Ejemplo n.º 1
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* System Clocks Configuration */
  RCC_Configuration();

  /* Configure the GPIO ports */
  GPIO_Configuration();

#ifndef USE_STM3210C_EVAL
  /* Initialize JoyStick Button mounted on STM3210X-EVAL board */       
  STM_EVAL_PBInit(Button_UP, Mode_GPIO);
  STM_EVAL_PBInit(Button_DOWN, Mode_GPIO);
  STM_EVAL_PBInit(Button_LEFT, Mode_GPIO);
  STM_EVAL_PBInit(Button_RIGHT, Mode_GPIO);
  STM_EVAL_PBInit(Button_SEL, Mode_GPIO);
#else
  /* Configure the IO Expander */
  if (IOE_Config())
  {
    /* IO Expander config error */
    while(1);
  }
#endif  
     
/* USARTy configuration ------------------------------------------------------*/
  /* USARTy configured as follow:
        - BaudRate = 115200 baud  
        - Word Length = 8 Bits
        - One Stop Bit
        - No parity
        - Hardware flow control disabled (RTS and CTS signals)
        - Receive and transmit enabled
  */
  USART_InitStructure.USART_BaudRate = 115200;
  USART_InitStructure.USART_WordLength = USART_WordLength_8b;
  USART_InitStructure.USART_StopBits = USART_StopBits_1;
  USART_InitStructure.USART_Parity = USART_Parity_No ;
  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
  USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

  /* Configure the USARTy */
  USART_Init(USARTy, &USART_InitStructure);
  /* Enable the USARTy */
  USART_Cmd(USARTy, ENABLE);
  /* Set the USARTy prescaler */
  USART_SetPrescaler(USARTy, 0x1);
  /* Configure the USARTy IrDA mode */
  USART_IrDAConfig(USARTy, USART_IrDAMode_Normal);

  /* Enable the USARTy IrDA mode */
  USART_IrDACmd(USARTy, ENABLE);


  while (1)
  {
    /* Read Key */
    MyKey = ReadKey();

    switch(MyKey)
    {
      case JOY_UP:
        USART_SendData(USARTy, JOY_UP);
        while(USART_GetFlagStatus(USARTy, USART_FLAG_TXE) == RESET)
        {
        }
        break;
      case JOY_DOWN:
        USART_SendData(USARTy, JOY_DOWN);
        while(USART_GetFlagStatus(USARTy, USART_FLAG_TXE) == RESET)
        {
        }
        break;
      case JOY_LEFT:
        USART_SendData(USARTy, JOY_LEFT);
        while(USART_GetFlagStatus(USARTy, USART_FLAG_TXE) == RESET)
        {
        }
        break;
      case JOY_RIGHT:
        USART_SendData(USARTy, JOY_RIGHT);
        while(USART_GetFlagStatus(USARTy, USART_FLAG_TXE) == RESET)
        {
        }
        break;
      case JOY_CENTER:
        USART_SendData(USARTy, JOY_CENTER);
        while(USART_GetFlagStatus(USARTy, USART_FLAG_TXE) == RESET)
        {
        }
        break;
      case JOY_NONE:
        USART_SendData(USARTy, JOY_NONE);
        while(USART_GetFlagStatus(USARTy, USART_FLAG_TXE) == RESET)
        {
        } 
        break;
      default:
        break;
    }
  }
}
Ejemplo n.º 2
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System Clocks Configuration */
  RCC_Configuration();

  /* GPIO Configuration */
  GPIO_Configuration();

  /* TIM1 and Timers(TIM3 and TIM4) synchronisation in parallel mode -----------
     1/TIM1 is configured as Master Timer:
     - PWM Mode is used
     - The TIM1 Update event is used as Trigger Output
    
     2/TIM3 and TIM4 are slaves for TIM1,
     - PWM Mode is used
     - The ITR0(TIM1) is used as input trigger for both slaves
     - Gated mode is used, so starts and stops of slaves counters
       are controlled by the Master trigger output signal(update event).

  o For Low-density, Medium-density, High-density and Connectivity line devices:
    The TIMxCLK is fixed to 72 MHz, Prescaler = 0 so the TIM1 counter clock is 72 MHz.

    The Master Timer TIM1 is running at:
    TIM1 frequency = TIM1 counter clock / (TIM1_Period + 1) = 281.250 KHz
    and the duty cycle is equal to: TIM1_CCR1/(TIM1_ARR + 1) = 50%

    The TIM3 is running at: 
    (TIM1 frequency)/ ((TIM3 period +1)* (Repetion_Counter+1)) = 18.750 KHz and
    a duty cycle equal to TIM3_CCR1/(TIM3_ARR + 1) = 33.3%

    The TIM4 is running at:
    (TIM1 frequency)/ ((TIM4 period +1)* (Repetion_Counter+1)) = 28.125 KHz and
    a duty cycle equal to TIM4_CCR1/(TIM4_ARR + 1) = 50%
  
  o For Low-Density Value line and Medium-Density Value line devices:
    The TIMxCLK is fixed to 24 MHz, Prescaler = 0 so the TIM1 counter clock is 24 MHz.
    TIM1 frequency = 93.75 KHz
    TIM3 frequency = 6.25 KHz
    TIM4 frequency = 9.375 KHz
  --------------------------------------------------------------------------- */

  /* TIM3 Peripheral Configuration ----------------------------------------*/
  /* TIM3 Slave Configuration: PWM1 Mode */
  TIM_TimeBaseStructure.TIM_Period = 2;
  TIM_TimeBaseStructure.TIM_Prescaler = 0;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

  TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);

  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = 1;

  TIM_OC1Init(TIM3, &TIM_OCInitStructure);

  /* Slave Mode selection: TIM3 */
  TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Gated);
  TIM_SelectInputTrigger(TIM3, TIM_TS_ITR0);
  
  /* TIM4 Peripheral Configuration ----------------------------------------*/
  /* TIM4 Slave Configuration: PWM1 Mode */
  TIM_TimeBaseStructure.TIM_Period = 1;
  TIM_TimeBaseStructure.TIM_Prescaler = 0;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

  TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);

  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = 1;

  TIM_OC1Init(TIM4, &TIM_OCInitStructure);

  /* Slave Mode selection: TIM4 */
  TIM_SelectSlaveMode(TIM4, TIM_SlaveMode_Gated);
  TIM_SelectInputTrigger(TIM4, TIM_TS_ITR0);
  
  /* TIM1 Peripheral Configuration ----------------------------------------*/
  /* Time Base configuration */
  TIM_TimeBaseStructure.TIM_Prescaler = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
  TIM_TimeBaseStructure.TIM_Period = 255;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_RepetitionCounter = 4;

  TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);

  /* Channel 1 Configuration in PWM mode */
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
  TIM_OCInitStructure.TIM_Pulse = 127;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
  TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;
  TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
  TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;

  TIM_OC1Init(TIM1, &TIM_OCInitStructure);

  /* Automatic Output enable, Break, dead time and lock configuration*/
  TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
  TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
  TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1;
  TIM_BDTRInitStructure.TIM_DeadTime = 5;
  TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;
  TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
  TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;

  TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);

  /* Master Mode selection */
  TIM_SelectOutputTrigger(TIM1, TIM_TRGOSource_Update);

  /* Select the Master Slave Mode */
  TIM_SelectMasterSlaveMode(TIM1, TIM_MasterSlaveMode_Enable);
  
  /* TIM1 counter enable */
  TIM_Cmd(TIM1, ENABLE);

  /* TIM enable counter */
  TIM_Cmd(TIM3, ENABLE);
  TIM_Cmd(TIM4, ENABLE);

  /* Main Output Enable */
  TIM_CtrlPWMOutputs(TIM1, ENABLE);

  while (1)
  {}
}
Ejemplo n.º 3
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System Clocks Configuration */
  RCC_Configuration();

  /* Configure the GPIO ports */
  GPIO_Configuration();

  /* Initialize Leds mounted on STM3210X-EVAL board */
  STM_EVAL_LEDInit(LED1);
  STM_EVAL_LEDInit(LED2);
  STM_EVAL_LEDInit(LED3);
  STM_EVAL_LEDInit(LED4);
  
/* USARTy configuration ------------------------------------------------------*/
  /* USARTy configured as follow:
        - BaudRate = 115200 baud  
        - Word Length = 8 Bits
        - One Stop Bit
        - No parity
        - Hardware flow control disabled (RTS and CTS signals)
        - Receive and transmit enabled
  */
  USART_InitStructure.USART_BaudRate = 115200;
  USART_InitStructure.USART_WordLength = USART_WordLength_8b;
  USART_InitStructure.USART_StopBits = USART_StopBits_1;
  USART_InitStructure.USART_Parity = USART_Parity_No ;
  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
  USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
  
  /* Configure the USARTy */
  USART_Init(USARTy, &USART_InitStructure);
  /* Enable the USARTy */
  USART_Cmd(USARTy, ENABLE);

  /* Set the USARTy prescaler */
  USART_SetPrescaler(USARTy, 0x1);
  /* Configure the USARTy IrDA mode */
  USART_IrDAConfig(USARTy, USART_IrDAMode_Normal);

  /* Enable the USARTy IrDA mode */
  USART_IrDACmd(USARTy, ENABLE);

  while (1)
  {
    /* Wait until a byte is received */
    while(USART_GetFlagStatus(USARTy, USART_FLAG_RXNE) == RESET)
    {
    }
    /* Read the received byte */
    ReceivedData = (JOYState_TypeDef)USART_ReceiveData(USARTy);

    switch(ReceivedData)
    {
      case JOY_UP:
        STM_EVAL_LEDOn(LED1);
        STM_EVAL_LEDOff(LED2);
        STM_EVAL_LEDOff(LED3);
        STM_EVAL_LEDOff(LED4);     
        break;
      case JOY_DOWN:
        STM_EVAL_LEDOn(LED2);
        STM_EVAL_LEDOff(LED1);
        STM_EVAL_LEDOff(LED3);
        STM_EVAL_LEDOff(LED4); 
        break;
      case JOY_LEFT:
        STM_EVAL_LEDOn(LED3);
        STM_EVAL_LEDOff(LED1);
        STM_EVAL_LEDOff(LED2);
        STM_EVAL_LEDOff(LED4);
        break;
      case JOY_RIGHT:
        STM_EVAL_LEDOn(LED4);
        STM_EVAL_LEDOff(LED1);
        STM_EVAL_LEDOff(LED2);
        STM_EVAL_LEDOff(LED3);        
        break;
      case JOY_SEL:
        STM_EVAL_LEDOn(LED1);
        STM_EVAL_LEDOn(LED2);
        STM_EVAL_LEDOn(LED3);
        STM_EVAL_LEDOn(LED4);
        break;
      case JOY_NONE:
        break;
      default:
        break;
    }
  }
}
Ejemplo n.º 4
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
    /*!< At this stage the microcontroller clock setting is already configured,
         this is done through SystemInit() function which is called from startup
         file (startup_stm32f10x_xx.s) before to branch to application main.
         To reconfigure the default setting of SystemInit() function, refer to
         system_stm32f10x.c file
       */

    /* System clocks configuration ---------------------------------------------*/
    RCC_Configuration();

    /* NVIC configuration ------------------------------------------------------*/
    NVIC_Configuration();

    /* GPIO configuration ------------------------------------------------------*/
    GPIO_Configuration();

    /* Enable I2C1 and I2C2 ----------------------------------------------------*/
    I2C_Cmd(I2C1, ENABLE);
    I2C_Cmd(I2C2, ENABLE);

    /* I2C1 configuration ------------------------------------------------------*/
    I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
    I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;
    I2C_InitStructure.I2C_OwnAddress1 = I2C1_SLAVE_ADDRESS7;
    I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
    I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
    I2C_InitStructure.I2C_ClockSpeed = ClockSpeed;
    I2C_Init(I2C1, &I2C_InitStructure);
    /* I2C2 configuration ------------------------------------------------------*/
    I2C_InitStructure.I2C_OwnAddress1 = I2C2_SLAVE_ADDRESS7;
    I2C_Init(I2C2, &I2C_InitStructure);

    I2C_CalculatePEC(I2C1, ENABLE);
    I2C_CalculatePEC(I2C2, ENABLE);

    /* Enable I2C1 event and buffer interrupts */
    I2C_ITConfig(I2C1, I2C_IT_EVT | I2C_IT_BUF, ENABLE);
    /* Enable I2C1 event and buffer interrupts */
    I2C_ITConfig(I2C2, I2C_IT_EVT | I2C_IT_BUF, ENABLE);

    /*----- Transmission Phase -------------------------------------------------*/
    /* Set data direction to transmitter */
    Direction = Transmitter;
    /* Send I2C1 START condition */
    I2C_GenerateSTART(I2C1, ENABLE);

    /* Wait until all data and the PEC value are received */
    /* I2C2_Buffer_Rx buffer will contain the data plus the PEC value */
    while(Rx2_Idx < Tx1BufferSize)
    {
    }

    /* Check the corectness of the I2C1 transmitted data */
    TransferStatus1 = Buffercmp(I2C1_Buffer_Tx, I2C2_Buffer_Rx, Tx1BufferSize);
    /* TransferStatus1 = PASSED, if the transmitted and received data
       are equal */
    /* TransferStatus1 = FAILED, if the transmitted and received data
       are different */

    /*----- Reception Phase --------------------------------------------------*/
    /* Re-configure and enable I2C1 event interrupt to have the higher priority */
    NVIC_InitStructure.NVIC_IRQChannel = I2C1_EV_IRQn;
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
    NVIC_Init(&NVIC_InitStructure);

    /* Wait until end of Slave transmission */
    while(Rx1_Idx < Tx2BufferSize)
    {
    }

    /* Check the corectness of the I2C1 received data */
    TransferStatus2 = Buffercmp(I2C2_Buffer_Tx, I2C1_Buffer_Rx, Tx2BufferSize);
    /* TransferStatus2 = PASSED, if the transmitted and received data
       are equal */
    /* TransferStatus2 = FAILED, if the transmitted and received data
       are different */

    while(1)
    {
    }
}
Ejemplo n.º 5
0
int main(void)
{
	
		u32 rx=0, ry=0, fx, fy, ff;
		
 	RCC_Configuration();
	GPIO_Configuration();

	test.caption= "WINDOWS 0.1";
	test.rc.x=20;
	test.rc.y=20;
   test.rc.h=40;
	 test.rc.w=80;
	test.style=GDI_WINCAPTION|GDI_WINCAPTION_LEFT;
	
	vidInit();
	sysInitSystemTimer();
	vidClearScreen();
//CRT_Draw_Ring(100, VID_PIXELS_X/2, VID_PIXELS_Y/2,1, 2*3.1415/12);
		
//sysDelayMs(2000);
	//CRT_Draw_Ring(100, VID_PIXELS_X/2, VID_PIXELS_Y/2,1, 2*3.1415/12);
//CRT_Draw_Ring(100, VID_PIXELS_X/2, VID_PIXELS_Y/2, 2, 2*3.1415/12);
//	siInitialScreen();
//CRT_Draw_Ring(100, VID_PIXELS_X/2, VID_PIXELS_Y/2, 1);
	//vidClearScreen();
	
//fx=1; fy = 1;
//rx=10;ry=10;
//ff = rand()%100;
//while(ff--){
//rx = rand()%(400);
//ry = rand()%(200);
//}

