Beispiel #1
0
void QmitkOdfMaximaExtractionView::TemplatedConvertShCoeffsFromFsl(mitk::Image* mitkImg)
{
    typedef itk::FslShCoefficientImageConverter< float, shOrder > FilterType;
    typedef mitk::ImageToItk< itk::Image< float, 4 > > CasterType;
    CasterType::Pointer caster = CasterType::New();
    caster->SetInput(mitkImg);
    caster->Update();

    typename FilterType::Pointer filter = FilterType::New();
    filter->SetInputImage(caster->GetOutput());
    filter->GenerateData();
    typename FilterType::QballImageType::Pointer itkQbi = filter->GetQballImage();
    typename FilterType::CoefficientImageType::Pointer itkCi = filter->GetCoefficientImage();

    {
        mitk::Image::Pointer img = mitk::Image::New();
        img->InitializeByItk( itkCi.GetPointer() );
        img->SetVolume( itkCi->GetBufferPointer() );
        DataNode::Pointer node = DataNode::New();
        node->SetData(img);
        node->SetName("FSL_ShCoefficientImage");
        GetDataStorage()->Add(node);
    }

    {
        mitk::QBallImage::Pointer img = mitk::QBallImage::New();
        img->InitializeByItk( itkQbi.GetPointer() );
        img->SetVolume( itkQbi->GetBufferPointer() );
        DataNode::Pointer node = DataNode::New();
        node->SetData(img);
        node->SetName("FSL_QballImage");
        GetDataStorage()->Add(node);
    }
}
Beispiel #2
0
void QmitkOdfMaximaExtractionView::ConvertPeaksFromMrtrix()
{
    if (m_ImageNodes.empty())
        return;

    typedef itk::Image< float, 4 > ItkImageType;
    typedef itk::MrtrixPeakImageConverter< float > FilterType;
    FilterType::Pointer filter = FilterType::New();

    // cast to itk
    mitk::Image::Pointer mitkImg = dynamic_cast<mitk::Image*>(m_ImageNodes.at(0)->GetData());
    mitk::Geometry3D::Pointer geom = mitkImg->GetGeometry();
    typedef mitk::ImageToItk< FilterType::InputImageType > CasterType;
    CasterType::Pointer caster = CasterType::New();
    caster->SetInput(mitkImg);
    caster->Update();
    FilterType::InputImageType::Pointer itkImg = caster->GetOutput();

    filter->SetInputImage(itkImg);
    filter->GenerateData();

    mitk::Vector3D outImageSpacing = geom->GetSpacing();
    float maxSpacing = 1;
    if(outImageSpacing[0]>outImageSpacing[1] && outImageSpacing[0]>outImageSpacing[2])
        maxSpacing = outImageSpacing[0];
    else if (outImageSpacing[1] > outImageSpacing[2])
        maxSpacing = outImageSpacing[1];
    else
        maxSpacing = outImageSpacing[2];

    mitk::FiberBundleX::Pointer directions = filter->GetOutputFiberBundle();
    directions->SetGeometry(geom);
    DataNode::Pointer node = DataNode::New();
    node->SetData(directions);
    QString name(m_ImageNodes.at(0)->GetName().c_str());
    name += "_VectorField";
    node->SetName(name.toStdString().c_str());
    node->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(maxSpacing));
    node->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(false));
    GetDataStorage()->Add(node);

    typedef FilterType::DirectionImageContainerType DirectionImageContainerType;
    DirectionImageContainerType::Pointer container = filter->GetDirectionImageContainer();
    for (int i=0; i<container->Size(); i++)
    {
        ItkDirectionImage3DType::Pointer itkImg = container->GetElement(i);
        mitk::Image::Pointer img = mitk::Image::New();
        img->InitializeByItk( itkImg.GetPointer() );
        img->SetVolume( itkImg->GetBufferPointer() );
        DataNode::Pointer node = DataNode::New();
        node->SetData(img);
        QString name(m_ImageNodes.at(0)->GetName().c_str());
        name += "_Direction";
        name += QString::number(i+1);
        node->SetName(name.toStdString().c_str());
        GetDataStorage()->Add(node);
    }
}
Beispiel #3
0
void QmitkVirtualSurgery::MyCastPixelType(itk::Image<TPixel, VImageDimension> *itkImage, mitk::Image::Pointer *pointer)
{
	std::cout<< "Function MyCastPixelType :Begin."<<std::endl;

	/***************duplicate a image to clip 8 segment******************/
	typedef itk::Image<TPixel, VImageDimension> TImageType;
	typedef itk::ImageDuplicator< typename TImageType > DuplicatorType;
	DuplicatorType::Pointer duplicator = DuplicatorType::New();
	duplicator->SetInputImage( itkImage );
	duplicator->Update();
	typename TImageType::Pointer clonedImage = duplicator->GetOutput();
	mitk::Image::Pointer resultImage = mitk::ImportItkImage( clonedImage );
	mitk::DataTreeNode::Pointer newNode = mitk::DataTreeNode::New();
	newNode->SetData(resultImage);
	newNode->SetProperty("name", mitk::StringProperty::New("Liver Image"));
	newNode->SetProperty("opacity", mitk::FloatProperty::New(0.0));
	mitk::DataStorage::GetInstance()->Add( newNode );
	mitk::RenderingManager::GetInstance()->RequestUpdateAll();
	/*********************************************************************/

	//originalPixelType = (dynamic_cast<mitk::Image *>(selectedImage->Get()->GetData()))->GetPixelType();
	if (originalPixelType == typeid(float))
	{
		std::cout<< "Function MyCastPixelType : Origin image pixel type is float."<<std::endl;
		*pointer = mitk::ImportItkImage(itkImage);
	}
	else
	{
		typedef itk::Image<TPixel, VImageDimension> InputImageType;
		typedef float OutputImagePixelType;
		typedef itk::Image<OutputImagePixelType,  VImageDimension> OutputImageType;
		typedef itk::CastImageFilter<InputImageType, OutputImageType> CasterType;

		CasterType::Pointer caster = CasterType::New();
		caster->SetInput(itkImage);
		try
		{
			caster->Update();
		}
		catch( itk::ExceptionObject & excp )
		{
			std::cerr << "CastPixelType exception thrown." 
				<< std::endl;
			std::cerr << excp << std::endl;
			return ;
		}

		OutputImageType::Pointer output = caster->GetOutput();
		*pointer = mitk::ImportItkImage(output);
	}
	
	std::cout<< "Function MyCastPixelType End."<<std::endl;
	
}
Beispiel #4
0
typename itk::ShCoefficientImageImporter< float, shOrder >::QballImageType::Pointer TemplatedConvertShCoeffs(mitk::Image* mitkImg, int toolkit, bool noFlip = false)
{
    typedef itk::ShCoefficientImageImporter< float, shOrder > FilterType;
    typedef mitk::ImageToItk< itk::Image< float, 4 > > CasterType;
    CasterType::Pointer caster = CasterType::New();
    caster->SetInput(mitkImg);
    caster->Update();
    itk::Image< float, 4 >::Pointer itkImage = caster->GetOutput();
    typename FilterType::Pointer filter = FilterType::New();

    if (noFlip)
    {
        filter->SetInputImage(itkImage);
    }
    else
    {
        MITK_INFO << "Flipping image";
        itk::FixedArray<bool, 4> flipAxes;
        flipAxes[0] = true;
        flipAxes[1] = true;
        flipAxes[2] = false;
        flipAxes[3] = false;
        itk::FlipImageFilter< itk::Image< float, 4 > >::Pointer flipper = itk::FlipImageFilter< itk::Image< float, 4 > >::New();
        flipper->SetInput(itkImage);
        flipper->SetFlipAxes(flipAxes);
        flipper->Update();
        itk::Image< float, 4 >::Pointer flipped = flipper->GetOutput();
        itk::Matrix< double,4,4 > m = itkImage->GetDirection(); m[0][0] *= -1; m[1][1] *= -1;
        flipped->SetDirection(m);

        itk::Point< float, 4 > o = itkImage->GetOrigin();
        o[0] -= (flipped->GetLargestPossibleRegion().GetSize(0)-1);
        o[1] -= (flipped->GetLargestPossibleRegion().GetSize(1)-1);
        flipped->SetOrigin(o);
        filter->SetInputImage(flipped);
    }

    switch (toolkit)
    {
    case 0:
        filter->SetToolkit(FilterType::FSL);
        break;
    case 1:
        filter->SetToolkit(FilterType::MRTRIX);
        break;
    default:
        filter->SetToolkit(FilterType::FSL);
    }
    filter->GenerateData();
    return filter->GetQballImage();
}
Beispiel #5
0
  void CompareImages(mitk::PeakImage::ItkPeakImageType::Pointer testImage, std::string name)
  {
    typedef mitk::ImageToItk< mitk::PeakImage::ItkPeakImageType > CasterType;
    CasterType::Pointer caster = CasterType::New();
    caster->SetInput(mitk::IOUtil::Load<mitk::Image>(GetTestDataFilePath("DiffusionImaging/FiberFit/out/" + name)));
    caster->Update();
    mitk::PeakImage::ItkPeakImageType::Pointer refImage = caster->GetOutput();


    itk::ImageRegionConstIterator< mitk::PeakImage::ItkPeakImageType > it1(testImage, testImage->GetLargestPossibleRegion());
    itk::ImageRegionConstIterator< mitk::PeakImage::ItkPeakImageType > it2(refImage, refImage->GetLargestPossibleRegion());

    while(!it1.IsAtEnd())
    {
      if (it2.Get()>0.0001)
      {
        if (fabs( it1.Get()/it2.Get()-1 )>0.01)
        {
          itk::ImageFileWriter< mitk::PeakImage::ItkPeakImageType >::Pointer writer = itk::ImageFileWriter< mitk::PeakImage::ItkPeakImageType >::New();
          writer->SetInput(testImage);
          writer->SetFileName(mitk::IOUtil::GetTempPath()+name);
          writer->Update();

