Ejemplo n.º 1
0
WandExport WandView *NewWandView(MagickWand *wand)
{
  ExceptionInfo
    *exception;

  WandView
    *wand_view;

  assert(wand != (MagickWand *) NULL);
  assert(wand->signature == WandSignature);
  wand_view=(WandView *) AcquireMagickMemory(sizeof(*wand_view));
  if (wand_view == (WandView *) NULL)
    ThrowWandFatalException(ResourceLimitFatalError,"MemoryAllocationFailed",
      GetExceptionMessage(errno));
  (void) ResetMagickMemory(wand_view,0,sizeof(*wand_view));
  wand_view->id=AcquireWandId();
  (void) FormatLocaleString(wand_view->name,MaxTextExtent,"%s-%.20g",
    WandViewId,(double) wand_view->id);
  wand_view->description=ConstantString("WandView");
  wand_view->wand=wand;
  exception=AcquireExceptionInfo();
  wand_view->view=AcquireVirtualCacheView(wand_view->wand->images,exception);
  wand_view->extent.width=wand->images->columns;
  wand_view->extent.height=wand->images->rows;
  wand_view->pixel_wands=AcquirePixelsThreadSet(wand_view->extent.width);
  wand_view->exception=exception;
  if (wand_view->pixel_wands == (PixelWand ***) NULL)
    ThrowWandFatalException(ResourceLimitFatalError,"MemoryAllocationFailed",
      GetExceptionMessage(errno));
  wand_view->debug=IsEventLogging();
  wand_view->signature=WandSignature;
  return(wand_view);
}
Ejemplo n.º 2
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   N e w I m a g e V i e w R e g i o n                                       %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  NewImageViewRegion() returns a image view required for all other methods
%  in the Image View API.
%
%  The format of the NewImageViewRegion method is:
%
%      ImageView *NewImageViewRegion(MagickCore *wand,const ssize_t x,
%        const ssize_t y,const size_t width,const size_t height,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o wand: the magick wand.
%
%    o x,y,columns,rows:  These values define the perimeter of a extent of
%      pixel_wands view.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport ImageView *NewImageViewRegion(Image *image,const ssize_t x,
  const ssize_t y,const size_t width,const size_t height,
  ExceptionInfo *exception)
{
  ImageView
    *image_view;

  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  image_view=(ImageView *) AcquireMagickMemory(sizeof(*image_view));
  if (image_view == (ImageView *) NULL)
    ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
  (void) ResetMagickMemory(image_view,0,sizeof(*image_view));
  image_view->description=ConstantString("ImageView");
  image_view->view=AcquireVirtualCacheView(image_view->image,exception);
  image_view->image=image;
  image_view->extent.width=width;
  image_view->extent.height=height;
  image_view->extent.x=x;
  image_view->extent.y=y;
  image_view->exception=AcquireExceptionInfo();
  image_view->debug=IsEventLogging();
  image_view->signature=MagickSignature;
  return(image_view);
}
Ejemplo n.º 3
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   N e w I m a g e V i e w                                                   %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  NewImageView() returns a image view required for all other methods in the
%  Image View API.
%
%  The format of the NewImageView method is:
%
%      ImageView *NewImageView(MagickCore *wand)
%
%  A description of each parameter follows:
%
%    o wand: the wand.
%
*/
MagickExport ImageView *NewImageView(Image *image)
{
  ImageView
    *image_view;

  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  image_view=(ImageView *) AcquireMagickMemory(sizeof(*image_view));
  if (image_view == (ImageView *) NULL)
    ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
  (void) ResetMagickMemory(image_view,0,sizeof(*image_view));
  image_view->description=ConstantString("ImageView");
  image_view->image=image;
  image_view->exception=AcquireExceptionInfo();
  image_view->view=AcquireVirtualCacheView(image_view->image,
    image_view->exception);
  image_view->extent.width=image->columns;
  image_view->extent.height=image->rows;
  image_view->extent.x=0;
  image_view->extent.y=0;
  image_view->number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
  image_view->debug=IsEventLogging();
  image_view->signature=MagickSignature;
  return(image_view);
}
Ejemplo n.º 4
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   N e w W a n d V i e w E x t e n t                                         %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  NewWandViewExtent() returns a wand view required for all other methods
%  in the Wand View API.
%
%  The format of the NewWandViewExtent method is:
%
%      WandView *NewWandViewExtent(MagickWand *wand,const ssize_t x,
%        const ssize_t y,const size_t width,const size_t height)
%
%  A description of each parameter follows:
%
%    o wand: the magick wand.
%
%    o x,y,columns,rows:  These values define the perimeter of a extent of
%      pixel_wands view.
%
*/
WandExport WandView *NewWandViewExtent(MagickWand *wand,const ssize_t x,
  const ssize_t y,const size_t width,const size_t height)
{
  WandView
    *wand_view;

  assert(wand != (MagickWand *) NULL);
  assert(wand->signature == WandSignature);
  wand_view=(WandView *) AcquireMagickMemory(sizeof(*wand_view));
  if (wand_view == (WandView *) NULL)
    ThrowWandFatalException(ResourceLimitFatalError,"MemoryAllocationFailed",
      GetExceptionMessage(errno));
  (void) ResetMagickMemory(wand_view,0,sizeof(*wand_view));
  wand_view->id=AcquireWandId();
  (void) FormatLocaleString(wand_view->name,MaxTextExtent,"%s-%.20g",
    WandViewId,(double) wand_view->id);
  wand_view->description=ConstantString("WandView");
  wand_view->exception=AcquireExceptionInfo();
  wand_view->view=AcquireVirtualCacheView(wand_view->wand->images,
    wand_view->exception);
  wand_view->wand=wand;
  wand_view->extent.width=width;
  wand_view->extent.height=height;
  wand_view->extent.x=x;
  wand_view->extent.y=y;
  wand_view->number_threads=GetOpenMPMaximumThreads();
  wand_view->pixel_wands=AcquirePixelsThreadSet(wand_view->extent.width,
    wand_view->number_threads);
  if (wand_view->pixel_wands == (PixelWand ***) NULL)
    ThrowWandFatalException(ResourceLimitFatalError,"MemoryAllocationFailed",
      GetExceptionMessage(errno));
  wand_view->debug=IsEventLogging();
  wand_view->signature=WandSignature;
  return(wand_view);
}
Ejemplo n.º 5
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   N e w P i x e l R e g i o n I t e r a t o r                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  NewPixelRegionIterator() returns a new pixel iterator.
%
%  The format of the NewPixelRegionIterator method is:
%
%      PixelIterator *NewPixelRegionIterator(MagickWand *wand,const ssize_t x,
%        const ssize_t y,const size_t width,const size_t height)
%
%  A description of each parameter follows:
%
%    o wand: the magick wand.
%
%    o x,y,columns,rows:  These values define the perimeter of a region of
%      pixels.
%
*/
WandExport PixelIterator *NewPixelRegionIterator(MagickWand *wand,
  const ssize_t x,const ssize_t y,const size_t width,const size_t height)
{
  CacheView
    *view;

  const char
    *quantum;

  ExceptionInfo
    *exception;

  Image
    *image;

  PixelIterator
    *iterator;

  size_t
    depth;

  assert(wand != (MagickWand *) NULL);
  depth=MAGICKCORE_QUANTUM_DEPTH;
  quantum=GetMagickQuantumDepth(&depth);
  if (depth != MAGICKCORE_QUANTUM_DEPTH)
    ThrowWandFatalException(WandError,"QuantumDepthMismatch",quantum);
  if ((width == 0) || (width == 0))
    ThrowWandFatalException(WandError,"ZeroRegionSize",quantum);
  image=GetImageFromMagickWand(wand);
  if (image == (Image *) NULL)
    return((PixelIterator *) NULL);
  exception=AcquireExceptionInfo();
  view=AcquireVirtualCacheView(image,exception);
  if (view == (CacheView *) NULL)
    return((PixelIterator *) NULL);
  iterator=(PixelIterator *) AcquireMagickMemory(sizeof(*iterator));
  if (iterator == (PixelIterator *) NULL)
    ThrowWandFatalException(ResourceLimitFatalError,"MemoryAllocationFailed",
      wand->name);
  (void) ResetMagickMemory(iterator,0,sizeof(*iterator));
  iterator->id=AcquireWandId();
  (void) FormatLocaleString(iterator->name,MaxTextExtent,"%s-%.20g",
    PixelIteratorId,(double) iterator->id);
  iterator->exception=exception;
  iterator->view=view;
  SetGeometry(image,&iterator->region);
  iterator->region.width=width;
  iterator->region.height=height;
  iterator->region.x=x;
  iterator->region.y=y;
  iterator->pixel_wands=NewPixelWands(iterator->region.width);
  iterator->y=0;
  iterator->debug=IsEventLogging();
  if (iterator->debug != MagickFalse)
    (void) LogMagickEvent(WandEvent,GetMagickModule(),"%s",iterator->name);
  iterator->signature=WandSignature;
  return(iterator);
}
Ejemplo n.º 6
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     I s I m a g e G r a y                                                   %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  IsImageGray() returns MagickTrue if all the pixels in the image have the
%  same red, green, and blue intensities.
%
%  The format of the IsImageGray method is:
%
%      MagickBooleanType IsImageGray(const Image *image,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType IsImageGray(const Image *image,
  ExceptionInfo *exception)
{
  CacheView
    *image_view;

  ImageType
    type;

  register const Quantum
    *p;

  register ssize_t
    x;

  ssize_t
    y;

  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  if ((image->type == BilevelType) || (image->type == GrayscaleType) ||
      (image->type == GrayscaleMatteType))
    return(MagickTrue);
  if ((IsGrayColorspace(image->colorspace) == MagickFalse) &&
      (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse))
    return(MagickFalse);
  type=BilevelType;
  image_view=AcquireVirtualCacheView(image,exception);
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
    if (p == (const Quantum *) NULL)
      break;
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      if (IsPixelGray(image,p) == MagickFalse)
        {
          type=UndefinedType;
          break;
        }
      if ((type == BilevelType) &&
          (IsPixelMonochrome(image,p) == MagickFalse))
        type=GrayscaleType;
      p+=GetPixelChannels(image);
    }
    if (type == UndefinedType)
      break;
  }
  image_view=DestroyCacheView(image_view);
  if (type == UndefinedType)
    return(MagickFalse);
  ((Image *) image)->type=type;
  if ((type == GrayscaleType) && (image->alpha_trait == BlendPixelTrait))
    ((Image *) image)->type=GrayscaleMatteType;
  return(SetImageColorspace((Image *) image,GRAYColorspace,exception));
}
Ejemplo n.º 7
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   A c q u i r e A u t h e n t i c C a c h e V i e w                         %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  AcquireAuthenticCacheView() acquires an authentic view into the pixel cache.
%  It always succeeds but may return a warning or informational exception.
%
%  The format of the AcquireAuthenticCacheView method is:
%
%      CacheView *AcquireAuthenticCacheView(const Image *image,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport CacheView *AcquireAuthenticCacheView(const Image *image,
  ExceptionInfo *exception)
{
  CacheView
    *magick_restrict cache_view;

  cache_view=AcquireVirtualCacheView(image,exception);
  return(cache_view);
}
Ejemplo n.º 8
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   A c q u i r e A u t h e n t i c C a c h e V i e w                         %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  AcquireAuthenticCacheView() acquires an authentic view into the pixel cache.
%
%  The format of the AcquireAuthenticCacheView method is:
%
%      CacheView *AcquireAuthenticCacheView(const Image *image,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport CacheView *AcquireAuthenticCacheView(const Image *image,
  ExceptionInfo *exception)
{
  CacheView
    *restrict cache_view;

  cache_view=AcquireVirtualCacheView(image,exception);
  (void) SyncImagePixelCache(cache_view->image,exception);
  return(cache_view);
}
Ejemplo n.º 9
0
Magick::Pixels::Pixels(Magick::Image &image_)
  : _image(image_),
    _x(0),
    _y(0),
    _columns(0),
    _rows(0)
{
  GetPPException;
  _view=AcquireVirtualCacheView(image_.image(),exceptionInfo);
  ThrowPPException(image_.quiet());
}
Ejemplo n.º 10
0
Magick::Pixels::Pixels(Magick::Image &image_)
  : _image(image_),
    _view(AcquireVirtualCacheView(_image.image(),&_exception)),
    _x(0),
    _y(0),
    _columns(0),
    _rows(0)
{
  GetExceptionInfo(&_exception);

  if (!_view)
    _image.throwImageException();
}
Ejemplo n.º 11
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   A c q u i r e A u t h e n t i c C a c h e V i e w                         %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  AcquireAuthenticCacheView() acquires an authentic view into the pixel cache.
%
%  The format of the AcquireAuthenticCacheView method is:
%
%      CacheView *AcquireAuthenticCacheView(const Image *image,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport CacheView *AcquireAuthenticCacheView(const Image *image,
  ExceptionInfo *exception)
{
  CacheView
    *cache_view;

  MagickBooleanType
    status;

  cache_view=AcquireVirtualCacheView(image,exception);
  status=SyncImagePixelCache(cache_view->image,exception);
  if (status == MagickFalse)
    ThrowFatalException(CacheFatalError,"UnableToAcquireCacheView");
  return(cache_view);
}
Ejemplo n.º 12
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     I s I m a g e O p a q u e                                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  IsImageOpaque() returns MagickTrue if none of the pixels in the image have
%  an alpha value other than OpaqueAlpha (QuantumRange).
%
%  Will return true immediatally is alpha channel is not available.
%
%  The format of the IsImageOpaque method is:
%
%      MagickBooleanType IsImageOpaque(const Image *image,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType IsImageOpaque(const Image *image,
  ExceptionInfo *exception)
{
  CacheView
    *image_view;

  register const Quantum
    *p;

  register ssize_t
    x;

  ssize_t
    y;

  /*
    Determine if image is opaque.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  if (image->alpha_trait != BlendPixelTrait)
    return(MagickTrue);
  image_view=AcquireVirtualCacheView(image,exception);
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
    if (p == (const Quantum *) NULL)
      break;
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      if (GetPixelAlpha(image,p) != OpaqueAlpha)
        break;
      p+=GetPixelChannels(image);
    }
    if (x < (ssize_t) image->columns)
     break;
  }
  image_view=DestroyCacheView(image_view);
  return(y < (ssize_t) image->rows ? MagickFalse : MagickTrue);
}
Ejemplo n.º 13
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     C o m b i n e I m a g e s                                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  CombineImages() combines one or more images into a single image.  The
%  grayscale value of the pixels of each image in the sequence is assigned in
%  order to the specified channels of the combined image.   The typical
%  ordering would be image 1 => Red, 2 => Green, 3 => Blue, etc.
%
%  The format of the CombineImages method is:
%
%      Image *CombineImages(const Image *images,const ColorspaceType colorspace,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o images: the image sequence.
%
%    o colorspace: the image colorspace.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *CombineImages(const Image *image,
  const ColorspaceType colorspace,ExceptionInfo *exception)
{
#define CombineImageTag  "Combine/Image"