//	

				gdiDrawTextEx(30, 170, "KVAOAR",1);
gdiDrawTextEx(340, 170, "CASA",1);
gdiDrawTextEx(340, 30, "STM32F103",1);
gdiDrawTextEx(340, 50, "VGA OUT",1);
gdiDrawTextEx(340, 100, "PYTHAGORAS",1);
gdiDrawTextEx(340, 120, "TREE",1);
gdiDrawTextEx(30, 30, "22.05.16",1);

Draw( VID_PIXELS_X/2,VID_PIXELS_Y/2+50,18,7,1.57);
		
while(1)
	{



//		if((ff++%(rand()%200) )==0){
//			
//			
//		fx = rand()%2 ? 0:(rand()%2 ? -1:1);
//		fy =  rand()%2 ? 0:(rand()%2 ? -1:1);
//		}
//		
		
	

		
		
		
		
//}
//		ry++;
//		rx++;
//		fx=ran(1)%(400/10);
//		fy=ran(1)%(200/10);
//		
//		ff=rand(3)%2;
	//	CRT_Draw_Ring(100, VID_PIXELS_X/2, VID_PIXELS_Y/2, 2, 2*3.1415/12);
		//drawCircle(VID_PIXELS_X/2, VID_PIXELS_Y/2, 70);
	//	CRT_Draw_Ring(100, VID_PIXELS_X/2, VID_PIXELS_Y/2,0, 1);
		
		//400*200
		
		
		
//#define	GDI_ROP_COPY			0
//#define	GDI_ROP_XOR				1
//#define	GDI_ROP_AND				2

		
		
		
		
			
  //  gdiDrawTextEx(VID_PIXELS_X/2, VID_PIXELS_Y/2, "STM32", 0);
	//	gdiCircle(VID_PIXELS_X/2, VID_PIXELS_Y/2, 50, 0);
	//	gdiLine(0, (VID_PIXELS_X/2), (VID_PIXELS_Y/2)-50, VID_PIXELS_X/2, VID_PIXELS_Y/2, 0);
//	  gdiPoint(0, rx, ry, 0);
//		
//		rx += fx;
//		ry += fy;
//		
//		
//	if ((rx >= 400 )||(gdiTestPoint( rx, ry)==1 )) {
//		//vidClearScreen();
//	//rx = rand()%(400);
//	//ry = rand()%(200);
//		fx = -fx;
//				fx += rand()%2 ? 0:(rand()%2 ? -1:1);
//		fy +=  rand()%2 ? 0:(rand()%2 ? -1:1);
//	}
//	
//	
//		if ((ry >= 200)||(gdiTestPoint( rx, ry)==1 )) {
//		//vidClearScreen();
//	//rx = rand()%(400);
//	//ry = rand()%(200);
//			fy = -fy;
//					fx += rand()%2 ? 0:(rand()%2 ? -1:1);
//		fy +=  rand()%2 ? 0:(rand()%2 ? -1:1);
//	}
		//sysDelayMs(1);
		//vidClearScreen();
	//	vidClearScreen();
	//	gdiRectangle((VID_PIXELS_X/2)-50, (VID_PIXELS_Y/2)-50, (VID_PIXELS_X/2)+50, (VID_PIXELS_Y/2)+50, 0);	
		
			//gdiPoint(0, VID_PIXELS_X/2, VID_PIXELS_Y/2, 0);
			//gdiLine(0, (VID_PIXELS_X/2),0, VID_PIXELS_X/2, (VID_PIXELS_Y), 0);
			
		
		
	}
	//demoInit();
	//siInit();

	return 0;
}
Ejemplo n.º 6
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void) {
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* RCC configuration */
  RCC_Configuration();
  
  /* TIM4 configuration */
  TIM4_Configuration();
  
  /* UART4 configuration */
  UART4_Configuration();
  
  /* WIZ820io SPI2 configuration */
  WIZ820io_SPI2_Configuration();  // one that is on left one
  
  /* WIZ820io SPI3 configuration */
  //WIZ820io_SPI3_Configuration();  // one that is on right one

  /* W5200 Configuration */
  Set_network();
  
  /* TLCD configuration */
  TLCD_Configuration();
  
  //TLCD_Write(0, 0, str1);
  //TLCD_Write(0, 1, str2);
  
  /* RTC Configuration */
  RTC_Configuration();
  
  /* EXIT4(Mode select button) configuration */
  EXTILine4_Configuration();
  
  /* EXIT5(F_SYNC : 100Hz) configuration */
  EXTILine5_Configuration();
  
  /* EXIT6(F_SCLK : 10KHz) configuration */
  EXTILine6_Configuration();
  
  /* myAccel3LV02 Configuration */
  Accel3LV02_Configuration();
  
  //myAccel3LV02 setup 1000.0111 Power on, enable all axis, self test off
  Accel_WriteReg(CTRL_REG1, 0xC7);
  // following routine setup myAccel3LV02 6g mode
  //Accel_WriteReg(CTRL_REG2, 0x80);
  
  /* GLCD configuration */
  GLCD_Configuration();
  
  // For TCP client's connection request delay
  presentTime = my_time;
  
  // When everything is set, print message
  printf("\r\n - System is ready - ");
    
  while(1) {
    if(TimerCount >= 1000) {  // thousand equals one second
      TimerCount = 0;
      
      // for Calculate connection delay
      my_time++;
      
      // retrieve axis data
      GetAccelValue(AXIS_X, &Xdata);
      GetAccelValue(AXIS_Y, &Ydata);
      GetAccelValue(AXIS_Z, &Zdata);
      
      char str[30];
      sprintf(str, "%d,%d,%d", 0xFFF&Xdata, 0xFFF&Ydata, 0xFFF&Zdata);
      TLCD_Clear();
      TLCD_Write(0, 0, str);
    }
    
    if(ParseUART4) {
      ParseUART4 = False; 
      
      // print Wiz810io configuration
      printSysCfg();
    }
    
    if(flag_uart == 1) {
      tmp_start = start;
    }
        
    switch(mode) {
    case SELECT_AXIS_X : break;
    case SELECT_AXIS_Y : break;
    case SELECT_AXIS_Z : break;
    }
    
    /* Ethernet Client Routine -----------------------------------------------*/
    /* SendFlag get set from when socket established and received any message */
    if(SendFlag) {
      SendFlag = False;
      
      char AxisData[30];
      for(order = 0; order < 100 ; order++) {
        float EW = 0;
        float NS = 0;
        float UD = 0;
        
        EW = data_x[order] * 1e-7;
        NS = data_y[order] * 1e-7;
        UD = data_z[order] * 1e-7;
        
        sprintf(AxisData, "%-0.7f,%-0.7f,%-0.7f\n", EW, NS, UD);
        
        // Only when socket is established, send data
        if(getSn_SR(SOCK_ZERO) == SOCK_ESTABLISHED) {
          /* send the received data */
          send(SOCK_ZERO, (uint8*)AxisData, strlen(AxisData), (bool)False);
        }
      }
    }
    
    /* Process client socket with port 5050 */
    //ProcessTcpClient(SOCK_ZERO);
    
  }
}
Ejemplo n.º 7
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* RCC configuration */
  RCC_Configuration();

  /* NVIC configuration */
  NVIC_Configuration();

  /* GPIO configuration */
  GPIO_Configuration();

  /* Configure the CEC peripheral */
  CEC_InitStructure.CEC_BitTimingMode = CEC_BitTimingStdMode;
  CEC_InitStructure.CEC_BitPeriodMode = CEC_BitPeriodStdMode;
  CEC_Init(&CEC_InitStructure);

  /* Set Prescaler value for APB1 clock PCLK1 = 24MHz */ 
  CEC_SetPrescaler(0x4AF);

  /* Set the CEC initiator address */
  CEC_OwnAddressConfig(MY_DEVICE_ADDRESS);
  
  /* Activate CEC interrupts associated to the set of RBTF,RERR, TBTF, TERR flags */
  CEC_ITConfig(ENABLE);

  /* Enable CEC */
  CEC_Cmd(ENABLE);

  /* If a frame has been received */
  while(ReceivedFrame == 0)
  {
  }
  
  /* Check the received data with the send ones */
  TransferStatus = Buffercmp(TransmitBuffer, ReceiveBuffer, ByteNumber);
  /* TransferStatus = PASSED, if the data transmitted from CEC Device1 and  
     received by CEC Device2 are the same */
  /* TransferStatus = FAILED, if the data transmitted from CEC Device1 and 
     received by CEC Device2 are different */
 
  if (TransferStatus == PASSED)
  { 
    /* OK */
    /* Turn on LED1 */
    STM_EVAL_LEDOn(LED1);
  }
  else
  { 
    /* KO */
    /* Turn on LED2 */
    STM_EVAL_LEDOn(LED2);
  }
  while(1)
  {
  }
}
Ejemplo n.º 8
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System clocks configuration ---------------------------------------------*/
  RCC_Configuration();

  /* GPIO configuration ------------------------------------------------------*/
  GPIO_Configuration();

  /* Enable I2C1 and I2C2 ----------------------------------------------------*/
  I2C_Cmd(I2C1, ENABLE);
  I2C_Cmd(I2C2, ENABLE);

  /* I2C1 configuration ------------------------------------------------------*/
  I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
  I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;
  I2C_InitStructure.I2C_OwnAddress1 = I2C1_SLAVE_ADDRESS7;
  I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
  I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
  I2C_InitStructure.I2C_ClockSpeed = ClockSpeed;
  I2C_Init(I2C1, &I2C_InitStructure);

  /* I2C2 configuration ------------------------------------------------------*/
  I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_10bit;
  I2C_InitStructure.I2C_OwnAddress1 = I2C2_SLAVE_ADDRESS10;
  I2C_Init(I2C2, &I2C_InitStructure);
     
  /*----- Transmission Phase -----*/
  /* Send I2C1 START condition */
  I2C_GenerateSTART(I2C1, ENABLE);
  /* Test on I2C1 EV5 and clear it */
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));  
  /* Send Header to I2C2 for write */
  I2C_SendData(I2C1, HeaderAddressWrite);
  /* Test on I2C1 EV9 and clear it */
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_ADDRESS10)); 
  /* Send I2C2 slave Address for write */
  I2C_Send7bitAddress(I2C1, I2C2_SLAVE_ADDRESS7, I2C_Direction_Transmitter);
  /* Test on I2C2 EV1 and clear it */
  while(!I2C_CheckEvent(I2C2, I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED));  
  /* Test on I2C1 EV6 and clear it */
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));  

  /* Send data */
  while (RxIdx < BufferSize)
  {
    /* Send I2C1 data */
    I2C_SendData(I2C1, I2C1_Buffer_Tx[TxIdx++]);
   /* Test on I2C2 EV2 and clear it */
    while(!I2C_CheckEvent(I2C2, I2C_EVENT_SLAVE_BYTE_RECEIVED));  
    /* Store received data on I2C2 */
    I2C2_Buffer_Rx[RxIdx++] = I2C_ReceiveData(I2C2);
    /* Test on I2C1 EV8 and clear it */
    while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED)); 
  }
  /* Send I2C1 STOP Condition */
  I2C_GenerateSTOP(I2C1, ENABLE);
  /* Test on I2C2 EV4 and clear it */
  while(!I2C_CheckEvent(I2C2, I2C_EVENT_SLAVE_STOP_DETECTED)); 
  /* Clear I2C2 STOPF flag: read operation to I2C_SR1 followed by a 
  write operation to I2C_CR1 */
  (void)(I2C_GetFlagStatus(I2C2, I2C_FLAG_STOPF));
  I2C_Cmd(I2C2, ENABLE); 

  /* Check the corectness of written data */
  TransferStatus = Buffercmp(I2C1_Buffer_Tx, I2C2_Buffer_Rx, BufferSize);
  /* TransferStatus = PASSED, if the transmitted and received data
     are equal */
  /* TransferStatus = FAILED, if the transmitted and received data 
     are different */

  while (1)
  {
  }
}
Ejemplo n.º 9
0
/**
  * @brief  Main program.
  * @param  None
  * @retval : None
  */
int main(void)
{
  /* System Clocks Configuration */
  RCC_Configuration();   

  /* PF.06, PF.07 and PF.08  config to drive LD1, LD2 and LD3 *****************/
  /* Enable GPIOF clock */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF, ENABLE);
  
  /* Configure PF.06, PF.07 and PF.08 as Output push-pull */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  GPIO_Init(GPIOF, &GPIO_InitStructure);

  /* Enable the FSMC Clock */
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
  
  /* FSMC Initialization */
  FSMC_NAND_Init();

  /* NAND read ID command */
  FSMC_NAND_ReadID(&NAND_ID);

  /* Verify the NAND ID */
  if((NAND_ID.Maker_ID == NAND_ST_MakerID) && (NAND_ID.Device_ID == NAND_ST_DeviceID))
  {

    /* NAND memory address to write to */ 
    WriteReadAddr.Zone = 0x00;
    WriteReadAddr.Block = 0x00;
    WriteReadAddr.Page = 0x00; 

    /* Erase the NAND first Block */
    status = FSMC_NAND_EraseBlock(WriteReadAddr);

    /* Write data to FSMC NAND memory */
    /* Fill the buffer to send */
    Fill_Buffer(TxBuffer, BUFFER_SIZE , 0x66);

    status = FSMC_NAND_WriteSmallPage(TxBuffer, WriteReadAddr, PageNumber);

    /* Read back the written data */
    status = FSMC_NAND_ReadSmallPage (RxBuffer, WriteReadAddr, PageNumber);
   
    /* Verify the written data */
    for(j = 0; j < BUFFER_SIZE; j++)
    {
      if(TxBuffer[j] != RxBuffer[j])
      {     
        WriteReadStatus++;
      } 
    }

    if (WriteReadStatus == 0)
    {	/* OK */
      /* Turn on LD1 */
      GPIO_SetBits(GPIOF, GPIO_Pin_6);
    }
    else
    { /* KO */
      /* Turn on LD2 */
      GPIO_SetBits(GPIOF, GPIO_Pin_7);     
    }
  }
  else
  {
    /* Turn on LD3 */
    GPIO_SetBits(GPIOF, GPIO_Pin_8);  
  }

  while(1)
  {
  }
}
Ejemplo n.º 10
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured,
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */

  /* System Clocks Configuration */
  RCC_Configuration();

  /* Configure the GPIO ports */
  GPIO_Configuration();

  /* TIM4 configuration: One Pulse mode ------------------------
     The external signal is connected to TIM4_CH2 pin (PB.07),
     The Rising edge is used as active edge,
     The One Pulse signal is output on TIM4_CH1 pin (PB.06)
     The TIM_Pulse defines the delay value
     The (TIM_Period -  TIM_Pulse) defines the One Pulse value.
     TIM2CLK = SystemCoreClock, we want to get TIM2 counter clock at 24 MHz:
     - Prescaler = (TIM2CLK / TIM2 counter clock) - 1
     The Autoreload value is 65535 (TIM4->ARR), so the maximum frequency value
     to trigger the TIM4 input is 24000000/65535 = 300 Hz.

