Beispiel #1
0
double L2ZZErrorEstimator(BilinearFormIntegrator &flux_integrator,
                          const ParGridFunction &x,
                          ParFiniteElementSpace &smooth_flux_fes,
                          ParFiniteElementSpace &flux_fes,
                          Vector &errors,
                          int norm_p, double solver_tol, int solver_max_it)
{
   // Compute fluxes in discontinuous space
   GridFunction flux(&flux_fes);
   flux = 0.0;

   ParFiniteElementSpace *xfes = x.ParFESpace();
   Array<int> xdofs, fdofs;
   Vector el_x, el_f;

   for (int i = 0; i < xfes->GetNE(); i++)
   {
      xfes->GetElementVDofs(i, xdofs);
      x.GetSubVector(xdofs, el_x);

      ElementTransformation *Transf = xfes->GetElementTransformation(i);
      flux_integrator.ComputeElementFlux(*xfes->GetFE(i), *Transf, el_x,
                                         *flux_fes.GetFE(i), el_f, false);

      flux_fes.GetElementVDofs(i, fdofs);
      flux.AddElementVector(fdofs, el_f);
   }

   // Assemble the linear system for L2 projection into the "smooth" space
   ParBilinearForm *a = new ParBilinearForm(&smooth_flux_fes);
   ParLinearForm *b = new ParLinearForm(&smooth_flux_fes);
   VectorGridFunctionCoefficient f(&flux);

   if (xfes->GetNE())
   {
      if (smooth_flux_fes.GetFE(0)->GetRangeType() == FiniteElement::SCALAR)
      {
         VectorMassIntegrator *vmass = new VectorMassIntegrator;
         vmass->SetVDim(smooth_flux_fes.GetVDim());
         a->AddDomainIntegrator(vmass);
         b->AddDomainIntegrator(new VectorDomainLFIntegrator(f));
      }
      else
      {
         a->AddDomainIntegrator(new VectorFEMassIntegrator);
         b->AddDomainIntegrator(new VectorFEDomainLFIntegrator(f));
      }
   }

   b->Assemble();
   a->Assemble();
   a->Finalize();

   // The destination of the projected discontinuous flux
   ParGridFunction smooth_flux(&smooth_flux_fes);
   smooth_flux = 0.0;

   HypreParMatrix* A = a->ParallelAssemble();
   HypreParVector* B = b->ParallelAssemble();
   HypreParVector* X = smooth_flux.ParallelProject();

   delete a;
   delete b;

   // Define and apply a parallel PCG solver for AX=B with the BoomerAMG
   // preconditioner from hypre.
   HypreBoomerAMG *amg = new HypreBoomerAMG(*A);
   amg->SetPrintLevel(0);
   HyprePCG *pcg = new HyprePCG(*A);
   pcg->SetTol(solver_tol);
   pcg->SetMaxIter(solver_max_it);
   pcg->SetPrintLevel(0);
   pcg->SetPreconditioner(*amg);
   pcg->Mult(*B, *X);

   // Extract the parallel grid function corresponding to the finite element
   // approximation X. This is the local solution on each processor.
   smooth_flux = *X;

   delete A;
   delete B;
   delete X;
   delete amg;
   delete pcg;

   // Proceed through the elements one by one, and find the Lp norm differences
   // between the flux as computed per element and the flux projected onto the
   // smooth_flux_fes space.
   double total_error = 0.0;
   errors.SetSize(xfes->GetNE());
   for (int i = 0; i < xfes->GetNE(); i++)
   {
      errors(i) = ComputeElementLpDistance(norm_p, i, smooth_flux, flux);
      total_error += pow(errors(i), norm_p);
   }

   double glob_error;
   MPI_Allreduce(&total_error, &glob_error, 1, MPI_DOUBLE, MPI_SUM,
                 xfes->GetComm());

   return pow(glob_error, 1.0/norm_p);
}
Beispiel #2
0
int main(int argc, char *argv[])
{
   // 0. Initialize MPI.
   int num_procs, myid;
   MPI_Init(&argc, &argv);
   MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);

   // 1. Parse command-line options.
   const char *mesh_file = "../data/beam-tri.mesh";
   int serial_ref_levels = 0;
   int order = 1;
   bool static_cond = false;
   bool visualization = 1;