  CacheView
    *combine_view;

  Image
    *combine_image;

  MagickBooleanType
    status;

  MagickOffsetType
    progress;

  ssize_t
    y;

  /*
    Ensure the image are the same size.
  */
  assert(image != (const Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  combine_image=CloneImage(image,0,0,MagickTrue,exception);
  if (combine_image == (Image *) NULL)
    return((Image *) NULL);
  if (SetImageStorageClass(combine_image,DirectClass,exception) == MagickFalse)
    {
      combine_image=DestroyImage(combine_image);
      return((Image *) NULL);
    }
  (void) SetImageColorspace(combine_image,colorspace,exception);
  if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0)
    combine_image->alpha_trait=BlendPixelTrait;
  /*
    Combine images.
  */
  status=MagickTrue;
  progress=0;
  combine_view=AcquireAuthenticCacheView(combine_image,exception);
  for (y=0; y < (ssize_t) combine_image->rows; y++)
  {
    CacheView
      *image_view;

    const Image
      *next;

    Quantum
      *pixels;

    register const Quantum
      *restrict p;

    register Quantum
      *restrict q;

    register ssize_t
      i;

    if (status == MagickFalse)
      continue;
    pixels=GetCacheViewAuthenticPixels(combine_view,0,y,combine_image->columns,
      1,exception);
    if (pixels == (Quantum *) NULL)
      {
        status=MagickFalse;
        continue;
      }
    next=image;
    for (i=0; i < (ssize_t) GetPixelChannels(combine_image); i++)
    {
      register ssize_t
        x;

      PixelChannel channel=GetPixelChannelChannel(combine_image,i);
      PixelTrait traits=GetPixelChannelTraits(combine_image,channel);
      if (traits == UndefinedPixelTrait)
        continue;
      if (next == (Image *) NULL)
        continue;
      image_view=AcquireVirtualCacheView(next,exception);
      p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
      if (p == (const Quantum *) NULL)
        continue;
      q=pixels;
      for (x=0; x < (ssize_t) combine_image->columns; x++)
      {
        if (x < (ssize_t) next->columns)
          {
            q[i]=GetPixelGray(next,p);
            p+=GetPixelChannels(next);
          }
        q+=GetPixelChannels(combine_image);
      }
      image_view=DestroyCacheView(image_view);
      next=GetNextImageInList(next);
    }
    if (SyncCacheViewAuthenticPixels(combine_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

        proceed=SetImageProgress(image,CombineImageTag,progress++,
          combine_image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  combine_view=DestroyCacheView(combine_view);
  if (status == MagickFalse)
    combine_image=DestroyImage(combine_image);
  return(combine_image);
}
Ejemplo n.º 14
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   G e t I m a g e D e p t h                                                 %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  GetImageDepth() returns the depth of a particular image channel.
%
%  The format of the GetImageDepth method is:
%
%      size_t GetImageDepth(const Image *image,ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport size_t GetImageDepth(const Image *image,ExceptionInfo *exception)
{
  CacheView
    *image_view;

  MagickBooleanType
    status;

  register ssize_t
    id;

  size_t
    *current_depth,
    depth,
    number_threads;

  ssize_t
    y;

  /*
    Compute image depth.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
  current_depth=(size_t *) AcquireQuantumMemory(number_threads,
    sizeof(*current_depth));
  if (current_depth == (size_t *) NULL)
    ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
  status=MagickTrue;
  for (id=0; id < (ssize_t) number_threads; id++)
    current_depth[id]=1;
  if ((image->storage_class == PseudoClass) && (image->alpha_trait != BlendPixelTrait))
    {
      register ssize_t
        i;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
      #pragma omp parallel for schedule(static,4) shared(status) \
        if ((image->colors) > 256) \
          num_threads(GetMagickResourceLimit(ThreadResource))
#endif
      for (i=0; i < (ssize_t) image->colors; i++)
      {
        const int
          id = GetOpenMPThreadId();

        if (status == MagickFalse)
          continue;
        while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH)
        {
          MagickStatusType
            status;

          QuantumAny
            range;

          status=0;
          range=GetQuantumRange(current_depth[id]);
          if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0)
            status|=ClampToQuantum(image->colormap[i].red) !=
              ScaleAnyToQuantum(ScaleQuantumToAny(ClampToQuantum(
              image->colormap[i].red),range),range);
          if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0)
            status|=ClampToQuantum(image->colormap[i].green) !=
              ScaleAnyToQuantum(ScaleQuantumToAny(ClampToQuantum(
              image->colormap[i].green),range),range);
          if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0)
            status|=ClampToQuantum(image->colormap[i].blue) !=
              ScaleAnyToQuantum(ScaleQuantumToAny(ClampToQuantum(
              image->colormap[i].blue),range),range);
          if (status == 0)
            break;
          current_depth[id]++;
        }
      }
      depth=current_depth[0];
      for (id=1; id < (ssize_t) number_threads; id++)
        if (depth < current_depth[id])
          depth=current_depth[id];
      current_depth=(size_t *) RelinquishMagickMemory(current_depth);
      return(depth);
    }
  image_view=AcquireVirtualCacheView(image,exception);
#if !defined(MAGICKCORE_HDRI_SUPPORT)
  if (QuantumRange <= MaxMap)
    {
      register ssize_t
        i;

      size_t
        *depth_map;

      /*
        Scale pixels to desired (optimized with depth map).
      */
      depth_map=(size_t *) AcquireQuantumMemory(MaxMap+1,sizeof(*depth_map));
      if (depth_map == (size_t *) NULL)
        ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
      for (i=0; i <= (ssize_t) MaxMap; i++)
      {
        unsigned int
          depth;

        for (depth=1; depth < MAGICKCORE_QUANTUM_DEPTH; depth++)
        {
          Quantum
            pixel;

          QuantumAny
            range;

          range=GetQuantumRange(depth);
          pixel=(Quantum) i;
          if (pixel == ScaleAnyToQuantum(ScaleQuantumToAny(pixel,range),range))
            break;
        }
        depth_map[i]=depth;
      }
#if defined(MAGICKCORE_OPENMP_SUPPORT)
      #pragma omp parallel for schedule(static,4) shared(status) \
        magick_threads(image,image,image->rows,1)
#endif
      for (y=0; y < (ssize_t) image->rows; y++)
      {
        const int
          id = GetOpenMPThreadId();

        register const Quantum
          *restrict p;

        register ssize_t
          x;

        if (status == MagickFalse)
          continue;
        p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
        if (p == (const Quantum *) NULL)
          continue;
        for (x=0; x < (ssize_t) image->columns; x++)
        {
          register ssize_t
            i;

          if (GetPixelReadMask(image,p) == 0)
            {
              p+=GetPixelChannels(image);
              continue;
            }
          for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
          {
            PixelChannel channel=GetPixelChannelChannel(image,i);
            PixelTrait traits=GetPixelChannelTraits(image,channel);
            if ((traits == UndefinedPixelTrait) ||
                (channel == IndexPixelChannel) ||
                (channel == ReadMaskPixelChannel) || (channel == MetaPixelChannel))
              continue;
            if (depth_map[ScaleQuantumToMap(p[i])] > current_depth[id])
              current_depth[id]=depth_map[ScaleQuantumToMap(p[i])];
          }
          p+=GetPixelChannels(image);
        }
        if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH)
          status=MagickFalse;
      }
      image_view=DestroyCacheView(image_view);
      depth=current_depth[0];
      for (id=1; id < (ssize_t) number_threads; id++)
        if (depth < current_depth[id])
          depth=current_depth[id];
      depth_map=(size_t *) RelinquishMagickMemory(depth_map);
      current_depth=(size_t *) RelinquishMagickMemory(current_depth);
      return(depth);
    }
#endif
  /*
    Compute pixel depth.
  */
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status) \
    magick_threads(image,image,image->rows,1)
#endif
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    const int
      id = GetOpenMPThreadId();

    register const Quantum
      *restrict p;

    register ssize_t
      x;

    if (status == MagickFalse)
      continue;
    p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
    if (p == (const Quantum *) NULL)
      continue;
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      register ssize_t
        i;

      if (GetPixelReadMask(image,p) == 0)
        {
          p+=GetPixelChannels(image);
          continue;
        }
      for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
      {
        PixelChannel
          channel;

        PixelTrait
          traits;

        channel=GetPixelChannelChannel(image,i);
        traits=GetPixelChannelTraits(image,channel);
        if ((traits == UndefinedPixelTrait) || (channel == IndexPixelChannel) ||
            (channel == ReadMaskPixelChannel))
          continue;
        while (current_depth[id] < MAGICKCORE_QUANTUM_DEPTH)
        {
          QuantumAny
            range;

          range=GetQuantumRange(current_depth[id]);
          if (p[i] == ScaleAnyToQuantum(ScaleQuantumToAny(p[i],range),range))
            break;
          current_depth[id]++;
        }
      }
      p+=GetPixelChannels(image);
    }
    if (current_depth[id] == MAGICKCORE_QUANTUM_DEPTH)
      status=MagickFalse;
  }
  image_view=DestroyCacheView(image_view);
  depth=current_depth[0];
  for (id=1; id < (ssize_t) number_threads; id++)
    if (depth < current_depth[id])
      depth=current_depth[id];
  current_depth=(size_t *) RelinquishMagickMemory(current_depth);
  return(depth);
}
Ejemplo n.º 15
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   F l o o d f i l l P a i n t I m a g e                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  FloodfillPaintImage() changes the color value of any pixel that matches
%  target and is an immediate neighbor.  If the method FillToBorderMethod is
%  specified, the color value is changed for any neighbor pixel that does not
%  match the bordercolor member of image.
%
%  By default target must match a particular pixel color exactly.  However,
%  in many cases two colors may differ by a small amount.  The fuzz member of
%  image defines how much tolerance is acceptable to consider two colors as
%  the same.  For example, set fuzz to 10 and the color red at intensities of
%  100 and 102 respectively are now interpreted as the same color for the
%  purposes of the floodfill.
%
%  The format of the FloodfillPaintImage method is:
%
%      MagickBooleanType FloodfillPaintImage(Image *image,
%        const DrawInfo *draw_info,const PixelInfo target,
%        const ssize_t x_offset,const ssize_t y_offset,
%        const MagickBooleanType invert,ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o draw_info: the draw info.
%
%    o target: the RGB value of the target color.
%
%    o x_offset,y_offset: the starting location of the operation.
%
%    o invert: paint any pixel that does not match the target color.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType FloodfillPaintImage(Image *image,
  const DrawInfo *draw_info,const PixelInfo *target,const ssize_t x_offset,
  const ssize_t y_offset,const MagickBooleanType invert,
  ExceptionInfo *exception)
{
#define MaxStacksize  262144UL
#define PushSegmentStack(up,left,right,delta) \
{ \
  if (s >= (segment_stack+MaxStacksize)) \
    ThrowBinaryException(DrawError,"SegmentStackOverflow",image->filename) \
  else \
    { \
      if ((((up)+(delta)) >= 0) && (((up)+(delta)) < (ssize_t) image->rows)) \
        { \
          s->x1=(double) (left); \
          s->y1=(double) (up); \
          s->x2=(double) (right); \
          s->y2=(double) (delta); \
          s++; \
        } \
    } \
}

  CacheView
    *floodplane_view,
    *image_view;

  Image
    *floodplane_image;

  MagickBooleanType
    skip,
    status;

  MemoryInfo
    *segment_info;

  PixelInfo
    fill_color,
    pixel;

  register SegmentInfo
    *s;

  SegmentInfo
    *segment_stack;

  ssize_t
    offset,
    start,
    x,
    x1,
    x2,
    y;

  /*
    Check boundary conditions.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickCoreSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(draw_info != (DrawInfo *) NULL);
  assert(draw_info->signature == MagickCoreSignature);
  if ((x_offset < 0) || (x_offset >= (ssize_t) image->columns))
    return(MagickFalse);
  if ((y_offset < 0) || (y_offset >= (ssize_t) image->rows))
    return(MagickFalse);
  if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
    return(MagickFalse);
  if (IsGrayColorspace(image->colorspace) != MagickFalse)
    (void) SetImageColorspace(image,sRGBColorspace,exception);
  if ((image->alpha_trait == UndefinedPixelTrait) &&
      (draw_info->fill.alpha_trait != UndefinedPixelTrait))
    (void) SetImageAlpha(image,OpaqueAlpha,exception);
  /*
    Set floodfill state.
  */
  floodplane_image=CloneImage(image,image->columns,image->rows,MagickTrue,
    exception);
  if (floodplane_image == (Image *) NULL)
    return(MagickFalse);
  floodplane_image->alpha_trait=UndefinedPixelTrait;
  floodplane_image->colorspace=GRAYColorspace;
  (void) QueryColorCompliance("#000",AllCompliance,
    &floodplane_image->background_color,exception);
  (void) SetImageBackgroundColor(floodplane_image,exception);
  segment_info=AcquireVirtualMemory(MaxStacksize,sizeof(*segment_stack));
  if (segment_info == (MemoryInfo *) NULL)
    {
      floodplane_image=DestroyImage(floodplane_image);
      ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
        image->filename);
    }
  segment_stack=(SegmentInfo *) GetVirtualMemoryBlob(segment_info);
  /*
    Push initial segment on stack.
  */
  status=MagickTrue;
  x=x_offset;
  y=y_offset;
  start=0;
  s=segment_stack;
  PushSegmentStack(y,x,x,1);
  PushSegmentStack(y+1,x,x,-1);
  GetPixelInfo(image,&pixel);
  image_view=AcquireVirtualCacheView(image,exception);
  floodplane_view=AcquireAuthenticCacheView(floodplane_image,exception);
  while (s > segment_stack)
  {
    register const Quantum
      *restrict p;

    register Quantum
      *restrict q;

    register ssize_t
      x;