     The TIM_Pulse defines the delay value, the delay value is fixed
     to 682.6 us:
     delay =  CCR1/TIM4 counter clock = 682.6 us.
     The (TIM_Period - TIM_Pulse) defines the One Pulse value,
     the pulse value is fixed to 2.048 ms:
     One Pulse value = (TIM_Period - TIM_Pulse) / TIM4 counter clock = 2.048 ms.

  * SystemCoreClock is set to 72 MHz for Low-density, Medium-density, High-density
    and Connectivity line devices and to 24 MHz for Value line devices
  ------------------------------------------------------------ */

  /* Compute the prescaler value */
  PrescalerValue = (uint16_t) (SystemCoreClock / 24000000) - 1;
  /* Time base configuration */
  TIM_TimeBaseStructure.TIM_Period = 65535;
  TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

  TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);

  /* TIM4 PWM2 Mode configuration: Channel1 */
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = 16383;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

  TIM_OC1Init(TIM4, &TIM_OCInitStructure);

  /* TIM4 configuration in Input Capture Mode */

  TIM_ICStructInit(&TIM_ICInitStructure);

  TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;
  TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
  TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
  TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
  TIM_ICInitStructure.TIM_ICFilter = 0;

  TIM_ICInit(TIM4, &TIM_ICInitStructure);

  /* One Pulse Mode selection */
  TIM_SelectOnePulseMode(TIM4, TIM_OPMode_Single);

  /* Input Trigger selection */
  TIM_SelectInputTrigger(TIM4, TIM_TS_TI2FP2);

  /* Slave Mode selection: Trigger Mode */
  TIM_SelectSlaveMode(TIM4, TIM_SlaveMode_Trigger);

  while (1)
  {}
}
Ejemplo n.º 11
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System Clocks Configuration */
  RCC_Configuration();

  /* Configure the GPIO ports */
  GPIO_Configuration();

/* USARTy and USARTz configuration -------------------------------------------*/
  /* USARTy and USARTz configured as follow:
        - BaudRate = 230400 baud  
        - Word Length = 8 Bits
        - One Stop Bit
        - No parity
        - Hardware flow control disabled (RTS and CTS signals)
        - Receive and transmit enabled

  */
  USART_InitStructure.USART_BaudRate = 230400;
  USART_InitStructure.USART_WordLength = USART_WordLength_8b;
  USART_InitStructure.USART_StopBits = USART_StopBits_1;
  USART_InitStructure.USART_Parity = USART_Parity_No;
  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
  USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;

  /* Configure USARTy */
  USART_Init(USARTy, &USART_InitStructure);
  /* Configure USARTz */
  USART_Init(USARTz, &USART_InitStructure);
  
  /* Enable the USARTy */
  USART_Cmd(USARTy, ENABLE);
  /* Enable the USARTz */
  USART_Cmd(USARTz, ENABLE);

  /* Enable USARTy Half Duplex Mode*/
  USART_HalfDuplexCmd(USARTy, ENABLE);
  /* Enable USARTz Half Duplex Mode*/
  USART_HalfDuplexCmd(USARTz, ENABLE);

  while(NbrOfDataToRead2--)
  {
    /* Wait until end of transmit */
    while(USART_GetFlagStatus(USARTy, USART_FLAG_TXE) == RESET)
    {
    }
    /* Write one byte in the USARTy Transmit Data Register */
    USART_SendData(USARTy, TxBuffer1[TxCounter1++]);

    /* Wait the byte is entirtly received by USARTz */  
    while(USART_GetFlagStatus(USARTz, USART_FLAG_RXNE) == RESET)
    {
    }
    /* Store the received byte in the RxBuffer2 */
    RxBuffer2[RxCounter2++] = USART_ReceiveData(USARTz);
  }

  /* Clear the USARTy Data Register */
  USART_ReceiveData(USARTy);

  while(NbrOfDataToRead1--)
  { 
    /* Wait until end of transmit */
    while(USART_GetFlagStatus(USARTz, USART_FLAG_TXE)== RESET)
    {
    }
    /* Write one byte in the USARTz Transmit Data Register */
    USART_SendData(USARTz, TxBuffer2[TxCounter2++]);

    /* Wait the byte is entirtly received by USARTy */
    while(USART_GetFlagStatus(USARTy,USART_FLAG_RXNE) == RESET)
    {
    }
    /* Store the received byte in the RxBuffer1 */
    RxBuffer1[RxCounter1++] = USART_ReceiveData(USARTy);
  }
  
  /* Check the received data with the send ones */
  TransferStatus1 = Buffercmp(TxBuffer1, RxBuffer2, TxBufferSize1);
  /* TransferStatus = PASSED, if the data transmitted from USARTy and  
     received by USARTz are the same */
  /* TransferStatus = FAILED, if the data transmitted from USARTy and 
     received by USARTz are different */
  TransferStatus2 = Buffercmp(TxBuffer2, RxBuffer1, TxBufferSize2);
  /* TransferStatus = PASSED, if the data transmitted from USARTz and  
     received by USARTy are the same */
  /* TransferStatus = FAILED, if the data transmitted from USARTz and 
     received by USARTy are different */

  while (1)
  {
  }
}
Ejemplo n.º 12
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* System Clocks Configuration */
  RCC_Configuration();
       
  /* NVIC configuration */
  NVIC_Configuration();

  /* Configure the GPIO ports */
  GPIO_Configuration();

  /* Configure the EXTI Controller */
  EXTI_Configuration();


/* SC_USART configuration ----------------------------------------------------*/
  /* SC_USART configured as follow:
        - Word Length = 9 Bits
        - 0.5 Stop Bit
        - Even parity
        - BaudRate = 12096 baud
        - Hardware flow control disabled (RTS and CTS signals)
        - Tx and Rx enabled
        - USART Clock enabled
        - USART CPOL Low
        - USART CPHA on first edge
        - USART Last Bit Clock Enabled
  */

  /* SC_USART Clock set to 4.5MHz (PCLK1 = 36 MHZ / 8) */
  USART_SetPrescaler(SC_USART, 0x04);
  /* SC_USART Guard Time set to 2 Bit */
  USART_SetGuardTime(SC_USART, 0x2);
  
  USART_ClockInitStructure.USART_Clock = USART_Clock_Enable;
  USART_ClockInitStructure.USART_CPOL = USART_CPOL_Low;
  USART_ClockInitStructure.USART_CPHA = USART_CPHA_1Edge;
  USART_ClockInitStructure.USART_LastBit = USART_LastBit_Enable;
  USART_ClockInit(SC_USART, &USART_ClockInitStructure);

  USART_InitStructure.USART_BaudRate = 12096;
  USART_InitStructure.USART_WordLength = USART_WordLength_9b;
  USART_InitStructure.USART_StopBits = USART_StopBits_1_5;
  USART_InitStructure.USART_Parity = USART_Parity_Even;
  USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
  USART_Init(SC_USART, &USART_InitStructure);  

  /* Enable the SC_USART Parity Error Interrupt */
  USART_ITConfig(SC_USART, USART_IT_PE, ENABLE);

  /* Enable SC_USART */
  USART_Cmd(SC_USART, ENABLE);

  /* Enable the NACK Transmission */
  USART_SmartCardNACKCmd(SC_USART, ENABLE);

  /* Enable the Smartcard Interface */
  USART_SmartCardCmd(SC_USART, ENABLE);

  /* Loop while no Smartcard is detected */  
  while(CardInserted == 0)
  {
  }

  /* Read Smartcard ATR response */ 
  for(index = 0; index < 40; index++, Counter = 0)
  {
    while((USART_GetFlagStatus(SC_USART, USART_FLAG_RXNE) == RESET) && (Counter != SC_Receive_Timeout))
    {
      Counter++;
    }

    if(Counter != SC_Receive_Timeout)
    {
      DST_Buffer[index] = USART_ReceiveData(SC_USART);
    }
  }

  /* Decode ATR */
  CardProtocol = SC_decode_Answer2reset(DST_Buffer);

  /* Test if the inserted card is ISO7816-3 T=0 compatible */
  if(CardProtocol == 0)
  {
    /* Inserted card is ISO7816-3 T=0 compatible */
    ATRDecodeStatus = PASSED;
  }
  else 
  { 
    /* Inserted Smartcard is not ISO7816-3 T=0 compatible */
    ATRDecodeStatus = FAILED;
  } 

  while (1)
  {   
  }
}
Ejemplo n.º 13
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System clocks configuration ---------------------------------------------*/
  RCC_Configuration();

  /* GPIO configuration ------------------------------------------------------*/
  GPIO_Configuration();

  /* DMA1 channel1 configuration ----------------------------------------------*/
  DMA_DeInit(DMA1_Channel1);
  DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)ADC1_DR_Address;
  DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)ADC_DualConvertedValueTab;
  DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
  DMA_InitStructure.DMA_BufferSize = 16;
  DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
  DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
  DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;
  DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
  DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
  DMA_InitStructure.DMA_Priority = DMA_Priority_High;
  DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
  DMA_Init(DMA1_Channel1, &DMA_InitStructure);
  /* Enable DMA1 Channel1 */
  DMA_Cmd(DMA1_Channel1, ENABLE);

  /* ADC1 configuration ------------------------------------------------------*/
  ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult;
  ADC_InitStructure.ADC_ScanConvMode = ENABLE;
  ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
  ADC_InitStructure.ADC_NbrOfChannel = 2;
  ADC_Init(ADC1, &ADC_InitStructure);
  /* ADC1 regular channels configuration */ 
  ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 1, ADC_SampleTime_239Cycles5);    
  ADC_RegularChannelConfig(ADC1, ADC_Channel_17, 2, ADC_SampleTime_239Cycles5);
  /* Enable ADC1 DMA */
  ADC_DMACmd(ADC1, ENABLE);

  /* ADC2 configuration ------------------------------------------------------*/
  ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult;
  ADC_InitStructure.ADC_ScanConvMode = ENABLE;
  ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
  ADC_InitStructure.ADC_NbrOfChannel = 2;
  ADC_Init(ADC2, &ADC_InitStructure);
  /* ADC2 regular channels configuration */ 
  ADC_RegularChannelConfig(ADC2, ADC_Channel_11, 1, ADC_SampleTime_239Cycles5);
  ADC_RegularChannelConfig(ADC2, ADC_Channel_12, 2, ADC_SampleTime_239Cycles5);
  /* Enable ADC2 external trigger conversion */
  ADC_ExternalTrigConvCmd(ADC2, ENABLE);

  /* Enable ADC1 */
  ADC_Cmd(ADC1, ENABLE);
  /* Enable Vrefint channel17 */
  ADC_TempSensorVrefintCmd(ENABLE);

  /* Enable ADC1 reset calibaration register */   
  ADC_ResetCalibration(ADC1);
  /* Check the end of ADC1 reset calibration register */
  while(ADC_GetResetCalibrationStatus(ADC1));

  /* Start ADC1 calibaration */
  ADC_StartCalibration(ADC1);
  /* Check the end of ADC1 calibration */
  while(ADC_GetCalibrationStatus(ADC1));

  /* Enable ADC2 */
  ADC_Cmd(ADC2, ENABLE);

  /* Enable ADC2 reset calibaration register */   
  ADC_ResetCalibration(ADC2);
  /* Check the end of ADC2 reset calibration register */
  while(ADC_GetResetCalibrationStatus(ADC2));

  /* Start ADC2 calibaration */
  ADC_StartCalibration(ADC2);
  /* Check the end of ADC2 calibration */
  while(ADC_GetCalibrationStatus(ADC2));

  /* Start ADC1 Software Conversion */ 
  ADC_SoftwareStartConvCmd(ADC1, ENABLE);

  /* Test on DMA1 channel1 transfer complete flag */
  while(!DMA_GetFlagStatus(DMA1_FLAG_TC1));
  /* Clear DMA1 channel1 transfer complete flag */
  DMA_ClearFlag(DMA1_FLAG_TC1);

  while (1)
  {
  }
}
Ejemplo n.º 14
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* System clocks configuration ---------------------------------------------*/
  RCC_Configuration();

  /* NVIC configuration ------------------------------------------------------*/
  NVIC_Configuration();

  /* GPIO configuration ------------------------------------------------------*/
  GPIO_Configuration();

  SPI_I2S_DeInit(SPI3);
  SPI_I2S_DeInit(SPI2);
  
  /* I2S peripheral configuration */
  I2S_InitStructure.I2S_Standard = I2S_Standard_Phillips;
  I2S_InitStructure.I2S_DataFormat = I2S_DataFormat_16bextended;
  I2S_InitStructure.I2S_MCLKOutput = I2S_MCLKOutput_Disable;
  I2S_InitStructure.I2S_AudioFreq = I2S_AudioFreq_48k;
  I2S_InitStructure.I2S_CPOL = I2S_CPOL_Low;

  /* I2S3 Master Transmitter to I2S2 Slave Receiver communication -----------*/
  /* I2S3 configuration */
  I2S_InitStructure.I2S_Mode = I2S_Mode_MasterTx;
  I2S_Init(SPI3, &I2S_InitStructure);

  /* I2S2 configuration */
  I2S_InitStructure.I2S_Mode = I2S_Mode_SlaveRx;
  I2S_Init(SPI2, &I2S_InitStructure);

  /* Enable the I2S3 TxE interrupt */
  SPI_I2S_ITConfig(SPI3, SPI_I2S_IT_TXE, ENABLE);

  /* Enable the I2S2 RxNE interrupt */
  SPI_I2S_ITConfig(SPI2, SPI_I2S_IT_RXNE, ENABLE);

  /* Enable the I2S2 */
  I2S_Cmd(SPI2, ENABLE);

  /* Enable the I2S3 */
  I2S_Cmd(SPI3, ENABLE);

  /* Wait the end of communication */
  while (RxIdx < 32)
  {}

  TransferStatus1 = Buffercmp(I2S2_Buffer_Rx, (uint16_t*)I2S3_Buffer_Tx, 32);
  /* TransferStatus1 = PASSED, if the data transmitted from I2S3 and received by
                               I2S2 are the same
     TransferStatus1 = FAILED, if the data transmitted from I2S3 and received by
                               I2S2 are different */
  
  /* Reinitialize the buffers */
  for (RxIdx = 0; RxIdx < 32; RxIdx++)
  {
    I2S2_Buffer_Rx[RxIdx] = 0;
  }
  TxIdx = 0;
  RxIdx = 0;

  SPI_I2S_DeInit(SPI3);
  SPI_I2S_DeInit(SPI2);  
  
  /* I2S peripheral configuration */
  I2S_InitStructure.I2S_Standard = I2S_Standard_Phillips;
  I2S_InitStructure.I2S_DataFormat = I2S_DataFormat_24b;
  I2S_InitStructure.I2S_MCLKOutput = I2S_MCLKOutput_Disable;
  I2S_InitStructure.I2S_AudioFreq = I2S_AudioFreq_16k;
  I2S_InitStructure.I2S_CPOL = I2S_CPOL_Low;

  /* I2S3 Master Transmitter to I2S2 Slave Receiver communication -----------*/
  /* I2S3 configuration */
  I2S_InitStructure.I2S_Mode = I2S_Mode_MasterTx;
  I2S_Init(SPI3, &I2S_InitStructure);

  /* I2S2 configuration */
  I2S_InitStructure.I2S_Mode = I2S_Mode_SlaveRx;
  I2S_Init(SPI2, &I2S_InitStructure);