          MITK_INFO << it1.Get() << " - " << it2.Get();

          CPPUNIT_ASSERT_MESSAGE("Peak images should be equal 1", false);
        }
      }
      else if (it1.Get()>0.0001)
      {
        itk::ImageFileWriter< mitk::PeakImage::ItkPeakImageType >::Pointer writer = itk::ImageFileWriter< mitk::PeakImage::ItkPeakImageType >::New();
        writer->SetInput(testImage);
        writer->SetFileName(mitk::IOUtil::GetTempPath()+name);
        writer->Update();

        CPPUNIT_ASSERT_MESSAGE("Peak images should be equal 2", false);
      }

      ++it1;
      ++it2;
    }
  }
Beispiel #6
0
  void setUp() override
  {
    std::vector<mitk::FiberBundle::Pointer> tracts;
    tracts.push_back(LoadFib("Cluster_0.fib"));
    tracts.push_back(LoadFib("Cluster_1.fib"));
    tracts.push_back(LoadFib("Cluster_2.fib"));
    tracts.push_back(LoadFib("Cluster_3.fib"));
    tracts.push_back(LoadFib("Cluster_4.fib"));

    mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Peak Image"}, {});
    mitk::PeakImage::Pointer peaks = mitk::IOUtil::Load<mitk::PeakImage>(GetTestDataFilePath("DiffusionImaging/FiberFit/csd_peak_image.nii.gz"), &functor);


    typedef mitk::ImageToItk< mitk::PeakImage::ItkPeakImageType > CasterType;
    CasterType::Pointer caster = CasterType::New();
    caster->SetInput(peaks);
    caster->Update();
    mitk::PeakImage::ItkPeakImageType::Pointer peak_image = caster->GetOutput();

    fitter = FitterType::New();
    fitter->SetPeakImage(peak_image);
    fitter->SetTractograms(tracts);
  }
Beispiel #7
0
typename itk::ShCoefficientImageImporter< float, shOrder >::QballImageType::Pointer TemplatedConvertShCoeffs(mitk::Image* mitkImg, int toolkit)
{
    typedef itk::ShCoefficientImageImporter< float, shOrder > FilterType;
    typedef mitk::ImageToItk< itk::Image< float, 4 > > CasterType;
    CasterType::Pointer caster = CasterType::New();
    caster->SetInput(mitkImg);
    caster->Update();

    typename FilterType::Pointer filter = FilterType::New();
    switch (toolkit)
    {
    case 0:
        filter->SetToolkit(FilterType::FSL);
        break;
    case 1:
        filter->SetToolkit(FilterType::MRTRIX);
        break;
    default:
        filter->SetToolkit(FilterType::FSL);
    }
    filter->SetInputImage(caster->GetOutput());
    filter->GenerateData();
    return filter->GetQballImage();
}
// ------------------------------------------------------------------------
void OpenCVValve::ConvertImage(const ImageType::Pointer &input, MatPtr &mat)
{
	// cast the image to uchar 
	typedef itk::Image<unsigned char, 2> OutputImageType;
	typedef itk::RescaleIntensityImageFilter<ImageType, OutputImageType> CasterType;
	CasterType::Pointer caster = CasterType::New();
	caster->SetOutputMaximum(255);
	caster->SetOutputMinimum(0);
	caster->SetInput(input);
	caster->Update();


	OutputImageType::Pointer output = caster->GetOutput();


	typedef itk::ImageFileWriter<OutputImageType> WriterType;
	WriterType::Pointer writer = WriterType::New();
	writer->SetImageIO(itk::PNGImageIO::New());
	writer->SetInput(output);
	writer->SetFileName("test.png");
	writer->Update();



	ImageType::SizeType size = input->GetLargestPossibleRegion().GetSize();
	unsigned int rows = size[1];
	unsigned int cols = size[0];

	mat = new MatType(rows,cols, CV_8UC1);


	itk::ImageRegionConstIterator<OutputImageType> it(output, output->GetLargestPossibleRegion());
	it.GoToBegin();
	while(!it.IsAtEnd())
	{
		OutputImageType::IndexType index = it.GetIndex();
		unsigned char val = it.Get();
		mat->at<unsigned char>(cv::Point(index[0], index[1])) = val;
		++it;
	}
}
int mitkLocalFiberPlausibilityTest(int argc, char* argv[])
{
    MITK_TEST_BEGIN("mitkLocalFiberPlausibilityTest");
    MITK_TEST_CONDITION_REQUIRED(argc==8,"check for input data")

    string fibFile = argv[1];
    vector< string > referenceImages;
    referenceImages.push_back(argv[2]);
    referenceImages.push_back(argv[3]);
    string LDFP_ERROR_IMAGE = argv[4];
    string LDFP_NUM_DIRECTIONS = argv[5];
    string LDFP_VECTOR_FIELD = argv[6];
    string LDFP_ERROR_IMAGE_IGNORE = argv[7];

    float angularThreshold = 25;

    try
    {
        typedef itk::Image<unsigned char, 3>                                    ItkUcharImgType;
        typedef itk::Image< itk::Vector< float, 3>, 3 >                         ItkDirectionImage3DType;
        typedef itk::VectorContainer< unsigned int, ItkDirectionImage3DType::Pointer >   ItkDirectionImageContainerType;
        typedef itk::EvaluateDirectionImagesFilter< float >                     EvaluationFilterType;

        // load fiber bundle
        mitk::FiberBundleX::Pointer inputTractogram = dynamic_cast<mitk::FiberBundleX*>(mitk::IOUtil::LoadDataNode(fibFile)->GetData());

        // load reference directions
        ItkDirectionImageContainerType::Pointer referenceImageContainer = ItkDirectionImageContainerType::New();
        for (unsigned int i=0; i<referenceImages.size(); i++)
        {
            try
            {
                mitk::Image::Pointer img = dynamic_cast<mitk::Image*>(mitk::IOUtil::LoadDataNode(referenceImages.at(i))->GetData());
                typedef mitk::ImageToItk< ItkDirectionImage3DType > CasterType;
                CasterType::Pointer caster = CasterType::New();
                caster->SetInput(img);
                caster->Update();
                ItkDirectionImage3DType::Pointer itkImg = caster->GetOutput();
                referenceImageContainer->InsertElement(referenceImageContainer->Size(),itkImg);
            }
            catch(...) {
                MITK_INFO << "could not load: " << referenceImages.at(i);
            }
        }

        ItkUcharImgType::Pointer itkMaskImage = ItkUcharImgType::New();
        ItkDirectionImage3DType::Pointer dirImg = referenceImageContainer->GetElement(0);
        itkMaskImage->SetSpacing( dirImg->GetSpacing() );
        itkMaskImage->SetOrigin( dirImg->GetOrigin() );
        itkMaskImage->SetDirection( dirImg->GetDirection() );
        itkMaskImage->SetLargestPossibleRegion( dirImg->GetLargestPossibleRegion() );
        itkMaskImage->SetBufferedRegion( dirImg->GetLargestPossibleRegion() );
        itkMaskImage->SetRequestedRegion( dirImg->GetLargestPossibleRegion() );
        itkMaskImage->Allocate();
        itkMaskImage->FillBuffer(1);

        // extract directions from fiber bundle
        itk::TractsToVectorImageFilter<float>::Pointer fOdfFilter = itk::TractsToVectorImageFilter<float>::New();
        fOdfFilter->SetFiberBundle(inputTractogram);
        fOdfFilter->SetMaskImage(itkMaskImage);
        fOdfFilter->SetAngularThreshold(cos(angularThreshold*M_PI/180));
        fOdfFilter->SetNormalizeVectors(true);
        fOdfFilter->SetUseWorkingCopy(false);
        fOdfFilter->SetNumberOfThreads(1);
        fOdfFilter->Update();
        ItkDirectionImageContainerType::Pointer directionImageContainer = fOdfFilter->GetDirectionImageContainer();

        // Get directions and num directions image
        ItkUcharImgType::Pointer numDirImage = fOdfFilter->GetNumDirectionsImage();
        mitk::Image::Pointer mitkNumDirImage = mitk::Image::New();
        mitkNumDirImage->InitializeByItk( numDirImage.GetPointer() );
        mitkNumDirImage->SetVolume( numDirImage->GetBufferPointer() );
        mitk::FiberBundleX::Pointer testDirections = fOdfFilter->GetOutputFiberBundle();

