23 = (d13*Ad23) + (d23*Ad13);
    double v3_d13  = (d13*Av3) + (v3*Ad13);
    double v3_d23  = (d23*Av3) + (v3*Ad23);

    double d23Ad23 = d23*Ad23;
    double d13Ad13 = d13*Ad13;

    double denom = d13Ad13*d23Ad23 - 2*d13_d23;
    if( FEQ(denom, 0.0, 1e-12) )
	return false;

    double a = ( d23Ad23*(2*(B*d13) + v3_d13) -
		  d13_d23*(2*(B*d23) + v3_d23) ) / -denom;

    double b = ( d13Ad13*(2*(B*d23) + v3_d23) -
		  d13_d23*(2*(B*d13) + v3_d13) ) / -denom;

    if( a<0.0 ) a=0.0; else if( a>1.0 ) a=1.0;
    if( b<0.0 ) b=0.0; else if( b>1.0 ) b=1.0;

    v = a*d13 + b*d23 + v3;
    return true;
}
Beispiel #16
0
EPState::EPState( )
//ZC05/2004: Eo(30000.0), E_Young(30000.0), nu_Poisson(0.3), rho_mass_density(0.0),
//ZC05/2004  Converged(false),
//ZC05/2004  Elasticflag(0),Ev(0.0),nuhv(0.0),Ghv(0.0),
//ZC05/2004  eo(0.85), ec(0.80), Lambda(0.025), po(100.0), e(0.85), psi(0.05), a(0.5)
: Converged(false), e(0.85), psi(0.05) //ZC05/2004

{

      //Eo               = 30000.0;
      //E_Young          = 30000.0;
      //nu_Poisson       = 0.3;
      //rho_mass_density = 0.0;
      Eep = tensor( 4, def_dim_4, 0.0 );
      integratorFlag = 0;//ForwardEuler assumed
      Delta_lambda = 0.0;

      NScalarVar = MaxNScalarVar;
      for (int i =0; i < NScalarVar; i++) {
      	 ScalarVar_commit[i] = 0.0;
         ScalarVar[i] = 0.0;
	 ScalarVar_init[i] = 0.0;
      }
      
      NTensorVar = MaxNTensorVar;
      for (int j =0; j < NTensorVar; j++) {
         TensorVar[j] = stresstensor(0.0);
         TensorVar_commit[j] = stresstensor(0.0);
         TensorVar_init[j] = stresstensor(0.0);
      }

      //Converged = false;

}
Beispiel #17
0
Tensor variable_data_factory(const Type& type, PyObject* args, PyObject* kwargs) {
  static PythonArgParser parser({
    "new(Tensor other, *, bool requires_grad=False)",
    "new(PyObject* data, *, int64_t device=-1, bool requires_grad=False)",
  });

  PyObject* parsed_args[3];
  auto r = parser.parse(args, kwargs, parsed_args);
  if (r.idx == 0) {
    return set_requires_grad(new_with_tensor_copy(type, r.tensor(0)), r.toBool(1));
    return set_requires_grad(new_with_tensor(type, r.tensor(0)), r.toBool(1));
  } else if (r.idx == 1) {
    return set_requires_grad(new_from_data(type, r.toInt64(1), r.pyobject(0)), r.toBool(2));
  }
  throw std::runtime_error("variable(): invalid arguments");
}
Beispiel #18
0
Tensor tensor_new(const Type& type, PyObject* args, PyObject* kwargs) {
  static PythonArgParser parser({
    "new(*, int64_t device=-1)",
    "new(IntList size, *, int64_t device=-1)",
    "new(Storage storage)",
    "new(*, int64_t cdata)|hidden",
    "new(Tensor other)",
    "new(PyObject* data, *, int64_t device=-1)",
  });