  /* Enable the I2S3 TxE interrupt */
  SPI_I2S_ITConfig(SPI3, SPI_I2S_IT_TXE, ENABLE);

  /* Enable the I2S2 RxNE interrupt */
  SPI_I2S_ITConfig(SPI2, SPI_I2S_IT_RXNE, ENABLE);

  /* Enable the I2S2 */
  I2S_Cmd(SPI2, ENABLE);

  /* Enable the I2S3 */
  I2S_Cmd(SPI3, ENABLE);

  /* Wait the end of communication */
  while (RxIdx < 32)
  {
  }

  TransferStatus2 = Buffercmp24bits(I2S2_Buffer_Rx, (uint16_t*)I2S3_Buffer_Tx, 32);
  /* TransferStatus2 = PASSED, if the data transmitted from I2S3 and received by
                               I2S2 are the same
     TransferStatus2 = FAILED, if the data transmitted from I2S3 and received by
                               I2S2 are different */     

  while (1)
  {
  }
}
Ejemplo n.º 15
0
/**
  * @brief  Main program.
  * @param  None
  * @retval None
  */
int main(void)
{
    int i;
    
    RCC_Configuration();
    GPIO_Configuration();
    I2C_Configuration();

    i=0;
    /* Enable I2C2 */
    I2C_Enable(BOARD_I2C,ENABLE);

    /* Enable Acknowledge */
    I2C_Acknowledge_Enable(BOARD_I2C,ENABLE);

    /* Send a NACK for the next data byte which will be received into the shift register */
    I2C_NACKPosition_Enable(BOARD_I2C,I2C_NACKPOSITION_NEXT);

    /* Wait until I2C Bus is idle */
    while(I2C_GetBitState(BOARD_I2C, I2C_FLAG_I2CBSY));

    /* Send a start condition to I2C bus */
    I2C_StartOnBus_Enable(BOARD_I2C, ENABLE);

    /* Wait until SBSEND bit is set */
    while(!I2C_StateDetect(BOARD_I2C, I2C_PROGRAMMINGMODE_MASTER_SBSEND));

    /* Send slave address to I2C bus */
    I2C_AddressingDevice_7bit(BOARD_I2C, SLAVE_ADDRESS7, I2C_DIRECTION_RECEIVER);

    /* Disable ACK before clearing ADDSEND bit */
    I2C_Acknowledge_Enable(BOARD_I2C, DISABLE);

    /* Wait until ADDSEND bit is set and clear it */
    while(!I2C_StateDetect(BOARD_I2C, I2C_PROGRAMMINGMODE_MASTER_RECEIVER_ADDSEND));

    /* Wait until the last data byte is received into the shift register */
    while(!I2C_GetBitState(BOARD_I2C, I2C_FLAG_BTC));

    /* Send a stop condition */
    I2C_StopOnBus_Enable(BOARD_I2C, ENABLE);

    /* Wait until the reception data register is not empty */
    while(!I2C_GetBitState(BOARD_I2C, I2C_FLAG_RBNE));

    /* Read a data from I2C_DTR */
    BOARD_I2C_Buf_Read[i++]=I2C_ReceiveData(BOARD_I2C);

    /* Wait until the reception data register is not empty */
    while(!I2C_GetBitState(BOARD_I2C, I2C_FLAG_RBNE));

    /* Read a data from I2C_DTR */
    BOARD_I2C_Buf_Read[i++]=I2C_ReceiveData(BOARD_I2C);

    while(BOARD_I2C->CTLR1&0x0200);

    I2C_NACKPosition_Enable(BOARD_I2C,I2C_NACKPOSITION_CURRENT);

    /* Enable Acknowledge */
    I2C_Acknowledge_Enable(BOARD_I2C, ENABLE);

    while(1);
}
Ejemplo n.º 16
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
    /*!< At this stage the microcontroller clock setting is already configured,
         this is done through SystemInit() function which is called from startup
         file (startup_stm32f10x_xx.s) before to branch to application main.
         To reconfigure the default setting of SystemInit() function, refer to
         system_stm32f10x.c file
       */

    /* System clocks configuration ---------------------------------------------*/
    RCC_Configuration();

    /* NVIC configuration ------------------------------------------------------*/
    NVIC_Configuration();

    /* GPIO configuration ------------------------------------------------------*/
    GPIO_Configuration();

    /* TIM1 configuration ------------------------------------------------------*/
    /* Time Base configuration */
    TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
    TIM_TimeBaseStructure.TIM_Period = 0xFF;
    TIM_TimeBaseStructure.TIM_Prescaler = 0x4;
    TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
    /* TIM1 channel1 configuration in PWM mode */
    TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
    TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
    TIM_OCInitStructure.TIM_Pulse = 0x7F;
    TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
    TIM_OC1Init(TIM1, &TIM_OCInitStructure);

    /* DMA1 Channel1 Configuration ----------------------------------------------*/
    DMA_DeInit(DMA1_Channel1);
    DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;
    DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)ADC_RegularConvertedValueTab;
    DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
    DMA_InitStructure.DMA_BufferSize = 32;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;
    DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
    DMA_Init(DMA1_Channel1, &DMA_InitStructure);

    /* Enable DMA1 channel1 */
    DMA_Cmd(DMA1_Channel1, ENABLE);

    /* ADC1 configuration ------------------------------------------------------*/
    ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
    ADC_InitStructure.ADC_ScanConvMode = DISABLE;
    ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
    ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
    ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
    ADC_InitStructure.ADC_NbrOfChannel = 1;
    ADC_Init(ADC1, &ADC_InitStructure);

    /* ADC1 regular channel14 configuration */
    ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 1, ADC_SampleTime_13Cycles5);

    /* Set injected sequencer length */
    ADC_InjectedSequencerLengthConfig(ADC1, 1);
    /* ADC1 injected channel Configuration */
    ADC_InjectedChannelConfig(ADC1, ADC_Channel_11, 1, ADC_SampleTime_71Cycles5);
    /* ADC1 injected external trigger configuration */
    ADC_ExternalTrigInjectedConvConfig(ADC1, ADC_ExternalTrigInjecConv_None);

    /* Enable automatic injected conversion start after regular one */
    ADC_AutoInjectedConvCmd(ADC1, ENABLE);

    /* Enable ADC1 DMA */
    ADC_DMACmd(ADC1, ENABLE);

    /* Enable ADC1 external trigger */
    ADC_ExternalTrigConvCmd(ADC1, ENABLE);

    /* Enable JEOC interrupt */
    ADC_ITConfig(ADC1, ADC_IT_JEOC, ENABLE);

    /* Enable ADC1 */
    ADC_Cmd(ADC1, ENABLE);

    /* Enable ADC1 reset calibration register */
    ADC_ResetCalibration(ADC1);
    /* Check the end of ADC1 reset calibration register */
    while(ADC_GetResetCalibrationStatus(ADC1));

    /* Start ADC1 calibration */
    ADC_StartCalibration(ADC1);
    /* Check the end of ADC1 calibration */
    while(ADC_GetCalibrationStatus(ADC1));

    /* TIM1 counter enable */
    TIM_Cmd(TIM1, ENABLE);
    /* TIM1 main Output Enable */
    TIM_CtrlPWMOutputs(TIM1, ENABLE);

    /* Test on channel1 transfer complete flag */
    while(!DMA_GetFlagStatus(DMA1_FLAG_TC1));
    /* Clear channel1 transfer complete flag */
    DMA_ClearFlag(DMA1_FLAG_TC1);

    /* TIM1 counter disable */
    TIM_Cmd(TIM1, DISABLE);

    while (1)
    {
    }
}
Ejemplo n.º 17
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void) {
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */
  
  /* System Clocks Configuration */
  RCC_Configuration();
  
  /* System Tick Configuration at 1us */
  SysTick_Config(SystemCoreClock / 1000000);
  
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
  
  /* TIM2 Configuration */
  TIM2_Configuration();
  
  /* TIM3 Configuration (10ms for Network Transmission)*/
  TIM3_Configuration();
  
  /* TIM5 Configuration (GLCD Time Share)*/
  TIM5_Configuration();
  
  /* TIM6 Configuration (RTC load) */
  TIM6_Configuration();
  
#elif defined USE_EQDAS_SERVER
  
  /* TIM4 Configuration */
  TIM4_Configuration();
  
#endif
  
  /* CLCD Configuration */
  CLCD_Configuration();
  
  /* GLCD Configuration */
  GLCD_Configuration();
  
  /* UART1 Configuration */
  UART_Configuration();
  
  /* GPS-UART3 Configuration */
  //GPS_Configuration();
  
  /* RTC configuration by setting the time by Serial USART1 */
  RTC_SetTimeBySerial();
  
  /* Forcefully let user set the IP through terminal */
  //ForceIPSetBySerial();

  /* WIZ820io SPI1 configuration */
  WIZ820io_SPI1_Configuration();
  
  /* W5200 Configuration */
  Set_network();
  
  /* Print WIZ820io configuration */
  printSysCfg();
  
  /* EXTI Configuration */
  EXTI_Configuration();
  
  /* FatFS configuration */
  f_mount(0, &fs);  // mSD
  //f_mount(1, &fs);  // NAND
  
  /* Display Total size of SD card in MB scale */
  SD_TotalSize();
  
  /* Scan all files in mSD card */
  scan_files(path);
  
  /* MAL configuration */
  //Set_System();
  
  /* UMS configuration */
  //Set_USBClock();
  //USB_Interrupts_Config();
  //USB_Init();
  
  /* loop upon completion of USB Enumeration */
  //while (bDeviceState != CONFIGURED);
  
  /* ATFC Algorithm GPIO */
  ATFC_GPIO_Configuration();
  
  /* ATFC Parameter Initialization */
  ATFCAlgorithmParameterSetup();
  
  // For TCP client's connection request delay
  presentTime = my_time;
  
  /* Clear CLCD before branch into main */
  CLCD_Clear();

  /* Create directory and sub directory in accordance with current date */
  filePath = CreateDirectoryAccordingly(GetYearAndMergeToInt(), GetMonthAndMergeToInt(), 
                                        GetDayAndMergeToInt(), RTC_GetCounter() / 3600);
  
  /* Create file in append mode in accordance with current minute */
  CreateFileAppendModeAccordingly(filePath, (RTC_GetCounter() % 3600) / 60);
  
  // When everything is set, print message
  printf("\r\n\n - System is ready - ");
  
  while (1) {
    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
    
    if(TimerCount > 1000) { // 0 ~ 999 (1000) = 1 sec
      TimerCount = 0;
      
      /*
      int x, y, z;
      x = mAxisBuf.tmp_data_x_lcd[index];
      y = mAxisBuf.tmp_data_y_lcd[index];
      z = mAxisBuf.tmp_data_z_lcd[index];
    
      char Serial_Buf[37];
      int hour, minute, second, tmsecond;
      hour = THH; minute = TMM; second = TSS; tmsecond = 0;
      sprintf(Serial_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d\r\n", 
                year, month, day, hour, minute, second, tmsecond, x, y, z);
      printf(Serial_Buf);
      */
      
      //my_time++;  // uncomment when tcp connection is needed
      
      /* Process Parameter Text Stream */
      /*
      if(PCFlag) {  // EQDAS Client System and ATFC Algorithm Setting
        PCFlag = false;
        
        ProcessParameterStream();
      }
      */
    }
    
    /* GLCD Time Share */
    if(TIM5GLCDCount > 95) {  // Allocate proper time to share mcu resource with network
      TIM5GLCDCount = 0;
      
      /* Graphic LCD Copy and Process Routine -------------------------------------- */
      if(SyncFlag) { // prevent unpleasant impuse
        // Index synchronization dedicate to GLCD
        arrGLCDIdx = index;
        
        // Make a copy from raw collected data to temporary array
        CopyToTmpArray(arrGLCDIdx);
          
        // Copy to Temporary GAL array
        //CopyToTmpGalArray(arrIdx);
        
        // Calculate GAL and copy to single temporary GAL value
        //CalculateGalAndCopyToGal(arrIdx);
        
        // Determine KMA scale
        KMAGrade = DetermineKMA(arrGLCDIdx);
    
        // Check sign bit and apply to int container
        CheckSignAndToInt(arrGLCDIdx); // this function also cuts surplus 1G
      }
      
      int mATFCBit_lcd;
      mATFCBit_lcd = mAxisBuf.ATFCBit_lcd[arrGLCDIdx];
      
      /* Switch menu & waveform display through graphic lcd */
      GLCD_AxisViewWithWaveform(mode, arrGLCDIdx);
      
      /* Display KMA Intensity on Graphic LCD */
      GLCD_DisplayKMAIntensity(KMAGrade, mATFCBit_lcd);
    }
    
    /* Clock generated by TIM3 */
    if(ClientTimerCounter > 10) {  // 0 ~ 999 (1000) = 1 sec
      ClientTimerCounter = 0;
      
      year = GetYearAndMergeToInt();
      month = GetMonthAndMergeToInt();
      day = GetDayAndMergeToInt();
      hour = THH; minute = TMM; second = TSS; tmsecond = 0;
      
      int mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec;
      mYear = year; mMonth = month; mDay = day;
      mHour = hour; mMin = minute; mSec = second; mTMSec = tmsecond;

      if(SyncFlag) {
        // Index synchronization
        arrIdx = index;
      
        // Make a copy from raw collected data to temporary net array
        CopyToNetArray(arrIdx);
        
        // Check sign bit and apply to int container
        CheckSignAndToIntForNet(arrIdx); // this function also cuts surplus 1G
      }
      
      /* Prevent access to volatile variable warning */
      /* This have to be here in order to correct data to be used in ATFC */
      int mX, mY, mZ, mATFCBit;
      mX = mAxisNetBuf.axis_x_for_net[arrIdx];
      mY = mAxisNetBuf.axis_y_for_net[arrIdx];
      mZ = mAxisNetBuf.axis_z_for_net[arrIdx];
      mATFCBit = mAxisNetBuf.ATFCBit_net[arrIdx];
      
      /* EQDAQ01, 02 Client Routine ---------------------------------------------*/
      /* E1Flag or E2Flag set when client board successfully connect to server --*/
      /* Refer to wiz820.c line no. 406 for which flag to be set */
      if(E1Flag) {
        char E1_Buf[45];
        sprintf(E1_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d_%d\r\n", 
                mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec,
                mX, mY, mZ, mATFCBit);
        // Only when socket is established, allow send data
        if(getSn_SR(SOCK_ZERO) == SOCK_ESTABLISHED) {
          /* send selected data */
          CountSendByte = send(SOCK_ZERO, (uint8_t*)E1_Buf, strlen(E1_Buf), (bool)false);
        }
      }
      
      if(E2Flag) {
        char E2_Buf[45];
        sprintf(E2_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d_%d\r\n", 
                mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec,
                mX, mY, mZ, mATFCBit);
        // Only when socket is established, allow send data
        if(getSn_SR(SOCK_ZERO) == SOCK_ESTABLISHED) {
          /* send selected data */
          send(SOCK_ZERO, (uint8_t*)E2_Buf, strlen(E2_Buf), (bool)false);
        }
      }
    }
    
    /* do RTC work on every second */
    if(RTCTIM6Count > 1000) {
      RTCTIM6Count = 0;
      
      if(InitialThirteenSeconds == 12) {
         InitialThirteenSeconds = 0;
         GoATFCFlag = true;
      } else {
        if(!GoATFCFlag) {
           InitialThirteenSeconds++;
        }
      }
      
