Beispiel #1
0
// Receive the bits from the specified task.  Stuff the genome with the data.
// Returns a negative number if there was a transmission failure.
int
UnpackIndividual(GAGenome& g) {
  GA1DBinaryStringGenome& genome = (GA1DBinaryStringGenome&)g;
  int length = 0;
  float score = 0.0;
  static int nbits = 0;
  static int* bits = 0;
  int status = 0;

  status = pvm_upkint(&length, 1, 1);
  if(nbits < length){
    nbits = length;
    delete [] bits;
    bits = new int [nbits];
  }
  status = pvm_upkint(bits, length, 1);
  
  genome.length(length);	               // resize the genome
  genome = bits;			       // stuff it with the bits

  status = pvm_upkfloat(&score, 1, 1);     // get the score from process
  g.score(score);			   // set the score on the genome

  return status;
}
Beispiel #2
0
// Send the bits of the genome to the task that requested them.  First we send
// the number of bits, then we send the bits themselves.  Note that we can 
// handle genomes of varying lengths with this setup.  We also pack the score
// and stuff that in as well (so that they don't have to do an eval at the
// other end).  If we did this as a member function we could save the hassle
// of an extra copy of the bits...
//   Returns negative number (error code) if failure.
int
PackIndividual(GAGenome& g) {
  GA1DBinaryStringGenome& genome = (GA1DBinaryStringGenome&)g;
  static int* bits = 0;
  static int nbits = 0;
  int status = 0;;

  if(nbits < genome.length()){
    nbits = genome.length();
    delete [] bits;
    bits = new int [nbits];
  }

  int length = genome.length();
  for(int i=0; i<length; i++)
    bits[i] = genome.gene(i);

  status = pvm_pkint(&length, 1, 1);
  status = pvm_pkint(bits, length, 1);

  float score = g.score();
  status = pvm_pkfloat(&score, 1, 1);

  return status;
}
Beispiel #3
0
// Receive the score and set it on the genome.
int
RecvGenomeScore(GAGenome& g) {
  int status = 0;	
  float score = 0.0;
  status = pvm_upkfloat(&score, 1, 1);     // get the score from process
  g.score(score);			   // set the score on the genome

  return status;
}
Beispiel #4
0
// Send only the score of the genome to the specified task.
int
SendGenomeScore(GAGenome& g, int tid) {
  int status = 0;
  float score = g.score();
  status = pvm_initsend(PvmDataDefault);
  status = pvm_pkfloat(&score, 1, 1);
  status = pvm_send(tid, MSG_GENOME_SCORE);

  return status;
}
Beispiel #5
0
void
GADCrowdingGA::step() {
  if(pop->size() == 0) return;

  GAGenome *child = pop->individual(0).clone();

  GAList<int> indpool;

  for (int i=0; i<pop->size(); i++)
    indpool.insert(i);

  do {
    int *ip;
    indpool.warp(GARandomInt(0,indpool.size()-1)); // select mom
    ip=indpool.remove();
    GAGenome *mom = &pop->individual(*ip);
    delete ip;

    indpool.warp(GARandomInt(0,indpool.size()-1)); // select dad
    ip=indpool.remove();
    GAGenome *dad = &pop->individual(*ip);
    delete ip;

    stats.numsel += 2;		                   // create child
    stats.numcro += (*scross)(*mom, *dad, child, 0);
    stats.nummut += child->mutate(pMutation());
    stats.numeval += 1;

    double d1 = child->compare(*mom);      // replace closest parent
    double d2 = child->compare(*dad);
    if (d1 < d2) {
      if (minmax == MINIMIZE) {
    if (child->score() < mom->score()) {
      mom->copy(*child);
      stats.numrep += 1;
    }
      }
      else {
    if (child->score() > mom->score()) {
      mom->copy(*child);
      stats.numrep += 1;
    }
      }
    }
    else {
      if (minmax == MINIMIZE) {
    if (child->score() < dad->score()) {
      dad->copy(*child);
      stats.numrep += 1;
    }
      }
      else {
    if (child->score() > dad->score()) {
      dad->copy(*child);
      stats.numrep += 1;
    }
      }
    }
  } while (indpool.size()>1);

  pop->evaluate(gaTrue);
  stats.update(*pop);

  delete child;
}
void PetriDish::GAPDEvaluator( GAPopulation & pop )
{
    assert(pop.size() > 0);