        // evaluate directions with missing directions
        EvaluationFilterType::Pointer evaluationFilter = EvaluationFilterType::New();
        evaluationFilter->SetImageSet(directionImageContainer);
        evaluationFilter->SetReferenceImageSet(referenceImageContainer);
        evaluationFilter->SetMaskImage(itkMaskImage);
        evaluationFilter->SetIgnoreMissingDirections(false);
        evaluationFilter->Update();

        EvaluationFilterType::OutputImageType::Pointer angularErrorImage = evaluationFilter->GetOutput(0);
        mitk::Image::Pointer mitkAngularErrorImage = mitk::Image::New();
        mitkAngularErrorImage->InitializeByItk( angularErrorImage.GetPointer() );
        mitkAngularErrorImage->SetVolume( angularErrorImage->GetBufferPointer() );

        // evaluate directions without missing directions
        evaluationFilter->SetIgnoreMissingDirections(true);
        evaluationFilter->Update();

        EvaluationFilterType::OutputImageType::Pointer angularErrorImageIgnore = evaluationFilter->GetOutput(0);
        mitk::Image::Pointer mitkAngularErrorImageIgnore = mitk::Image::New();
        mitkAngularErrorImageIgnore->InitializeByItk( angularErrorImageIgnore.GetPointer() );
        mitkAngularErrorImageIgnore->SetVolume( angularErrorImageIgnore->GetBufferPointer() );

        mitk::Image::Pointer gtAngularErrorImageIgnore = dynamic_cast<mitk::Image*>(mitk::IOUtil::LoadDataNode(LDFP_ERROR_IMAGE_IGNORE)->GetData());
        mitk::Image::Pointer gtAngularErrorImage = dynamic_cast<mitk::Image*>(mitk::IOUtil::LoadDataNode(LDFP_ERROR_IMAGE)->GetData());
        mitk::Image::Pointer gtNumTestDirImage = dynamic_cast<mitk::Image*>(mitk::IOUtil::LoadDataNode(LDFP_NUM_DIRECTIONS)->GetData());
        mitk::FiberBundleX::Pointer gtTestDirections = dynamic_cast<mitk::FiberBundleX*>(mitk::IOUtil::LoadDataNode(LDFP_VECTOR_FIELD)->GetData());

        MITK_TEST_CONDITION_REQUIRED(mitk::Equal(gtAngularErrorImageIgnore, mitkAngularErrorImageIgnore, 0.0001, true), "Check if error images are equal (ignored missing directions).");
        MITK_TEST_CONDITION_REQUIRED(mitk::Equal(gtAngularErrorImage, mitkAngularErrorImage, 0.0001, true), "Check if error images are equal.");
        MITK_TEST_CONDITION_REQUIRED(testDirections->Equals(gtTestDirections), "Check if vector fields are equal.");
        MITK_TEST_CONDITION_REQUIRED(mitk::Equal(gtNumTestDirImage, mitkNumDirImage, 0.0001, true), "Check if num direction images are equal.");
    }
    catch (itk::ExceptionObject e)
    {
        MITK_INFO << e;
        return EXIT_FAILURE;
    }
    catch (std::exception e)
    {
        MITK_INFO << e.what();
        return EXIT_FAILURE;
    }
    catch (...)
    {
        MITK_INFO << "ERROR!?!";
        return EXIT_FAILURE;
    }
    MITK_TEST_END();
}
int LocalDirectionalFiberPlausibility(int argc, char* argv[])
{
    ctkCommandLineParser parser;
    parser.setArgumentPrefix("--", "-");
    parser.addArgument("input", "i", ctkCommandLineParser::String, "input tractogram (.fib, vtk ascii file format)", us::Any(), false);
    parser.addArgument("reference", "r", ctkCommandLineParser::StringList, "reference direction images", us::Any(), false);
    parser.addArgument("out", "o", ctkCommandLineParser::String, "output root", us::Any(), false);
    parser.addArgument("mask", "m", ctkCommandLineParser::StringList, "mask images");
    parser.addArgument("athresh", "a", ctkCommandLineParser::Float, "angular threshold in degrees. closer fiber directions are regarded as one direction and clustered together.", 25, true);
    parser.addArgument("verbose", "v", ctkCommandLineParser::Bool, "output optional and intermediate calculation results");
    parser.addArgument("ignore", "n", ctkCommandLineParser::Bool, "don't increase error for missing or too many directions");

    map<string, us::Any> parsedArgs = parser.parseArguments(argc, argv);
    if (parsedArgs.size()==0)
        return EXIT_FAILURE;

    ctkCommandLineParser::StringContainerType referenceImages = us::any_cast<ctkCommandLineParser::StringContainerType>(parsedArgs["reference"]);
    ctkCommandLineParser::StringContainerType maskImages;
    if (parsedArgs.count("mask"))
        maskImages = us::any_cast<ctkCommandLineParser::StringContainerType>(parsedArgs["mask"]);

    string fibFile = us::any_cast<string>(parsedArgs["input"]);

    float angularThreshold = 25;
    if (parsedArgs.count("athresh"))
        angularThreshold = us::any_cast<float>(parsedArgs["athresh"]);

    string outRoot = us::any_cast<string>(parsedArgs["out"]);

    bool verbose = false;
    if (parsedArgs.count("verbose"))
        verbose = us::any_cast<bool>(parsedArgs["verbose"]);

    bool ignore = false;
    if (parsedArgs.count("ignore"))
        ignore = us::any_cast<bool>(parsedArgs["ignore"]);

    try
    {
        RegisterDiffusionCoreObjectFactory();
        RegisterFiberTrackingObjectFactory();

        typedef itk::Image<unsigned char, 3>                                    ItkUcharImgType;
        typedef itk::Image< itk::Vector< float, 3>, 3 >                         ItkDirectionImage3DType;
        typedef itk::VectorContainer< int, ItkDirectionImage3DType::Pointer >   ItkDirectionImageContainerType;
        typedef itk::EvaluateDirectionImagesFilter< float >                     EvaluationFilterType;

        // load fiber bundle
        mitk::FiberBundleX::Pointer inputTractogram = dynamic_cast<mitk::FiberBundleX*>(mitk::IOUtil::LoadDataNode(fibFile)->GetData());

        // load reference directions
        ItkDirectionImageContainerType::Pointer referenceImageContainer = ItkDirectionImageContainerType::New();
        for (int i=0; i<referenceImages.size(); i++)
        {
            try
            {
                mitk::Image::Pointer img = dynamic_cast<mitk::Image*>(mitk::IOUtil::LoadDataNode(referenceImages.at(i))->GetData());
                typedef mitk::ImageToItk< ItkDirectionImage3DType > CasterType;
                CasterType::Pointer caster = CasterType::New();
                caster->SetInput(img);
                caster->Update();
                ItkDirectionImage3DType::Pointer itkImg = caster->GetOutput();
                referenceImageContainer->InsertElement(referenceImageContainer->Size(),itkImg);
            }
            catch(...){ MITK_INFO << "could not load: " << referenceImages.at(i); }
        }

        ItkUcharImgType::Pointer itkMaskImage = ItkUcharImgType::New();
        ItkDirectionImage3DType::Pointer dirImg = referenceImageContainer->GetElement(0);
        itkMaskImage->SetSpacing( dirImg->GetSpacing() );
        itkMaskImage->SetOrigin( dirImg->GetOrigin() );
        itkMaskImage->SetDirection( dirImg->GetDirection() );
        itkMaskImage->SetLargestPossibleRegion( dirImg->GetLargestPossibleRegion() );
        itkMaskImage->SetBufferedRegion( dirImg->GetLargestPossibleRegion() );
        itkMaskImage->SetRequestedRegion( dirImg->GetLargestPossibleRegion() );
        itkMaskImage->Allocate();
        itkMaskImage->FillBuffer(1);

        // extract directions from fiber bundle
        itk::TractsToVectorImageFilter<float>::Pointer fOdfFilter = itk::TractsToVectorImageFilter<float>::New();
        fOdfFilter->SetFiberBundle(inputTractogram);
        fOdfFilter->SetMaskImage(itkMaskImage);
        fOdfFilter->SetAngularThreshold(cos(angularThreshold*M_PI/180));
        fOdfFilter->SetNormalizeVectors(true);
        fOdfFilter->SetUseWorkingCopy(false);
        fOdfFilter->Update();
        ItkDirectionImageContainerType::Pointer directionImageContainer = fOdfFilter->GetDirectionImageContainer();

        if (verbose)
        {
            // write vector field
            mitk::FiberBundleX::Pointer directions = fOdfFilter->GetOutputFiberBundle();
            mitk::CoreObjectFactory::FileWriterList fileWriters = mitk::CoreObjectFactory::GetInstance()->GetFileWriters();
            for (mitk::CoreObjectFactory::FileWriterList::iterator it = fileWriters.begin() ; it != fileWriters.end() ; ++it)
            {
                if ( (*it)->CanWriteBaseDataType(directions.GetPointer()) ) {
                    string outfilename = outRoot;
                    outfilename.append("_VECTOR_FIELD.fib");
                    (*it)->SetFileName( outfilename.c_str() );
                    (*it)->DoWrite( directions.GetPointer() );
                }
            }