      /* RTC 1Hz interrupt */
      if(RTCTimeDisplay) { // 1Hz calibrated by RTC
        RTCTimeDisplay = false;
        
        /* Adjust realtime clock deviation */
        if(hour > 23) {
          int i, currentDay, mDay, mHour, mMin, mSec;
          mDay = hour / 24;
          
          for(i=0; i<mDay; i++) {
            IncreaseSingleDay();
            if(i == mDay - 1) {
              currentDay = (GetMonthAndMergeToInt() * 100) + GetDayAndMergeToInt();
              BKP_WriteBackupRegister(BKP_DR3, currentDay); // Save Month and Date
            }
          }
          
          mHour = THH % 24;
          mMin = TMM;
          mSec = TSS;
          
          /* Change the current time */
          RTC_SetCounter(mHour*3600 + mMin*60 + mSec);
        }
        
        /* Display current time */
        Time_Display(RTC_GetCounter());
        
        int OrderCount;
        for(OrderCount = 0; OrderCount < 100; OrderCount++) {
          // Copy to data buffer to be written through FATFS
          CopyToFatFsDataBuffer(OrderCount); 
        }
      }
      
      /* RTC Alarm interrupt */
      if(RTCAlarmFlag) {
        RTCAlarmFlag = false;
        
        printf("\r\nRTC Alarm Actviated!");
      } 
    }
    
#endif
    
    if(ParseGPS) {
      ParseGPS = false;
      
      printf("%s", GPS_Buffer);
    }
    
    if(ParseUSART1) {
      ParseUSART1 = false;
      
      // run some test on SDIO
      //SDIO_TEST();

#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
      
      /* Print WIZ820io configuration */
      printSysCfg();

      printf("\r\n");
      printf("\r\nBKP_DR1 = %d", BKP_ReadBackupRegister(BKP_DR1));
      printf("\r\nBKP_DR2 = %d", BKP_ReadBackupRegister(BKP_DR2));
      printf("\r\nBKP_DR3 = %d", BKP_ReadBackupRegister(BKP_DR3));
      printf("\r\nBKP_DR4 = %d", BKP_ReadBackupRegister(BKP_DR4));
      printf("\r\nBKP_DR5 = %d", BKP_ReadBackupRegister(BKP_DR5));
      printf("\r\nBKP_DR6 = %d", BKP_ReadBackupRegister(BKP_DR6));
      printf("\r\nBKP_DR7 = %d", BKP_ReadBackupRegister(BKP_DR7));
      printf("\r\nBKP_DR8 = %d", BKP_ReadBackupRegister(BKP_DR8));
      printf("\r\nBKP_DR9 = %d", BKP_ReadBackupRegister(BKP_DR9));
      printf("\r\nBKP_DR10 = %d", BKP_ReadBackupRegister(BKP_DR10));
      printf("\r\nBKP_DR11 = %d", BKP_ReadBackupRegister(BKP_DR11));
      printf("\r\nBKP_DR12 = %d", BKP_ReadBackupRegister(BKP_DR12));
      printf("\r\nBKP_DR13 = %d", BKP_ReadBackupRegister(BKP_DR13));
      printf("\r\nBKP_DR14 = %d", BKP_ReadBackupRegister(BKP_DR14));
      printf("\r\nBKP_DR15 = %d", BKP_ReadBackupRegister(BKP_DR15));
      printf("\r\nBKP_DR16 = %d", BKP_ReadBackupRegister(BKP_DR16));
      
      /*
      printf("\r\nstrlen(HEADER) : %d %s", strlen(HEADER), HEADER);
      
      printf("\r\nf_mkdir1 : ");
      char *dirPath = "0:/20130517";
      res = f_mkdir(dirPath);
      FPrintFatResult(res);
      
      printf("\r\nf_mkdir2 : ");
      dirPath = "0:/20130517/22H-23H";
      res = f_mkdir(dirPath);
      FPrintFatResult(res);
      
      char *filePath = "0:/20130517/2-23H/test.txt";
      // Create log file on the drive 0
      res = open_append(&fsrc, filePath);
      FPrintFatResult(res);
      
      if(res == FR_OK) {
        printf("test.txt successfully created\r\n");
        
        // Write buffer to file
        int bytesWritten;
        bytesWritten = f_printf(&fsrc, HEADER);
        printf("\r\n%d of bytesWritten", bytesWritten);
        
        // Close file
        f_close(&fsrc);
        
      } else if ( res == FR_EXIST ) {
        printf("\r\ntest.txt already exist");
      }
      */
      
      
#elif (defined) USE_EQDAS_SERVER
      
      char buffer[37];
      sprintf(buffer, "%s_%s_%s_%s_%s\r\n",
                DAQBoardOne[arrIdx].Date,
                DAQBoardOne[arrIdx].Time,
                DAQBoardOne[arrIdx].AxisX,
                DAQBoardOne[arrIdx].AxisY,
                DAQBoardOne[arrIdx].AxisZ);
      printf("\r\nRX_BUF : %s, strlen(RX_BUF) : %d", (char*)RX_BUF, strlen((char*)RX_BUF));
      printf("\r\nstrlen(buffer) = %d\n%s", strlen(buffer), buffer);
      
      /*
      char *original = "-3843,+4095,+2069";
      char target[20];
      strncpy(target, original, strlen(original));
      
      char *one, *two, *three;
      char *AfterToken;
      AfterToken = strtok(target, ",");
      one = AfterToken;
      AfterToken = strtok(NULL, ",");
      two = AfterToken;
      AfterToken = strtok(NULL, ",");
      three = AfterToken;
      AfterToken = strtok(NULL, ",");
      if(AfterToken != NULL) printf("AfterToken is not empty");
      
      printf("\r\none : %s, two : %s, three : %s", one, two, three);*/
      
#endif
    
    }
    
// following routine is only necessary when the board works as server
#if defined USE_EQDAS_SERVER
    
    /* Server also needs to have get CLCD going while running */
    /* RTC 1Hz interrupt */
    if(RTCTimeDisplay) { // 1Hz calibrated by RTC
      RTCTimeDisplay = false;
      
      /* Adjust realtime clock deviation */
      if(hour > 23) {
        int i, currentDay, mDay, mHour, mMin, mSec;
        mDay = hour / 24;
        
        for(i=0; i<mDay; i++) {
          IncreaseSingleDay();
          if(i == mDay - 1) {
            currentDay = (GetMonthAndMergeToInt() * 100) + GetDayAndMergeToInt();
            BKP_WriteBackupRegister(BKP_DR3, currentDay); // Save Month and Date
          }
        }
        
        mHour = THH % 24;
        mMin = TMM;
        mSec = TSS;
        
        /* Change the current time */
        RTC_SetCounter(mHour*3600 + mMin*60 + mSec);
      }
      
      /* Display current time */
      Time_Display(RTC_GetCounter());
    }
    
    /* EQ-DAQ-01 Parsing routine ------------------------------------------------- */
    /* Set E1Flag indicate that we have valid connection from EQ-DAQ-01(port 5050) */
    if(E1Flag) {
      E1Flag = false; // clear flag since this routine excutes ceaselessly over time
      
      ProcessTextStream(EQ_ONE, (char*)RX_BUF, E1Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag && !E2Flag) { // only when PC is connected and EQ-DAQ-02 is not connected
        // Send directly to PC
        //SendToPC(EQ_ONE, E1Order);
      }
      
      if(E1Order < 99) E1Order++;
      else E1Order = 0;
    } 
    
    /* EQ-DAQ-02 Parsing routine ------------------------------------------------- */
    /* Set E2Flag indicate that we have valid connection from EQ-DAQ-02(port 6060) */
    if(E2Flag) {
      E2Flag = false;
      
      ProcessTextStream(EQ_TWO, (char*)RX_BUF, E2Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag && !E1Flag) { // only when PC is connected and EQ-DAQ-01 is not connected
        // Send directly to PC
        //SendToPC(EQ_TWO, E2Order);
      }
      
      if(E2Order < 99) E2Order++;
      else E2Order = 0;
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag) {
        // Send directly to PC
        MultipleBoardDataToSendToPC(EQ_BOTH, E1Order, E2Order);
      }
    }

#endif

/* Setup TCP Client or Server -----------------------------------------------------*/
/* Please open config.h file to choose a proper board you wish to use -------------*/    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
      
      /* Start TCP Client process */
      ProcessTcpClient(SOCK_ZERO);  // TCP Client
      
      /* Parameter setting Server side with port 5050 in default */
      ATFCTcpServer(SOCK_TWO, EQDAS_Conf_PORT);  // SOCK_TWO because of flag conformity
      
#elif defined USE_EQDAS_SERVER
      
      /* Process server socket with each port */
      ProcessTcpServer(SOCK_ZERO, 5050);  // designated as for EQM-DAQ-01 with port 5050
      ProcessTcpServer(SOCK_ONE, 6060);   // designated as for EQM-DAQ-02 with port 6060
      ProcessTcpServer(SOCK_TWO, 7070);   // designated as for PC-CLIENT  with port 7070
      ProcessTcpServer(SOCK_THREE, 8080); // designated as for PC_DUMP    with port 8080
      
      /*
      ProcessTcpServer(SOCK_FOUR, 9090);   // designated as for TOBEUSED with port 9090
      ProcessTcpServer(SOCK_FIVE, 10010);   // designated as for TOBEUSED with port 10010
      ProcessTcpServer(SOCK_SIX, 10020);    // designated as for TOBEUSED with port 10020
      ProcessTcpServer(SOCK_SEVEN, 10030);  // designated as for TOBEUSED with port 10030
      */
      
#endif
      
  }
}
Ejemplo n.º 18
0
/*******************************************************************************
* Function Name  : main
* Description    : Main program.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
int main(void)
{
#ifdef DEBUG
  debug();
#endif

  /* System Clocks Configuration **********************************************/
  RCC_Configuration();   

  /* NVIC Configuration *******************************************************/
  NVIC_Configuration();

  /* Configure all unused GPIO port pins in Analog Input mode (floating input
     trigger OFF), this will reduce the power consumption and increase the device
     immunity against EMI/EMC *************************************************/
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |
                         RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD |
                         RCC_APB2Periph_GPIOE, ENABLE);

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_All;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
  GPIO_Init(GPIOA, &GPIO_InitStructure);
  GPIO_Init(GPIOB, &GPIO_InitStructure);
  GPIO_Init(GPIOC, &GPIO_InitStructure);
  GPIO_Init(GPIOD, &GPIO_InitStructure);
  GPIO_Init(GPIOE, &GPIO_InitStructure);

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |
                         RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD |
                         RCC_APB2Periph_GPIOE, DISABLE);  
#ifdef USE_STM3210E_EVAL
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG, ENABLE);

  GPIO_Init(GPIOF, &GPIO_InitStructure);
  GPIO_Init(GPIOG, &GPIO_InitStructure);
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG, DISABLE);
#endif /* USE_STM3210E_EVAL */

  /* Configure IO connected to LD1, LD2, LD3 and LD4 leds *********************/
  /* Enable GPIO_LED clock */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIO_LED, ENABLE);

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(GPIO_LED, &GPIO_InitStructure);

  while (1)
  {
    /* Turn on LD1 */
    GPIO_SetBits(GPIO_LED, GPIO_Pin_6);
    /* Insert delay */
    Delay(0xAFFFF);

    /* Turn on LD2 and LD3 */
    GPIO_SetBits(GPIO_LED, GPIO_Pin_7 | GPIO_Pin_8);
    /* Turn off LD1 */
    GPIO_ResetBits(GPIO_LED, GPIO_Pin_6);
    /* Insert delay */
    Delay(0xAFFFF);

    /* Turn on LD4 */
    GPIO_SetBits(GPIO_LED, GPIO_Pin_9);
    /* Turn off LD2 and LD3 */
    GPIO_ResetBits(GPIO_LED, GPIO_Pin_8 | GPIO_Pin_7);
    /* Insert delay */
    Delay(0xAFFFF);

    /* Turn off LD4 */
    GPIO_ResetBits(GPIO_LED, GPIO_Pin_9);
  }
}
Ejemplo n.º 19
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System Clocks Configuration */
  RCC_Configuration();

  /* NVIC Configuration */
  NVIC_Configuration();

  /* GPIO Configuration */
  GPIO_Configuration();

  /* ---------------------------------------------------------------
    TIM2 Configuration: 
    TIM2CLK = SystemCoreClock / 2,
    The objective is to get TIM2 counter clock at 1 KHz:
     - Prescaler = (TIM2CLK / TIM2 counter clock) - 1
    And generate 4 signals with 4 different delays:
    TIM2_CH1 delay = CCR1_Val/TIM2 counter clock = 1000 ms
    TIM2_CH2 delay = CCR2_Val/TIM2 counter clock = 500 ms
    TIM2_CH3 delay = CCR3_Val/TIM2 counter clock = 250 ms
    TIM2_CH4 delay = CCR4_Val/TIM2 counter clock = 125 ms

  * SystemCoreClock is set to 72 MHz for Low-density, Medium-density, High-density
    and Connectivity line devices and to 24 MHz for Low-Density Value line and
    Medium-Density Value line devices
  --------------------------------------------------------------- */
  /* Compute the prescaler value */
  PrescalerValue = (uint16_t) (SystemCoreClock / 2000) - 1;
  /* Time base configuration */
  TIM_TimeBaseStructure.TIM_Period = 65535;
  TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

  TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

  /* Output Compare Active Mode configuration: Channel1 */
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Inactive;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

  TIM_OC1Init(TIM2, &TIM_OCInitStructure);

  TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Active Mode configuration: Channel2 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR2_Val;

  TIM_OC2Init(TIM2, &TIM_OCInitStructure);

  TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Active Mode configuration: Channel3 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR3_Val;

  TIM_OC3Init(TIM2, &TIM_OCInitStructure);

  TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Active Mode configuration: Channel4 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR4_Val;

  TIM_OC4Init(TIM2, &TIM_OCInitStructure);

  TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);

  TIM_ARRPreloadConfig(TIM2, ENABLE);

  /* TIM IT enable */
  TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);

  /* Set PC.06, PC.07, PC.08 and PC.09 pins */
  GPIO_SetBits(GPIOC, GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9);

  /* TIM2 enable counter */
  TIM_Cmd(TIM2, ENABLE);

  while (1)
  {}
}
Ejemplo n.º 20
0
void USART1_Configuration(void)
{
    USART_InitTypeDef USART_InitStructure;

    /* USARTx configuration ------------------------------------------------------*/
    /* USARTx configured as follow:
     *  - BaudRate = 57600 baud
     *  - Word Length = 8 Bits
     *  - One Stop Bit
     *  - No parity
     *  - Hardware flow control disabled (RTS and CTS signals)
     *  - Receive and transmit enabled
     */
    USART_InitStructure.USART_BaudRate = 57600;
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;
    USART_InitStructure.USART_StopBits = USART_StopBits_1;
    USART_InitStructure.USART_Parity = USART_Parity_No;
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
    //START USART
    USART_Init(USART1, &USART_InitStructure);
    USART_Cmd(USART1, ENABLE);

    //Using Interrupt
    USART_ClearFlag(USART1, USART_FLAG_TC);