    /*
      Pop segment off stack.
    */
    s--;
    x1=(ssize_t) s->x1;
    x2=(ssize_t) s->x2;
    offset=(ssize_t) s->y2;
    y=(ssize_t) s->y1+offset;
    /*
      Recolor neighboring pixels.
    */
    p=GetCacheViewVirtualPixels(image_view,0,y,(size_t) (x1+1),1,exception);
    q=GetCacheViewAuthenticPixels(floodplane_view,0,y,(size_t) (x1+1),1,
      exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      break;
    p+=x1*GetPixelChannels(image);
    q+=x1*GetPixelChannels(floodplane_image);
    for (x=x1; x >= 0; x--)
    {
      if (GetPixelGray(floodplane_image,q) != 0)
        break;
      GetPixelInfoPixel(image,p,&pixel);
      if (IsFuzzyEquivalencePixelInfo(&pixel,target) == invert)
        break;
      SetPixelGray(floodplane_image,QuantumRange,q);
      p-=GetPixelChannels(image);
      q-=GetPixelChannels(floodplane_image);
    }
    if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse)
      break;
    skip=x >= x1 ? MagickTrue : MagickFalse;
    if (skip == MagickFalse)
      {
        start=x+1;
        if (start < x1)
          PushSegmentStack(y,start,x1-1,-offset);
        x=x1+1;
      }
    do
    {
      if (skip == MagickFalse)
        {
          if (x < (ssize_t) image->columns)
            {
              p=GetCacheViewVirtualPixels(image_view,x,y,image->columns-x,1,
                exception);
              q=GetCacheViewAuthenticPixels(floodplane_view,x,y,image->columns-
                x,1,exception);
              if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
                break;
              for ( ; x < (ssize_t) image->columns; x++)
              {
                if (GetPixelGray(floodplane_image,q) != 0)
                  break;
                GetPixelInfoPixel(image,p,&pixel);
                if (IsFuzzyEquivalencePixelInfo(&pixel,target) == invert)
                  break;
                SetPixelGray(floodplane_image,QuantumRange,q);
                p+=GetPixelChannels(image);
                q+=GetPixelChannels(floodplane_image);
              }
              status=SyncCacheViewAuthenticPixels(floodplane_view,exception);
              if (status == MagickFalse)
                break;
            }
          PushSegmentStack(y,start,x-1,offset);
          if (x > (x2+1))
            PushSegmentStack(y,x2+1,x-1,-offset);
        }
      skip=MagickFalse;
      x++;
      if (x <= x2)
        {
          p=GetCacheViewVirtualPixels(image_view,x,y,(size_t) (x2-x+1),1,
            exception);
          q=GetCacheViewAuthenticPixels(floodplane_view,x,y,(size_t) (x2-x+1),1,
            exception);
          if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
            break;
          for ( ; x <= x2; x++)
          {
            if (GetPixelGray(floodplane_image,q) != 0)
              break;
            GetPixelInfoPixel(image,p,&pixel);
            if (IsFuzzyEquivalencePixelInfo(&pixel,target) != invert)
              break;
            p+=GetPixelChannels(image);
            q+=GetPixelChannels(floodplane_image);
          }
        }
      start=x;
    } while (x <= x2);
  }
  status=MagickTrue;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status) \
    magick_threads(floodplane_image,image,floodplane_image->rows,1)
#endif
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    register const Quantum
      *restrict p;

    register Quantum
      *restrict q;

    register ssize_t
      x;

    /*
      Tile fill color onto floodplane.
    */
    if (status == MagickFalse)
      continue;
    p=GetCacheViewVirtualPixels(floodplane_view,0,y,image->columns,1,exception);
    q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      {
        status=MagickFalse;
        continue;
      }
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      if (GetPixelGray(floodplane_image,p) != 0)
        {
          (void) GetFillColor(draw_info,x,y,&fill_color,exception);
          SetPixelViaPixelInfo(image,&fill_color,q);
        }
      p+=GetPixelChannels(floodplane_image);
      q+=GetPixelChannels(image);
    }
    if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
      status=MagickFalse;
  }
  floodplane_view=DestroyCacheView(floodplane_view);
  image_view=DestroyCacheView(image_view);
  segment_info=RelinquishVirtualMemory(segment_info);
  floodplane_image=DestroyImage(floodplane_image);
  return(status);
}
Ejemplo n.º 16
0
MagickExport Image *OilPaintImage(const Image *image,const double radius,
  const double sigma,ExceptionInfo *exception)
{
#define NumberPaintBins  256
#define OilPaintImageTag  "OilPaint/Image"

  CacheView
    *image_view,
    *paint_view;

  Image
    *linear_image,
    *paint_image;

  MagickBooleanType
    status;

  MagickOffsetType
    progress;

  size_t
    **histograms,
    width;

  ssize_t
    center,
    y;

  /*
    Initialize painted image attributes.
  */
  assert(image != (const Image *) NULL);
  assert(image->signature == MagickCoreSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickCoreSignature);
  width=GetOptimalKernelWidth2D(radius,sigma);
  linear_image=CloneImage(image,0,0,MagickTrue,exception);
  paint_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
  if ((linear_image == (Image *) NULL) || (paint_image == (Image *) NULL))
    {
      if (linear_image != (Image *) NULL)
        linear_image=DestroyImage(linear_image);
      if (paint_image != (Image *) NULL)
        linear_image=DestroyImage(paint_image);
      return((Image *) NULL);
    }
  if (SetImageStorageClass(paint_image,DirectClass,exception) == MagickFalse)
    {
      linear_image=DestroyImage(linear_image);
      paint_image=DestroyImage(paint_image);
      return((Image *) NULL);
    }
  histograms=AcquireHistogramThreadSet(NumberPaintBins);
  if (histograms == (size_t **) NULL)
    {
      linear_image=DestroyImage(linear_image);
      paint_image=DestroyImage(paint_image);
      ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
    }
  /*
    Oil paint image.
  */
  status=MagickTrue;
  progress=0;
  center=(ssize_t) GetPixelChannels(linear_image)*(linear_image->columns+width)*
    (width/2L)+GetPixelChannels(linear_image)*(width/2L);
  image_view=AcquireVirtualCacheView(linear_image,exception);
  paint_view=AcquireAuthenticCacheView(paint_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(progress,status) \
    magick_threads(linear_image,paint_image,linear_image->rows,1)
#endif
  for (y=0; y < (ssize_t) linear_image->rows; y++)
  {
    register const Quantum
      *restrict p;

    register Quantum
      *restrict q;

    register size_t
      *histogram;

    register ssize_t
      x;

    if (status == MagickFalse)
      continue;
    p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y-(ssize_t)
      (width/2L),linear_image->columns+width,width,exception);
    q=QueueCacheViewAuthenticPixels(paint_view,0,y,paint_image->columns,1,
      exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      {
        status=MagickFalse;
        continue;
      }
    histogram=histograms[GetOpenMPThreadId()];
    for (x=0; x < (ssize_t) linear_image->columns; x++)
    {
      register ssize_t
        i,
        u;

      size_t
        count;

      ssize_t
        j,
        k,
        n,
        v;

      /*
        Assign most frequent color.
      */
      k=0;
      j=0;
      count=0;
      (void) ResetMagickMemory(histogram,0,NumberPaintBins* sizeof(*histogram));
      for (v=0; v < (ssize_t) width; v++)
      {
        for (u=0; u < (ssize_t) width; u++)
        {
          n=(ssize_t) ScaleQuantumToChar(ClampToQuantum(GetPixelIntensity(
            linear_image,p+GetPixelChannels(linear_image)*(u+k))));
          histogram[n]++;
          if (histogram[n] > count)
            {
              j=k+u;
              count=histogram[n];
            }
        }
        k+=(ssize_t) (linear_image->columns+width);
      }
      for (i=0; i < (ssize_t) GetPixelChannels(linear_image); i++)
      {
        PixelChannel channel=GetPixelChannelChannel(linear_image,i);
        PixelTrait traits=GetPixelChannelTraits(linear_image,channel);
        PixelTrait paint_traits=GetPixelChannelTraits(paint_image,channel);
        if ((traits == UndefinedPixelTrait) ||
            (paint_traits == UndefinedPixelTrait))
          continue;
        if (((paint_traits & CopyPixelTrait) != 0) ||
            (GetPixelReadMask(linear_image,p) == 0))
          {
            SetPixelChannel(paint_image,channel,p[center+i],q);
            continue;
          }
        SetPixelChannel(paint_image,channel,p[j*GetPixelChannels(linear_image)+
          i],q);
      }
      p+=GetPixelChannels(linear_image);
      q+=GetPixelChannels(paint_image);
    }
    if (SyncCacheViewAuthenticPixels(paint_view,exception) == MagickFalse)
      status=MagickFalse;
    if (linear_image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp critical (MagickCore_OilPaintImage)
#endif
        proceed=SetImageProgress(linear_image,OilPaintImageTag,progress++,
          linear_image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  paint_view=DestroyCacheView(paint_view);
  image_view=DestroyCacheView(image_view);
  histograms=DestroyHistogramThreadSet(histograms);
  linear_image=DestroyImage(linear_image);
  if (status == MagickFalse)
    paint_image=DestroyImage(paint_image);
  return(paint_image);
}
Ejemplo n.º 17
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
+   G e t I m a g e B o u n d i n g B o x                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  GetImageBoundingBox() returns the bounding box of an image canvas.
%
%  The format of the GetImageBoundingBox method is:
%
%      RectangleInfo GetImageBoundingBox(const Image *image,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o bounds: Method GetImageBoundingBox returns the bounding box of an
%      image canvas.
%
%    o image: the image.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport RectangleInfo GetImageBoundingBox(const Image *image,
  ExceptionInfo *exception)
{
  CacheView
    *image_view;

  MagickBooleanType
    status;

  PixelInfo
    target[3],
    zero;

  RectangleInfo
    bounds;

  register const Quantum
    *p;

  ssize_t
    y;

  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  bounds.width=0;
  bounds.height=0;
  bounds.x=(ssize_t) image->columns;
  bounds.y=(ssize_t) image->rows;
  GetPixelInfo(image,&target[0]);
  image_view=AcquireVirtualCacheView(image,exception);
  p=GetCacheViewVirtualPixels(image_view,0,0,1,1,exception);
  if (p == (const Quantum *) NULL)
    {
      image_view=DestroyCacheView(image_view);
      return(bounds);
    }
  GetPixelInfoPixel(image,p,&target[0]);
  GetPixelInfo(image,&target[1]);
  p=GetCacheViewVirtualPixels(image_view,(ssize_t) image->columns-1,0,1,1,
    exception);
  GetPixelInfoPixel(image,p,&target[1]);
  GetPixelInfo(image,&target[2]);
  p=GetCacheViewVirtualPixels(image_view,0,(ssize_t) image->rows-1,1,1,
    exception);
  GetPixelInfoPixel(image,p,&target[2]);
  status=MagickTrue;
  GetPixelInfo(image,&zero);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status) \
    magick_threads(image,image,image->rows,1)
#endif
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    PixelInfo
      pixel;

    RectangleInfo
      bounding_box;

    register const Quantum
      *restrict p;

    register ssize_t
      x;

    if (status == MagickFalse)
      continue;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#  pragma omp critical (MagickCore_GetImageBoundingBox)
#endif
    bounding_box=bounds;
    p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
    if (p == (const Quantum *) NULL)
      {
        status=MagickFalse;
        continue;
      }
    pixel=zero;
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      GetPixelInfoPixel(image,p,&pixel);
      if ((x < bounding_box.x) &&
          (IsFuzzyEquivalencePixelInfo(&pixel,&target[0]) == MagickFalse))
        bounding_box.x=x;
      if ((x > (ssize_t) bounding_box.width) &&
          (IsFuzzyEquivalencePixelInfo(&pixel,&target[1]) == MagickFalse))
        bounding_box.width=(size_t) x;
      if ((y < bounding_box.y) &&
          (IsFuzzyEquivalencePixelInfo(&pixel,&target[0]) == MagickFalse))
        bounding_box.y=y;
      if ((y > (ssize_t) bounding_box.height) &&
          (IsFuzzyEquivalencePixelInfo(&pixel,&target[2]) == MagickFalse))
        bounding_box.height=(size_t) y;
      p+=GetPixelChannels(image);
    }
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#  pragma omp critical (MagickCore_GetImageBoundingBox)
#endif
    {
      if (bounding_box.x < bounds.x)
        bounds.x=bounding_box.x;
      if (bounding_box.y < bounds.y)
        bounds.y=bounding_box.y;
      if (bounding_box.width > bounds.width)
        bounds.width=bounding_box.width;
      if (bounding_box.height > bounds.height)
        bounds.height=bounding_box.height;
    }
  }
  image_view=DestroyCacheView(image_view);
  if ((bounds.width == 0) || (bounds.height == 0))
    (void) ThrowMagickException(exception,GetMagickModule(),OptionWarning,
      "GeometryDoesNotContainImage","`%s'",image->filename);
  else
    {
      bounds.width-=(bounds.x-1);
      bounds.height-=(bounds.y-1);
    }
  return(bounds);
}
Ejemplo n.º 18
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   F l o o d f i l l P a i n t I m a g e                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  FloodfillPaintImage() changes the color value of any pixel that matches
%  target and is an immediate neighbor.  If the method FillToBorderMethod is
%  specified, the color value is changed for any neighbor pixel that does not
%  match the bordercolor member of image.
%
%  By default target must match a particular pixel color exactly.
%  However, in many cases two colors may differ by a small amount.  The
%  fuzz member of image defines how much tolerance is acceptable to
%  consider two colors as the same.  For example, set fuzz to 10 and the
%  color red at intensities of 100 and 102 respectively are now
%  interpreted as the same color for the purposes of the floodfill.
%
%  The format of the FloodfillPaintImage method is:
%
%      MagickBooleanType FloodfillPaintImage(Image *image,
%        const ChannelType channel,const DrawInfo *draw_info,
%        const MagickPixelPacket target,const ssize_t x_offset,
%        const ssize_t y_offset,const MagickBooleanType invert)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o channel: the channel(s).
%
%    o draw_info: the draw info.
%
%    o target: the RGB value of the target color.
%
%    o x_offset,y_offset: the starting location of the operation.
%
%    o invert: paint any pixel that does not match the target color.
%
*/
MagickExport MagickBooleanType FloodfillPaintImage(Image *image,
  const ChannelType channel,const DrawInfo *draw_info,
  const MagickPixelPacket *target,const ssize_t x_offset,const ssize_t y_offset,
  const MagickBooleanType invert)
{
#define MaxStacksize  (1UL << 15)
#define PushSegmentStack(up,left,right,delta) \
{ \
  if (s >= (segment_stack+MaxStacksize)) \
    ThrowBinaryException(DrawError,"SegmentStackOverflow",image->filename) \
  else \
    { \
      if ((((up)+(delta)) >= 0) && (((up)+(delta)) < (ssize_t) image->rows)) \
        { \
          s->x1=(double) (left); \
          s->y1=(double) (up); \
          s->x2=(double) (right); \
          s->y2=(double) (delta); \
          s++; \
        } \
    } \
}