            // write direction images
            for (int i=0; i<directionImageContainer->Size(); i++)
            {
                itk::TractsToVectorImageFilter<float>::ItkDirectionImageType::Pointer itkImg = directionImageContainer->GetElement(i);
                typedef itk::ImageFileWriter< itk::TractsToVectorImageFilter<float>::ItkDirectionImageType > WriterType;
                WriterType::Pointer writer = WriterType::New();

                string outfilename = outRoot;
                outfilename.append("_DIRECTION_");
                outfilename.append(boost::lexical_cast<string>(i));
                outfilename.append(".nrrd");

                MITK_INFO << "writing " << outfilename;
                writer->SetFileName(outfilename.c_str());
                writer->SetInput(itkImg);
                writer->Update();
            }

            // write num direction image
            {
                ItkUcharImgType::Pointer numDirImage = fOdfFilter->GetNumDirectionsImage();
                typedef itk::ImageFileWriter< ItkUcharImgType > WriterType;
                WriterType::Pointer writer = WriterType::New();

                string outfilename = outRoot;
                outfilename.append("_NUM_DIRECTIONS.nrrd");

                MITK_INFO << "writing " << outfilename;
                writer->SetFileName(outfilename.c_str());
                writer->SetInput(numDirImage);
                writer->Update();
            }
        }

        string logFile = outRoot;
        logFile.append("_ANGULAR_ERROR.csv");
        ofstream file;
        file.open (logFile.c_str());

        if (maskImages.size()>0)
        {
            for (int i=0; i<maskImages.size(); i++)
            {
                mitk::Image::Pointer mitkMaskImage = dynamic_cast<mitk::Image*>(mitk::IOUtil::LoadDataNode(maskImages.at(i))->GetData());
                mitk::CastToItkImage<ItkUcharImgType>(mitkMaskImage, itkMaskImage);

                // evaluate directions
                EvaluationFilterType::Pointer evaluationFilter = EvaluationFilterType::New();
                evaluationFilter->SetImageSet(directionImageContainer);
                evaluationFilter->SetReferenceImageSet(referenceImageContainer);
                evaluationFilter->SetMaskImage(itkMaskImage);
                evaluationFilter->SetIgnoreMissingDirections(ignore);
                evaluationFilter->Update();

                if (verbose)
                {
                    EvaluationFilterType::OutputImageType::Pointer angularErrorImage = evaluationFilter->GetOutput(0);
                    typedef itk::ImageFileWriter< EvaluationFilterType::OutputImageType > WriterType;
                    WriterType::Pointer writer = WriterType::New();

                    string outfilename = outRoot;
                    outfilename.append("_ERROR_IMAGE.nrrd");

                    MITK_INFO << "writing " << outfilename;
                    writer->SetFileName(outfilename.c_str());
                    writer->SetInput(angularErrorImage);
                    writer->Update();
                }

                string sens = itksys::SystemTools::GetFilenameWithoutExtension(itksys::SystemTools::GetFilenameName(fibFile));
                sens.append(",");

                sens.append(itksys::SystemTools::GetFilenameWithoutExtension(itksys::SystemTools::GetFilenameName(maskImages.at(i))));
                sens.append(",");

                sens.append(boost::lexical_cast<string>(evaluationFilter->GetMeanAngularError()));
                sens.append(",");

                sens.append(boost::lexical_cast<string>(evaluationFilter->GetMedianAngularError()));
                sens.append(",");

                sens.append(boost::lexical_cast<string>(evaluationFilter->GetMaxAngularError()));
                sens.append(",");

                sens.append(boost::lexical_cast<string>(evaluationFilter->GetMinAngularError()));
                sens.append(",");

                sens.append(boost::lexical_cast<string>(std::sqrt(evaluationFilter->GetVarAngularError())));
                sens.append(";\n");
                file << sens;
            }
        }
        else
        {
            // evaluate directions
            EvaluationFilterType::Pointer evaluationFilter = EvaluationFilterType::New();
            evaluationFilter->SetImageSet(directionImageContainer);
            evaluationFilter->SetReferenceImageSet(referenceImageContainer);
            evaluationFilter->SetMaskImage(itkMaskImage);
            evaluationFilter->SetIgnoreMissingDirections(ignore);
            evaluationFilter->Update();

            if (verbose)
            {
                EvaluationFilterType::OutputImageType::Pointer angularErrorImage = evaluationFilter->GetOutput(0);
                typedef itk::ImageFileWriter< EvaluationFilterType::OutputImageType > WriterType;
                WriterType::Pointer writer = WriterType::New();

                string outfilename = outRoot;
                outfilename.append("_ERROR_IMAGE.nrrd");

                MITK_INFO << "writing " << outfilename;
                writer->SetFileName(outfilename.c_str());
                writer->SetInput(angularErrorImage);
                writer->Update();
            }

            string sens = itksys::SystemTools::GetFilenameWithoutExtension(itksys::SystemTools::GetFilenameName(fibFile));
            sens.append(",");

            sens.append("FULL");
            sens.append(",");

            sens.append(boost::lexical_cast<string>(evaluationFilter->GetMeanAngularError()));
            sens.append(",");

            sens.append(boost::lexical_cast<string>(evaluationFilter->GetMedianAngularError()));
            sens.append(",");

            sens.append(boost::lexical_cast<string>(evaluationFilter->GetMaxAngularError()));
            sens.append(",");

            sens.append(boost::lexical_cast<string>(evaluationFilter->GetMinAngularError()));
            sens.append(",");

            sens.append(boost::lexical_cast<string>(std::sqrt(evaluationFilter->GetVarAngularError())));
            sens.append(";\n");
            file << sens;
        }
        file.close();

        MITK_INFO << "DONE";
    }
    catch (itk::ExceptionObject e)
    {
        MITK_INFO << e;
        return EXIT_FAILURE;
    }
    catch (std::exception e)
    {
        MITK_INFO << e.what();
        return EXIT_FAILURE;
    }
    catch (...)
    {
        MITK_INFO << "ERROR!?!";
        return EXIT_FAILURE;
    }
    return EXIT_SUCCESS;
}
Beispiel #11
0
int StartPeakExtraction(int argc, char* argv[])
{
    mitkCommandLineParser parser;
    parser.setArgumentPrefix("--", "-");
    parser.addArgument("image", "i", mitkCommandLineParser::InputFile, "Input image", "sh coefficient image", us::Any(), false);
    parser.addArgument("outroot", "o", mitkCommandLineParser::OutputDirectory, "Output directory", "output root", us::Any(), false);
    parser.addArgument("mask", "m", mitkCommandLineParser::InputFile, "Mask", "mask image");
    parser.addArgument("normalization", "n", mitkCommandLineParser::Int, "Normalization", "0=no norm, 1=max norm, 2=single vec norm", 1, true);
    parser.addArgument("numpeaks", "p", mitkCommandLineParser::Int, "Max. number of peaks", "maximum number of extracted peaks", 2, true);
    parser.addArgument("peakthres", "r", mitkCommandLineParser::Float, "Peak threshold", "peak threshold relative to largest peak", 0.4, true);
    parser.addArgument("abspeakthres", "a", mitkCommandLineParser::Float, "Absolute peak threshold", "absolute peak threshold weighted with local GFA value", 0.06, true);
    parser.addArgument("shConvention", "s", mitkCommandLineParser::String, "Use specified SH-basis", "use specified SH-basis (MITK, FSL, MRtrix)", string("MITK"), true);
    parser.addArgument("noFlip", "f", mitkCommandLineParser::Bool, "No flip", "do not flip input image to match MITK coordinate convention");
    parser.addArgument("clusterThres", "c", mitkCommandLineParser::Float, "Clustering threshold", "directions closer together than the specified angular threshold will be clustered (in rad)", 0.9);
    parser.addArgument("flipX", "fx", mitkCommandLineParser::Bool, "Flip X", "Flip peaks in x direction");
    parser.addArgument("flipY", "fy", mitkCommandLineParser::Bool, "Flip Y", "Flip peaks in y direction");
    parser.addArgument("flipZ", "fz", mitkCommandLineParser::Bool, "Flip Z", "Flip peaks in z direction");


    parser.setCategory("Preprocessing Tools");
    parser.setTitle("Peak Extraction");
    parser.setDescription("");
    parser.setContributor("MIC");

    map<string, us::Any> parsedArgs = parser.parseArguments(argc, argv);
    if (parsedArgs.size()==0)
        return EXIT_FAILURE;

    // mandatory arguments
    string imageName = us::any_cast<string>(parsedArgs["image"]);
    string outRoot = us::any_cast<string>(parsedArgs["outroot"]);