    //Enable RX interrupt & Disable TX interrupt
    USART_ITConfig(USART1, USART_IT_TXE, DISABLE);
    USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);

    /* NVIC Initialization */
    NVIC_InitTypeDef NVIC_InitStruct = {
      .NVIC_IRQChannel = USART1_IRQn,
      .NVIC_IRQChannelPreemptionPriority = 0,
      .NVIC_IRQChannelSubPriority = 0,
      .NVIC_IRQChannelCmd = ENABLE
    };
    NVIC_Init(&NVIC_InitStruct);

}

void USART1_puts(char* s)
{
    while(*s) {
        while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
        USART_SendData(USART1, *s);
        s++;
    }
}

/**************************************************************************************/
int main(void)
{
    RCC_Configuration();
    GPIO_Configuration();
    USART1_Configuration();
    LED_Initialization();
    USART1_puts("Hello World!\r\n");
    USART1_puts("Just for STM32F429I Discovery verify USART1 with USB TTL Cable\r\n");

    while(1)
    {
        //LED4_Toggle();

        //Delay_1us(10000);
        //USART1_puts(i);        
    }
}
Ejemplo n.º 21
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System clocks configuration ---------------------------------------------*/
  RCC_Configuration();

  /* GPIO configuration ------------------------------------------------------*/
  GPIO_Configuration();

  /* I2S peripheral configuration */
  I2S_InitStructure.I2S_Standard = I2S_Standard_Phillips;
  I2S_InitStructure.I2S_DataFormat = I2S_DataFormat_16bextended;
  I2S_InitStructure.I2S_MCLKOutput = I2S_MCLKOutput_Disable;
  I2S_InitStructure.I2S_AudioFreq = I2S_AudioFreq_48k;
  I2S_InitStructure.I2S_CPOL = I2S_CPOL_Low;

  /* I2S3 Master Transmitter to I2S2 Slave Receiver communication ------------*/
  /* I2S3 configuration */
  I2S_InitStructure.I2S_Mode = I2S_Mode_MasterTx;
  I2S_Init(SPI3, &I2S_InitStructure);

  /* I2S2 configuration */
  I2S_InitStructure.I2S_Mode = I2S_Mode_SlaveRx;
  I2S_Init(SPI2, &I2S_InitStructure);

  /* Enable the I2S2 */
  I2S_Cmd(SPI2, ENABLE);

  /* Enable the I2S3 */
  I2S_Cmd(SPI3, ENABLE);

  /* Begin the communication in I2S mode */
  while (RxIdx < BufferSize)
  {
    /* Wait the Tx buffer to be empty */
    while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) == RESET)
    {}
    /* Send a data from I2S3 */
    SPI_I2S_SendData(SPI3, I2S3_Buffer_Tx[TxIdx++]);

    /* Wait the Rx buffer to be full */
    while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET)
    {}
    /* Store the I2S2 received data in the relative data table */
    I2S2_Buffer_Rx[RxIdx++] = SPI_I2S_ReceiveData(SPI2);
  }

  TransferStatus1 = Buffercmp(I2S2_Buffer_Rx, I2S3_Buffer_Tx, BufferSize);
  /* TransferStatus1 = PASSED, if the data transmitted from I2S3 and received by
                               I2S2 are the same 
     TransferStatus1 = FAILED, if the data transmitted from I2S3 and received by
                               I2S2 are different */

  /* Reset TxIdx, RxIdx indexes */
  TxIdx = 0;
  RxIdx = 0;
  
  /* Switch to SPI mode communication ----------------------------------------*/
  /* SPI3 configuration */
  SPI_InitStructure.SPI_Direction = SPI_Direction_1Line_Tx;
  SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
  SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b;
  SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
  SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
  SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
  SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
  SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
  SPI_InitStructure.SPI_CRCPolynomial = 7;
  SPI_Init(SPI3, &SPI_InitStructure);

  /* SPI2 configuration ------------------------------------------------------*/
  SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_RxOnly;
  SPI_InitStructure.SPI_Mode = SPI_Mode_Slave;
  SPI_Init(SPI2, &SPI_InitStructure);

  /* Enable SPI2 */
  SPI_Cmd(SPI2, ENABLE);
  /* Enable SPI3 */
  SPI_Cmd(SPI3, ENABLE);

  /* Begin the communication in SPI mode */
  while (RxIdx < BufferSize)
  {
    /* Wait the Tx buffer to be empty */
    while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) == RESET)
    {}
    /* Send a data from SPI3 */
    SPI_I2S_SendData(SPI3, SPI3_Buffer_Tx[TxIdx++]);

    /* Wait the Rx buffer to be full */
    while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET)
    {}
    /* Store the SPI2 received data in the relative data table */
    SPI2_Buffer_Rx[RxIdx++] = SPI_I2S_ReceiveData(SPI2);
  }

  TransferStatus2 = Buffercmp(SPI2_Buffer_Rx, SPI3_Buffer_Tx, BufferSize);
  /* TransferStatus2 = PASSED, if the data transmitted from SPI3 and received by
                               SPI2 are the same
     TransferStatus2 = FAILED, if the data transmitted from SPI3 and received by
                               SPI2 are different */

  /* Reset TxIdx, RxIdx indexes and receive table values */
  for (TxIdx = 0; TxIdx < BufferSize; TxIdx++)
  {
    I2S2_Buffer_Rx[TxIdx] = 0;
  }
  
  TxIdx = 0;
  RxIdx = 0;
      
  /* I2S3 Slave Transmitter to I2S2 Master Receiver communication ------------*/
  /* I2S3 configuration */
  I2S_InitStructure.I2S_Mode = I2S_Mode_SlaveTx;
  I2S_Init(SPI3, &I2S_InitStructure);

  /* I2S2 configuration */
  I2S_InitStructure.I2S_Mode = I2S_Mode_MasterRx;
  I2S_Init(SPI2, &I2S_InitStructure);

  /* Wait the Tx buffer to be empty */
  while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) == RESET)
  {}
  /* Prepare the first data to be sent from the slave */
  SPI_I2S_SendData(SPI3, I2S3_Buffer_Tx[TxIdx++]);

  /* Enable the I2S3 */
  I2S_Cmd(SPI3, ENABLE);

  /* Enable the I2S2 */
  I2S_Cmd(SPI2, ENABLE);

  /* Begin the communication in I2S mode */
  while (RxIdx < BufferSize)
  {
    /* Wait the Rx buffer to be full */
    while (SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_RXNE) == RESET)
    {}
    /* Store the I2S2 received data in the relative data table */
    I2S2_Buffer_Rx[RxIdx++] = SPI_I2S_ReceiveData(SPI2);

    /* Wait the Tx buffer to be empty */
    while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_TXE) == RESET)
    {}
    /* Send a data from I2S3 */
    SPI_I2S_SendData(SPI3, I2S3_Buffer_Tx[TxIdx++]);
  }

  TransferStatus3 = Buffercmp(I2S2_Buffer_Rx, I2S3_Buffer_Tx, BufferSize);
  /* TransferStatus3 = PASSED, if the data transmitted from I2S3 and received by
                               I2S2 are the same
     TransferStatus3 = FAILED, if the data transmitted from I2S3 and received by
                               I2S2 are different */

  while (1)
  {}
}
Ejemplo n.º 22
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  FLASHStatus = FLASH_COMPLETE;
  MemoryProgramStatus = PASSED;  
  Data = 0x1753;
  EraseCounter = 0x0;
  
  /* RCC Configuration */
  RCC_Configuration();  
  
  /* Unlock the Flash Program Erase controller */  
  FLASH_Unlock();

  /* Define the number of page to be erased */
  NbrOfPage = (EndAddr - StartAddr) / FLASH_PAGE_SIZE;
  
  FLASH_ClearFlag(FLASH_FLAG_BSY | FLASH_FLAG_EOP|FLASH_FLAG_PGERR |FLASH_FLAG_WRPRTERR);

  /* Get pages write protection status */
  WRPR_Value = FLASH_GetWriteProtectionOptionByte();
  ProtectedPages = WRPR_Value & 0x000000C0;

#ifdef WriteProtection_Disable
  if (ProtectedPages == 0x00)
  {/* Pages are write protected */

    /* Disable the write protection */
    FLASHStatus = FLASH_EraseOptionBytes();

    /* Generate System Reset to load the new option byte values */
    NVIC_SystemReset();
  }
#elif defined WriteProtection_Enable
  
  if (ProtectedPages != 0x00)
  {
    /* Pages not write protected */
    #if defined (STM32F10X_LD) || defined (STM32F10X_MD)
      /* Enable the pages write protection */
      FLASHStatus = FLASH_EnableWriteProtection(FLASH_WRProt_Pages24to27 |FLASH_WRProt_Pages28to31);    
    
    #else /* (STM32F10X_HD) || defined (STM32F10X_CL) */  
      /* Enable the pages write protection */
      FLASHStatus = FLASH_EnableWriteProtection(FLASH_WRProt_Pages12to13 |FLASH_WRProt_Pages14to15);
    #endif
    
    /* Generate System Reset to load the new option byte values */
    NVIC_SystemReset();
  }
#endif
  
  /* If Pages are not write protected, perform erase and program operations
     Else nothing */
  if (ProtectedPages != 0x00)
  {
    /* Clear All pending flags */
    FLASH_ClearFlag(FLASH_FLAG_BSY | FLASH_FLAG_EOP|FLASH_FLAG_PGERR |FLASH_FLAG_WRPRTERR);	

    /* erase the FLASH pages */
    for(EraseCounter = 0; (EraseCounter < NbrOfPage) && (FLASHStatus == FLASH_COMPLETE); EraseCounter++)
    {
      FLASHStatus = FLASH_ErasePage(StartAddr + (FLASH_PAGE_SIZE * EraseCounter));
    }
  
    /* FLASH Half Word program of data 0x1753 at addresses defined by  StartAddr and EndAddr */
    Address = StartAddr;

    while((Address < EndAddr) && (FLASHStatus == FLASH_COMPLETE))
    {
      FLASHStatus = FLASH_ProgramHalfWord(Address, Data);
      Address = Address + 2;
    }

    /* Check the corectness of written data */
    Address = StartAddr;

    while((Address < EndAddr) && (MemoryProgramStatus != FAILED))
    {
      if((*(__IO uint16_t*) Address) != Data)
      {
        MemoryProgramStatus = FAILED;
      }
      Address += 2;
    }
 
  }

  while (1)
  {
  }
}
Ejemplo n.º 23
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */     
       
  /* System Clocks Configuration */
  RCC_Configuration();

  /* NVIC Configuration */
  NVIC_Configuration();

  /* GPIO Configuration */
  GPIO_Configuration();

  /* ---------------------------------------------------------------
    TIM2 Configuration: Output Compare Timing Mode:
    TIM2 counter clock at 6 MHz
    CC1 update rate = TIM2 counter clock / CCR1_Val = 146.48 Hz
    CC2 update rate = TIM2 counter clock / CCR2_Val = 219.7 Hz
    CC3 update rate = TIM2 counter clock / CCR3_Val = 439.4 Hz
    CC4 update rate = TIM2 counter clock / CCR4_Val = 878.9 Hz
  --------------------------------------------------------------- */

  /* Compute the prescaler value */
  PrescalerValue = (uint16_t) (SystemCoreClock / 12000000) - 1;

  /* Time base configuration */
  TIM_TimeBaseStructure.TIM_Period = 65535;
  TIM_TimeBaseStructure.TIM_Prescaler = 0;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

  TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

  /* Prescaler configuration */
  TIM_PrescalerConfig(TIM2, PrescalerValue, TIM_PSCReloadMode_Immediate);

  /* Output Compare Timing Mode configuration: Channel1 */
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Timing;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

  TIM_OC1Init(TIM2, &TIM_OCInitStructure);

  TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Timing Mode configuration: Channel2 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR2_Val;

  TIM_OC2Init(TIM2, &TIM_OCInitStructure);

  TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Timing Mode configuration: Channel3 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR3_Val;

  TIM_OC3Init(TIM2, &TIM_OCInitStructure);

  TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Timing Mode configuration: Channel4 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR4_Val;

  TIM_OC4Init(TIM2, &TIM_OCInitStructure);

  TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* TIM IT enable */
  TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);

  /* TIM2 enable counter */
  TIM_Cmd(TIM2, ENABLE);

  while (1);
}
Ejemplo n.º 24
0
/**
  * @brief  Main program
  * @param  None
  * @retval : None
  */
int main(void)
{
  /* System Clocks Configuration */
  RCC_Configuration();

  /* NVIC Configuration */
  NVIC_Configuration();

  /* GPIO Configuration */
  GPIO_Configuration();

  /* ---------------------------------------------------------------
    TIM2 Configuration: Output Compare Timing Mode:
    TIM2CLK = 36 MHz, Prescaler = 4, TIM2 counter clock = 7.2 MHz
    CC1 update rate = TIM2 counter clock / CCR1_Val = 146.48 Hz
    CC2 update rate = TIM2 counter clock / CCR2_Val = 219.7 Hz
    CC3 update rate = TIM2 counter clock / CCR3_Val = 439.4 Hz
    CC4 update rate = TIM2 counter clock / CCR4_Val =  878.9 Hz
  --------------------------------------------------------------- */

  /* Time base configuration */
  TIM_TimeBaseStructure.TIM_Period = 65535;
  TIM_TimeBaseStructure.TIM_Prescaler = 0;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

  TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

  /* Prescaler configuration */
  TIM_PrescalerConfig(TIM2, 4, TIM_PSCReloadMode_Immediate);

  /* Output Compare Timing Mode configuration: Channel1 */
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Timing;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

  TIM_OC1Init(TIM2, &TIM_OCInitStructure);

  TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Timing Mode configuration: Channel2 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR2_Val;

  TIM_OC2Init(TIM2, &TIM_OCInitStructure);

  TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Timing Mode configuration: Channel3 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR3_Val;

  TIM_OC3Init(TIM2, &TIM_OCInitStructure);

  TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Timing Mode configuration: Channel4 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR4_Val;

  TIM_OC4Init(TIM2, &TIM_OCInitStructure);

  TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* TIM IT enable */
  TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);

  /* TIM2 enable counter */
  TIM_Cmd(TIM2, ENABLE);

  while (1);
}
Ejemplo n.º 25
0
void PWM_init(void)
{
    RCC_Configuration();
    TIM_Configuration();
    GPIO_Configuration();
}
Ejemplo n.º 26
0
int main(void)
{
	
	int flag;
  int i;
	
	//only for sd testing
	extern u8 sd_recv_buf[512];
	extern u8 sd_send_buf[512];
	u8 ret = 1;
	// only for sd testing
	
	RCC_Configuration();
	RTC_Configuration();
	GPIO_Configuration();
	SPI_Configuration();
	NVIC_Configuration();
	USART_Configuration();
	EXTI_cfg();
	
	//only for sd testing
	ret = MSD_Init();
	ret = MSD_GetMediumCharacteristics();
	MSD_EarseBlock(0,Mass_Block_Count);
	//only for sd testing
	
	//system start working
	GPIO_SetBits(GPIOC,GPIO_Pin_14);
	
	//wait for the moment that the device has been fxed into the rocket
//	for (i=0;i<6*5;i++) {delay();} //delay 10 minutes