    // Since this is a static method, get this population's associated PetriDish
    PetriDish* thisPetriDish = dynamic_cast<PetriDish*>(pop.geneticAlgorithm());
    assert(thisPetriDish);

#ifdef USING_GASIMPLEGA
    // A workaround for  oldPop not copying our Evaluator to the next set of Genomes (as opposed to hacking GASimpleGA.C)
    if ( thisPetriDish->_oldPopInitialized == false )
    {
        thisPetriDish->_oldPopInitialized = true;
        thisPetriDish->oldPop->initialize();
    }
#endif//USING_GASIMPLEGA

    // Use all of the available cores (as reported by the processor) for threads
    unsigned numberOfThreadsToUse;

#if USE_BOOST
    numberOfThreadsToUse = boost::thread::hardware_concurrency();
#else//USE_BOOST
    numberOfThreadsToUse = (unsigned)sysconf( _SC_NPROCESSORS_ONLN );
    int errorCode;
#endif//USE_BOOST

    // Allocate an array of pointers for the threads, as well as the associated background information
#if USE_BOOST
    boost::thread** backgroundThreads = new boost::thread*[numberOfThreadsToUse];
#else//USE_BOOST
    pthread_t* backgroundThreads = new pthread_t[numberOfThreadsToUse];
#endif//USE_BOOST
    assert( backgroundThreads );
    memset( backgroundThreads, 0, numberOfThreadsToUse * sizeof( void* ) );

    BackgroundEvaluator** backgroundEvaluators = new BackgroundEvaluator*[numberOfThreadsToUse];
    assert( backgroundEvaluators );
    memset( backgroundEvaluators, 0, numberOfThreadsToUse * sizeof( BackgroundEvaluator* ) );

#if DEBUG
    cout << "Evaluating new GAPopulation ( " << pop.size( ) << " )... ( using " << numberOfThreadsToUse << " threads )" << std::endl;
#endif//DEBUG

    int completed = 0;
    int indIndex = 0;
    u_int32_t tIndex = 0U;

#if DEBUG
    float highestScoreSoFar = 0.0f;
    float total = 0.0f;
#endif//DEBUG

    // Loop until every population member has been evaluated.
    while ( completed < pop.size( ) && ( thisPetriDish->_interrupt == false ) )
    {
        // If we still have members to evaluate, and there's a free thread open
        if ( ( indIndex < pop.size( ) ) && ( backgroundThreads[tIndex] == NULL ) )
        {
            // If we haven't allocated space for the evaluator thread information
            if( backgroundEvaluators[tIndex] == NULL )
            {
                backgroundEvaluators[tIndex] = new BackgroundEvaluator( &pop.individual( indIndex ), indIndex );
                assert( backgroundEvaluators[tIndex] != NULL );
            }
            else
            {
                assert(backgroundEvaluators[tIndex]->finished() == true);

                backgroundEvaluators[tIndex]->newIndividual( &pop.individual( indIndex ), indIndex);
            }
#if DEBUG
            cout << "Starting individual #" << indIndex + 1 << " ( of " << pop.size( ) << " )" << std::endl;
#endif//DEBUG