    // optional arguments
    string maskImageName("");
    if (parsedArgs.count("mask"))
        maskImageName = us::any_cast<string>(parsedArgs["mask"]);

    int normalization = 1;
    if (parsedArgs.count("normalization"))
        normalization = us::any_cast<int>(parsedArgs["normalization"]);

    int numPeaks = 2;
    if (parsedArgs.count("numpeaks"))
        numPeaks = us::any_cast<int>(parsedArgs["numpeaks"]);

    float peakThres = 0.4;
    if (parsedArgs.count("peakthres"))
        peakThres = us::any_cast<float>(parsedArgs["peakthres"]);

    float absPeakThres = 0.06;
    if (parsedArgs.count("abspeakthres"))
        absPeakThres = us::any_cast<float>(parsedArgs["abspeakthres"]);

    float clusterThres = 0.9;
    if (parsedArgs.count("clusterThres"))
        clusterThres = us::any_cast<float>(parsedArgs["clusterThres"]);

    bool noFlip = false;
    if (parsedArgs.count("noFlip"))
        noFlip = us::any_cast<bool>(parsedArgs["noFlip"]);

    bool flipX = false;
    if (parsedArgs.count("flipX"))
        flipX = us::any_cast<bool>(parsedArgs["flipX"]);

    bool flipY = false;
    if (parsedArgs.count("flipY"))
        flipY = us::any_cast<bool>(parsedArgs["flipY"]);

    bool flipZ = false;
    if (parsedArgs.count("flipZ"))
        flipZ = us::any_cast<bool>(parsedArgs["flipZ"]);

    std::cout << "image: " << imageName;
    std::cout << "outroot: " << outRoot;
    if (!maskImageName.empty())
        std::cout << "mask: " << maskImageName;
    else
        std::cout << "no mask image selected";
    std::cout << "numpeaks: " << numPeaks;
    std::cout << "peakthres: " << peakThres;
    std::cout << "abspeakthres: " << absPeakThres;
    std::cout << "shOrder: " << shOrder;

    try
    {
        mitk::Image::Pointer image = dynamic_cast<mitk::Image*>(mitk::IOUtil::Load(imageName)[0].GetPointer());
        mitk::Image::Pointer mask = dynamic_cast<mitk::Image*>(mitk::IOUtil::Load(maskImageName)[0].GetPointer());

        typedef itk::Image<unsigned char, 3>  ItkUcharImgType;
        typedef itk::FiniteDiffOdfMaximaExtractionFilter< float, shOrder, 20242 > MaximaExtractionFilterType;
        typename MaximaExtractionFilterType::Pointer filter = MaximaExtractionFilterType::New();

        int toolkitConvention = 0;

        if (parsedArgs.count("shConvention"))
        {
            string convention = us::any_cast<string>(parsedArgs["shConvention"]).c_str();
            if ( boost::algorithm::equals(convention, "FSL") )
            {
                toolkitConvention = 1;
                std::cout << "Using FSL SH-basis";
            }
            else if ( boost::algorithm::equals(convention, "MRtrix") )
            {
                toolkitConvention = 2;
                std::cout << "Using MRtrix SH-basis";
            }
            else
                std::cout << "Using MITK SH-basis";
        }
        else
            std::cout << "Using MITK SH-basis";

        ItkUcharImgType::Pointer itkMaskImage = nullptr;
        if (mask.IsNotNull())
        {
            try{
                itkMaskImage = ItkUcharImgType::New();
                mitk::CastToItkImage(mask, itkMaskImage);
                filter->SetMaskImage(itkMaskImage);
            }
            catch(...)
            {

            }
        }

        if (toolkitConvention>0)
        {
            std::cout << "Converting coefficient image to MITK format";
            typedef itk::ShCoefficientImageImporter< float, shOrder > ConverterType;
            typedef mitk::ImageToItk< itk::Image< float, 4 > > CasterType;
            CasterType::Pointer caster = CasterType::New();
            caster->SetInput(image);
            caster->Update();
            itk::Image< float, 4 >::Pointer itkImage = caster->GetOutput();

            typename ConverterType::Pointer converter = ConverterType::New();

            if (noFlip)
            {
                converter->SetInputImage(itkImage);
            }
            else
            {
                std::cout << "Flipping image";
                itk::FixedArray<bool, 4> flipAxes;
                flipAxes[0] = true;
                flipAxes[1] = true;
                flipAxes[2] = false;
                flipAxes[3] = false;
                itk::FlipImageFilter< itk::Image< float, 4 > >::Pointer flipper = itk::FlipImageFilter< itk::Image< float, 4 > >::New();
                flipper->SetInput(itkImage);
                flipper->SetFlipAxes(flipAxes);
                flipper->Update();
                itk::Image< float, 4 >::Pointer flipped = flipper->GetOutput();
                itk::Matrix< double,4,4 > m = itkImage->GetDirection(); m[0][0] *= -1; m[1][1] *= -1;
                flipped->SetDirection(m);

                itk::Point< float, 4 > o = itkImage->GetOrigin();
                o[0] -= (flipped->GetLargestPossibleRegion().GetSize(0)-1);
                o[1] -= (flipped->GetLargestPossibleRegion().GetSize(1)-1);
                flipped->SetOrigin(o);
                converter->SetInputImage(flipped);
            }

            std::cout << "Starting conversion";
            switch (toolkitConvention)
            {
            case 1:
                converter->SetToolkit(ConverterType::FSL);
                filter->SetToolkit(MaximaExtractionFilterType::FSL);
                break;
            case 2:
                converter->SetToolkit(ConverterType::MRTRIX);
                filter->SetToolkit(MaximaExtractionFilterType::MRTRIX);
                break;
            default:
                converter->SetToolkit(ConverterType::FSL);
                filter->SetToolkit(MaximaExtractionFilterType::FSL);
                break;
            }
            converter->GenerateData();
            filter->SetInput(converter->GetCoefficientImage());
        }
        else
        {
            try{
                typedef mitk::ImageToItk< typename MaximaExtractionFilterType::CoefficientImageType > CasterType;
                typename CasterType::Pointer caster = CasterType::New();
                caster->SetInput(image);
                caster->Update();
                filter->SetInput(caster->GetOutput());
            }
            catch(...)
            {
                std::cout << "wrong image type";
                return EXIT_FAILURE;
            }
        }

        filter->SetMaxNumPeaks(numPeaks);
        filter->SetPeakThreshold(peakThres);
        filter->SetAbsolutePeakThreshold(absPeakThres);
        filter->SetAngularThreshold(1);
        filter->SetClusteringThreshold(clusterThres);
        filter->SetFlipX(flipX);
        filter->SetFlipY(flipY);
        filter->SetFlipZ(flipZ);

        switch (normalization)
        {
        case 0:
            filter->SetNormalizationMethod(MaximaExtractionFilterType::NO_NORM);
            break;
        case 1:
            filter->SetNormalizationMethod(MaximaExtractionFilterType::MAX_VEC_NORM);
            break;
        case 2:
            filter->SetNormalizationMethod(MaximaExtractionFilterType::SINGLE_VEC_NORM);
            break;
        }

        std::cout << "Starting extraction";
        filter->Update();

        // write direction image
        {
            typename MaximaExtractionFilterType::PeakImageType::Pointer itkImg = filter->GetPeakImage();
            string outfilename = outRoot;
            outfilename.append("_PEAKS.nrrd");

            typedef itk::ImageFileWriter< typename MaximaExtractionFilterType::PeakImageType > WriterType;
            typename WriterType::Pointer writer = WriterType::New();
            writer->SetFileName(outfilename);
            writer->SetInput(itkImg);
            writer->Update();
        }

        // write num directions image
        {
            ItkUcharImgType::Pointer numDirImage = filter->GetNumDirectionsImage();

            if (itkMaskImage.IsNotNull())
            {
                numDirImage->SetDirection(itkMaskImage->GetDirection());
                numDirImage->SetOrigin(itkMaskImage->GetOrigin());
            }

            string outfilename = outRoot.c_str();
            outfilename.append("_NUM_PEAKS.nrrd");
            typedef itk::ImageFileWriter< ItkUcharImgType > WriterType;
            WriterType::Pointer writer = WriterType::New();
            writer->SetFileName(outfilename);
            writer->SetInput(numDirImage);
            writer->Update();
        }
    }
    catch (itk::ExceptionObject e)
    {
        std::cout << e;
        return EXIT_FAILURE;
    }
    catch (std::exception e)
    {
        std::cout << e.what();
        return EXIT_FAILURE;
    }
    catch (...)
    {
        std::cout << "ERROR!?!";
        return EXIT_FAILURE;
    }
    return EXIT_SUCCESS;
}
Beispiel #12
0
/*!
\brief Copies transformation matrix of one image to another
*/
int main(int argc, char* argv[])
{
  mitkCommandLineParser parser;

  parser.setTitle("Flip Peaks");
  parser.setCategory("Preprocessing Tools");
  parser.setDescription("Flips the peaks of the input peak image along the given dimensions.");
  parser.setContributor("MIC");

  parser.setArgumentPrefix("--", "-");
  parser.addArgument("", "i", mitkCommandLineParser::String, "Input", "input image", us::Any(), false, false, false, mitkCommandLineParser::Input);
  parser.addArgument("", "o", mitkCommandLineParser::String, "Output", "output image", us::Any(), false, false, false, mitkCommandLineParser::Output);
  parser.addArgument("", "x", mitkCommandLineParser::Bool, "Flip x", "flip along x-axis");
  parser.addArgument("", "y", mitkCommandLineParser::Bool, "Flip y", "flip along y-axis");
  parser.addArgument("", "z", mitkCommandLineParser::Bool, "Flip z", "flip along z-axis");

  std::map<std::string, us::Any> parsedArgs = parser.parseArguments(argc, argv);
  if (parsedArgs.size()==0)
    return EXIT_FAILURE;

  std::string imageName = us::any_cast<std::string>(parsedArgs["i"]);
  std::string outImage = us::any_cast<std::string>(parsedArgs["o"]);

  bool x = false;
  if (parsedArgs.count("x"))
    x = us::any_cast<bool>(parsedArgs["x"]);