  PyObject* parsed_args[2];
  auto r = parser.parse(args, kwargs, parsed_args);
  if (r.idx == 0) {
    AutoGPU auto_gpu(r.toInt64(0));
    return type.tensor();
  } else if (r.idx == 1) {
    PyObject* arg = parsed_args[0];
    if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
      // new(sequence) binds to this signature but should be treated differently
      // unless the sequences is a torch.Size
      return new_from_sequence(type, r.toInt64(1), r.pyobject(0));
    }
    return new_with_sizes(type, r.toInt64(1), r.intlist(0));
  } else if (r.idx == 2) {
    return new_with_storage(type, *r.storage(0));
  } else if (r.idx == 3) {
    auto cdata = reinterpret_cast<void*>(r.toInt64(0));
    return type.unsafeTensorFromTH(cdata, true);
  } else if (r.idx == 4) {
    return new_with_tensor(type, r.tensor(0));
  } else if (r.idx == 5) {
    return new_from_sequence(type, r.toInt64(1), r.pyobject(0));
  }
  throw std::runtime_error("new(): invalid arguments");
}
Beispiel #19
0
void tree1(int k, int i, int matrix[7][4], int E[7][4][4], int pivots[7][4],
              int rge[7][4], int u[7], int s[7], int zero[3])
{
    //lookup table for indices
  static int first[3][2] = {{0,1}, {0,2}, {2,2}};
  static int index[17][2] =
  {
    {0,1}, {1,0}, {0,0}, {1,1},
    {2,0}, {3,0}, {2,1}, {3,1},
    {0,2}, {1,2}, {0,3}, {1,3},
    {2,2}, {3,2}, {2,3}, {3,3},
    {4,4}
  };
    //set u,s indices
  if (k == 0) {
    u[k] = first[i][0];
    s[k] = first[i][1];
  }
  else {
    u[k] = index[i][0];
    s[k] = index[i][1];
  }
    //handle zero case
  zero[k] = (i == 16);
  tensor(matrix[k], u[k], s[k]);  //fill raw matrix
  RGE_Solver(k, matrix[k], E, rge[k], pivots);  //Running Gaussian Elimination
}
void btCompoundShape::calculatePrincipalAxisTransform(btScalar* masses, btTransform& principal, btVector3& inertia) const
{
	int n = m_children.size();

	btScalar totalMass = 0;
	btVector3 center(0, 0, 0);
	int k;

	for (k = 0; k < n; k++)
	{
		btAssert(masses[k]>0);
		center += m_children[k].m_transform.getOrigin() * masses[k];
		totalMass += masses[k];
	}

	btAssert(totalMass>0);

	center /= totalMass;
	principal.setOrigin(center);

	btMatrix3x3 tensor(0, 0, 0, 0, 0, 0, 0, 0, 0);
	for ( k = 0; k < n; k++)
	{
		btVector3 i;
		m_children[k].m_childShape->calculateLocalInertia(masses[k], i);

		const btTransform& t = m_children[k].m_transform;
		btVector3 o = t.getOrigin() - center;

		//compute inertia tensor in coordinate system of compound shape
		btMatrix3x3 j = t.getBasis().transpose();
		j[0] *= i[0];
		j[1] *= i[1];
		j[2] *= i[2];
		j = t.getBasis() * j;

		//add inertia tensor
		tensor[0] += j[0];
		tensor[1] += j[1];
		tensor[2] += j[2];

		//compute inertia tensor of pointmass at o
		btScalar o2 = o.length2();
		j[0].setValue(o2, 0, 0);
		j[1].setValue(0, o2, 0);
		j[2].setValue(0, 0, o2);
		j[0] += o * -o.x(); 
		j[1] += o * -o.y(); 
		j[2] += o * -o.z();

		//add inertia tensor of pointmass
		tensor[0] += masses[k] * j[0];
		tensor[1] += masses[k] * j[1];
		tensor[2] += masses[k] * j[2];
	}

	tensor.diagonalize(principal.getBasis(), btScalar(0.00001), 20);
	inertia.setValue(tensor[0][0], tensor[1][1], tensor[2][2]);
}
Beispiel #21
0
void
ColumnMajorMatrixTest::fillMatrix()
{
  TensorValue<Real> tensor( 0, 0, 0, 0, 0, 0, 0, 0, 0 );
  ColumnMajorMatrix & a_ref = *a;
  a_ref.fill( tensor );