  CacheView
    *floodplane_view,
    *image_view;

  ExceptionInfo
    *exception;

  Image
    *floodplane_image;

  MagickBooleanType
    skip;

  MagickPixelPacket
    fill,
    pixel;

  PixelPacket
    fill_color;

  register SegmentInfo
    *s;

  SegmentInfo
    *segment_stack;

  ssize_t
    offset,
    start,
    x,
    x1,
    x2,
    y;

  /*
    Check boundary conditions.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(draw_info != (DrawInfo *) NULL);
  assert(draw_info->signature == MagickSignature);
  if ((x_offset < 0) || (x_offset >= (ssize_t) image->columns))
    return(MagickFalse);
  if ((y_offset < 0) || (y_offset >= (ssize_t) image->rows))
    return(MagickFalse);
  if (SetImageStorageClass(image,DirectClass) == MagickFalse)
    return(MagickFalse);
  if (IsGrayColorspace(image->colorspace) != MagickFalse)
    (void) TransformImageColorspace(image,sRGBColorspace);
  if ((image->matte == MagickFalse) &&
      (draw_info->fill.opacity != OpaqueOpacity))
    (void) SetImageAlphaChannel(image,OpaqueAlphaChannel);
  /*
    Set floodfill state.
  */
  floodplane_image=CloneImage(image,0,0,MagickTrue,&image->exception);
  if (floodplane_image == (Image *) NULL)
    return(MagickFalse);
  (void) SetImageAlphaChannel(floodplane_image,OpaqueAlphaChannel);
  segment_stack=(SegmentInfo *) AcquireQuantumMemory(MaxStacksize,
    sizeof(*segment_stack));
  if (segment_stack == (SegmentInfo *) NULL)
    {
      floodplane_image=DestroyImage(floodplane_image);
      ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
        image->filename);
    }
  /*
    Push initial segment on stack.
  */
  exception=(&image->exception);
  x=x_offset;
  y=y_offset;
  start=0;
  s=segment_stack;
  PushSegmentStack(y,x,x,1);
  PushSegmentStack(y+1,x,x,-1);
  GetMagickPixelPacket(image,&fill);
  GetMagickPixelPacket(image,&pixel);
  image_view=AcquireVirtualCacheView(image,exception);
  floodplane_view=AcquireAuthenticCacheView(floodplane_image,exception);
  while (s > segment_stack)
  {
    register const IndexPacket
      *restrict indexes;

    register const PixelPacket
      *restrict p;

    register ssize_t
      x;

    register PixelPacket
      *restrict q;

    /*
      Pop segment off stack.
    */
    s--;
    x1=(ssize_t) s->x1;
    x2=(ssize_t) s->x2;
    offset=(ssize_t) s->y2;
    y=(ssize_t) s->y1+offset;
    /*
      Recolor neighboring pixels.
    */
    p=GetCacheViewVirtualPixels(image_view,0,y,(size_t) (x1+1),1,exception);
    q=GetCacheViewAuthenticPixels(floodplane_view,0,y,(size_t) (x1+1),1,
      exception);
    if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
      break;
    indexes=GetCacheViewVirtualIndexQueue(image_view);
    p+=x1;
    q+=x1;
    for (x=x1; x >= 0; x--)
    {
      if (q->opacity == (Quantum) TransparentOpacity)
        break;
      SetMagickPixelPacket(image,p,indexes+x,&pixel);
      if (IsMagickColorSimilar(&pixel,target) == invert)
        break;
      q->opacity=(Quantum) TransparentOpacity;
      p--;
      q--;
    }
    if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse)
      break;
    skip=x >= x1 ? MagickTrue : MagickFalse;
    if (skip == MagickFalse)
      {
        start=x+1;
        if (start < x1)
          PushSegmentStack(y,start,x1-1,-offset);
        x=x1+1;
      }
    do
    {
      if (skip == MagickFalse)
        {
          if (x < (ssize_t) image->columns)
            {
              p=GetCacheViewVirtualPixels(image_view,x,y,image->columns-x,1,
                exception);
              q=GetCacheViewAuthenticPixels(floodplane_view,x,y,
                image->columns-x,1,exception);
              if ((p == (const PixelPacket *) NULL) ||
                  (q == (PixelPacket *) NULL))
                break;
              indexes=GetCacheViewVirtualIndexQueue(image_view);
              for ( ; x < (ssize_t) image->columns; x++)
              {
                if (q->opacity == (Quantum) TransparentOpacity)
                  break;
                SetMagickPixelPacket(image,p,indexes+x,&pixel);
                if (IsMagickColorSimilar(&pixel,target) == invert)
                  break;
                q->opacity=(Quantum) TransparentOpacity;
                p++;
                q++;
              }
              if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse)
                break;
            }
          PushSegmentStack(y,start,x-1,offset);
          if (x > (x2+1))
            PushSegmentStack(y,x2+1,x-1,-offset);
        }
      skip=MagickFalse;
      x++;
      if (x <= x2)
        {
          p=GetCacheViewVirtualPixels(image_view,x,y,(size_t) (x2-x+1),1,
            exception);
          q=GetCacheViewAuthenticPixels(floodplane_view,x,y,(size_t) (x2-x+1),1,
            exception);
          if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
            break;
          indexes=GetCacheViewVirtualIndexQueue(image_view);
          for ( ; x <= x2; x++)
          {
            if (q->opacity == (Quantum) TransparentOpacity)
              break;
            SetMagickPixelPacket(image,p,indexes+x,&pixel);
            if (IsMagickColorSimilar(&pixel,target) != invert)
              break;
            p++;
            q++;
          }
        }
      start=x;
    } while (x <= x2);
  }
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    register const PixelPacket
      *restrict p;

    register IndexPacket
      *restrict indexes;

    register ssize_t
      x;

    register PixelPacket
      *restrict q;

    /*
      Tile fill color onto floodplane.
    */
    p=GetCacheViewVirtualPixels(floodplane_view,0,y,image->columns,1,
      exception);
    q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
    if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
      break;
    indexes=GetCacheViewAuthenticIndexQueue(image_view);
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      if (GetPixelOpacity(p) != OpaqueOpacity)
        {
          (void) GetFillColor(draw_info,x,y,&fill_color);
          SetMagickPixelPacket(image,&fill_color,(IndexPacket *) NULL,&fill);
          if (image->colorspace == CMYKColorspace)
            ConvertRGBToCMYK(&fill);
          if ((channel & RedChannel) != 0)
            SetPixelRed(q,ClampToQuantum(fill.red));
          if ((channel & GreenChannel) != 0)
            SetPixelGreen(q,ClampToQuantum(fill.green));
          if ((channel & BlueChannel) != 0)
            SetPixelBlue(q,ClampToQuantum(fill.blue));
          if ((channel & OpacityChannel) != 0)
            SetPixelOpacity(q,ClampToQuantum(fill.opacity));
          if (((channel & IndexChannel) != 0) &&
              (image->colorspace == CMYKColorspace))
            SetPixelIndex(indexes+x,ClampToQuantum(fill.index));
        }
      p++;
      q++;
    }
    if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
      break;
  }
  floodplane_view=DestroyCacheView(floodplane_view);
  image_view=DestroyCacheView(image_view);
  segment_stack=(SegmentInfo *) RelinquishMagickMemory(segment_stack);
  floodplane_image=DestroyImage(floodplane_image);
  return(y == (ssize_t) image->rows ? MagickTrue : MagickFalse);
}
Ejemplo n.º 19
0
MagickExport CacheView *AcquireCacheView(const Image *image)
{
  return(AcquireVirtualCacheView(image,&((Image *) image)->exception));
}
Ejemplo n.º 20
0
MagickExport Image *ConnectedComponentsImage(const Image *image,
  const size_t connectivity,CCObjectInfo **objects,ExceptionInfo *exception)
{
#define ConnectedComponentsImageTag  "ConnectedComponents/Image"

  CacheView
    *image_view,
    *component_view;

  CCObjectInfo
    *object;

  char
    *p;

  const char
    *artifact;

  double
    area_threshold;

  Image
    *component_image;

  MagickBooleanType
    status;

  MagickOffsetType
    progress;

  MatrixInfo
    *equivalences;

  register ssize_t
    i;

  size_t
    size;

  ssize_t
    first,
    last,
    n,
    step,
    y;

  /*
    Initialize connected components image attributes.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickCoreSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickCoreSignature);
  if (objects != (CCObjectInfo **) NULL)
    *objects=(CCObjectInfo *) NULL;
  component_image=CloneImage(image,image->columns,image->rows,MagickTrue,
    exception);
  if (component_image == (Image *) NULL)
    return((Image *) NULL);
  component_image->depth=MAGICKCORE_QUANTUM_DEPTH;
  if (AcquireImageColormap(component_image,MaxColormapSize,exception) == MagickFalse)
    {
      component_image=DestroyImage(component_image);
      ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
    }
  /*
    Initialize connected components equivalences.
  */
  size=image->columns*image->rows;
  if (image->columns != (size/image->rows))
    {
      component_image=DestroyImage(component_image);
      ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
    }
  equivalences=AcquireMatrixInfo(size,1,sizeof(ssize_t),exception);
  if (equivalences == (MatrixInfo *) NULL)
    {
      component_image=DestroyImage(component_image);
      return((Image *) NULL);
    }
  for (n=0; n < (ssize_t) (image->columns*image->rows); n++)
    (void) SetMatrixElement(equivalences,n,0,&n);
  object=(CCObjectInfo *) AcquireQuantumMemory(MaxColormapSize,sizeof(*object));
  if (object == (CCObjectInfo *) NULL)
    {
      equivalences=DestroyMatrixInfo(equivalences);
      component_image=DestroyImage(component_image);
      ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
    }
  (void) ResetMagickMemory(object,0,MaxColormapSize*sizeof(*object));
  for (i=0; i < (ssize_t) MaxColormapSize; i++)
  {
    object[i].id=i;
    object[i].bounding_box.x=(ssize_t) image->columns;
    object[i].bounding_box.y=(ssize_t) image->rows;
    GetPixelInfo(image,&object[i].color);
  }
  /*
    Find connected components.
  */
  status=MagickTrue;
  progress=0;
  image_view=AcquireVirtualCacheView(image,exception);
  for (n=0; n < (ssize_t) (connectivity > 4 ? 4 : 2); n++)
  {
    ssize_t
      connect4[2][2] = { { -1,  0 }, {  0, -1 } },
      connect8[4][2] = { { -1, -1 }, { -1,  0 }, { -1,  1 }, {  0, -1 } },
      dx,
      dy;

    if (status == MagickFalse)
      continue;
    dy=connectivity > 4 ? connect8[n][0] : connect4[n][0];
    dx=connectivity > 4 ? connect8[n][1] : connect4[n][1];
    for (y=0; y < (ssize_t) image->rows; y++)
    {
      register const Quantum
        *magick_restrict p;

      register ssize_t
        x;

      if (status == MagickFalse)
        continue;
      p=GetCacheViewVirtualPixels(image_view,0,y-1,image->columns,3,exception);
      if (p == (const Quantum *) NULL)
        {
          status=MagickFalse;
          continue;
        }
      p+=GetPixelChannels(image)*image->columns;
      for (x=0; x < (ssize_t) image->columns; x++)
      {
        PixelInfo
          pixel,
          target;

        ssize_t
          neighbor_offset,
          object,
          offset,
          ox,
          oy,
          root;

        /*
          Is neighbor an authentic pixel and a different color than the pixel?
        */
        GetPixelInfoPixel(image,p,&pixel);
        neighbor_offset=dy*(GetPixelChannels(image)*image->columns)+dx*
          GetPixelChannels(image);
        GetPixelInfoPixel(image,p+neighbor_offset,&target);
        if (((x+dx) < 0) || ((x+dx) >= (ssize_t) image->columns) ||
            ((y+dy) < 0) || ((y+dy) >= (ssize_t) image->rows) ||
            (IsFuzzyEquivalencePixelInfo(&pixel,&target) == MagickFalse))
          {
            p+=GetPixelChannels(image);
            continue;
          }
        /*
          Resolve this equivalence.
        */
        offset=y*image->columns+x;
        neighbor_offset=dy*image->columns+dx;
        ox=offset;
        status=GetMatrixElement(equivalences,ox,0,&object);
        while (object != ox)
        {
          ox=object;
          status=GetMatrixElement(equivalences,ox,0,&object);
        }
        oy=offset+neighbor_offset;
        status=GetMatrixElement(equivalences,oy,0,&object);
        while (object != oy)
        {
          oy=object;
          status=GetMatrixElement(equivalences,oy,0,&object);
        }
        if (ox < oy)
          {
            status=SetMatrixElement(equivalences,oy,0,&ox);
            root=ox;
          }
        else
          {
            status=SetMatrixElement(equivalences,ox,0,&oy);
            root=oy;
          }
        ox=offset;
        status=GetMatrixElement(equivalences,ox,0,&object);
        while (object != root)
        {
          status=GetMatrixElement(equivalences,ox,0,&object);
          status=SetMatrixElement(equivalences,ox,0,&root);
        }
        oy=offset+neighbor_offset;
        status=GetMatrixElement(equivalences,oy,0,&object);
        while (object != root)
        {
          status=GetMatrixElement(equivalences,oy,0,&object);
          status=SetMatrixElement(equivalences,oy,0,&root);
        }
        status=SetMatrixElement(equivalences,y*image->columns+x,0,&root);
        p+=GetPixelChannels(image);
      }
    }
  }
  image_view=DestroyCacheView(image_view);
  /*
    Label connected components.
  */
  n=0;
  image_view=AcquireVirtualCacheView(image,exception);
  component_view=AcquireAuthenticCacheView(component_image,exception);
  for (y=0; y < (ssize_t) component_image->rows; y++)
  {
    register const Quantum
      *magick_restrict p;

    register Quantum
      *magick_restrict q;

    register ssize_t
      x;