  //self-testing
  
	//first, test wireless data transmition
	
	Timedisplay=0;
	while (Timedisplay<10)
	{
		USART_SendData(USART3, 'A'); 
	  while(USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
		
	  if ((USART_GetFlagStatus(USART3, USART_FLAG_RXNE) == SET)
			   && (USART_ReceiveData(USART3)==66)) //except "B"
		  {
				//static char Responce[]="Wireless data transmition test completed";
				for (i=0;i<strlen(Responce);i++)
				{
				  USART_SendData(USART3, Responce[i]); 
	        while(USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
				}
				break;
			}
		//USART_ClearFlag(USART3, USART_FLAG_RXNE);
	}
	
	if (Timedisplay==10)
	{
		GPIO_ResetBits(GPIOC,GPIO_Pin_14);
		//Write into SD:ERROR in data transmition
		
		//only for testing
		for (i=0;i<strlen(errorDatatransmition);i++)
			{
				sd_send_buf[i]=errorDatatransmition[i];
			}
		ret = MSD_WriteBlock(sd_send_buf,0,512);
		//only for testing
		
		return(0);
	}
	
	//waiting for the continue order
	for (i=0;i<4000;i++);
	while (1)
	{
		if ((USART_GetFlagStatus(USART3, USART_FLAG_RXNE) == SET)
			   && (USART_ReceiveData(USART3)==78)) //except "N"
		  {
				break;
			}
		//USART_ClearFlag(USART3, USART_FLAG_RXNE);
	}
	
	//second,test GPS
  Timedisplay=0;
	flag=1;
	while ((Timedisplay<60*5) &&
		     (!((USART_GetFlagStatus(USART3, USART_FLAG_RXNE) == SET)
			      && (USART_ReceiveData(USART3)==71))))  //except "G"
	{
	  if ((USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == SET))
		  {
				flag=1;
				USART_SendData(USART3, USART_ReceiveData(USART1)); 
	      while(USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
			}
		//USART_ClearFlag(USART1, USART_FLAG_RXNE);
	}
	
	if (flag==0)
	{
		GPIO_ResetBits(GPIOC,GPIO_Pin_14);
		for (i=0;i<strlen(errorGPS);i++)
		{
			USART_SendData(USART3, errorGPS[i]); 
	    while(USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
		}
		//Write into SD:ERROR in GPS
		for (i=0;i<strlen(errorGPS);i++)
			{
				sd_send_buf[i]=errorGPS[i];
			}
		ret = MSD_WriteBlock(sd_send_buf,1,512);
		return(0);
	}
	//static char Responce2[]="GPS test completed";
	for (i=0;i<strlen(Responce2);i++)
		{
			USART_SendData(USART3, Responce2[i]); 
	    while(USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
		}
		
	
	//waiting for the continue order
	for (i=0;i<4000;i++);
	while (1)
	{
		if ((USART_GetFlagStatus(USART3, USART_FLAG_RXNE) == SET)
			   && (USART_ReceiveData(USART3)==78)) //except "N"
		  {
				break;
			}
		//USART_ClearFlag(USART3, USART_FLAG_RXNE);
	}
	
	//third, test clock
	USART_SendData(USART3, 'C'); 
	while(USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
	Timedisplay=0;
	flag=0;
	while ((Timedisplay<20) &&
		     (!((USART_GetFlagStatus(USART3, USART_FLAG_RXNE) == SET)
			      && (USART_ReceiveData(USART3)==69))));  //except "E"
	
	if ((abs(Timedisplay-10)>2) &&
		    (USART_ReceiveData(USART3)==69))
	{
		GPIO_ResetBits(GPIOC,GPIO_Pin_14);
		for (i=0;i<strlen(errorclock);i++)
		{
			USART_SendData(USART3, errorclock[i]); 
	    while(USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
		}
		//Write into SD:ERROR in timing
		//only for testing
		for (i=0;i<strlen(errorclock);i++)
			{
				sd_send_buf[i]=errorclock[i];
			}
		ret = MSD_WriteBlock(sd_send_buf,2,512);
		//only for testing
			
		return(0);
	}
	
	//static char Responce3[]="clock test completed";
	for (i=0;i<strlen(Responce3);i++)
		{
			USART_SendData(USART3, Responce3[i]); 
	    while(USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
		}
	
	//static char Responce4[]="ALL test completed,wait for launching signal";
	for (i=0;i<strlen(Responce4);i++)
		{
			USART_SendData(USART3, Responce4[i]); 
	    while(USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
		}
	
	while (!((USART_GetFlagStatus(USART3, USART_FLAG_RXNE) == SET)
			      && (USART_ReceiveData(USART3)==76))); //except for "L"
	
	//delay();
  
	//static char Responce5[]="Go! Good Luck!";
	for (i=0;i<strlen(Responce5);i++)
		{
			USART_SendData(USART3, Responce5[i]); 
	    while(USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
		}

	
	/* Enable the USART Receive interrupt: this interrupt is generated when the
     USART1 receive data register is not empty */
  USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
  USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);
  //USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
	Timedisplay=0;
	while(1)
	{
		if (Timedisplay>=OPEN_Parachute) 
		{
			GPIO_SetBits(GPIOC,GPIO_Pin_6);
			//static char Responce6[]="The parachute is open@";
	    for (i=0;i<strlen(Responce6);i++)
	    	{
	     		USART_SendData(USART3, Responce6[i]); 
	        while(USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);
		    }
		}
	}
	return(0);
}
Ejemplo n.º 27
0
/**
  * @brief   Main program
  * @param  None
  * @retval None
  */
int main(void) {
  /*!< At this stage the microcontroller clock setting is already configured, 
       this is done through SystemInit() function which is called from startup
       file (startup_stm32f10x_xx.s) before to branch to application main.
       To reconfigure the default setting of SystemInit() function, refer to
       system_stm32f10x.c file
     */
  
  /* System Clocks Configuration */
  RCC_Configuration();
  
  /* System Tick Configuration at 1us */
  SysTick_Config(SystemCoreClock / 1000000);
  
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
  
  /* TIM2 Configuration */
  TIM2_Configuration();
  
  /* TIM3 Configuration */
  TIM3_Configuration();
  
  /* TIM6 Configuration (RTC load) */
  TIM6_Configuration();
  
#elif defined USE_EQDAS_SERVER
  
  /* TIM4 Configuration */
  TIM4_Configuration();
  
#endif
  
  /* CLCD Configuration */
  CLCD_Configuration();
  
  /* GLCD Configuration */
  GLCD_Configuration();
  
  /* UART1 Configuration */
  UART_Configuration();
  
  /* RTC configuration by setting the time by Serial USART1 */
  //RTC_SetTimeBySerial();

  /* WIZ820io SPI1 configuration */
  WIZ820io_SPI1_Configuration();
  
  /* W5200 Configuration */
  Set_network();
  
  /* Print WIZ820io configuration */
  printSysCfg();
  
  /* EXTI Configuration */
  EXTI_Configuration();
  
  /* FatFS configuration */
  f_mount(0, &fs);  // mSD
  //f_mount(1, &fs);  // NAND
  
  /* Display Total size of SD card in MB scale */
  SD_TotalSize();
  
  /* Scan all files in mSD card */
  scan_files(path);
  
  /* MAL configuration */
  //Set_System();
  
  /* UMS configuration */
  //Set_USBClock();
  //USB_Interrupts_Config();
  //USB_Init();
  
  /* loop upon completion of USB Enumeration */
  //while (bDeviceState != CONFIGURED);
  
  /* ATFC Algorithm GPIO */
  ATFC_GPIO_Configuration();
  
  /* ATFC Parameter Initialization */
  ATFCAlgorithmParameterSetup();
  
  // For TCP client's connection request delay
  presentTime = my_time;
  
  /* Clear CLCD before branch into main */
  CLCD_Clear();
  
  /* Alarm in 3 second */
  //RTC_SetAlarm(RTC_GetCounter() + 3);
  /* Wait until last write operation on RTC registers has finished */
  //RTC_WaitForLastTask();

  /* Create directory and sub directory in accordance with current date */
  //filePath = CreateDirectoryAccordingly(GetYearAndMergeToInt(), GetMonthAndMergeToInt(), 
                                        //GetDayAndMergeToInt(), RTC_GetCounter() / 3600);
  
  /* Create file in append mode in accordance with current minute */
  //CreateFileAppendModeAccordingly(filePath, (RTC_GetCounter() % 3600) / 60);
  
  // When everything is set, print message
  printf("\r\n\n - System is ready - ");
  
  while (1) {
    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
    
    if(TimerCount > 1000) { // 0 ~ 999 (1000) = 1 sec
      TimerCount = 0;
      
      /*
      int x, y, z;
      x = mAxisBuf.tmp_data_x_lcd[index];
      y = mAxisBuf.tmp_data_y_lcd[index];
      z = mAxisBuf.tmp_data_z_lcd[index];
    
      char Serial_Buf[37];
      int hour, minute, second, tmsecond;
      hour = THH; minute = TMM; second = TSS; tmsecond = 0;
      sprintf(Serial_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d\r\n", 
                year, month, day, hour, minute, second, tmsecond, x, y, z);
      printf(Serial_Buf);
      */
      
      //my_time++;  // uncomment when tcp connection is needed
      
      /* Process Parameter Text Stream */
      if(PCFlag) {  // EQDAS Client System and ATFC Algorithm Setting
        PCFlag = false;
        
        ProcessParameterStream();
      }
    }
    
    /* Clock generated by TIM3 */
    if(ClientTimerCounter > 10) {  // 0 ~ 999 (1000) = 1 sec
      ClientTimerCounter = 0;
      
      int mAlgorithmContainer;
      
      year = GetYearAndMergeToInt();
      month = GetMonthAndMergeToInt();
      day = GetDayAndMergeToInt();
      hour = THH; minute = TMM; second = TSS; tmsecond = 0;
      
      int mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec;
      mYear = year; mMonth = month; mDay = day;
      mHour = hour; mMin = minute; mSec = second; mTMSec = tmsecond;
      
      x = mAxisBuf.tmp_data_x_lcd[arrIdx];
      y = mAxisBuf.tmp_data_y_lcd[arrIdx];
      z = mAxisBuf.tmp_data_z_lcd[arrIdx];

      if(flag_uart) { // prevent unpleasant impuse
        // Index synchronization
        arrIdx = index; 
        
        // Make a copy from raw collected data to temporary array
        CopyToTmpArray(arrIdx);
          
        // Copy to Temporary GAL array
        CopyToTmpGalArray(arrIdx);
        
        // Calculate GAL and copy to single temporary GAL value
        CalculateGalAndCopyToGal(arrIdx);
        
        // Determine KMA scale
        DetermineKMA(arrIdx);
  
        // Check sign bit and apply to int container
        CheckSignAndToInt(arrIdx); // this function also cuts surplus 1G 
        
        /* Switch menu & waveform display through graphic lcd */
        GLCD_AxisViewWithWaveform(mode, arrIdx, x, y, z);
        
        if(GoATFCFlag) {
          // Apply ATFC Algorithm to Axis x
          ATFCAlgorithm(mAxisBuf.tmp_data_x_lcd[arrIdx]);
        }
      }

      if(EventDetection) {
        GPIO_WriteBit(GPIOE, GPIO_Pin_15, Bit_SET);
        mAlgorithmContainer = x;
      } else {
        GPIO_WriteBit(GPIOE, GPIO_Pin_15, Bit_RESET);
        mAlgorithmContainer = 0; 
      }
      
      // Copy to data buffer to be written through FATFS
      //CopyToFatFsDataBuffer(arrIdx);
      
      /* EQDAQ01, 02 Client Routine ---------------------------------------------*/
      /* E1Flag or E2Flag set when client board successfully connect to server --*/
      /* Refer to wiz820.c line no. 300 for which flag to be set */
      if(E1Flag) {
        char E1_Buf[45];
        sprintf(E1_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d_%+05d\r\n", 
                mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec,
                x, y, z, mAlgorithmContainer);
        // Only when socket is established, allow send data
        if(getSn_SR(SOCK_TWO) == SOCK_ESTABLISHED) {
          /* send selected data */
          CountSendByte = send(SOCK_TWO, (uint8_t*)E1_Buf, strlen(E1_Buf), (bool)false);
        }
      }
      
      if(E2Flag) {
        char E2_Buf[45];
        sprintf(E2_Buf, "%04d%02d%02d_%02d%02d%02d%02d_%+05d_%+05d_%+05d\r\n", 
                mYear, mMonth, mDay, mHour, mMin, mSec, mTMSec, x, y, z);
        // Only when socket is established, allow send data
        if(getSn_SR(SOCK_ZERO) == SOCK_ESTABLISHED) {
          /* send selected data */
          send(SOCK_ZERO, (uint8_t*)E2_Buf, strlen(E2_Buf), (bool)false);
        }
      }
    }
    
    /* do RTC work on every second */
    if(RTCTIM6Count > 1000) {
      RTCTIM6Count = 0;
      
      if(InitialThirteenSeconds == 12) {
         InitialThirteenSeconds = 0;
         GoATFCFlag = true;
      } else {
        if(!GoATFCFlag) {
           InitialThirteenSeconds++;
        }
      }
      
      /* RTC 1Hz interrupt */
      if(RTCTimeDisplay) { // 1Hz calibrated by RTC
        RTCTimeDisplay = false; 
        
        /* Display current time */
        Time_Display(RTC_GetCounter());
      }
      
      /* RTC Alarm interrupt */
      if(RTCAlarmFlag) {
        RTCAlarmFlag = false;
        
        printf("\r\nRTC Alarm Actviated!");
      } 
    }
    
    /* Save log to file process ------------------------------------------------*/
    /* Save process needs to be run every single cycle due to delay might occur */
    if(GoAppendDataFlag) {  // every 500 sample (equals 5 sec), go save file.
      GoAppendDataFlag = false;
      
      int bytesWritten = 0;
      
      if(EachSecFlag) {
        // it means that DATA1_BUF is full and ready to flush out
        // be sure to empty out DATA1_BUF or will overflow and cause system to halt.
        
