Beispiel #1
0
			inline size_t trackFeatures_deleteOOB_impl_simple_feat(
				FEATLIST &trackedFeats,
				const size_t img_width, const size_t img_height,
				const int MIN_DIST_MARGIN_TO_STOP_TRACKING)
			{
				if (trackedFeats.empty()) return 0;

				std::vector<size_t> survival_idxs;
				const size_t N = trackedFeats.size();

				// 1st: Build list of survival indexes:
				survival_idxs.reserve(N);
				for (size_t i=0;i<N;i++)
				{
					const typename FEATLIST::feature_t &ft = trackedFeats[i];
					const TFeatureTrackStatus status = ft.track_status;
					bool eras = (status_TRACKED!=status && status_IDLE!=status);
					if (!eras)
					{
						// Also, check if it's too close to the image border:
						const int x= ft.pt.x;
						const int y= ft.pt.y;
						if (x<MIN_DIST_MARGIN_TO_STOP_TRACKING  || y<MIN_DIST_MARGIN_TO_STOP_TRACKING ||
							x>static_cast<int>(img_width-MIN_DIST_MARGIN_TO_STOP_TRACKING) ||
							y>static_cast<int>(img_height-MIN_DIST_MARGIN_TO_STOP_TRACKING))
						{
							eras = true;
						}
					}
					if (!eras) survival_idxs.push_back(i);
				}

				// 2nd: Build updated list:
				const size_t N2 = survival_idxs.size();
				const size_t n_removed = N-N2;
				for (size_t i=0;i<N2;i++)
				{
					if (survival_idxs[i]!=i)
						trackedFeats[i] = trackedFeats[ survival_idxs[i] ];
				}
				trackedFeats.resize(N2);
				return n_removed;
			} // end of trackFeatures_deleteOOB
Beispiel #2
0
void CFeatureTracker_KL::trackFeatures_impl_templ(
	const CImage &old_img,
	const CImage &new_img,
	FEATLIST &featureList )
{
MRPT_START

#if MRPT_HAS_OPENCV
	const unsigned int 	window_width = extra_params.getWithDefaultVal("window_width",15);
	const unsigned int 	window_height = extra_params.getWithDefaultVal("window_height",15);

	const int 	LK_levels    = extra_params.getWithDefaultVal("LK_levels",3);
	const int 	LK_max_iters = extra_params.getWithDefaultVal("LK_max_iters",10);
	const int 	LK_epsilon   = extra_params.getWithDefaultVal("LK_epsilon",0.1);
	const float LK_max_tracking_error = extra_params.getWithDefaultVal("LK_max_tracking_error",150.0f);


	// Both images must be of the same size
	ASSERT_( old_img.getWidth() == new_img.getWidth() && old_img.getHeight() == new_img.getHeight() );

	const size_t  img_width  = old_img.getWidth();
	const size_t  img_height = old_img.getHeight();

	const size_t nFeatures	= featureList.size();					// Number of features

	// Grayscale images
	const CImage prev_gray(old_img, FAST_REF_OR_CONVERT_TO_GRAY);
	const CImage cur_gray(new_img, FAST_REF_OR_CONVERT_TO_GRAY);

	// Array conversion MRPT->OpenCV
	if (nFeatures>0)
	{
		CvPoint2D32f *points[2];

		points[0] = reinterpret_cast<CvPoint2D32f *>( mrpt_alloca(sizeof(CvPoint2D32f)*nFeatures) );
		points[1] = reinterpret_cast<CvPoint2D32f *>( mrpt_alloca(sizeof(CvPoint2D32f)*nFeatures) );

		std::vector<char>	status(nFeatures);

		for(size_t i=0;i<nFeatures;++i)
		{
			points[0][i].x = featureList.getFeatureX(i);
			points[0][i].y = featureList.getFeatureY(i);
		} // end for

		// local scope for auxiliary variables around cvCalcOpticalFlowPyrLK()
		const IplImage *prev_gray_ipl = prev_gray.getAs<IplImage>();
		const IplImage *cur_gray_ipl  = cur_gray.getAs<IplImage>();

		// Pyramids
		// JL: It seems that cache'ing the pyramids of previous images doesn't really improve the efficiency (!?!?)
		IplImage* pPyr = NULL;
		IplImage* cPyr = NULL;

		int	flags = 0;

		float* track_error = reinterpret_cast<float*>( mrpt_alloca(sizeof(float)*nFeatures) );

		cvCalcOpticalFlowPyrLK(prev_gray_ipl, cur_gray_ipl, pPyr, cPyr,
			&points[0][0], &points[1][0], nFeatures, cvSize( window_width, window_height ), LK_levels, &status[0], track_error,
			cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,LK_max_iters,LK_epsilon), flags );

		cvReleaseImage( &pPyr );
		cvReleaseImage( &cPyr );

		for(size_t i=0;i<nFeatures;++i)
		{
			const bool trck_err_too_large = track_error[i]>LK_max_tracking_error;

			if( status[i] == 1 &&
				!trck_err_too_large &&
				points[1][i].x > 0 && points[1][i].y > 0 &&
				points[1][i].x < img_width && points[1][i].y < img_height )
			{
				// Feature could be tracked
				featureList.setFeatureXf(i, points[1][i].x );
				featureList.setFeatureYf(i, points[1][i].y );
				featureList.setTrackStatus(i, status_TRACKED );
			} // end if
			else	// Feature could not be tracked
			{
				featureList.setFeatureX(i,-1);
				featureList.setFeatureY(i,-1);
				featureList.setTrackStatus(i, trck_err_too_large ? status_LOST : status_OOB );
			} // end else
		} // end for

		mrpt_alloca_free( points[0] );
		mrpt_alloca_free( points[1] );
		mrpt_alloca_free( track_error );


		// In case it needs to rebuild a kd-tree or whatever
		featureList.mark_as_outdated();
	}

#else
	THROW_EXCEPTION("The MRPT has been compiled with MRPT_HAS_OPENCV=0 !");
#endif

	MRPT_END
} // end trackFeatures