    if (status == MagickFalse)
      continue;
    p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
    q=QueueCacheViewAuthenticPixels(component_view,0,y,component_image->columns,
      1,exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      {
        status=MagickFalse;
        continue;
      }
    for (x=0; x < (ssize_t) component_image->columns; x++)
    {
      ssize_t
        id,
        offset;

      offset=y*image->columns+x;
      status=GetMatrixElement(equivalences,offset,0,&id);
      if (id == offset)
        {
          id=n++;
          if (n > (ssize_t) MaxColormapSize)
            break;
          status=SetMatrixElement(equivalences,offset,0,&id);
        }
      else
        {
          status=GetMatrixElement(equivalences,id,0,&id);
          status=SetMatrixElement(equivalences,offset,0,&id);
        }
      if (x < object[id].bounding_box.x)
        object[id].bounding_box.x=x;
      if (x > (ssize_t) object[id].bounding_box.width)
        object[id].bounding_box.width=(size_t) x;
      if (y < object[id].bounding_box.y)
        object[id].bounding_box.y=y;
      if (y > (ssize_t) object[id].bounding_box.height)
        object[id].bounding_box.height=(size_t) y;
      object[id].color.red+=GetPixelRed(image,p);
      object[id].color.green+=GetPixelGreen(image,p);
      object[id].color.blue+=GetPixelBlue(image,p);
      object[id].color.black+=GetPixelBlack(image,p);
      object[id].color.alpha+=GetPixelAlpha(image,p);
      object[id].centroid.x+=x;
      object[id].centroid.y+=y;
      object[id].area++;
      SetPixelIndex(component_image,(Quantum) id,q);
      p+=GetPixelChannels(image);
      q+=GetPixelChannels(component_image);
    }
    if (n > (ssize_t) MaxColormapSize)
      break;
    if (SyncCacheViewAuthenticPixels(component_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

        proceed=SetImageProgress(image,ConnectedComponentsImageTag,progress++,
          image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  component_view=DestroyCacheView(component_view);
  image_view=DestroyCacheView(image_view);
  equivalences=DestroyMatrixInfo(equivalences);
  if (n > (ssize_t) MaxColormapSize)
    {
      object=(CCObjectInfo *) RelinquishMagickMemory(object);
      component_image=DestroyImage(component_image);
      ThrowImageException(ResourceLimitError,"TooManyObjects");
    }
  component_image->colors=(size_t) n;
  for (i=0; i < (ssize_t) component_image->colors; i++)
  {
    object[i].bounding_box.width-=(object[i].bounding_box.x-1);
    object[i].bounding_box.height-=(object[i].bounding_box.y-1);
    object[i].color.red=object[i].color.red/object[i].area;
    object[i].color.green=object[i].color.green/object[i].area;
    object[i].color.blue=object[i].color.blue/object[i].area;
    object[i].color.alpha=object[i].color.alpha/object[i].area;
    object[i].color.black=object[i].color.black/object[i].area;
    object[i].centroid.x=object[i].centroid.x/object[i].area;
    object[i].centroid.y=object[i].centroid.y/object[i].area;
  }
  artifact=GetImageArtifact(image,"connected-components:area-threshold");
  area_threshold=0.0;
  if (artifact != (const char *) NULL)
    area_threshold=StringToDouble(artifact,(char **) NULL);
  if (area_threshold > 0.0)
    {
      /*
        Merge object below area threshold.
      */
      component_view=AcquireAuthenticCacheView(component_image,exception);
      for (i=0; i < (ssize_t) component_image->colors; i++)
      {
        double
          census;

        RectangleInfo
          bounding_box;

        register ssize_t
          j;

        size_t
          id;

        if (status == MagickFalse)
          continue;
        if ((double) object[i].area >= area_threshold)
          continue;
        for (j=0; j < (ssize_t) component_image->colors; j++)
          object[j].census=0;
        bounding_box=object[i].bounding_box;
        for (y=0; y < (ssize_t) bounding_box.height+2; y++)
        {
          register const Quantum
            *magick_restrict p;

          register ssize_t
            x;

          if (status == MagickFalse)
            continue;
          p=GetCacheViewVirtualPixels(component_view,bounding_box.x-1,
            bounding_box.y+y-1,bounding_box.width+2,1,exception);
          if (p == (const Quantum *) NULL)
            {
              status=MagickFalse;
              continue;
            }
          for (x=0; x < (ssize_t) bounding_box.width+2; x++)
          {
            j=(ssize_t) GetPixelIndex(component_image,p);
            if (j != i)
              object[j].census++;
          }
        }
        census=0;
        id=0;
        for (j=0; j < (ssize_t) component_image->colors; j++)
          if (census < object[j].census)
            {
              census=object[j].census;
              id=(size_t) j;
            }
        object[id].area+=object[i].area;
        for (y=0; y < (ssize_t) bounding_box.height; y++)
        {
          register Quantum
            *magick_restrict q;

          register ssize_t
            x;

          if (status == MagickFalse)
            continue;
          q=GetCacheViewAuthenticPixels(component_view,bounding_box.x,
            bounding_box.y+y,bounding_box.width,1,exception);
          if (q == (Quantum *) NULL)
            {
              status=MagickFalse;
              continue;
            }
          for (x=0; x < (ssize_t) bounding_box.width; x++)
          {
            if ((ssize_t) GetPixelIndex(component_image,q) == i)
              SetPixelIndex(image,(Quantum) id,q);
            q+=GetPixelChannels(component_image);
          }
          if (SyncCacheViewAuthenticPixels(component_view,exception) == MagickFalse)
            status=MagickFalse;
        }
      }
      (void) SyncImage(component_image,exception);
    }
Ejemplo n.º 21
0
MagickExport Image *OilPaintImage(const Image *image,const double radius,
  ExceptionInfo *exception)
{
#define NumberPaintBins  256
#define OilPaintImageTag  "OilPaint/Image"

  CacheView
    *image_view,
    *paint_view;

  Image
    *paint_image;

  MagickBooleanType
    status;

  MagickOffsetType
    progress;

  size_t
    **restrict histograms,
    width;

  ssize_t
    y;

  /*
    Initialize painted image attributes.
  */
  assert(image != (const Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  width=GetOptimalKernelWidth2D(radius,0.5);
  paint_image=CloneImage(image,image->columns,image->rows,MagickTrue,exception);
  if (paint_image == (Image *) NULL)
    return((Image *) NULL);
  if (SetImageStorageClass(paint_image,DirectClass) == MagickFalse)
    {
      InheritException(exception,&paint_image->exception);
      paint_image=DestroyImage(paint_image);
      return((Image *) NULL);
    }
  histograms=AcquireHistogramThreadSet(NumberPaintBins);
  if (histograms == (size_t **) NULL)
    {
      paint_image=DestroyImage(paint_image);
      ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
    }
  /*
    Oil paint image.
  */
  status=MagickTrue;
  progress=0;
  image_view=AcquireVirtualCacheView(image,exception);
  paint_view=AcquireAuthenticCacheView(paint_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(progress,status) \
    IsConcurrentDos(image->columns,image->rows,64)
#endif
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    register const IndexPacket
      *restrict indexes;

    register const PixelPacket
      *restrict p;

    register IndexPacket
      *restrict paint_indexes;

    register ssize_t
      x;

    register PixelPacket
      *restrict q;

    register size_t
      *histogram;

    if (status == MagickFalse)
      continue;
    p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y-(ssize_t)
      (width/2L),image->columns+width,width,exception);
    q=QueueCacheViewAuthenticPixels(paint_view,0,y,paint_image->columns,1,
      exception);
    if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL))
      {
        status=MagickFalse;
        continue;
      }
    indexes=GetCacheViewVirtualIndexQueue(image_view);
    paint_indexes=GetCacheViewAuthenticIndexQueue(paint_view);
    histogram=histograms[GetOpenMPThreadId()];
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      register ssize_t
        i,
        u;

      size_t
        count;

      ssize_t
        j,
        k,
        v;

      /*
        Assign most frequent color.
      */
      i=0;
      j=0;
      count=0;
      (void) ResetMagickMemory(histogram,0,NumberPaintBins*sizeof(*histogram));
      for (v=0; v < (ssize_t) width; v++)
      {
        for (u=0; u < (ssize_t) width; u++)
        {
          k=(ssize_t) ScaleQuantumToChar(PixelIntensityToQuantum(p+u+i));
          histogram[k]++;
          if (histogram[k] > count)
            {
              j=i+u;
              count=histogram[k];
            }
        }
        i+=(ssize_t) (image->columns+width);
      }
      *q=(*(p+j));
      if (image->colorspace == CMYKColorspace)
        SetPixelIndex(paint_indexes+x,GetPixelIndex(
          indexes+x+j));
      p++;
      q++;
    }
    if (SyncCacheViewAuthenticPixels(paint_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp critical (MagickCore_OilPaintImage)
#endif
        proceed=SetImageProgress(image,OilPaintImageTag,progress++,image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  paint_view=DestroyCacheView(paint_view);
  image_view=DestroyCacheView(image_view);
  histograms=DestroyHistogramThreadSet(histograms);
  if (status == MagickFalse)
    paint_image=DestroyImage(paint_image);
  return(paint_image);
}
Ejemplo n.º 22
0
static MagickBooleanType ForwardFourierTransform(FourierInfo *fourier_info,
  const Image *image,double *magnitude,double *phase,ExceptionInfo *exception)
{
  CacheView
    *image_view;

  double
    n,
    *source;

  fftw_complex
    *fourier;

  fftw_plan
    fftw_r2c_plan;

  register const IndexPacket
    *indexes;

  register const PixelPacket
    *p;

  register ssize_t
    i,
    x;

  ssize_t
    y;

  /*
    Generate the forward Fourier transform.
  */
  source=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
    fourier_info->width*sizeof(*source));
  if (source == (double *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
      return(MagickFalse);
    }
  ResetMagickMemory(source,0,fourier_info->height*fourier_info->width*
    sizeof(*source));
  i=0L;
  image_view=AcquireVirtualCacheView(image,exception);
  for (y=0L; y < (ssize_t) fourier_info->height; y++)
  {
    p=GetCacheViewVirtualPixels(image_view,0L,y,fourier_info->width,1UL,
      exception);
    if (p == (const PixelPacket *) NULL)
      break;
    indexes=GetCacheViewVirtualIndexQueue(image_view);
    for (x=0L; x < (ssize_t) fourier_info->width; x++)
    {
      switch (fourier_info->channel)
      {
        case RedChannel:
        default:
        {
          source[i]=QuantumScale*GetPixelRed(p);
          break;
        }
        case GreenChannel:
        {
          source[i]=QuantumScale*GetPixelGreen(p);
          break;
        }
        case BlueChannel:
        {
          source[i]=QuantumScale*GetPixelBlue(p);
          break;
        }
        case OpacityChannel:
        {
          source[i]=QuantumScale*GetPixelOpacity(p);
          break;
        }
        case IndexChannel:
        {
          source[i]=QuantumScale*GetPixelIndex(indexes+x);
          break;
        }
        case GrayChannels:
        {
          source[i]=QuantumScale*GetPixelGray(p);
          break;
        }
      }
      i++;
      p++;
    }
  }
  image_view=DestroyCacheView(image_view);
  fourier=(fftw_complex *) AcquireQuantumMemory((size_t) fourier_info->height,
    fourier_info->center*sizeof(*fourier));
  if (fourier == (fftw_complex *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
      source=(double *) RelinquishMagickMemory(source);
      return(MagickFalse);
    }
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp critical (MagickCore_ForwardFourierTransform)
#endif
  fftw_r2c_plan=fftw_plan_dft_r2c_2d(fourier_info->width,fourier_info->width,
    source,fourier,FFTW_ESTIMATE);
  fftw_execute(fftw_r2c_plan);
  fftw_destroy_plan(fftw_r2c_plan);
  source=(double *) RelinquishMagickMemory(source);
  /*
    Normalize Fourier transform.
  */
  n=(double) fourier_info->width*(double) fourier_info->width;
  i=0L;
  for (y=0L; y < (ssize_t) fourier_info->height; y++)
    for (x=0L; x < (ssize_t) fourier_info->center; x++)
    {
#if defined(MAGICKCORE_HAVE_COMPLEX_H)
      fourier[i]/=n;
#else
      fourier[i][0]/=n;
      fourier[i][1]/=n;
#endif
      i++;
    }
  /*
    Generate magnitude and phase (or real and imaginary).
  */
  i=0L;
  if (fourier_info->modulus != MagickFalse)
    for (y=0L; y < (ssize_t) fourier_info->height; y++)
      for (x=0L; x < (ssize_t) fourier_info->center; x++)
      {
        magnitude[i]=cabs(fourier[i]);
        phase[i]=carg(fourier[i]);
        i++;
      }
  else
    for (y=0L; y < (ssize_t) fourier_info->height; y++)
      for (x=0L; x < (ssize_t) fourier_info->center; x++)
      {
        magnitude[i]=creal(fourier[i]);
        phase[i]=cimag(fourier[i]);
        i++;
      }
  fourier=(fftw_complex *) RelinquishMagickMemory(fourier);
  return(MagickTrue);
}
Ejemplo n.º 23
0
static MagickBooleanType InverseFourier(FourierInfo *fourier_info,
  const Image *magnitude_image,const Image *phase_image,fftw_complex *fourier,
  ExceptionInfo *exception)
{
  CacheView
    *magnitude_view,
    *phase_view;

  double
    *magnitude,
    *phase,
    *magnitude_source,
    *phase_source;

  MagickBooleanType
    status;

  register const IndexPacket
    *indexes;

  register const PixelPacket
    *p;

  register ssize_t
    i,
    x;

  ssize_t
    y;