   OptionsParser args(argc, argv);
   args.AddOption(&mesh_file, "-m", "--mesh",
                  "Mesh file to use.");
   args.AddOption(&serial_ref_levels, "-rs", "--refine-serial",
                  "Number of uniform serial refinements (before parallel"
                  " partitioning)");
   args.AddOption(&order, "-o", "--order",
                  "Finite element order (polynomial degree).");
   args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
                  "--no-static-condensation", "Enable static condensation.");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.Parse();
   if (!args.Good())
   {
      if (myid == 0)
      {
         args.PrintUsage(cout);
      }
      MPI_Finalize();
      return 1;
   }
   if (myid == 0)
   {
      args.PrintOptions(cout);
   }

   // 2. Read the mesh from the given mesh file. We can handle triangular,
   //    quadrilateral, tetrahedral, and hexahedral meshes with the same code.
   Mesh mesh(mesh_file, 1, 1);
   int dim = mesh.Dimension();
   MFEM_VERIFY(mesh.SpaceDimension() == dim, "invalid mesh");

   if (mesh.attributes.Max() < 2 || mesh.bdr_attributes.Max() < 2)
   {
      cerr << "\nInput mesh should have at least two materials and "
           << "two boundary attributes! (See schematic in ex2.cpp)\n"
           << endl;
      MPI_Finalize();
      return 3;
   }

   // 3. Refine the mesh before parallel partitioning. Since a NURBS mesh can
   //    currently only be refined uniformly, we need to convert it to a
   //    piecewise-polynomial curved mesh. First we refine the NURBS mesh a bit
   //    more and then project the curvature to quadratic Nodes.
   if (mesh.NURBSext && serial_ref_levels == 0)
   {
      serial_ref_levels = 2;
   }
   for (int i = 0; i < serial_ref_levels; i++)
   {
      mesh.UniformRefinement();
   }
   if (mesh.NURBSext)
   {
      mesh.SetCurvature(2);
   }
   mesh.EnsureNCMesh();

   ParMesh pmesh(MPI_COMM_WORLD, mesh);
   mesh.Clear();

   // 4. Define a finite element space on the mesh. The polynomial order is
   //    one (linear) by default, but this can be changed on the command line.
   H1_FECollection fec(order, dim);
   ParFiniteElementSpace fespace(&pmesh, &fec, dim);

   // 5. As in Example 2, we set up the linear form b(.) which corresponds to
   //    the right-hand side of the FEM linear system. In this case, b_i equals
   //    the boundary integral of f*phi_i where f represents a "pull down"
   //    force on the Neumann part of the boundary and phi_i are the basis
   //    functions in the finite element fespace. The force is defined by the
   //    VectorArrayCoefficient object f, which is a vector of Coefficient
   //    objects. The fact that f is non-zero on boundary attribute 2 is
   //    indicated by the use of piece-wise constants coefficient for its last
   //    component. We don't assemble the discrete problem yet, this will be
   //    done in the main loop.
   VectorArrayCoefficient f(dim);
   for (int i = 0; i < dim-1; i++)
   {
      f.Set(i, new ConstantCoefficient(0.0));
   }
   {
      Vector pull_force(pmesh.bdr_attributes.Max());
      pull_force = 0.0;
      pull_force(1) = -1.0e-2;
      f.Set(dim-1, new PWConstCoefficient(pull_force));
   }

   ParLinearForm b(&fespace);
   b.AddDomainIntegrator(new VectorBoundaryLFIntegrator(f));

   // 6. Set up the bilinear form a(.,.) on the finite element space
   //    corresponding to the linear elasticity integrator with piece-wise
   //    constants coefficient lambda and mu.
   Vector lambda(pmesh.attributes.Max());
   lambda = 1.0;
   lambda(0) = lambda(1)*50;
   PWConstCoefficient lambda_func(lambda);
   Vector mu(pmesh.attributes.Max());
   mu = 1.0;
   mu(0) = mu(1)*50;
   PWConstCoefficient mu_func(mu);

   ParBilinearForm a(&fespace);
   BilinearFormIntegrator *integ =
      new ElasticityIntegrator(lambda_func,mu_func);
   a.AddDomainIntegrator(integ);
   if (static_cond) { a.EnableStaticCondensation(); }

   // 7. The solution vector x and the associated finite element grid function
   //    will be maintained over the AMR iterations. We initialize it to zero.
   Vector zero_vec(dim);
   zero_vec = 0.0;
   VectorConstantCoefficient zero_vec_coeff(zero_vec);
   ParGridFunction x(&fespace);
   x = 0.0;