  bool y = false;
  if (parsedArgs.count("y"))
    y = us::any_cast<bool>(parsedArgs["y"]);

  bool z = false;
  if (parsedArgs.count("z"))
    z = us::any_cast<bool>(parsedArgs["z"]);

  try
  {
    mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Peak Image"}, {});
    mitk::PeakImage::Pointer image = mitk::IOUtil::Load<mitk::PeakImage>(imageName, &functor);

    typedef mitk::ImageToItk< mitk::PeakImage::ItkPeakImageType > CasterType;
    CasterType::Pointer caster = CasterType::New();
    caster->SetInput(image);
    caster->Update();
    mitk::PeakImage::ItkPeakImageType::Pointer itkImg = caster->GetOutput();

    itk::FlipPeaksFilter< float >::Pointer flipper = itk::FlipPeaksFilter< float >::New();
    flipper->SetInput(itkImg);
    flipper->SetFlipX(x);
    flipper->SetFlipY(y);
    flipper->SetFlipZ(z);
    flipper->Update();

    mitk::Image::Pointer resultImage = dynamic_cast<mitk::Image*>(mitk::PeakImage::New().GetPointer());
    mitk::CastToMitkImage(flipper->GetOutput(), resultImage);
    resultImage->SetVolume(flipper->GetOutput()->GetBufferPointer());

    mitk::IOUtil::Save(resultImage, outImage);
  }
  catch (itk::ExceptionObject e)
  {
    std::cout << e;
    return EXIT_FAILURE;
  }
  catch (std::exception e)
  {
    std::cout << e.what();
    return EXIT_FAILURE;
  }
  catch (...)
  {
    std::cout << "ERROR!?!";
    return EXIT_FAILURE;
  }
  return EXIT_SUCCESS;
}
int TractogramAngularError(int argc, char* argv[])
{
    ctkCommandLineParser parser;
    parser.setArgumentPrefix("--", "-");
    parser.addArgument("input", "i", ctkCommandLineParser::String, "input tractogram (.fib, vtk ascii file format)", us::Any(), false);
    parser.addArgument("reference", "r", ctkCommandLineParser::StringList, "reference direction images", us::Any(), false);
    parser.addArgument("out", "o", ctkCommandLineParser::String, "output root", us::Any(), false);
    parser.addArgument("mask", "m", ctkCommandLineParser::String, "mask image");
    parser.addArgument("verbose", "v", ctkCommandLineParser::Bool, "output optional and intermediate calculation results");
    parser.addArgument("ignore", "n", ctkCommandLineParser::Bool, "don't increase error for missing or too many directions");
    parser.addArgument("trilinear", "t", ctkCommandLineParser::Bool, "use trilinear instead of nearest neighbor interpolation");

    map<string, us::Any> parsedArgs = parser.parseArguments(argc, argv);
    if (parsedArgs.size()==0)
        return EXIT_FAILURE;

    ctkCommandLineParser::StringContainerType referenceImages = us::any_cast<ctkCommandLineParser::StringContainerType>(parsedArgs["reference"]);

    string fibFile = us::any_cast<string>(parsedArgs["input"]);

    string maskImage("");
    if (parsedArgs.count("mask"))
        maskImage = us::any_cast<string>(parsedArgs["mask"]);

    string outRoot = us::any_cast<string>(parsedArgs["out"]);

    bool verbose = false;
    if (parsedArgs.count("verbose"))
        verbose = us::any_cast<bool>(parsedArgs["verbose"]);

    bool ignore = false;
    if (parsedArgs.count("ignore"))
        ignore = us::any_cast<bool>(parsedArgs["ignore"]);

    bool interpolate = false;
    if (parsedArgs.count("interpolate"))
        interpolate = us::any_cast<bool>(parsedArgs["interpolate"]);

    try
    {
        RegisterDiffusionCoreObjectFactory();
        RegisterFiberTrackingObjectFactory();

        typedef itk::Image<unsigned char, 3>                                    ItkUcharImgType;
        typedef itk::Image< itk::Vector< float, 3>, 3 >                         ItkDirectionImage3DType;
        typedef itk::VectorContainer< int, ItkDirectionImage3DType::Pointer >   ItkDirectionImageContainerType;
        typedef itk::EvaluateTractogramDirectionsFilter< float >                EvaluationFilterType;

        // load fiber bundle
        mitk::FiberBundleX::Pointer inputTractogram = dynamic_cast<mitk::FiberBundleX*>(mitk::IOUtil::LoadDataNode(fibFile)->GetData());
        if (!inputTractogram)
            return EXIT_FAILURE;

        // load reference directions
        ItkDirectionImageContainerType::Pointer referenceImageContainer = ItkDirectionImageContainerType::New();
        for (int i=0; i<referenceImages.size(); i++)
        {
            try
            {
                mitk::Image::Pointer img = dynamic_cast<mitk::Image*>(mitk::IOUtil::LoadDataNode(referenceImages.at(i))->GetData());
                typedef mitk::ImageToItk< ItkDirectionImage3DType > CasterType;
                CasterType::Pointer caster = CasterType::New();
                caster->SetInput(img);
                caster->Update();
                ItkDirectionImage3DType::Pointer itkImg = caster->GetOutput();
                referenceImageContainer->InsertElement(referenceImageContainer->Size(),itkImg);
            }
            catch(...) {
                MITK_INFO << "could not load: " << referenceImages.at(i);
            }
        }

        // load/create mask image
        ItkUcharImgType::Pointer itkMaskImage = ItkUcharImgType::New();
        if (maskImage.compare("")==0)
        {
            ItkDirectionImage3DType::Pointer dirImg = referenceImageContainer->GetElement(0);
            itkMaskImage->SetSpacing( dirImg->GetSpacing() );
            itkMaskImage->SetOrigin( dirImg->GetOrigin() );
            itkMaskImage->SetDirection( dirImg->GetDirection() );
            itkMaskImage->SetLargestPossibleRegion( dirImg->GetLargestPossibleRegion() );
            itkMaskImage->SetBufferedRegion( dirImg->GetLargestPossibleRegion() );
            itkMaskImage->SetRequestedRegion( dirImg->GetLargestPossibleRegion() );
            itkMaskImage->Allocate();
            itkMaskImage->FillBuffer(1);
        }
        else
        {
            mitk::Image::Pointer mitkMaskImage = dynamic_cast<mitk::Image*>(mitk::IOUtil::LoadDataNode(maskImage)->GetData());
            mitk::CastToItkImage<ItkUcharImgType>(mitkMaskImage, itkMaskImage);
        }

        // evaluate directions
        EvaluationFilterType::Pointer evaluationFilter = EvaluationFilterType::New();
        evaluationFilter->SetTractogram(inputTractogram);
        evaluationFilter->SetReferenceImageSet(referenceImageContainer);
        evaluationFilter->SetMaskImage(itkMaskImage);
        evaluationFilter->SetIgnoreMissingDirections(ignore);
        evaluationFilter->SetUseInterpolation(interpolate);
        evaluationFilter->Update();

        if (verbose)
        {
            EvaluationFilterType::OutputImageType::Pointer angularErrorImage = evaluationFilter->GetOutput(0);
            typedef itk::ImageFileWriter< EvaluationFilterType::OutputImageType > WriterType;
            WriterType::Pointer writer = WriterType::New();

            string outfilename = outRoot;
            outfilename.append("_ERROR_IMAGE.nrrd");

            MITK_INFO << "writing " << outfilename;
            writer->SetFileName(outfilename.c_str());
            writer->SetInput(angularErrorImage);
            writer->Update();
        }

        string logFile = outRoot;
        logFile.append("_ANGULAR_ERROR.csv");

        ofstream file;
        file.open (logFile.c_str());

        string sens = "Mean:";
        sens.append(",");
        sens.append(boost::lexical_cast<string>(evaluationFilter->GetMeanAngularError()));
        sens.append(";\n");

        sens.append("Median:");
        sens.append(",");
        sens.append(boost::lexical_cast<string>(evaluationFilter->GetMedianAngularError()));
        sens.append(";\n");

        sens.append("Maximum:");
        sens.append(",");
        sens.append(boost::lexical_cast<string>(evaluationFilter->GetMaxAngularError()));
        sens.append(";\n");

        sens.append("Minimum:");
        sens.append(",");
        sens.append(boost::lexical_cast<string>(evaluationFilter->GetMinAngularError()));
        sens.append(";\n");

        sens.append("STDEV:");
        sens.append(",");
        sens.append(boost::lexical_cast<string>(std::sqrt(evaluationFilter->GetVarAngularError())));
        sens.append(";\n");

        file << sens;

        file.close();