        /* Append first data for the duration of 1 second */
        bytesWritten = f_printf(&fsrc, DATA1_BUF);
        printf("\r\n%d of bytesWritten", bytesWritten);
        
        if(FileRecordCompleteFlag) {
          FileRecordCompleteFlag = false;
          printf("\r\nFile Record Complete!");
          /* Close the file */
          f_close(&fsrc);
        }
        
        // Reset DATA1_BUF
        memset(DATA1_BUF, 0, sizeof(DATA1_BUF)); 
      } else {
        /* Append another second of data */
        bytesWritten = f_printf(&fsrc, DATA2_BUF);
        printf("\r\n%d of bytesWritten", bytesWritten);
        
        if(FileRecordCompleteFlag) {
          FileRecordCompleteFlag = false;
          printf("\r\nFile Record Complete!");
          /* Close the file */
          f_close(&fsrc); 
        }
        
        // Reset DATA2_BUF
        memset(DATA2_BUF, 0, sizeof(DATA2_BUF));
      }
    }
    
#endif
    
    if(ParseUSART1) {
      ParseUSART1 = false;
      
      // run some test on SDIO
      //SDIO_TEST();

#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
      
      /* Print WIZ820io configuration */
      printSysCfg();

      printf("\r\n");
      printf("\r\nBKP_DR1 = %d", BKP_ReadBackupRegister(BKP_DR1));
      printf("\r\nBKP_DR2 = %d", BKP_ReadBackupRegister(BKP_DR2));
      printf("\r\nBKP_DR3 = %d", BKP_ReadBackupRegister(BKP_DR3));
      printf("\r\nBKP_DR4 = %d", BKP_ReadBackupRegister(BKP_DR4));
      printf("\r\nBKP_DR5 = %d", BKP_ReadBackupRegister(BKP_DR5));
      printf("\r\nBKP_DR6 = %d", BKP_ReadBackupRegister(BKP_DR6));
      printf("\r\nBKP_DR7 = %d", BKP_ReadBackupRegister(BKP_DR7));
      printf("\r\nBKP_DR8 = %d", BKP_ReadBackupRegister(BKP_DR8));
      printf("\r\nBKP_DR9 = %d", BKP_ReadBackupRegister(BKP_DR9));
      printf("\r\nBKP_DR10 = %d", BKP_ReadBackupRegister(BKP_DR10));
      printf("\r\nBKP_DR11 = %d", BKP_ReadBackupRegister(BKP_DR11));
      printf("\r\nBKP_DR12 = %d", BKP_ReadBackupRegister(BKP_DR12));
      printf("\r\nBKP_DR13 = %d", BKP_ReadBackupRegister(BKP_DR13));
      printf("\r\nBKP_DR14 = %d", BKP_ReadBackupRegister(BKP_DR14));
      printf("\r\nBKP_DR15 = %d", BKP_ReadBackupRegister(BKP_DR15));
      printf("\r\nBKP_DR16 = %d", BKP_ReadBackupRegister(BKP_DR16));
      
#elif (defined) USE_EQDAS_SERVER
      
      char buffer[37];
      sprintf(buffer, "%s_%s_%s_%s_%s\r\n",
                DAQBoardOne[arrIdx].Date,
                DAQBoardOne[arrIdx].Time,
                DAQBoardOne[arrIdx].AxisX,
                DAQBoardOne[arrIdx].AxisY,
                DAQBoardOne[arrIdx].AxisZ);
      printf("\r\nRX_BUF : %s, strlen(RX_BUF) : %d", (char*)RX_BUF, strlen((char*)RX_BUF));
      printf("\r\nstrlen(buffer) = %d\n%s", strlen(buffer), buffer);
      
      /*
      char *original = "-3843,+4095,+2069";
      char target[20];
      strncpy(target, original, strlen(original));
      
      char *one, *two, *three;
      char *AfterToken;
      AfterToken = strtok(target, ",");
      one = AfterToken;
      AfterToken = strtok(NULL, ",");
      two = AfterToken;
      AfterToken = strtok(NULL, ",");
      three = AfterToken;
      AfterToken = strtok(NULL, ",");
      if(AfterToken != NULL) printf("AfterToken is not empty");
      
      printf("\r\none : %s, two : %s, three : %s", one, two, three);*/
      
#endif
    
    }
    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)
    
    /*
    for(i=0; i<100; i++) {
      if(flag_uart) {
      // Make a copy from raw collected data to temporary array
      CopyToTmpArray(i);
        
      // Copy to Temporary GAL array
      CopyToTmpGalArray(i);
      
      // Calculate GAL and copy to single temporary GAL value
      CalculateGalAndCopyToGal(i);
      
      // Determine KMA scale
      DetermineKMA(i);

      // Check sign bit and apply to int container
      CheckSignAndToInt(i); // this function also cuts surplus 1G 
      }
    }
    */
    
// following routine is only necessary when the board works as server
#elif defined USE_EQDAS_SERVER
    
    /* EQ-DAQ-01 Parsing routine ------------------------------------------------- */
    /* Set E1Flag indicate that we have valid connection from EQ-DAQ-01(port 5050) */
    if(E1Flag) {
      E1Flag = false; // clear flag since this routine excutes ceaselessly over time
      
      ProcessTextStream(EQ_ONE, (char*)RX_BUF, E1Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag) {        
        // Send directly to PC
        SendToPC(E1Order);
      }
      
      if(E1Order < 99) E1Order++;
      else E1Order = 0;
    }
    
    /* EQ-DAQ-02 Parsing routine ------------------------------------------------- */
    /* Set E2Flag indicate that we have valid connection from EQ-DAQ-02(port 6060) */
    if(E2Flag) {
      E2Flag = false;
      
      ProcessTextStream(EQ_TWO, (char*)RX_BUF, E2Order);
      
      /* PC Client Parsing routine ------------------------------------------------- */
      /* Set PCFlag indicate that we have valid connection from PC Client(port 7070) */
      if(PCFlag) {        
        // Send directly to PC
        SendToPC(E2Order);
      }
      
      if(E2Order < 99) E2Order++;
      else E2Order = 0;
    }

#endif

/* Setup TCP Client or Server -----------------------------------------------------*/
/* Please open config.h file to choose a proper board you wish to use */    
#if (defined USE_EQDAS01) || (defined USE_EQDAS02)    

      /* Start TCP Client process */
      ProcessTcpClient(SOCK_ZERO);  // TCP Client
    
      /* Parameter setting Server side with port 5050 in default */
      ATFCTcpServer(SOCK_TWO, EQDAS_Conf_PORT);  // SOCK_TWO because of flag conformity
    
#elif defined USE_EQDAS_SERVER
    
      /* Process server socket with each port */
      ProcessTcpServer(SOCK_ZERO, 5050);  // designated as for EQM-DAQ-01 with port 5050
      ProcessTcpServer(SOCK_ONE, 6060);   // designated as for EQM-DAQ-02 with port 6060
      ProcessTcpServer(SOCK_TWO, 7070);   // designated as for PC-CLIENT  with port 7070
      ProcessTcpServer(SOCK_THREE, 8080); // designated as for PC_DUMP    with port 8080
      
      /*
      ProcessTcpServer(SOCK_FOUR, 9090);   // designated as for TOBEUSED with port 9090
      ProcessTcpServer(SOCK_FIVE, 10010);   // designated as for TOBEUSED with port 10010
      ProcessTcpServer(SOCK_SIX, 10020);    // designated as for TOBEUSED with port 10020
      ProcessTcpServer(SOCK_SEVEN, 10030);  // designated as for TOBEUSED with port 10030
      */
      
#endif
      
  }
}
Ejemplo n.º 28
0
/*******************************************************************************
* Function Name  : main
* Description    : Main program
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
int main(void)
{
#ifdef DEBUG
  debug();
#endif

  /* System clocks configuration ---------------------------------------------*/
  RCC_Configuration();

  /* NVIC configuration ------------------------------------------------------*/
  NVIC_Configuration();

  /* GPIO configuration ------------------------------------------------------*/
  GPIO_Configuration();

  /* Enable I2C1 and I2C2 ----------------------------------------------------*/
  I2C_Cmd(I2C1, ENABLE);
  I2C_Cmd(I2C2, ENABLE);

  /* I2C1 configuration ------------------------------------------------------*/
  I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;
  I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;
  I2C_InitStructure.I2C_OwnAddress1 = I2C1_SLAVE_ADDRESS7;
  I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;
  I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;
  I2C_InitStructure.I2C_ClockSpeed = ClockSpeed;
  I2C_Init(I2C1, &I2C_InitStructure);

  /* I2C2 configuration ------------------------------------------------------*/
  I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_10bit;
  I2C_InitStructure.I2C_OwnAddress1 = I2C2_SLAVE_ADDRESS10;
  I2C_Init(I2C2, &I2C_InitStructure);
     
  /*----- Transmission Phase -----*/
  /* Send I2C1 START condition */
  I2C_GenerateSTART(I2C1, ENABLE);
  /* Test on I2C1 EV5 and clear it */
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_SELECT));  
  /* Send Header to I2C2 for write */
  I2C_SendData(I2C1, HeaderAddressWrite);
  /* Test on I2C1 EV9 and clear it */
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_MODE_ADDRESS10)); 
  /* Send I2C2 slave Address for write */
  I2C_Send7bitAddress(I2C1, I2C2_SLAVE_ADDRESS7, I2C_Direction_Transmitter);
  /* Test on I2C2 EV1 and clear it */
  while(!I2C_CheckEvent(I2C2, I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED));  
  /* Test on I2C1 EV6 and clear it */
  while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED));  

  /* Send data */
  while (RxIdx < BufferSize)
  {
    /* Send I2C1 data */
    I2C_SendData(I2C1, I2C1_Buffer_Tx[TxIdx++]);
   /* Test on I2C2 EV2 and clear it */
    while(!I2C_CheckEvent(I2C2, I2C_EVENT_SLAVE_BYTE_RECEIVED));  
    /* Store received data on I2C2 */
    I2C2_Buffer_Rx[RxIdx++] = I2C_ReceiveData(I2C2);
    /* Test on I2C1 EV8 and clear it */
    while(!I2C_CheckEvent(I2C1, I2C_EVENT_MASTER_BYTE_TRANSMITTED)); 
  }
  /* Send I2C1 STOP Condition */
  I2C_GenerateSTOP(I2C1, ENABLE);
  /* Test on I2C2 EV4 and clear it */
  while(!I2C_CheckEvent(I2C2, I2C_EVENT_SLAVE_STOP_DETECTED)); 
  /* Clear I2C2 STOPF flag: read operation to I2C_SR1 followed by a 
  write operation to I2C_CR1 */
  (void)(I2C_GetFlagStatus(I2C2, I2C_FLAG_STOPF));
  I2C_Cmd(I2C2, ENABLE); 

  /* Check the corectness of written data */
  TransferStatus = Buffercmp(I2C1_Buffer_Tx, I2C2_Buffer_Rx, BufferSize);
  /* TransferStatus = PASSED, if the transmitted and received data
     are equal */
  /* TransferStatus = FAILED, if the transmitted and received data 
     are different */

  while (1)
  {
  }
}
Ejemplo n.º 29
0
/*******************************************************************************
* Function Name  : main
* Description    : Main program
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
int main(void)
{
#ifdef DEBUG
  debug();
#endif

  /* System Clocks Configuration */
  RCC_Configuration();

  /* NVIC Configuration */
  NVIC_Configuration();

  /* GPIO Configuration */
  GPIO_Configuration();

  /* ---------------------------------------------------------------
    TIM2 Configuration: Output Compare Inactive Mode:
    TIM2CLK = 36 MHz, Prescaler = 35999, TIM2 counter clock = 1 KHz
    TIM2_CH1 delay = CCR1_Val/TIM2 counter clock  = 1000 ms
    TIM2_CH2 delay = CCR2_Val/TIM2 counter clock  = 500 ms
    TIM2_CH3 delay = CCR3_Val/TIM2 counter clock  = 250 ms
    TIM2_CH4 delay = CCR4_Val/TIM2 counter clock  = 125 ms
  --------------------------------------------------------------- */


  /* Time base configuration */
  TIM_TimeBaseStructure.TIM_Period = 65535;
  TIM_TimeBaseStructure.TIM_Prescaler = 35999;
  TIM_TimeBaseStructure.TIM_ClockDivision = 0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

  TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

  /* Output Compare Active Mode configuration: Channel1 */
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Inactive;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR1_Val;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

  TIM_OC1Init(TIM2, &TIM_OCInitStructure);

  TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Active Mode configuration: Channel2 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR2_Val;

  TIM_OC2Init(TIM2, &TIM_OCInitStructure);

  TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Active Mode configuration: Channel3 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR3_Val;

  TIM_OC3Init(TIM2, &TIM_OCInitStructure);

  TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);

  /* Output Compare Active Mode configuration: Channel4 */
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_Pulse = CCR4_Val;

  TIM_OC4Init(TIM2, &TIM_OCInitStructure);

  TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);

  TIM_ARRPreloadConfig(TIM2, ENABLE);

  /* TIM IT enable */
  TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE);

  /* Set PC.06, PC.07, PC.08 and PC.09 pins */
  GPIO_SetBits(GPIOC, GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9);

  /* TIM2 enable counter */
  TIM_Cmd(TIM2, ENABLE);

  while (1)
  {}
}
Ejemplo n.º 30
0
int main(void)
{
  PWM_Initialization();
  TIM1->CCR2 = 1000;
  TIM1->CCR3 = 1000;
  Delay_1us(500000);

  RCC_Configuration();
  PushButton_Initialization();
  LED_Initialization();
  //LCD_Initialization();
  //terminalBufferInitilization();

  Delay_1us(100000);
  SPI_Initialization();
  Delay_1us(100000);
  IMU_Initialization();
  Delay_1us(100000);
  Timer5_Initialization(); //Filter
  Timer2_Initialization(); //Print
  Timer4_Initialization(); //Read IMU

  USART3_Configuration();
  USART3_puts("\r\nHello World!\r\n");
    
  while(1)
  {
    if(PushButton_Read()){
      if(f.arm == 0){ 
        f.arm = 1;
        Delay_1us(500000);
      }
      else if(f.arm == 1){
        f.arm = 0;
        Delay_1us(500000);
      }
    }

    if(f.imu == 1){
      //LED3_Toggle();
      readIMU(gyroRaw, GYRO_DATA_REGISTER);
      gyro_remove_offset(gyroRaw);
      readIMU(accRaw, ACC_DATA_REGISTER);
      f.imu = 0;
    // }  

    // if(f.filter == 1){
      //LED4_Toggle();
      Filter(gyroRaw, gyroAngle, accRaw, accAngle, Angle);
      if(f.arm == 1){
        PID_control(Angle);
      }
      else{
        TIM1->CCR2 = 1000;
        TIM1->CCR3 = 1000;

        errorI = 0;
        errorD = 0;
        previous_error = 0;
      }

      //f.filter = 0;
    }

    strcmd_main();      

    //if(f.print == 1){
      
      // sprintf(lcd_text_main,"%.4f %.4f %d", Angle[0], Angle[1], f.arm);
      // //sprintf(lcd_text_main,"G: %.3f %.3f %.3f", EstV.G.X, EstV.G.Y, EstV.G.Z);
      // LCD_DisplayStringLine(LINE(1), lcd_text_main);
      // //sprintf(lcd_text_main,"A: %.3f %.3f %.3f", EstV.A.X, EstV.A.Y, EstV.A.Z);
      // //sprintf(lcd_text_main,"A: %.3f %.3f", sqX_sqZ, EstV.GA.X*EstV.GA.X + EstV.GA.Z*EstV.GA.Z);
      // // sprintf(lcd_text_main,"%.4f %.4f %.4f \n", gyroAngle[0], gyroAngle[1], gyroAngle[2]);
      // sprintf(lcd_text_main,"%d     ", gyroRaw[2]);
      // LCD_DisplayStringLine(LINE(2), lcd_text_main);
      // sprintf(lcd_text_main,"GA: %.3f %.3f %.3f", EstV.GA.X, EstV.GA.Y, EstV.GA.Z);
      // LCD_DisplayStringLine(LINE(3), lcd_text_main);
      //sprintf(lcd_text_main,"%.3f %.3f %.3f\n", EstV.G.Z, EstV.A.Z, EstV.GA.Z);
      
      //LCD_DisplayStringLine(LINE(2), (uint8_t*)" Ming6842 @ github");
      //terminalWrite(lcd_text_main);
      //PRINT_USART();
      //f.print = 0;
    //}
  }

  while(1); // Don't want to exit
}