  /*
    Inverse fourier - read image and break down into a double array.
  */
  magnitude_source=(double *) AcquireQuantumMemory((size_t)
    fourier_info->height,fourier_info->width*sizeof(*magnitude_source));
  if (magnitude_source == (double *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",
        magnitude_image->filename);
      return(MagickFalse);
    }
  phase_source=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
    fourier_info->width*sizeof(*phase_source));
  if (phase_source == (double *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",
        magnitude_image->filename);
      magnitude_source=(double *) RelinquishMagickMemory(magnitude_source);
      return(MagickFalse);
    }
  i=0L;
  magnitude_view=AcquireVirtualCacheView(magnitude_image,exception);
  for (y=0L; y < (ssize_t) fourier_info->height; y++)
  {
    p=GetCacheViewVirtualPixels(magnitude_view,0L,y,fourier_info->width,1UL,
      exception);
    if (p == (const PixelPacket *) NULL)
      break;
    indexes=GetCacheViewAuthenticIndexQueue(magnitude_view);
    for (x=0L; x < (ssize_t) fourier_info->width; x++)
    {
      switch (fourier_info->channel)
      {
        case RedChannel:
        default:
        {
          magnitude_source[i]=QuantumScale*GetPixelRed(p);
          break;
        }
        case GreenChannel:
        {
          magnitude_source[i]=QuantumScale*GetPixelGreen(p);
          break;
        }
        case BlueChannel:
        {
          magnitude_source[i]=QuantumScale*GetPixelBlue(p);
          break;
        }
        case OpacityChannel:
        {
          magnitude_source[i]=QuantumScale*GetPixelOpacity(p);
          break;
        }
        case IndexChannel:
        {
          magnitude_source[i]=QuantumScale*GetPixelIndex(indexes+x);
          break;
        }
        case GrayChannels:
        {
          magnitude_source[i]=QuantumScale*GetPixelGray(p);
          break;
        }
      }
      i++;
      p++;
    }
  }
  i=0L;
  phase_view=AcquireVirtualCacheView(phase_image,exception);
  for (y=0L; y < (ssize_t) fourier_info->height; y++)
  {
    p=GetCacheViewVirtualPixels(phase_view,0,y,fourier_info->width,1,
      exception);
    if (p == (const PixelPacket *) NULL)
      break;
    indexes=GetCacheViewAuthenticIndexQueue(phase_view);
    for (x=0L; x < (ssize_t) fourier_info->width; x++)
    {
      switch (fourier_info->channel)
      {
        case RedChannel:
        default:
        {
          phase_source[i]=QuantumScale*GetPixelRed(p);
          break;
        }
        case GreenChannel:
        {
          phase_source[i]=QuantumScale*GetPixelGreen(p);
          break;
        }
        case BlueChannel:
        {
          phase_source[i]=QuantumScale*GetPixelBlue(p);
          break;
        }
        case OpacityChannel:
        {
          phase_source[i]=QuantumScale*GetPixelOpacity(p);
          break;
        }
        case IndexChannel:
        {
          phase_source[i]=QuantumScale*GetPixelIndex(indexes+x);
          break;
        }
        case GrayChannels:
        {
          phase_source[i]=QuantumScale*GetPixelGray(p);
          break;
        }
      }
      i++;
      p++;
    }
  }
  if (fourier_info->modulus != MagickFalse)
    {
      i=0L;
      for (y=0L; y < (ssize_t) fourier_info->height; y++)
        for (x=0L; x < (ssize_t) fourier_info->width; x++)
        {
          phase_source[i]-=0.5;
          phase_source[i]*=(2.0*MagickPI);
          i++;
        }
    }
  magnitude_view=DestroyCacheView(magnitude_view);
  phase_view=DestroyCacheView(phase_view);
  magnitude=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
    fourier_info->center*sizeof(*magnitude));
  if (magnitude == (double *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",
        magnitude_image->filename);
      magnitude_source=(double *) RelinquishMagickMemory(magnitude_source);
      phase_source=(double *) RelinquishMagickMemory(phase_source);
      return(MagickFalse);
    }
  status=InverseQuadrantSwap(fourier_info->width,fourier_info->height,
    magnitude_source,magnitude);
  magnitude_source=(double *) RelinquishMagickMemory(magnitude_source);
  phase=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
    fourier_info->width*sizeof(*phase));
  if (phase == (double *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",
        magnitude_image->filename);
      phase_source=(double *) RelinquishMagickMemory(phase_source);
      return(MagickFalse);
    }
  CorrectPhaseLHS(fourier_info->width,fourier_info->width,phase_source);
  if (status != MagickFalse)
    status=InverseQuadrantSwap(fourier_info->width,fourier_info->height,
      phase_source,phase);
  phase_source=(double *) RelinquishMagickMemory(phase_source);
  /*
    Merge two sets.
  */
  i=0L;
  if (fourier_info->modulus != MagickFalse)
    for (y=0L; y < (ssize_t) fourier_info->height; y++)
       for (x=0L; x < (ssize_t) fourier_info->center; x++)
       {
#if defined(MAGICKCORE_HAVE_COMPLEX_H)
         fourier[i]=magnitude[i]*cos(phase[i])+I*magnitude[i]*sin(phase[i]);
#else
         fourier[i][0]=magnitude[i]*cos(phase[i]);
         fourier[i][1]=magnitude[i]*sin(phase[i]);
#endif
         i++;
      }
  else
    for (y=0L; y < (ssize_t) fourier_info->height; y++)
      for (x=0L; x < (ssize_t) fourier_info->center; x++)
      {
#if defined(MAGICKCORE_HAVE_COMPLEX_H)
        fourier[i]=magnitude[i]+I*phase[i];
#else
        fourier[i][0]=magnitude[i];
        fourier[i][1]=phase[i];
#endif
        i++;
      }
  phase=(double *) RelinquishMagickMemory(phase);
  magnitude=(double *) RelinquishMagickMemory(magnitude);
  return(status);
}
Ejemplo n.º 24
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   S i g n a t u r e I m a g e                                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  SignatureImage() computes a message digest from an image pixel stream with
%  an implementation of the NIST SHA-256 Message Digest algorithm.  This
%  signature uniquely identifies the image and is convenient for determining
%  if an image has been modified or whether two images are identical.
%
%  The format of the SignatureImage method is:
%
%      MagickBooleanType SignatureImage(Image *image,ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType SignatureImage(Image *image,
  ExceptionInfo *exception)
{
  CacheView
    *image_view;

  char
    *hex_signature;

  double
    pixel;

  register const Quantum
    *p;

  SignatureInfo
    *signature_info;

  ssize_t
    y;

  StringInfo
    *signature;

  unsigned char
    *pixels;

  /*
    Compute image digital signature.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  signature_info=AcquireSignatureInfo();
  signature=AcquireStringInfo(image->columns*GetPixelChannels(image)*
    sizeof(pixel));
  image_view=AcquireVirtualCacheView(image,exception);
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    register ssize_t
      x;

    register unsigned char
      *q;

    p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
    if (p == (const Quantum *) NULL)
      break;
    SetStringInfoLength(signature,image->columns*GetPixelChannels(image)*
      sizeof(pixel));
    pixels=GetStringInfoDatum(signature);
    q=pixels;
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      register ssize_t
        i;

      if (GetPixelReadMask(image,p) == 0)
        {
          p+=GetPixelChannels(image);
          continue;
        }
      for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
      {
        register ssize_t
          j;

        PixelChannel channel=GetPixelChannelChannel(image,i);
        PixelTrait traits=GetPixelChannelTraits(image,channel);
        if (traits == UndefinedPixelTrait)
          continue;
        pixel=QuantumScale*p[i];
        for (j=0; j < (ssize_t) sizeof(pixel); j++)
          *q++=(unsigned char) ((unsigned char *) &pixel)[j];
      }
      p+=GetPixelChannels(image);
    }
    SetStringInfoLength(signature,(size_t) (q-pixels));
    UpdateSignature(signature_info,signature);
  }
  image_view=DestroyCacheView(image_view);
  FinalizeSignature(signature_info);
  hex_signature=StringInfoToHexString(GetSignatureDigest(signature_info));
  (void) DeleteImageProperty(image,"signature");
  (void) SetImageProperty(image,"signature",hex_signature,exception);
  /*
    Free resources.
  */
  hex_signature=DestroyString(hex_signature);
  signature=DestroyStringInfo(signature);
  signature_info=DestroySignatureInfo(signature_info);
  return(MagickTrue);
}
Ejemplo n.º 25
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   F r a m e I m a g e                                                       %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  FrameImage() adds a simulated three-dimensional border around the image.
%  The color of the border is defined by the matte_color member of image.
%  Members width and height of frame_info specify the border width of the
%  vertical and horizontal sides of the frame.  Members inner and outer
%  indicate the width of the inner and outer shadows of the frame.
%
%  The format of the FrameImage method is:
%
%      Image *FrameImage(const Image *image,const FrameInfo *frame_info,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o frame_info: Define the width and height of the frame and its bevels.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *FrameImage(const Image *image,const FrameInfo *frame_info,
  ExceptionInfo *exception)
{
#define FrameImageTag  "Frame/Image"

  CacheView
    *image_view,
    *frame_view;

  Image
    *frame_image;

  MagickBooleanType
    status;

  MagickOffsetType
    progress;

  MagickPixelPacket
    accentuate,
    border,
    highlight,
    interior,
    matte,
    shadow,
    trough;

  register ssize_t
    x;

  size_t
    bevel_width,
    height,
    width;

  ssize_t
    y;

  /*
    Check frame geometry.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(frame_info != (FrameInfo *) NULL);
  if ((frame_info->outer_bevel < 0) || (frame_info->inner_bevel < 0))
    ThrowImageException(OptionError,"FrameIsLessThanImageSize");
  bevel_width=(size_t) (frame_info->outer_bevel+frame_info->inner_bevel);
  width=frame_info->width-frame_info->x-bevel_width;
  height=frame_info->height-frame_info->y-bevel_width;
  if ((width < image->columns) || (height < image->rows))
    ThrowImageException(OptionError,"FrameIsLessThanImageSize");
  /*
    Initialize framed image attributes.
  */
  frame_image=CloneImage(image,frame_info->width,frame_info->height,MagickTrue,
    exception);
  if (frame_image == (Image *) NULL)
    return((Image *) NULL);
  if (SetImageStorageClass(frame_image,DirectClass) == MagickFalse)
    {
      InheritException(exception,&frame_image->exception);
      frame_image=DestroyImage(frame_image);
      return((Image *) NULL);
    }
  if ((IsPixelGray(&frame_image->border_color) == MagickFalse) &&
      (IsGrayColorspace(frame_image->colorspace) != MagickFalse))
    (void) SetImageColorspace(frame_image,sRGBColorspace);
  if ((frame_image->border_color.opacity != OpaqueOpacity) &&
      (frame_image->matte == MagickFalse))
    (void) SetImageAlphaChannel(frame_image,OpaqueAlphaChannel);
  frame_image->page=image->page;
  if ((image->page.width != 0) && (image->page.height != 0))
    {
      frame_image->page.width+=frame_image->columns-image->columns;
      frame_image->page.height+=frame_image->rows-image->rows;
    }
  /*
    Initialize 3D effects color.
  */
  GetMagickPixelPacket(frame_image,&interior);
  SetMagickPixelPacket(frame_image,&image->border_color,(IndexPacket *) NULL,
    &interior);
  GetMagickPixelPacket(frame_image,&matte);
  matte.colorspace=sRGBColorspace;
  SetMagickPixelPacket(frame_image,&image->matte_color,(IndexPacket *) NULL,
    &matte);
  GetMagickPixelPacket(frame_image,&border);
  border.colorspace=sRGBColorspace;
  SetMagickPixelPacket(frame_image,&image->border_color,(IndexPacket *) NULL,
    &border);
  GetMagickPixelPacket(frame_image,&accentuate);
  accentuate.red=(MagickRealType) (QuantumScale*((QuantumRange-
    AccentuateModulate)*matte.red+(QuantumRange*AccentuateModulate)));
  accentuate.green=(MagickRealType) (QuantumScale*((QuantumRange-
    AccentuateModulate)*matte.green+(QuantumRange*AccentuateModulate)));
  accentuate.blue=(MagickRealType) (QuantumScale*((QuantumRange-
    AccentuateModulate)*matte.blue+(QuantumRange*AccentuateModulate)));
  accentuate.opacity=matte.opacity;
  GetMagickPixelPacket(frame_image,&highlight);
  highlight.red=(MagickRealType) (QuantumScale*((QuantumRange-
    HighlightModulate)*matte.red+(QuantumRange*HighlightModulate)));
  highlight.green=(MagickRealType) (QuantumScale*((QuantumRange-
    HighlightModulate)*matte.green+(QuantumRange*HighlightModulate)));
  highlight.blue=(MagickRealType) (QuantumScale*((QuantumRange-
    HighlightModulate)*matte.blue+(QuantumRange*HighlightModulate)));
  highlight.opacity=matte.opacity;
  GetMagickPixelPacket(frame_image,&shadow);
  shadow.red=QuantumScale*matte.red*ShadowModulate;
  shadow.green=QuantumScale*matte.green*ShadowModulate;
  shadow.blue=QuantumScale*matte.blue*ShadowModulate;
  shadow.opacity=matte.opacity;
  GetMagickPixelPacket(frame_image,&trough);
  trough.red=QuantumScale*matte.red*TroughModulate;
  trough.green=QuantumScale*matte.green*TroughModulate;
  trough.blue=QuantumScale*matte.blue*TroughModulate;
  trough.opacity=matte.opacity;
  if (image->colorspace == CMYKColorspace)
    {
      ConvertRGBToCMYK(&interior);
      ConvertRGBToCMYK(&matte);
      ConvertRGBToCMYK(&border);
      ConvertRGBToCMYK(&accentuate);
      ConvertRGBToCMYK(&highlight);
      ConvertRGBToCMYK(&shadow);
      ConvertRGBToCMYK(&trough);
    }
  status=MagickTrue;
  progress=0;
  image_view=AcquireVirtualCacheView(image,exception);
  frame_view=AcquireAuthenticCacheView(frame_image,exception);
  height=(size_t) (frame_info->outer_bevel+(frame_info->y-bevel_width)+
    frame_info->inner_bevel);
  if (height != 0)
    {
      register IndexPacket
        *restrict frame_indexes;

      register ssize_t
        x;

      register PixelPacket
        *restrict q;