   // 8. Determine the list of true (i.e. conforming) essential boundary dofs.
   //    In this example, the boundary conditions are defined by marking only
   //    boundary attribute 1 from the mesh as essential and converting it to a
   //    list of true dofs.  The conversion to true dofs will be done in the
   //    main loop.
   Array<int> ess_bdr(pmesh.bdr_attributes.Max());
   ess_bdr = 0;
   ess_bdr[0] = 1;

   // 9. GLVis visualization.
   char vishost[] = "localhost";
   int  visport   = 19916;
   socketstream sol_sock;

   // 10. Set up an error estimator. Here we use the Zienkiewicz-Zhu estimator
   //     that uses the ComputeElementFlux method of the ElasticityIntegrator to
   //     recover a smoothed flux (stress) that is subtracted from the element
   //     flux to get an error indicator. We need to supply the space for the
   //     smoothed flux: an (H1)^tdim (i.e., vector-valued) space is used here.
   //     Here, tdim represents the number of components for a symmetric (dim x
   //     dim) tensor.
   const int tdim = dim*(dim+1)/2;
   L2_FECollection flux_fec(order, dim);
   ParFiniteElementSpace flux_fespace(&pmesh, &flux_fec, tdim);
   ParFiniteElementSpace smooth_flux_fespace(&pmesh, &fec, tdim);
   L2ZienkiewiczZhuEstimator estimator(*integ, x, flux_fespace,
                                       smooth_flux_fespace);

   // 11. A refiner selects and refines elements based on a refinement strategy.
   //     The strategy here is to refine elements with errors larger than a
   //     fraction of the maximum element error. Other strategies are possible.
   //     The refiner will call the given error estimator.
   ThresholdRefiner refiner(estimator);
   refiner.SetTotalErrorFraction(0.7);

   // 12. The main AMR loop. In each iteration we solve the problem on the
   //     current mesh, visualize the solution, and refine the mesh.
   const int max_dofs = 50000;
   const int max_amr_itr = 20;
   for (int it = 0; it <= max_amr_itr; it++)
   {
      HYPRE_Int global_dofs = fespace.GlobalTrueVSize();
      if (myid == 0)
      {
         cout << "\nAMR iteration " << it << endl;
         cout << "Number of unknowns: " << global_dofs << endl;
      }

      // 13. Assemble the stiffness matrix and the right-hand side.
      a.Assemble();
      b.Assemble();

      // 14. Set Dirichlet boundary values in the GridFunction x.
      //     Determine the list of Dirichlet true DOFs in the linear system.
      Array<int> ess_tdof_list;
      x.ProjectBdrCoefficient(zero_vec_coeff, ess_bdr);
      fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);

      // 15. Create the linear system: eliminate boundary conditions, constrain
      //     hanging nodes and possibly apply other transformations. The system
      //     will be solved for true (unconstrained) DOFs only.

      HypreParMatrix A;
      Vector B, X;
      const int copy_interior = 1;
      a.FormLinearSystem(ess_tdof_list, x, b, A, X, B, copy_interior);

      // 16. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
      //     preconditioner from hypre.
      HypreBoomerAMG amg;
      amg.SetPrintLevel(0);
      // amg.SetSystemsOptions(dim); // optional
      CGSolver pcg(A.GetComm());
      pcg.SetPreconditioner(amg);
      pcg.SetOperator(A);
      pcg.SetRelTol(1e-6);
      pcg.SetMaxIter(500);
      pcg.SetPrintLevel(3); // print the first and the last iterations only
      pcg.Mult(B, X);

      // 17. After solving the linear system, reconstruct the solution as a
      //     finite element GridFunction. Constrained nodes are interpolated
      //     from true DOFs (it may therefore happen that x.Size() >= X.Size()).
      a.RecoverFEMSolution(X, b, x);

