Beispiel #1
0
void generate_matrix_123(rokko::distributed_matrix<T>& mat)
{
  for(int local_i=0; local_i<mat.m_local; ++local_i) {
    for(int local_j=0; local_j<mat.n_local; ++local_j) {
      int global_i = mat.translate_l2g_row(local_i);
      int global_j = mat.translate_l2g_col(local_j);
      mat.set_local(local_i, local_j, mat.m_global * global_j + global_i );
    }
  }
}
Beispiel #2
0
void function_matrix(rokko::localized_vector<double> const& eigval_tmp, rokko::distributed_matrix<T, MATRIX_MAJOR> const& eigvec, rokko::distributed_matrix<T, MATRIX_MAJOR>& result, rokko::distributed_matrix<T, MATRIX_MAJOR>& tmp) {
  for (int local_j=0; local_j<eigvec.get_n_local(); ++local_j) {
    int global_j = eigvec.translate_l2g_col(local_j);
    double coeff = eigval_tmp(global_j);
    for (int local_i=0; local_i<eigvec.get_m_local(); ++local_i) {
      double value = eigvec.get_local(local_i, local_j);
      tmp.set_local(local_i, local_j, coeff * value); 
    }
  }
  product(1, tmp, false, eigvec, true, 0, result);
}
Beispiel #3
0
void diagonalize_fixedB(rokko::parallel_dense_solver& solver, rokko::distributed_matrix<T, MATRIX_MAJOR>& A, rokko::distributed_matrix<T, MATRIX_MAJOR>& B, rokko::localized_vector<double>& eigval, rokko::distributed_matrix<T, MATRIX_MAJOR>& eigvec, T tol = 0) {
  rokko::distributed_matrix<double, matrix_major> tmp(A.get_mapping()), Binvroot(A.get_mapping()), mat(A.get_mapping());
  rokko::parameters params;
  int myrank = A.get_myrank();
  params.set("routine", "");
  solver.diagonalize(B, eigval, eigvec, params);
  // computation of B^{-1/2}
  for(int i=0; i<eigval.size(); ++i)
    eigval(i) = (eigval(i) > tol) ? sqrt(1/eigval(i)) : 0;
  function_matrix(eigval, eigvec, Binvroot, tmp);
  
  // computation of B^{-1/2} A B^{-1/2}
  product(1, Binvroot, false, A, false, 0, tmp);
  product(1, tmp, false, Binvroot, false, 0, mat);
  // diagonalization of B^{-1/2} A B^{-1/2}
  solver.diagonalize(mat, eigval, tmp, params);

  // computation of {eigvec of Ax=lambda Bx} = B^{-1/2} {eigvec of B^{-1/2} A B^{-1/2}}
  product(1, Binvroot, false, tmp, false, 0, eigvec);
}