Ejemplo n.º 1
0
void
_cairo_debug_print_boxes (FILE *stream, const cairo_boxes_t *boxes)
{
    const struct _cairo_boxes_chunk *chunk;
    cairo_box_t extents;
    int i;

    _cairo_boxes_extents (boxes, &extents);
    fprintf (stream, "boxes x %d: (%f, %f) x (%f, %f)\n",
	     boxes->num_boxes,
	     _cairo_fixed_to_double (extents.p1.x),
	     _cairo_fixed_to_double (extents.p1.y),
	     _cairo_fixed_to_double (extents.p2.x),
	     _cairo_fixed_to_double (extents.p2.y));

    for (chunk = &boxes->chunks; chunk != NULL; chunk = chunk->next) {
	for (i = 0; i < chunk->count; i++) {
	    fprintf (stderr, "  box[%d]: (%f, %f), (%f, %f)\n", i,
		     _cairo_fixed_to_double (chunk->base[i].p1.x),
		     _cairo_fixed_to_double (chunk->base[i].p1.y),
		     _cairo_fixed_to_double (chunk->base[i].p2.x),
		     _cairo_fixed_to_double (chunk->base[i].p2.y));
	}
    }
}
Ejemplo n.º 2
0
static cairo_status_t
_cairo_path_to_qpainterpath_line_to (void *closure, const cairo_point_t *point)
{
    qpainter_path_data *pdata = static_cast <qpainter_path_data *> (closure);
    double x = _cairo_fixed_to_double (point->x);
    double y = _cairo_fixed_to_double (point->y);

    if (pdata->ctm_inverse)
        cairo_matrix_transform_point (pdata->ctm_inverse, &x, &y);

    pdata->path.lineTo(x, y);

    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 3
0
static cairo_status_t
_cairo_stroker_line_to (void *closure,
			const cairo_point_t *point)
{
    cairo_stroker_t *stroker = closure;
    cairo_stroke_face_t start, end;
    cairo_point_t *p1 = &stroker->current_point;
    cairo_slope_t dev_slope;
    double slope_dx, slope_dy;
    cairo_status_t status;

    stroker->has_initial_sub_path = TRUE;

    if (p1->x == point->x && p1->y == point->y)
	return CAIRO_STATUS_SUCCESS;

    _cairo_slope_init (&dev_slope, p1, point);
    slope_dx = _cairo_fixed_to_double (point->x - p1->x);
    slope_dy = _cairo_fixed_to_double (point->y - p1->y);
    _compute_normalized_device_slope (&slope_dx, &slope_dy,
				      stroker->ctm_inverse, NULL);

    status = _cairo_stroker_add_sub_edge (stroker,
					  p1, point,
					  &dev_slope,
					  slope_dx, slope_dy,
					  &start, &end);
    if (unlikely (status))
	return status;

    if (stroker->has_current_face) {
	/* Join with final face from previous segment */
	status = _cairo_stroker_join (stroker,
				      &stroker->current_face,
				      &start);
	if (unlikely (status))
	    return status;
    } else if (! stroker->has_first_face) {
	/* Save sub path's first face in case needed for closing join */
	stroker->first_face = start;
	stroker->has_first_face = TRUE;
    }
    stroker->current_face = end;
    stroker->has_current_face = TRUE;

    stroker->current_point = *point;

    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 4
0
static cairo_status_t
_cairo_xml_surface_emit_clip_boxes (cairo_xml_surface_t *surface,
				    const cairo_clip_t *clip)
{
    cairo_box_t *box;
    cairo_xml_t *xml;
    int n;

    if (clip->num_boxes == 0)
	return CAIRO_STATUS_SUCCESS;

    /* skip the trivial clip covering the surface extents */
    if (surface->width >= 0 && surface->height >= 0 && clip->num_boxes == 1) {
	box = &clip->boxes[0];
	if (box->p1.x <= 0 && box->p1.y <= 0 &&
	    box->p2.x - box->p1.x >= _cairo_fixed_from_double (surface->width) &&
	    box->p2.y - box->p1.y >= _cairo_fixed_from_double (surface->height))
	{
	    return CAIRO_STATUS_SUCCESS;
	}
    }

    xml = to_xml (surface);

    _cairo_xml_printf (xml, "<clip>");
    _cairo_xml_indent (xml, 2);

    _cairo_xml_printf (xml, "<path>");
    _cairo_xml_indent (xml, 2);
    for (n = 0; n < clip->num_boxes; n++) {
	box = &clip->boxes[n];