        MITK_INFO << "DONE";
    }
    catch (itk::ExceptionObject e)
    {
        MITK_INFO << e;
        return EXIT_FAILURE;
    }
    catch (std::exception e)
    {
        MITK_INFO << e.what();
        return EXIT_FAILURE;
    }
    catch (...)
    {
        MITK_INFO << "ERROR!?!";
        return EXIT_FAILURE;
    }
    return EXIT_SUCCESS;
}
Beispiel #14
0
/*!
\brief Fits the tractogram to the input peak image by assigning a weight to each fiber (similar to https://doi.org/10.1016/j.neuroimage.2015.06.092).
*/
int main(int argc, char* argv[])
{
  mitkCommandLineParser parser;

  parser.setTitle("Fit Fibers To Image");
  parser.setCategory("Fiber Tracking and Processing Methods");
  parser.setDescription("Assigns a weight to each fiber in order to optimally explain the input peak image");
  parser.setContributor("MIC");

  parser.setArgumentPrefix("--", "-");
  parser.addArgument("", "i1", mitkCommandLineParser::StringList, "Input tractograms:", "input tractograms (.fib, vtk ascii file format)", us::Any(), false);
  parser.addArgument("", "i2", mitkCommandLineParser::InputFile, "Input image:", "input image", us::Any(), false);
  parser.addArgument("", "o", mitkCommandLineParser::OutputDirectory, "Output:", "output root", us::Any(), false);

  parser.addArgument("max_iter", "", mitkCommandLineParser::Int, "Max. iterations:", "maximum number of optimizer iterations", 20);
  parser.addArgument("bundle_based", "", mitkCommandLineParser::Bool, "Bundle based fit:", "fit one weight per input tractogram/bundle, not for each fiber", false);
  parser.addArgument("min_g", "", mitkCommandLineParser::Float, "Min. g:", "lower termination threshold for gradient magnitude", 1e-5);
  parser.addArgument("lambda", "", mitkCommandLineParser::Float, "Lambda:", "modifier for regularization", 0.1);
  parser.addArgument("save_res", "", mitkCommandLineParser::Bool, "Save Residuals:", "save residual images", false);
  parser.addArgument("save_weights", "", mitkCommandLineParser::Bool, "Save Weights:", "save fiber weights in a separate text file", false);
  parser.addArgument("filter_outliers", "", mitkCommandLineParser::Bool, "Filter outliers:", "perform second optimization run with an upper weight bound based on the first weight estimation (99% quantile)", false);
  parser.addArgument("join_tracts", "", mitkCommandLineParser::Bool, "Join output tracts:", "outout tracts are merged into a single tractogram", false);
  parser.addArgument("regu", "", mitkCommandLineParser::String, "Regularization:", "MSM, Variance, VoxelVariance (default), Lasso, GroupLasso, GroupVariance, NONE");

  std::map<std::string, us::Any> parsedArgs = parser.parseArguments(argc, argv);
  if (parsedArgs.size()==0)
    return EXIT_FAILURE;

  mitkCommandLineParser::StringContainerType fib_files = us::any_cast<mitkCommandLineParser::StringContainerType>(parsedArgs["i1"]);
  std::string input_image_name = us::any_cast<std::string>(parsedArgs["i2"]);
  std::string outRoot = us::any_cast<std::string>(parsedArgs["o"]);

  bool single_fib = true;
  if (parsedArgs.count("bundle_based"))
    single_fib = !us::any_cast<bool>(parsedArgs["bundle_based"]);

  bool save_residuals = false;
  if (parsedArgs.count("save_res"))
    save_residuals = us::any_cast<bool>(parsedArgs["save_res"]);

  bool save_weights = false;
  if (parsedArgs.count("save_weights"))
    save_weights = us::any_cast<bool>(parsedArgs["save_weights"]);

  std::string regu = "VoxelVariance";
  if (parsedArgs.count("regu"))
    regu = us::any_cast<std::string>(parsedArgs["regu"]);

  bool join_tracts = false;
  if (parsedArgs.count("join_tracts"))
    join_tracts = us::any_cast<bool>(parsedArgs["join_tracts"]);

  int max_iter = 20;
  if (parsedArgs.count("max_iter"))
    max_iter = us::any_cast<int>(parsedArgs["max_iter"]);

  float g_tol = 1e-5;
  if (parsedArgs.count("min_g"))
    g_tol = us::any_cast<float>(parsedArgs["min_g"]);

  float lambda = 0.1;
  if (parsedArgs.count("lambda"))
    lambda = us::any_cast<float>(parsedArgs["lambda"]);

  bool filter_outliers = false;
  if (parsedArgs.count("filter_outliers"))
    filter_outliers = us::any_cast<bool>(parsedArgs["filter_outliers"]);

  try
  {
    MITK_INFO << "Loading data";
    std::streambuf *old = cout.rdbuf(); // <-- save
    std::stringstream ss;
    std::cout.rdbuf (ss.rdbuf());       // <-- redirect
    std::vector< mitk::FiberBundle::Pointer > input_tracts;

    mitk::PreferenceListReaderOptionsFunctor functor = mitk::PreferenceListReaderOptionsFunctor({"Peak Image", "Fiberbundles"}, {});

    std::vector< std::string > fib_names;
    for (auto item : fib_files)
    {
      if ( ist::FileIsDirectory(item) )
      {
        for ( auto fibFile : get_file_list(item) )
        {
          mitk::FiberBundle::Pointer inputTractogram = mitk::IOUtil::Load<mitk::FiberBundle>(fibFile);
          if (inputTractogram.IsNull())
            continue;
          input_tracts.push_back(inputTractogram);
          fib_names.push_back(fibFile);
        }
      }
      else
      {
        mitk::FiberBundle::Pointer inputTractogram = mitk::IOUtil::Load<mitk::FiberBundle>(item);
        if (inputTractogram.IsNull())
          continue;
        input_tracts.push_back(inputTractogram);
        fib_names.push_back(item);
      }
    }
    std::cout.rdbuf (old);              // <-- restore

    itk::FitFibersToImageFilter::Pointer fitter = itk::FitFibersToImageFilter::New();

    mitk::BaseData::Pointer inputData = mitk::IOUtil::Load(input_image_name, &functor)[0].GetPointer();
    mitk::Image::Pointer mitk_image = dynamic_cast<mitk::Image*>(inputData.GetPointer());
    mitk::PeakImage::Pointer mitk_peak_image = dynamic_cast<mitk::PeakImage*>(inputData.GetPointer());
    if (mitk_peak_image.IsNotNull())
    {
      typedef mitk::ImageToItk< mitk::PeakImage::ItkPeakImageType > CasterType;
      CasterType::Pointer caster = CasterType::New();
      caster->SetInput(mitk_peak_image);
      caster->Update();
      mitk::PeakImage::ItkPeakImageType::Pointer peak_image = caster->GetOutput();
      fitter->SetPeakImage(peak_image);
    }
    else if (mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(mitk_image))
    {
      fitter->SetDiffImage(mitk::DiffusionPropertyHelper::GetItkVectorImage(mitk_image));
      mitk::TensorModel<>* model = new mitk::TensorModel<>();
      model->SetBvalue(1000);
      model->SetDiffusivity1(0.0010);
      model->SetDiffusivity2(0.00015);
      model->SetDiffusivity3(0.00015);
      model->SetGradientList(mitk::DiffusionPropertyHelper::GetGradientContainer(mitk_image));
      fitter->SetSignalModel(model);
    }
    else if (mitk_image->GetDimension()==3)
    {
      itk::FitFibersToImageFilter::DoubleImgType::Pointer scalar_image = itk::FitFibersToImageFilter::DoubleImgType::New();
      mitk::CastToItkImage(mitk_image, scalar_image);
      fitter->SetScalarImage(scalar_image);
    }
    else
    {
      MITK_INFO << "Input image invalid. Valid options are peak image, 3D scalar image or raw diffusion-weighted image.";
      return EXIT_FAILURE;
    }

    fitter->SetTractograms(input_tracts);
    fitter->SetFitIndividualFibers(single_fib);
    fitter->SetMaxIterations(max_iter);
    fitter->SetGradientTolerance(g_tol);
    fitter->SetLambda(lambda);
    fitter->SetFilterOutliers(filter_outliers);

    if (regu=="MSM")
      fitter->SetRegularization(VnlCostFunction::REGU::MSM);
    else if (regu=="Variance")
      fitter->SetRegularization(VnlCostFunction::REGU::VARIANCE);
    else if (regu=="Lasso")
      fitter->SetRegularization(VnlCostFunction::REGU::LASSO);
    else if (regu=="VoxelVariance")
      fitter->SetRegularization(VnlCostFunction::REGU::VOXEL_VARIANCE);
    else if (regu=="GroupLasso")
      fitter->SetRegularization(VnlCostFunction::REGU::GROUP_LASSO);
    else if (regu=="GroupVariance")
      fitter->SetRegularization(VnlCostFunction::REGU::GROUP_VARIANCE);
    else if (regu=="NONE")
      fitter->SetRegularization(VnlCostFunction::REGU::NONE);

    fitter->Update();

    if (save_residuals && mitk_peak_image.IsNotNull())
    {
      itk::ImageFileWriter< PeakImgType >::Pointer writer = itk::ImageFileWriter< PeakImgType >::New();
      writer->SetInput(fitter->GetFittedImage());
      writer->SetFileName(outRoot + "_fitted.nii.gz");
      writer->Update();

      writer->SetInput(fitter->GetResidualImage());
      writer->SetFileName(outRoot + "_residual.nii.gz");
      writer->Update();

      writer->SetInput(fitter->GetOverexplainedImage());
      writer->SetFileName(outRoot + "_overexplained.nii.gz");
      writer->Update();

      writer->SetInput(fitter->GetUnderexplainedImage());
      writer->SetFileName(outRoot + "_underexplained.nii.gz");
      writer->Update();
    }
    else if (save_residuals && mitk::DiffusionPropertyHelper::IsDiffusionWeightedImage(mitk_image))
    {
      {
        mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( fitter->GetFittedImageDiff().GetPointer() );
        mitk::DiffusionPropertyHelper::CopyProperties(mitk_image, outImage, true);
        mitk::DiffusionPropertyHelper propertyHelper( outImage );
        propertyHelper.InitializeImage();
        mitk::IOUtil::Save(outImage, "application/vnd.mitk.nii.gz", outRoot + "_fitted_image.nii.gz");
      }