      /*
        Draw top of ornamental border.
      */
      q=QueueCacheViewAuthenticPixels(frame_view,0,0,frame_image->columns,
        height,exception);
      frame_indexes=GetCacheViewAuthenticIndexQueue(frame_view);
      if (q != (PixelPacket *) NULL)
        {
          /*
            Draw top of ornamental border.
          */
          for (y=0; y < (ssize_t) frame_info->outer_bevel; y++)
          {
            for (x=0; x < (ssize_t) (frame_image->columns-y); x++)
            {
              if (x < y)
                SetPixelPacket(frame_image,&highlight,q,frame_indexes);
              else
                SetPixelPacket(frame_image,&accentuate,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            for ( ; x < (ssize_t) frame_image->columns; x++)
            {
              SetPixelPacket(frame_image,&shadow,q,frame_indexes);
              q++;
              frame_indexes++;
            }
          }
          for (y=0; y < (ssize_t) (frame_info->y-bevel_width); y++)
          {
            for (x=0; x < (ssize_t) frame_info->outer_bevel; x++)
            {
              SetPixelPacket(frame_image,&highlight,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            width=frame_image->columns-2*frame_info->outer_bevel;
            for (x=0; x < (ssize_t) width; x++)
            {
              SetPixelPacket(frame_image,&matte,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            for (x=0; x < (ssize_t) frame_info->outer_bevel; x++)
            {
              SetPixelPacket(frame_image,&shadow,q,frame_indexes);
              q++;
              frame_indexes++;
            }
          }
          for (y=0; y < (ssize_t) frame_info->inner_bevel; y++)
          {
            for (x=0; x < (ssize_t) frame_info->outer_bevel; x++)
            {
              SetPixelPacket(frame_image,&highlight,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            for (x=0; x < (ssize_t) (frame_info->x-bevel_width); x++)
            {
              SetPixelPacket(frame_image,&matte,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            width=image->columns+((size_t) frame_info->inner_bevel << 1)-
              y;
            for (x=0; x < (ssize_t) width; x++)
            {
              if (x < y)
                SetPixelPacket(frame_image,&shadow,q,frame_indexes);
              else
                SetPixelPacket(frame_image,&trough,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            for ( ; x < (ssize_t) (image->columns+2*frame_info->inner_bevel); x++)
            {
              SetPixelPacket(frame_image,&highlight,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            width=frame_info->width-frame_info->x-image->columns-bevel_width;
            for (x=0; x < (ssize_t) width; x++)
            {
              SetPixelPacket(frame_image,&matte,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            for (x=0; x < (ssize_t) frame_info->outer_bevel; x++)
            {
              SetPixelPacket(frame_image,&shadow,q,frame_indexes);
              q++;
              frame_indexes++;
            }
          }
          (void) SyncCacheViewAuthenticPixels(frame_view,exception);
        }
    }
  /*
    Draw sides of ornamental border.
  */
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status) \
    magick_threads(image,frame_image,1,1)
#endif
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    register IndexPacket
      *restrict frame_indexes;

    register ssize_t
      x;

    register PixelPacket
      *restrict q;

    /*
      Initialize scanline with matte color.
    */
    if (status == MagickFalse)
      continue;
    q=QueueCacheViewAuthenticPixels(frame_view,0,frame_info->y+y,
      frame_image->columns,1,exception);
    if (q == (PixelPacket *) NULL)
      {
        status=MagickFalse;
        continue;
      }
    frame_indexes=GetCacheViewAuthenticIndexQueue(frame_view);
    for (x=0; x < (ssize_t) frame_info->outer_bevel; x++)
    {
      SetPixelPacket(frame_image,&highlight,q,frame_indexes);
      q++;
      frame_indexes++;
    }
    for (x=0; x < (ssize_t) (frame_info->x-bevel_width); x++)
    {
      SetPixelPacket(frame_image,&matte,q,frame_indexes);
      q++;
      frame_indexes++;
    }
    for (x=0; x < (ssize_t) frame_info->inner_bevel; x++)
    {
      SetPixelPacket(frame_image,&shadow,q,frame_indexes);
      q++;
      frame_indexes++;
    }
    /*
      Set frame interior to interior color.
    */
    if ((image->compose != CopyCompositeOp) &&
        ((image->compose != OverCompositeOp) || (image->matte != MagickFalse)))
      for (x=0; x < (ssize_t) image->columns; x++)
      {
        SetPixelPacket(frame_image,&interior,q,frame_indexes);
        q++;
        frame_indexes++;
      }
    else
      {
        register const IndexPacket
          *indexes;

        register const PixelPacket
          *p;

        p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
        if (p == (const PixelPacket *) NULL)
          {
            status=MagickFalse;
            continue;
          }
        indexes=GetCacheViewVirtualIndexQueue(image_view);
        (void) CopyMagickMemory(q,p,image->columns*sizeof(*p));
        if ((image->colorspace == CMYKColorspace) &&
            (frame_image->colorspace == CMYKColorspace))
          {
            (void) CopyMagickMemory(frame_indexes,indexes,image->columns*
              sizeof(*indexes));
            frame_indexes+=image->columns;
          }
        q+=image->columns;
      }
    for (x=0; x < (ssize_t) frame_info->inner_bevel; x++)
    {
      SetPixelPacket(frame_image,&highlight,q,frame_indexes);
      q++;
      frame_indexes++;
    }
    width=frame_info->width-frame_info->x-image->columns-bevel_width;
    for (x=0; x < (ssize_t) width; x++)
    {
      SetPixelPacket(frame_image,&matte,q,frame_indexes);
      q++;
      frame_indexes++;
    }
    for (x=0; x < (ssize_t) frame_info->outer_bevel; x++)
    {
      SetPixelPacket(frame_image,&shadow,q,frame_indexes);
      q++;
      frame_indexes++;
    }
    if (SyncCacheViewAuthenticPixels(frame_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp critical (MagickCore_FrameImage)
#endif
        proceed=SetImageProgress(image,FrameImageTag,progress++,image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  height=(size_t) (frame_info->inner_bevel+frame_info->height-
    frame_info->y-image->rows-bevel_width+frame_info->outer_bevel);
  if (height != 0)
    {
      register IndexPacket
        *restrict frame_indexes;

      register ssize_t
        x;

      register PixelPacket
        *restrict q;

      /*
        Draw bottom of ornamental border.
      */
      q=QueueCacheViewAuthenticPixels(frame_view,0,(ssize_t) (frame_image->rows-
        height),frame_image->columns,height,exception);
      if (q != (PixelPacket *) NULL)
        {
          /*
            Draw bottom of ornamental border.
          */
          frame_indexes=GetCacheViewAuthenticIndexQueue(frame_view);
          for (y=frame_info->inner_bevel-1; y >= 0; y--)
          {
            for (x=0; x < (ssize_t) frame_info->outer_bevel; x++)
            {
              SetPixelPacket(frame_image,&highlight,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            for (x=0; x < (ssize_t) (frame_info->x-bevel_width); x++)
            {
              SetPixelPacket(frame_image,&matte,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            for (x=0; x < y; x++)
            {
              SetPixelPacket(frame_image,&shadow,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            for ( ; x < (ssize_t) (image->columns+2*frame_info->inner_bevel); x++)
            {
              if (x >= (ssize_t) (image->columns+2*frame_info->inner_bevel-y))
                SetPixelPacket(frame_image,&highlight,q,frame_indexes);
              else
                SetPixelPacket(frame_image,&accentuate,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            width=frame_info->width-frame_info->x-image->columns-bevel_width;
            for (x=0; x < (ssize_t) width; x++)
            {
              SetPixelPacket(frame_image,&matte,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            for (x=0; x < (ssize_t) frame_info->outer_bevel; x++)
            {
              SetPixelPacket(frame_image,&shadow,q,frame_indexes);
              q++;
              frame_indexes++;
            }
          }
          height=frame_info->height-frame_info->y-image->rows-bevel_width;
          for (y=0; y < (ssize_t) height; y++)
          {
            for (x=0; x < (ssize_t) frame_info->outer_bevel; x++)
            {
              SetPixelPacket(frame_image,&highlight,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            width=frame_image->columns-2*frame_info->outer_bevel;
            for (x=0; x < (ssize_t) width; x++)
            {
              SetPixelPacket(frame_image,&matte,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            for (x=0; x < (ssize_t) frame_info->outer_bevel; x++)
            {
              SetPixelPacket(frame_image,&shadow,q,frame_indexes);
              q++;
              frame_indexes++;
            }
          }
          for (y=frame_info->outer_bevel-1; y >= 0; y--)
          {
            for (x=0; x < y; x++)
            {
              SetPixelPacket(frame_image,&highlight,q,frame_indexes);
              q++;
              frame_indexes++;
            }
            for ( ; x < (ssize_t) frame_image->columns; x++)
            {
              if (x >= (ssize_t) (frame_image->columns-y))
                SetPixelPacket(frame_image,&shadow,q,frame_indexes);
              else
                SetPixelPacket(frame_image,&trough,q,frame_indexes);
              q++;
              frame_indexes++;
            }
          }
          (void) SyncCacheViewAuthenticPixels(frame_view,exception);
        }
    }
  frame_view=DestroyCacheView(frame_view);
  image_view=DestroyCacheView(image_view);
  if ((image->compose != CopyCompositeOp) &&
      ((image->compose != OverCompositeOp) || (image->matte != MagickFalse)))
    {
      x=(ssize_t) (frame_info->outer_bevel+(frame_info->x-bevel_width)+
        frame_info->inner_bevel);
      y=(ssize_t) (frame_info->outer_bevel+(frame_info->y-bevel_width)+
        frame_info->inner_bevel);
      (void) CompositeImage(frame_image,image->compose,image,x,y);
    }
  if (status == MagickFalse)
    frame_image=DestroyImage(frame_image);
  return(frame_image);
}
Ejemplo n.º 26
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     C o m b i n e I m a g e s                                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  CombineImages() combines one or more images into a single image.  The
%  grayscale value of the pixels of each image in the sequence is assigned in
%  order to the specified channels of the combined image.   The typical
%  ordering would be image 1 => Red, 2 => Green, 3 => Blue, etc.
%
%  The format of the CombineImages method is:
%
%      Image *CombineImages(const Image *image,const ChannelType channel,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *CombineImages(const Image *image,const ChannelType channel,
  ExceptionInfo *exception)
{
#define CombineImageTag  "Combine/Image"

  CacheView
    *combine_view;

  const Image
    *next;

  Image
    *combine_image;

  MagickBooleanType
    status;

  MagickOffsetType
    progress;

  ssize_t
    y;

  /*
    Ensure the image are the same size.
  */
  assert(image != (const Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  for (next=image; next != (Image *) NULL; next=GetNextImageInList(next))
  {
    if ((next->columns != image->columns) || (next->rows != image->rows))
      ThrowImageException(OptionError,"ImagesAreNotTheSameSize");
  }
  combine_image=CloneImage(image,0,0,MagickTrue,exception);
  if (combine_image == (Image *) NULL)
    return((Image *) NULL);
  if (SetImageStorageClass(combine_image,DirectClass) == MagickFalse)
    {
      InheritException(exception,&combine_image->exception);
      combine_image=DestroyImage(combine_image);
      return((Image *) NULL);
    }
  if (IssRGBCompatibleColorspace(image->colorspace) != MagickFalse)
    (void) SetImageColorspace(combine_image,sRGBColorspace);
  if ((channel & OpacityChannel) != 0)
    combine_image->matte=MagickTrue;
  (void) SetImageBackgroundColor(combine_image);
  /*
    Combine images.
  */
  status=MagickTrue;
  progress=0;
  combine_view=AcquireAuthenticCacheView(combine_image,exception);
  for (y=0; y < (ssize_t) combine_image->rows; y++)
  {
    CacheView
      *image_view;

    const Image
      *next;

    PixelPacket
      *pixels;

    register const PixelPacket
      *restrict p;

    register PixelPacket
      *restrict q;

    register ssize_t
      x;

    if (status == MagickFalse)
      continue;
    pixels=GetCacheViewAuthenticPixels(combine_view,0,y,combine_image->columns,
      1,exception);
    if (pixels == (PixelPacket *) NULL)
      {
        status=MagickFalse;
        continue;
      }
    next=image;
    if (((channel & RedChannel) != 0) && (next != (Image *) NULL))
      {
        image_view=AcquireVirtualCacheView(next,exception);
        p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
        if (p == (const PixelPacket *) NULL)
          continue;
        q=pixels;
        for (x=0; x < (ssize_t) combine_image->columns; x++)
        {
          SetPixelRed(q,ClampToQuantum(GetPixelIntensity(image,p)));
          p++;
          q++;
        }
        image_view=DestroyCacheView(image_view);
        next=GetNextImageInList(next);
      }
    if (((channel & GreenChannel) != 0) && (next != (Image *) NULL))
      {
        image_view=AcquireVirtualCacheView(next,exception);
        p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
        if (p == (const PixelPacket *) NULL)
          continue;
        q=pixels;
        for (x=0; x < (ssize_t) combine_image->columns; x++)
        {
          SetPixelGreen(q,ClampToQuantum(GetPixelIntensity(image,p)));
          p++;
          q++;
        }
        image_view=DestroyCacheView(image_view);
        next=GetNextImageInList(next);
      }
    if (((channel & BlueChannel) != 0) && (next != (Image *) NULL))
      {
        image_view=AcquireVirtualCacheView(next,exception);
        p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
        if (p == (const PixelPacket *) NULL)
          continue;
        q=pixels;
        for (x=0; x < (ssize_t) combine_image->columns; x++)
        {
          SetPixelBlue(q,ClampToQuantum(GetPixelIntensity(image,p)));
          p++;
          q++;
        }
        image_view=DestroyCacheView(image_view);
        next=GetNextImageInList(next);
      }
    if (((channel & OpacityChannel) != 0) && (next != (Image *) NULL))
      {
        image_view=AcquireVirtualCacheView(next,exception);
        p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
        if (p == (const PixelPacket *) NULL)
          continue;
        q=pixels;
        for (x=0; x < (ssize_t) combine_image->columns; x++)
        {
          SetPixelAlpha(q,ClampToQuantum(GetPixelIntensity(image,p)));
          p++;
          q++;
        }
        image_view=DestroyCacheView(image_view);
        next=GetNextImageInList(next);
      }
    if (((channel & IndexChannel) != 0) &&
        (image->colorspace == CMYKColorspace) && (next != (Image *) NULL))
      {
        IndexPacket
          *indexes;

        image_view=AcquireVirtualCacheView(next,exception);
        p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
        if (p == (const PixelPacket *) NULL)
          continue;
        indexes=GetCacheViewAuthenticIndexQueue(combine_view);
        for (x=0; x < (ssize_t) combine_image->columns; x++)
        {
          SetPixelIndex(indexes+x,ClampToQuantum(GetPixelIntensity(image,p)));
          p++;
        }
        image_view=DestroyCacheView(image_view);
        next=GetNextImageInList(next);
      }
    if (SyncCacheViewAuthenticPixels(combine_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

        proceed=SetImageProgress(image,CombineImageTag,progress++,
          combine_image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  combine_view=DestroyCacheView(combine_view);
  if (IsGrayColorspace(combine_image->colorspace) != MagickFalse)
    (void) TransformImageColorspace(combine_image,sRGBColorspace);
  if (status == MagickFalse)
    combine_image=DestroyImage(combine_image);
  return(combine_image);
}
Ejemplo n.º 27
0
static MagickBooleanType ChannelImage(Image *destination_image,
  const PixelChannel destination_channel,const ChannelFx channel_op,
  const Image *source_image,const PixelChannel source_channel,
  const Quantum pixel,ExceptionInfo *exception)
{
  CacheView
    *source_view,
    *destination_view;