  CPPUNIT_ASSERT( tensor(0, 0) == a_ref(0, 0) );
  CPPUNIT_ASSERT( tensor(1, 0) == a_ref(1, 0) );
  CPPUNIT_ASSERT( tensor(2, 0) == a_ref(2, 0) );
  CPPUNIT_ASSERT( tensor(0, 1) == a_ref(0, 1) );
  CPPUNIT_ASSERT( tensor(1, 1) == a_ref(1, 1) );
  CPPUNIT_ASSERT( tensor(2, 1) == a_ref(2, 1) );
  CPPUNIT_ASSERT( tensor(0, 2) == a_ref(0, 2) );
  CPPUNIT_ASSERT( tensor(1, 2) == a_ref(1, 2) );
  CPPUNIT_ASSERT( tensor(2, 2) == a_ref(2, 2) );
}
Foam::energyDissipationRate::energyDissipationRate
(
    const word& name,
    const objectRegistry& obr,
    const dictionary& dict,
    const bool loadFromFiles
)
:
    name_(name),
    fieldName_(dict.lookup("fieldName")),
    obr_(obr),
    active_(true)
{
    // Check if the available mesh is an fvMesh, otherwise deactivate
    if (!isA<fvMesh>(obr_))
    {
        active_ = false;
        WarningIn
        (
            "energyDissipationRate::energyDissipationRate"
            "("
                "const word&, "
                "const objectRegistry&, "
                "const dictionary&, "
                "const bool"
            ")"
        )   << "No fvMesh available, deactivating." << nl
            << endl;
    }

    read(dict);


    if (active_)
    {
        const fvMesh& mesh = refCast<const fvMesh>(obr_);
        
        volTensorField* energyDissipationRateTensorPtr
        (
            new volTensorField
            (
                IOobject
                (
                    fieldName_,
                    mesh.time().timeName(),
                    mesh,
                    IOobject::NO_READ,
                    IOobject::NO_WRITE
                ),
                mesh,
                dimensionedTensor("0", sqr(dimLength)/pow(dimTime,3), tensor(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0))
            )
        );

        mesh.objectRegistry::store(energyDissipationRateTensorPtr);
    }
}
Beispiel #23
0
Foam::tensor Foam::molecule::rotationTensorZ(scalar phi) const
{
    return tensor
    (
        Foam::cos(phi), -Foam::sin(phi), 0,
        Foam::sin(phi), Foam::cos(phi), 0,
        0, 0, 1
    );
}
Beispiel #24
0
bool MxQuadric3::optimize(Vec3& v) const
{
    Mat3 Ainv;
    double det = invert(Ainv, tensor());
    if( FEQ(det, 0.0, 1e-12) )
	return false;

    v = -(Ainv*vector());

    return true;
}
Beispiel #25
0
void
ColumnMajorMatrixTest::tensorConstructor()
{
  TensorValue<Real> tensor( 1, 4, 7,
                            2, 5, 8,
                            3, 6, 9 );
  ColumnMajorMatrix test( tensor );

  CPPUNIT_ASSERT( test == *a );
  CPPUNIT_ASSERT( test.numEntries() == 9 );
}
Beispiel #26
0
void
ColumnMajorMatrixTest::tensorAssignOperator()
{
  ColumnMajorMatrix test(3, 3);
  TensorValue<Real> tensor( 1, 4, 7,
                            2, 5, 8,
                            3, 6, 9 );
  test = tensor;

  CPPUNIT_ASSERT( test == *a );
  CPPUNIT_ASSERT( test.numEntries() == 9 );
}
Beispiel #27
0
void Foam::RBD::joints::Ryxz::jcalc
(
    joint::XSvc& J,
    const scalarField& q,
    const scalarField& w,
    const scalarField& qDot
) const
{
    vector qj(q.block<vector>(qIndex_));

    scalar s0 = sin(qj.x());
    scalar c0 = cos(qj.x());
    scalar s1 = sin(qj.y());
    scalar c1 = cos(qj.y());
    scalar s2 = sin(qj.z());
    scalar c2 = cos(qj.z());

    J.X.E() = tensor
    (
        c2*c0 + s2*s1*s0, s2*c1,           -c2*s0 + s2*s1*c0,
       -s2*c0 + c2*s1*s0, c2*c1,            s2*s0 + c2*s1*c0,
        c1*s0,           -s1,               c1*c0
    );
    J.X.r() = Zero;

    J.S = Zero;
    J.S.xx() = s2*c1;
    J.S.xy() = c2;
    J.S.yx() = c2*c1;
    J.S.yy() = -s2;
    J.S.zx() = -s1;
    J.S.zz() = 1;

    vector qDotj(qDot.block<vector>(qIndex_));
    J.v = J.S & qDotj;