      {
        mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( fitter->GetResidualImageDiff().GetPointer() );
        mitk::DiffusionPropertyHelper::CopyProperties(mitk_image, outImage, true);
        mitk::DiffusionPropertyHelper propertyHelper( outImage );
        propertyHelper.InitializeImage();
        mitk::IOUtil::Save(outImage, "application/vnd.mitk.nii.gz", outRoot + "_residual_image.nii.gz");
      }

      {
        mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( fitter->GetOverexplainedImageDiff().GetPointer() );
        mitk::DiffusionPropertyHelper::CopyProperties(mitk_image, outImage, true);
        mitk::DiffusionPropertyHelper propertyHelper( outImage );
        propertyHelper.InitializeImage();
        mitk::IOUtil::Save(outImage, "application/vnd.mitk.nii.gz", outRoot + "_overexplained_image.nii.gz");
      }

      {
        mitk::Image::Pointer outImage = mitk::GrabItkImageMemory( fitter->GetUnderexplainedImageDiff().GetPointer() );
        mitk::DiffusionPropertyHelper::CopyProperties(mitk_image, outImage, true);
        mitk::DiffusionPropertyHelper propertyHelper( outImage );
        propertyHelper.InitializeImage();
        mitk::IOUtil::Save(outImage, "application/vnd.mitk.nii.gz", outRoot + "_underexplained_image.nii.gz");
      }
    }
    else if (save_residuals)
    {
      itk::ImageFileWriter< itk::FitFibersToImageFilter::DoubleImgType >::Pointer writer = itk::ImageFileWriter< itk::FitFibersToImageFilter::DoubleImgType >::New();
      writer->SetInput(fitter->GetFittedImageScalar());
      writer->SetFileName(outRoot + "_fitted_image.nii.gz");
      writer->Update();

      writer->SetInput(fitter->GetResidualImageScalar());
      writer->SetFileName(outRoot + "_residual_image.nii.gz");
      writer->Update();

      writer->SetInput(fitter->GetOverexplainedImageScalar());
      writer->SetFileName(outRoot + "_overexplained_image.nii.gz");
      writer->Update();

      writer->SetInput(fitter->GetUnderexplainedImageScalar());
      writer->SetFileName(outRoot + "_underexplained_image.nii.gz");
      writer->Update();
    }

    std::vector< mitk::FiberBundle::Pointer > output_tracts = fitter->GetTractograms();

    if (!join_tracts)
    {
      for (unsigned int bundle=0; bundle<output_tracts.size(); bundle++)
      {
        std::string name = fib_names.at(bundle);
        name = ist::GetFilenameWithoutExtension(name);
        mitk::IOUtil::Save(output_tracts.at(bundle), outRoot + name + "_fitted.fib");

        if (save_weights)
        {
          ofstream logfile;
          logfile.open (outRoot + name + "_weights.txt");
          for (int f=0; f<output_tracts.at(bundle)->GetNumFibers(); ++f)
            logfile << output_tracts.at(bundle)->GetFiberWeight(f) << "\n";
          logfile.close();
        }
      }
    }
    else
    {
      mitk::FiberBundle::Pointer out = mitk::FiberBundle::New();
      out = out->AddBundles(output_tracts);
      out->ColorFibersByFiberWeights(false, true);
      mitk::IOUtil::Save(out, outRoot + "_fitted.fib");

      if (save_weights)
      {
        ofstream logfile;
        logfile.open (outRoot + "_weights.txt");
        for (int f=0; f<out->GetNumFibers(); ++f)
          logfile << out->GetFiberWeight(f) << "\n";
        logfile.close();
      }
    }
  }
  catch (itk::ExceptionObject e)
  {
    std::cout << e;
    return EXIT_FAILURE;
  }
  catch (std::exception e)
  {
    std::cout << e.what();
    return EXIT_FAILURE;
  }
  catch (...)
  {
    std::cout << "ERROR!?!";
    return EXIT_FAILURE;
  }
  return EXIT_SUCCESS;
}
Beispiel #15
0
void QmitkOdfMaximaExtractionView::GenerateDataFromDwi()
{
    typedef itk::OdfMaximaExtractionFilter< float > MaximaExtractionFilterType;
    MaximaExtractionFilterType::Pointer filter = MaximaExtractionFilterType::New();

    mitk::Geometry3D::Pointer geometry;
    if (!m_ImageNodes.empty())
    {
        try{
            Image::Pointer img = dynamic_cast<Image*>(m_ImageNodes.at(0)->GetData());
            typedef ImageToItk< MaximaExtractionFilterType::CoefficientImageType > CasterType;
            CasterType::Pointer caster = CasterType::New();
            caster->SetInput(img);
            caster->Update();
            filter->SetShCoeffImage(caster->GetOutput());
            geometry = img->GetGeometry();
        }
        catch(itk::ExceptionObject &e)
        {
            MITK_INFO << "wrong image type: " << e.what();
            return;
        }
    }
    else
        return;

    filter->SetMaxNumPeaks(m_Controls->m_MaxNumPeaksBox->value());
    filter->SetPeakThreshold(m_Controls->m_PeakThresholdBox->value());

    if (!m_BinaryImageNodes.empty())
    {
        ItkUcharImgType::Pointer itkMaskImage = ItkUcharImgType::New();
        Image::Pointer mitkMaskImg = dynamic_cast<Image*>(m_BinaryImageNodes.at(0)->GetData());
        CastToItkImage<ItkUcharImgType>(mitkMaskImg, itkMaskImage);
        filter->SetMaskImage(itkMaskImage);
    }

    switch (m_Controls->m_NormalizationBox->currentIndex())
    {
    case 0:
        filter->SetNormalizationMethod(MaximaExtractionFilterType::NO_NORM);
        break;
    case 1:
        filter->SetNormalizationMethod(MaximaExtractionFilterType::MAX_VEC_NORM);
        break;
    case 2:
        filter->SetNormalizationMethod(MaximaExtractionFilterType::SINGLE_VEC_NORM);
        break;
    }

    filter->GenerateData();

    ItkUcharImgType::Pointer numDirImage = filter->GetNumDirectionsImage();

    if (m_Controls->m_OutputDirectionImagesBox->isChecked())
    {
        typedef MaximaExtractionFilterType::ItkDirectionImageContainer ItkDirectionImageContainer;
        ItkDirectionImageContainer::Pointer container = filter->GetDirectionImageContainer();
        for (int i=0; i<container->Size(); i++)
        {
            MaximaExtractionFilterType::ItkDirectionImage::Pointer itkImg = container->GetElement(i);
            mitk::Image::Pointer img = mitk::Image::New();
            img->InitializeByItk( itkImg.GetPointer() );
            img->SetVolume( itkImg->GetBufferPointer() );
            DataNode::Pointer node = DataNode::New();
            node->SetData(img);
            QString name(m_ImageNodes.at(0)->GetName().c_str());
            name += "_Direction";
            name += QString::number(i+1);
            node->SetName(name.toStdString().c_str());
            GetDataStorage()->Add(node);
        }
    }

    if (m_Controls->m_OutputNumDirectionsBox->isChecked())
    {
        mitk::Image::Pointer image2 = mitk::Image::New();
        image2->InitializeByItk( numDirImage.GetPointer() );
        image2->SetVolume( numDirImage->GetBufferPointer() );
        DataNode::Pointer node = DataNode::New();
        node->SetData(image2);
        QString name(m_ImageNodes.at(0)->GetName().c_str());
        name += "_NumDirections";
        node->SetName(name.toStdString().c_str());
        GetDataStorage()->Add(node);
    }

    if (m_Controls->m_OutputVectorFieldBox->isChecked())
    {
        mitk::Vector3D outImageSpacing = geometry->GetSpacing();
        float minSpacing = 1;
        if(outImageSpacing[0]<outImageSpacing[1] && outImageSpacing[0]<outImageSpacing[2])
            minSpacing = outImageSpacing[0];
        else if (outImageSpacing[1] < outImageSpacing[2])
            minSpacing = outImageSpacing[1];
        else
            minSpacing = outImageSpacing[2];

        mitk::FiberBundleX::Pointer directions = filter->GetOutputFiberBundle();
        directions->SetGeometry(geometry);
        DataNode::Pointer node = DataNode::New();
        node->SetData(directions);
        QString name(m_ImageNodes.at(0)->GetName().c_str());
        name += "_VectorField";
        node->SetName(name.toStdString().c_str());
        node->SetProperty("Fiber2DSliceThickness", mitk::FloatProperty::New(minSpacing));
        node->SetProperty("Fiber2DfadeEFX", mitk::BoolProperty::New(false));
        GetDataStorage()->Add(node);
    }
}