            // Kick off the thread
#if USE_BOOST
            try
            {
                backgroundThreads[tIndex] = new boost::thread( boost::ref(*backgroundEvaluators[tIndex]) );
            }
            catch(const std::exception& e)
            {
                cerr << "boost::thread exception: " << e.what() << std::endl;
                return;
            }
#else//USE_BOOST
            errorCode = pthread_create(&backgroundThreads[tIndex], NULL, backgroundEvaluate, backgroundEvaluators[tIndex]);
            if (errorCode!=0)
            {
                cerr << "pthread_create: Error #"<< errorCode << " (" << strerror(errorCode) << ")" << std::endl;
                return;
            }
#endif//USE_BOOST
            assert(backgroundThreads[tIndex]);

            indIndex++;
        }

        // Our cyclic thread index checks for the completion of a running thread
        tIndex = ( tIndex+1 ) % numberOfThreadsToUse;

        // A (possibly still running) thread exists...
        if ( backgroundThreads[tIndex] != NULL )
        {
            assert( backgroundEvaluators[tIndex] != NULL );

            // Check to see if it is finished
            if ( backgroundEvaluators[tIndex]->finished() )
            {
                // The thread has finished. Gather some stats (if DEBUGging) and free the thread up for the next individual
                completed++;
#if DEBUG
                GAGenome* genome = backgroundEvaluators[tIndex]->individual( );

                float score = genome->score( );

                total += score;

                cout << "Received results from individual #" << backgroundEvaluators[tIndex]->index( ) << " ( " << completed << " of " << pop.size( ) <<
                     " finished ): Score: " << genome->score( ) << " (" << total / (float)completed << " is average so far)" << std::endl;

                if ( score > highestScoreSoFar )
                {
                    cout << "Found new high score so far: ( " << score << " > " << highestScoreSoFar <<" )" << std::endl;
                    highestScoreSoFar = score;
                }
#endif//DEBUG
#if USE_BOOST
                delete backgroundThreads[tIndex];
#else//USE_BOOST
                errorCode = pthread_join(backgroundThreads[tIndex], NULL);
                assert(errorCode==0);
#endif//USE_BOOST
                backgroundThreads[tIndex] = NULL;
            }
            else
            {
                // If it hasn't finished yet, give up some main() thread processor time to the background evaluators
#if USE_BOOST
                boost::thread::yield();
#else//USE_BOOST
                pthread_yield();
#endif//USE_BOOST
            }
        }
    }

    if ( thisPetriDish->_interrupt == true )
    {
        cerr << "...evaluation interrupted!" << std::endl;

        thisPetriDish->terminator(InterruptTerminator);
    }
#if DEBUG
    else
    {
        cout << "...finished evaluating this population." << std::endl;
    }
#endif//DEBUG

    for ( tIndex = 0; tIndex < numberOfThreadsToUse; tIndex++ )
    {
        if ( thisPetriDish->_interrupt == false )
        {
            // Double (sanity) check that all of the threads have actually been processed
            assert( backgroundThreads[tIndex] == NULL );

            if ( backgroundEvaluators[tIndex] != NULL ) // This can happen if all cores aren't used
            {
                assert( backgroundEvaluators[tIndex]->finished() == true );
            }
        }
        else
        {
            // If the GA has been interrupted, try and clean up the background threads
            if ( backgroundThreads[tIndex] != NULL )
            {
#if USE_BOOST
                backgroundThreads[tIndex]->interrupt();
                delete backgroundThreads[tIndex];
#else//USE_BOOST
                pthread_cancel(backgroundThreads[tIndex]);
                errorCode = pthread_join(backgroundThreads[tIndex], NULL);
                assert(errorCode==0);
#endif//USE_BOOST
                backgroundThreads[tIndex] = NULL;
            }
        }

        if ( backgroundEvaluators[tIndex] != NULL ) // This can happen if all cores aren't used
        {
            delete backgroundEvaluators[tIndex];
            backgroundEvaluators[tIndex] = NULL;
        }
    }

    // Free up the thread and background information arrays
    if (backgroundThreads) {
        delete[] backgroundThreads;
        backgroundThreads = NULL;
    }
    if (backgroundEvaluators) {
        delete[] backgroundEvaluators;
        backgroundEvaluators = NULL;
    }
}