    J.c = spatialVector
    (
        c2*c1*qDotj.z()*qDotj.x()
      - s2*s1*qDotj.y()*qDotj.x()
      - s2*qDotj.z()*qDotj.y(),

       -s2*c1*qDotj.z()*qDotj.x()
      - c2*s1*qDotj.y()*qDotj.x()
      - c2*qDotj.z()*qDotj.y(),

       -c1*qDotj.y()*qDotj.x(),

        0,
        0,
        0
    );
}
Beispiel #28
0
void tree3(int k, int i, int VT[7][4], int UT[7][4], int rge[7][4],
                int E[7][4][4], int pivots[7][4], int inZero[3], int inU[7],
                int inS[7], int inV[7], int outU[7], int outV[7], int outS[7],
                int outT[7])
{
  static int alt[96][3] =
  { //u:0, v:1, t:2, s = 4
    {0,0,0}, {0,0,1}, {0,0,2}, {0,0,3}, {0,1,0}, {0,1,1}, {0,1,2}, {0,1,3},
    {0,2,0}, {0,2,1}, {0,2,2}, {0,2,3}, {0,3,0}, {0,3,1}, {0,3,2}, {0,3,3},
    {0,4,0}, {0,4,1}, {0,4,2}, {0,4,3}, {1,0,0}, {1,0,1}, {1,0,2}, {1,0,3},
    {1,1,0}, {1,1,1}, {1,1,2}, {1,1,3}, {1,2,0}, {1,2,1}, {1,2,2}, {1,2,3},
    {1,3,0}, {1,3,1}, {1,3,2}, {1,3,3}, {1,4,0}, {1,4,1}, {1,4,2}, {1,4,3},
    {2,0,0}, {2,0,1}, {2,0,2}, {2,0,3}, {2,1,0}, {2,1,1}, {2,1,2}, {2,1,3},
    {2,2,0}, {2,2,1}, {2,2,2}, {2,2,3}, {2,3,0}, {2,3,1}, {2,3,2}, {2,3,3},
    {2,4,0}, {2,4,1}, {2,4,2}, {2,4,3}, {3,0,0}, {3,0,1}, {3,0,2}, {3,0,3},
    {3,1,0}, {3,1,1}, {3,1,2}, {3,1,3}, {3,2,0}, {3,2,1}, {3,2,2}, {3,2,3},
    {3,3,0}, {3,3,1}, {3,3,2}, {3,3,3}, {3,4,0}, {3,4,1}, {3,4,2}, {3,4,3},
    {4,0,0}, {4,0,1}, {4,0,2}, {4,0,3}, {4,1,0}, {4,1,1}, {4,1,2}, {4,1,3},
    {4,2,0}, {4,2,1}, {4,2,2}, {4,2,3}, {4,3,0}, {4,3,1}, {4,3,2}, {4,3,3}
  };
  
  if (inZero[k] ==  1) {
    outU[k] = alt[i][0];
    outV[k] = alt[i][1];
    outS[k] = 4;
    outT[k] = alt[i][2];
  }
  else {
    outU[k] = inU[k];
    outV[k] = inV[k];
    outS[k] = inS[k];
    outT[k] = i;
  }
  tensor(VT[k], outV[k], outT[k]);
  tensor(UT[k], outU[k], outT[k]);
  RGE_Solver(k, VT[k], E, rge[k], pivots);
  
}
void Foam::barycentricParticle::tetTransform
(
    vector& centre,
    tensor& A
) const
{
    vector base, vertex1, vertex2;
    tetGeometry(centre, base, vertex1, vertex2);

    A = tensor
    (
        base - centre,
        vertex1 - centre,
        vertex2 - centre
    ).T();
}
Beispiel #30
0
void
OutputTestMaterial::computeQpProperties()
{
  Point p = _q_point[_qp];
  Real v = std::floor(_variable[_qp] + 0.5);
  Real x = std::ceil(p(0));
  Real y = std::ceil(p(1));

  _real_property[_qp] = v + y + x + _factor;

  RealVectorValue vec(v + x, v + y);
  _vector_property[_qp] = vec;

  RealTensorValue tensor(v, x * y, 0, -x * y, y * y);
  _tensor_property[_qp] = tensor;
}