      // 18. Send solution by socket to the GLVis server.
      if (visualization && it == 0)
      {
         sol_sock.open(vishost, visport);
         sol_sock.precision(8);
      }
      if (visualization && sol_sock.good())
      {
         GridFunction nodes(&fespace), *nodes_p = &nodes;
         pmesh.GetNodes(nodes);
         nodes += x;
         int own_nodes = 0;
         pmesh.SwapNodes(nodes_p, own_nodes);
         x.Neg(); // visualize the backward displacement
         sol_sock << "parallel " << num_procs << ' ' << myid << '\n';
         sol_sock << "solution\n" << pmesh << x << flush;
         x.Neg();
         pmesh.SwapNodes(nodes_p, own_nodes);
         if (it == 0)
         {
            sol_sock << "keys '" << ((dim == 2) ? "Rjl" : "") << "m'" << endl;
         }
         sol_sock << "window_title 'AMR iteration: " << it << "'\n"
                  << "pause" << endl;
         if (myid == 0)
         {
            cout << "Visualization paused. "
                 "Press <space> in the GLVis window to continue." << endl;
         }
      }

      if (global_dofs > max_dofs)
      {
         if (myid == 0)
         {
            cout << "Reached the maximum number of dofs. Stop." << endl;
         }
         break;
      }

      // 19. Call the refiner to modify the mesh. The refiner calls the error
      //     estimator to obtain element errors, then it selects elements to be
      //     refined and finally it modifies the mesh. The Stop() method can be
      //     used to determine if a stopping criterion was met.
      refiner.Apply(pmesh);
      if (refiner.Stop())
      {
         if (myid == 0)
         {
            cout << "Stopping criterion satisfied. Stop." << endl;
         }
         break;
      }

      // 20. Update the space to reflect the new state of the mesh. Also,
      //     interpolate the solution x so that it lies in the new space but
      //     represents the same function. This saves solver iterations later
      //     since we'll have a good initial guess of x in the next step.
      //     Internally, FiniteElementSpace::Update() calculates an
      //     interpolation matrix which is then used by GridFunction::Update().
      fespace.Update();
      x.Update();

      // 21. Load balance the mesh, and update the space and solution. Currently
      //     available only for nonconforming meshes.
      if (pmesh.Nonconforming())
      {
         pmesh.Rebalance();

         // Update the space and the GridFunction. This time the update matrix
         // redistributes the GridFunction among the processors.
         fespace.Update();
         x.Update();
      }

      // 22. Inform also the bilinear and linear forms that the space has
      //     changed.
      a.Update();
      b.Update();
   }

   {
      ostringstream mref_name, mesh_name, sol_name;
      mref_name << "ex22p_reference_mesh." << setfill('0') << setw(6) << myid;
      mesh_name << "ex22p_deformed_mesh." << setfill('0') << setw(6) << myid;
      sol_name << "ex22p_displacement." << setfill('0') << setw(6) << myid;

      ofstream mesh_ref_out(mref_name.str().c_str());
      mesh_ref_out.precision(16);
      pmesh.Print(mesh_ref_out);

      ofstream mesh_out(mesh_name.str().c_str());
      mesh_out.precision(16);
      GridFunction nodes(&fespace), *nodes_p = &nodes;
      pmesh.GetNodes(nodes);
      nodes += x;
      int own_nodes = 0;
      pmesh.SwapNodes(nodes_p, own_nodes);
      pmesh.Print(mesh_out);
      pmesh.SwapNodes(nodes_p, own_nodes);

      ofstream x_out(sol_name.str().c_str());
      x_out.precision(16);
      x.Save(x_out);
   }

   MPI_Finalize();
   return 0;
}
Beispiel #3
0
int main(int argc, char *argv[])
{
   // 1. Initialize MPI.
   int num_procs, myid;
   MPI_Init(&argc, &argv);
   MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
   MPI_Comm_rank(MPI_COMM_WORLD, &myid);

   // 2. Parse command-line options.
   const char *mesh_file = "../data/beam-tri.mesh";
   int order = 1;
   int nev = 5;
   bool visualization = 1;
   bool amg_elast = 0;

   OptionsParser args(argc, argv);
   args.AddOption(&mesh_file, "-m", "--mesh",
                  "Mesh file to use.");
   args.AddOption(&order, "-o", "--order",
                  "Finite element order (polynomial degree).");
   args.AddOption(&nev, "-n", "--num-eigs",
                  "Number of desired eigenmodes.");
   args.AddOption(&amg_elast, "-elast", "--amg-for-elasticity", "-sys",
                  "--amg-for-systems",
                  "Use the special AMG elasticity solver (GM/LN approaches), "
                  "or standard AMG for systems (unknown approach).");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.Parse();
   if (!args.Good())
   {
      if (myid == 0)
      {
         args.PrintUsage(cout);
      }
      MPI_Finalize();
      return 1;
   }
   if (myid == 0)
   {
      args.PrintOptions(cout);
   }