  MagickBooleanType
    status;

  size_t
    height,
    width;

  ssize_t
    y;

  status=MagickTrue;
  source_view=AcquireVirtualCacheView(source_image,exception);
  destination_view=AcquireAuthenticCacheView(destination_image,exception);
  height=MagickMin(source_image->rows,destination_image->rows);
  width=MagickMin(source_image->columns,destination_image->columns);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status) \
    magick_threads(source_image,source_image,height,1)
#endif
  for (y=0; y < (ssize_t) height; y++)
  {
    PixelTrait
      destination_traits,
      source_traits;

    register const Quantum
      *restrict p;

    register Quantum
      *restrict q;

    register ssize_t
      x;

    if (status == MagickFalse)
      continue;
    p=GetCacheViewVirtualPixels(source_view,0,y,source_image->columns,1,
      exception);
    q=GetCacheViewAuthenticPixels(destination_view,0,y,
      destination_image->columns,1,exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      {
        status=MagickFalse;
        continue;
      }
    destination_traits=GetPixelChannelTraits(destination_image,
      destination_channel);
    source_traits=GetPixelChannelTraits(source_image,source_channel);
    if ((destination_traits == UndefinedPixelTrait) ||
        (source_traits == UndefinedPixelTrait))
      continue;
    for (x=0; x < (ssize_t) width; x++)
    {
      if (channel_op == AssignChannelOp)
        SetPixelChannel(destination_image,destination_channel,pixel,q);
      else
        SetPixelChannel(destination_image,destination_channel,
          GetPixelChannel(source_image,source_channel,p),q);
      p+=GetPixelChannels(source_image);
      q+=GetPixelChannels(destination_image);
    }
    if (SyncCacheViewAuthenticPixels(destination_view,exception) == MagickFalse)
      status=MagickFalse;
  }
  destination_view=DestroyCacheView(destination_view);
  source_view=DestroyCacheView(source_view);
  return(status);
}
Ejemplo n.º 28
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   a n a l y z e I m a g e                                                   %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  analyzeImage() computes the brightness and saturation mean,  standard
%  deviation, kurtosis and skewness and stores these values as attributes 
%  of the image.
%
%  The format of the analyzeImage method is:
%
%      size_t analyzeImage(Image *images,const int argc,
%        char **argv,ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the address of a structure of type Image.
%
%    o argc: Specifies a pointer to an integer describing the number of
%      elements in the argument vector.
%
%    o argv: Specifies a pointer to a text array containing the command line
%      arguments.
%
%    o exception: return any errors or warnings in this structure.
%
*/
ModuleExport size_t analyzeImage(Image **images,const int argc,
  const char **argv,ExceptionInfo *exception)
{
  char
    text[MagickPathExtent];

  double
    area,
    brightness,
    brightness_mean,
    brightness_standard_deviation,
    brightness_kurtosis,
    brightness_skewness,
    brightness_sum_x,
    brightness_sum_x2,
    brightness_sum_x3,
    brightness_sum_x4,
    hue,
    saturation,
    saturation_mean,
    saturation_standard_deviation,
    saturation_kurtosis,
    saturation_skewness,
    saturation_sum_x,
    saturation_sum_x2,
    saturation_sum_x3,
    saturation_sum_x4;

  Image
    *image;

  assert(images != (Image **) NULL);
  assert(*images != (Image *) NULL);
  assert((*images)->signature == MagickCoreSignature);
  (void) argc;
  (void) argv;
  image=(*images);
  for ( ; image != (Image *) NULL; image=GetNextImageInList(image))
  {
    CacheView
      *image_view;

    ssize_t
      y;

    MagickBooleanType
      status;

    brightness_sum_x=0.0;
    brightness_sum_x2=0.0;
    brightness_sum_x3=0.0;
    brightness_sum_x4=0.0;
    brightness_mean=0.0;
    brightness_standard_deviation=0.0;
    brightness_kurtosis=0.0;
    brightness_skewness=0.0;
    saturation_sum_x=0.0;
    saturation_sum_x2=0.0;
    saturation_sum_x3=0.0;
    saturation_sum_x4=0.0;
    saturation_mean=0.0;
    saturation_standard_deviation=0.0;
    saturation_kurtosis=0.0;
    saturation_skewness=0.0;
    area=0.0;
    status=MagickTrue;
    image_view=AcquireVirtualCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
    #pragma omp parallel for schedule(static,4) shared(status) \
      magick_threads(image,image,image->rows,1)
#endif
    for (y=0; y < (ssize_t) image->rows; y++)
    {
      register const Quantum
        *p;

      register ssize_t
        x;

      if (status == MagickFalse)
        continue;
      p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
      if (p == (const Quantum *) NULL)
        {
          status=MagickFalse;
          continue;
        }
      for (x=0; x < (ssize_t) image->columns; x++)
      {
        ConvertRGBToHSL(GetPixelRed(image,p),GetPixelGreen(image,p),
          GetPixelBlue(image,p),&hue,&saturation,&brightness);
        brightness*=QuantumRange;
        brightness_sum_x+=brightness;
        brightness_sum_x2+=brightness*brightness;
        brightness_sum_x3+=brightness*brightness*brightness;
        brightness_sum_x4+=brightness*brightness*brightness*brightness;
        saturation*=QuantumRange;
        saturation_sum_x+=saturation;
        saturation_sum_x2+=saturation*saturation;
        saturation_sum_x3+=saturation*saturation*saturation;
        saturation_sum_x4+=saturation*saturation*saturation*saturation;
        area++;
        p+=GetPixelChannels(image);
      }
    }
    image_view=DestroyCacheView(image_view);
    if (area <= 0.0)
      break;
    brightness_mean=brightness_sum_x/area;
    (void) FormatLocaleString(text,MagickPathExtent,"%g",brightness_mean);
    (void) SetImageProperty(image,"filter:brightness:mean",text,
      exception);
    brightness_standard_deviation=sqrt(brightness_sum_x2/area-(brightness_sum_x/
      area*brightness_sum_x/area));
    (void) FormatLocaleString(text,MagickPathExtent,"%g",
      brightness_standard_deviation);
    (void) SetImageProperty(image,"filter:brightness:standard-deviation",text,
      exception);
    if (fabs(brightness_standard_deviation) >= MagickEpsilon)
      brightness_kurtosis=(brightness_sum_x4/area-4.0*brightness_mean*
        brightness_sum_x3/area+6.0*brightness_mean*brightness_mean*
        brightness_sum_x2/area-3.0*brightness_mean*brightness_mean*
        brightness_mean*brightness_mean)/(brightness_standard_deviation*
        brightness_standard_deviation*brightness_standard_deviation*
        brightness_standard_deviation)-3.0;
    (void) FormatLocaleString(text,MagickPathExtent,"%g",brightness_kurtosis);
    (void) SetImageProperty(image,"filter:brightness:kurtosis",text,
      exception);
    if (brightness_standard_deviation != 0)
      brightness_skewness=(brightness_sum_x3/area-3.0*brightness_mean*
        brightness_sum_x2/area+2.0*brightness_mean*brightness_mean*
        brightness_mean)/(brightness_standard_deviation*
        brightness_standard_deviation*brightness_standard_deviation);
    (void) FormatLocaleString(text,MagickPathExtent,"%g",brightness_skewness);
    (void) SetImageProperty(image,"filter:brightness:skewness",text,
      exception);
    saturation_mean=saturation_sum_x/area;
    (void) FormatLocaleString(text,MagickPathExtent,"%g",saturation_mean);
    (void) SetImageProperty(image,"filter:saturation:mean",text,
      exception);
    saturation_standard_deviation=sqrt(saturation_sum_x2/area-(saturation_sum_x/
      area*saturation_sum_x/area));
    (void) FormatLocaleString(text,MagickPathExtent,"%g",
      saturation_standard_deviation);
    (void) SetImageProperty(image,"filter:saturation:standard-deviation",text,
      exception);
    if (fabs(saturation_standard_deviation) >= MagickEpsilon)
      saturation_kurtosis=(saturation_sum_x4/area-4.0*saturation_mean*
        saturation_sum_x3/area+6.0*saturation_mean*saturation_mean*
        saturation_sum_x2/area-3.0*saturation_mean*saturation_mean*
        saturation_mean*saturation_mean)/(saturation_standard_deviation*
        saturation_standard_deviation*saturation_standard_deviation*
        saturation_standard_deviation)-3.0;
    (void) FormatLocaleString(text,MagickPathExtent,"%g",saturation_kurtosis);
    (void) SetImageProperty(image,"filter:saturation:kurtosis",text,
      exception);
    if (fabs(saturation_standard_deviation) >= MagickEpsilon)
      saturation_skewness=(saturation_sum_x3/area-3.0*saturation_mean*
        saturation_sum_x2/area+2.0*saturation_mean*saturation_mean*
        saturation_mean)/(saturation_standard_deviation*
        saturation_standard_deviation*saturation_standard_deviation);
    (void) FormatLocaleString(text,MagickPathExtent,"%g",saturation_skewness);
    (void) SetImageProperty(image,"filter:saturation:skewness",text,
      exception);
  }
  return(MagickImageFilterSignature);
}
Ejemplo n.º 29
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   G e t I m a g e T o t a l I n k D e n s i t y                             %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  GetImageTotalInkDensity() returns the total ink density for a CMYK image.
%  Total Ink Density (TID) is determined by adding the CMYK values in the
%  darkest shadow area in an image.
%
%  The format of the GetImageTotalInkDensity method is:
%
%      double GetImageTotalInkDensity(const Image *image,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport double GetImageTotalInkDensity(Image *image,
  ExceptionInfo *exception)
{
  CacheView
    *image_view;

  double
    total_ink_density;

  MagickBooleanType
    status;

  ssize_t
    y;

  assert(image != (Image *) NULL);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
  assert(image->signature == MagickCoreSignature);
  if (image->colorspace != CMYKColorspace)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),ImageError,
        "ColorSeparatedImageRequired","`%s'",image->filename);
      return(0.0);
    }
  status=MagickTrue;
  total_ink_density=0.0;
  image_view=AcquireVirtualCacheView(image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status) \
    magick_threads(image,image,image->rows,1)
#endif
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    double
      density;

    register const Quantum
      *p;

    register ssize_t
      x;

    p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
    if (p == (const Quantum *) NULL)
      {
        status=MagickFalse;
        continue;
      }
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      density=(double) GetPixelRed(image,p)+GetPixelGreen(image,p)+
        GetPixelBlue(image,p)+GetPixelBlack(image,p);
      if (density > total_ink_density)
#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp critical (MagickCore_GetImageTotalInkDensity)
#endif
        {
          if (density > total_ink_density)
            total_ink_density=density;
        }
      p+=GetPixelChannels(image);
    }
  }
  image_view=DestroyCacheView(image_view);
  if (status == MagickFalse)
    total_ink_density=0.0;
  return(total_ink_density);
}
Ejemplo n.º 30
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     S e p a r a t e I m a g e                                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  SeparateImage() separates a channel from the image and returns it as a
%  grayscale image.
%
%  The format of the SeparateImage method is:
%
%      Image *SeparateImage(const Image *image,const ChannelType channel,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o channel: the image channel.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *SeparateImage(const Image *image,
  const ChannelType channel_type,ExceptionInfo *exception)
{
#define GetChannelBit(mask,bit)  (((size_t) (mask) >> (size_t) (bit)) & 0x01)
#define SeparateImageTag  "Separate/Image"

  CacheView
    *image_view,
    *separate_view;

  Image
    *separate_image;

  MagickBooleanType
    status;

  MagickOffsetType
    progress;

  ssize_t
    y;

  /*
    Initialize separate image attributes.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  separate_image=CloneImage(image,image->columns,image->rows,MagickTrue,
    exception);
  if (separate_image == (Image *) NULL)
    return((Image *) NULL);
  if (SetImageStorageClass(separate_image,DirectClass,exception) == MagickFalse)
    {
      separate_image=DestroyImage(separate_image);
      return((Image *) NULL);
    }
  (void) SetImageColorspace(separate_image,GRAYColorspace,exception);
  separate_image->alpha_trait=UndefinedPixelTrait;
  /*
    Separate image.
  */
  status=MagickTrue;
  progress=0;
  image_view=AcquireVirtualCacheView(image,exception);
  separate_view=AcquireAuthenticCacheView(separate_image,exception);
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(progress,status) \
    magick_threads(image,image,image->rows,1)
#endif
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    register const Quantum
      *restrict p;

    register Quantum
      *restrict q;

    register ssize_t
      x;

    if (status == MagickFalse)
      continue;
    p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
    q=QueueCacheViewAuthenticPixels(separate_view,0,y,separate_image->columns,1,
      exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      {
        status=MagickFalse;
        continue;
      }
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      register ssize_t
        i;

      if (GetPixelReadMask(image,p) == 0)
        {
          SetPixelBackgoundColor(separate_image,q);
          p+=GetPixelChannels(image);
          q+=GetPixelChannels(separate_image);
          continue;
        }
      SetPixelChannel(separate_image,GrayPixelChannel,0,q);
      for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
      {
        PixelChannel channel=GetPixelChannelChannel(image,i);
        PixelTrait traits=GetPixelChannelTraits(image,channel);
        if ((traits == UndefinedPixelTrait) ||
            (GetChannelBit(channel_type,channel) == 0))
          continue;
        SetPixelChannel(separate_image,GrayPixelChannel,p[i],q);
      }
      p+=GetPixelChannels(image);
      q+=GetPixelChannels(separate_image);
    }
    if (SyncCacheViewAuthenticPixels(separate_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

#if defined(MAGICKCORE_OPENMP_SUPPORT)
        #pragma omp critical (MagickCore_SeparateImage)
#endif
        proceed=SetImageProgress(image,SeparateImageTag,progress++,image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  separate_view=DestroyCacheView(separate_view);
  image_view=DestroyCacheView(image_view);
  if (status == MagickFalse)
    separate_image=DestroyImage(separate_image);
  return(separate_image);
}