   // 3. Read the (serial) mesh from the given mesh file on all processors. We
   //    can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
   //    and volume meshes with the same code.
   Mesh *mesh = new Mesh(mesh_file, 1, 1);
   int dim = mesh->Dimension();

   if (mesh->attributes.Max() < 2)
   {
      if (myid == 0)
         cerr << "\nInput mesh should have at least two materials!"
              << " (See schematic in ex12p.cpp)\n"
              << endl;
      MPI_Finalize();
      return 3;
   }

   // 4. Select the order of the finite element discretization space. For NURBS
   //    meshes, we increase the order by degree elevation.
   if (mesh->NURBSext && order > mesh->NURBSext->GetOrder())
   {
      mesh->DegreeElevate(order - mesh->NURBSext->GetOrder());
   }

   // 5. Refine the serial mesh on all processors to increase the resolution. In
   //    this example we do 'ref_levels' of uniform refinement. We choose
   //    'ref_levels' to be the largest number that gives a final mesh with no
   //    more than 1,000 elements.
   {
      int ref_levels =
         (int)floor(log(1000./mesh->GetNE())/log(2.)/dim);
      for (int l = 0; l < ref_levels; l++)
      {
         mesh->UniformRefinement();
      }
   }

   // 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
   //    this mesh further in parallel to increase the resolution. Once the
   //    parallel mesh is defined, the serial mesh can be deleted.
   ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
   delete mesh;
   {
      int par_ref_levels = 1;
      for (int l = 0; l < par_ref_levels; l++)
      {
         pmesh->UniformRefinement();
      }
   }

   // 7. Define a parallel finite element space on the parallel mesh. Here we
   //    use vector finite elements, i.e. dim copies of a scalar finite element
   //    space. We use the ordering by vector dimension (the last argument of
   //    the FiniteElementSpace constructor) which is expected in the systems
   //    version of BoomerAMG preconditioner. For NURBS meshes, we use the
   //    (degree elevated) NURBS space associated with the mesh nodes.
   FiniteElementCollection *fec;
   ParFiniteElementSpace *fespace;
   const bool use_nodal_fespace = pmesh->NURBSext && !amg_elast;
   if (use_nodal_fespace)
   {
      fec = NULL;
      fespace = (ParFiniteElementSpace *)pmesh->GetNodes()->FESpace();
   }
   else
   {
      fec = new H1_FECollection(order, dim);
      fespace = new ParFiniteElementSpace(pmesh, fec, dim, Ordering::byVDIM);
   }
   HYPRE_Int size = fespace->GlobalTrueVSize();
   if (myid == 0)
   {
      cout << "Number of unknowns: " << size << endl
           << "Assembling: " << flush;
   }

   // 8. Set up the parallel bilinear forms a(.,.) and m(.,.) on the finite
   //    element space corresponding to the linear elasticity integrator with
   //    piece-wise constants coefficient lambda and mu, a simple mass matrix
   //    needed on the right hand side of the generalized eigenvalue problem
   //    below. The boundary conditions are implemented by marking only boundary
   //    attribute 1 as essential. We use special values on the diagonal to
   //    shift the Dirichlet eigenvalues out of the computational range. After
   //    serial/parallel assembly we extract the corresponding parallel matrices
   //    A and M.
   Vector lambda(pmesh->attributes.Max());
   lambda = 1.0;
   lambda(0) = lambda(1)*50;
   PWConstCoefficient lambda_func(lambda);
   Vector mu(pmesh->attributes.Max());
   mu = 1.0;
   mu(0) = mu(1)*50;
   PWConstCoefficient mu_func(mu);

   Array<int> ess_bdr(pmesh->bdr_attributes.Max());
   ess_bdr = 0;
   ess_bdr[0] = 1;

   ParBilinearForm *a = new ParBilinearForm(fespace);
   a->AddDomainIntegrator(new ElasticityIntegrator(lambda_func, mu_func));
   if (myid == 0)
   {
      cout << "matrix ... " << flush;
   }
   a->Assemble();
   a->EliminateEssentialBCDiag(ess_bdr, 1.0);
   a->Finalize();

   ParBilinearForm *m = new ParBilinearForm(fespace);
   m->AddDomainIntegrator(new VectorMassIntegrator());
   m->Assemble();
   // shift the eigenvalue corresponding to eliminated dofs to a large value
   m->EliminateEssentialBCDiag(ess_bdr, numeric_limits<double>::min());
   m->Finalize();
   if (myid == 0)
   {
      cout << "done." << endl;
   }

   HypreParMatrix *A = a->ParallelAssemble();
   HypreParMatrix *M = m->ParallelAssemble();

   delete a;
   delete m;

   // 9. Define and configure the LOBPCG eigensolver and the BoomerAMG
   //    preconditioner for A to be used within the solver. Set the matrices
   //    which define the generalized eigenproblem A x = lambda M x.
   HypreBoomerAMG * amg = new HypreBoomerAMG(*A);
   amg->SetPrintLevel(0);
   if (amg_elast)
   {
      amg->SetElasticityOptions(fespace);
   }
   else
   {
      amg->SetSystemsOptions(dim);
   }

   HypreLOBPCG * lobpcg = new HypreLOBPCG(MPI_COMM_WORLD);
   lobpcg->SetNumModes(nev);
   lobpcg->SetPreconditioner(*amg);
   lobpcg->SetMaxIter(100);
   lobpcg->SetTol(1e-8);
   lobpcg->SetPrecondUsageMode(1);
   lobpcg->SetPrintLevel(1);
   lobpcg->SetMassMatrix(*M);
   lobpcg->SetOperator(*A);

   // 10. Compute the eigenmodes and extract the array of eigenvalues. Define a
   //     parallel grid function to represent each of the eigenmodes returned by
   //     the solver.
   Array<double> eigenvalues;
   lobpcg->Solve();
   lobpcg->GetEigenvalues(eigenvalues);
   ParGridFunction x(fespace);

   // 11. For non-NURBS meshes, make the mesh curved based on the finite element
   //     space. This means that we define the mesh elements through a fespace
   //     based transformation of the reference element. This allows us to save
   //     the displaced mesh as a curved mesh when using high-order finite
   //     element displacement field. We assume that the initial mesh (read from
   //     the file) is not higher order curved mesh compared to the chosen FE
   //     space.
   if (!use_nodal_fespace)
   {
      pmesh->SetNodalFESpace(fespace);
   }

   // 12. Save the refined mesh and the modes in parallel. This output can be
   //     viewed later using GLVis: "glvis -np <np> -m mesh -g mode".
   {
      ostringstream mesh_name, mode_name;
      mesh_name << "mesh." << setfill('0') << setw(6) << myid;

      ofstream mesh_ofs(mesh_name.str().c_str());
      mesh_ofs.precision(8);
      pmesh->Print(mesh_ofs);

      for (int i=0; i<nev; i++)
      {
         // convert eigenvector from HypreParVector to ParGridFunction
         x = lobpcg->GetEigenvector(i);

         mode_name << "mode_" << setfill('0') << setw(2) << i << "."
                   << setfill('0') << setw(6) << myid;

         ofstream mode_ofs(mode_name.str().c_str());
         mode_ofs.precision(8);
         x.Save(mode_ofs);
         mode_name.str("");
      }
   }

   // 13. Send the above data by socket to a GLVis server. Use the "n" and "b"
   //     keys in GLVis to visualize the displacements.
   if (visualization)
   {
      char vishost[] = "localhost";
      int  visport   = 19916;
      socketstream mode_sock(vishost, visport);

      for (int i=0; i<nev; i++)
      {
         if ( myid == 0 )
         {
            cout << "Eigenmode " << i+1 << '/' << nev
                 << ", Lambda = " << eigenvalues[i] << endl;
         }

         // convert eigenvector from HypreParVector to ParGridFunction
         x = lobpcg->GetEigenvector(i);

         mode_sock << "parallel " << num_procs << " " << myid << "\n"
                   << "solution\n" << *pmesh << x << flush
                   << "window_title 'Eigenmode " << i+1 << '/' << nev
                   << ", Lambda = " << eigenvalues[i] << "'" << endl;

         char c;
         if (myid == 0)
         {
            cout << "press (q)uit or (c)ontinue --> " << flush;
            cin >> c;
         }
         MPI_Bcast(&c, 1, MPI_CHAR, 0, MPI_COMM_WORLD);

         if (c != 'c')
         {
            break;
         }
      }
      mode_sock.close();
   }