	_cairo_xml_printf_start (xml, "%f %f m",
				 _cairo_fixed_to_double (box->p1.x),
				 _cairo_fixed_to_double (box->p1.y));
	_cairo_xml_printf_continue (xml, " %f %f l",
				    _cairo_fixed_to_double (box->p2.x),
				    _cairo_fixed_to_double (box->p1.y));
	_cairo_xml_printf_continue (xml, " %f %f l",
				    _cairo_fixed_to_double (box->p2.x),
				    _cairo_fixed_to_double (box->p2.y));
	_cairo_xml_printf_continue (xml, " %f %f l",
				    _cairo_fixed_to_double (box->p1.x),
				    _cairo_fixed_to_double (box->p2.y));
	_cairo_xml_printf_end (xml, " h");
    }
    _cairo_xml_indent (xml, -2);
    _cairo_xml_printf (xml, "</path>");
    _cairo_xml_emit_double (xml, "tolerance", 1.0);
    _cairo_xml_emit_string (xml, "antialias",
			    _antialias_to_string (CAIRO_ANTIALIAS_NONE));
    _cairo_xml_emit_string (xml, "fill-rule",
			    _fill_rule_to_string (CAIRO_FILL_RULE_WINDING));

    _cairo_xml_indent (xml, -2);
    _cairo_xml_printf (xml, "</clip>");

    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 5
0
static cairo_status_t
cpc_line_to (void *closure, const cairo_point_t *point)
{
    struct cpc *cpc = static_cast <struct cpc *> (closure);
    if (cpc->matrix) {
	double x = _cairo_fixed_to_double (point->x);
	double y = _cairo_fixed_to_double (point->y);
	cairo_matrix_transform_point (cpc->matrix, &x, &y);
	cpc->skPath.lineTo (SkFloatToScalar (x), SkFloatToScalar (y));
    } else {
	cpc->skPath.lineTo (CAIRO_FIXED_TO_SK_SCALAR (point->x),
			    CAIRO_FIXED_TO_SK_SCALAR (point->y));
    }
    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 6
0
cairo_status_t
_cairo_path_fixed_stroke_extents (const cairo_path_fixed_t	*path,
				  const cairo_stroke_style_t	*stroke_style,
				  const cairo_matrix_t		*ctm,
				  const cairo_matrix_t		*ctm_inverse,
				  double			 tolerance,
				  cairo_rectangle_int_t		*extents)
{
    cairo_polygon_t polygon;
    cairo_status_t status;
    cairo_stroke_style_t style;

    /* When calculating extents for vector surfaces, ensure lines thinner
     * than the fixed point resolution are not optimized away. */
    double min_line_width = _cairo_fixed_to_double (CAIRO_FIXED_EPSILON*2);
    if (stroke_style->line_width < min_line_width)
    {
	style = *stroke_style;
	style.line_width = min_line_width;
	stroke_style = &style;
    }

    _cairo_polygon_init (&polygon, NULL, 0);
    status = _cairo_path_fixed_stroke_to_polygon (path,
						  stroke_style,
						  ctm, ctm_inverse,
						  tolerance,
						  &polygon);
    _cairo_box_round_to_rectangle (&polygon.extents, extents);
    _cairo_polygon_fini (&polygon);

    return status;
}
Ejemplo n.º 7
0
static cairo_status_t
_cairo_xml_emit_linear (cairo_xml_t *xml,
			const cairo_linear_pattern_t *linear)
{
    _cairo_xml_printf (xml,
		       "<linear x1='%f' y1='%f' x2='%f' y2='%f'>",
		       _cairo_fixed_to_double (linear->p1.x),
		       _cairo_fixed_to_double (linear->p1.y),
		       _cairo_fixed_to_double (linear->p2.x),
		       _cairo_fixed_to_double (linear->p2.y));
    _cairo_xml_indent (xml, 2);
    _cairo_xml_emit_gradient (xml, &linear->base);
    _cairo_xml_indent (xml, -2);
    _cairo_xml_printf (xml, "</linear>");
    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 8
0
static cairo_status_t
_cairo_pdf_path_rectangle (pdf_path_info_t *info, cairo_box_t *box)
{
    double x1 = _cairo_fixed_to_double (box->p1.x);
    double y1 = _cairo_fixed_to_double (box->p1.y);
    double x2 = _cairo_fixed_to_double (box->p2.x);
    double y2 = _cairo_fixed_to_double (box->p2.y);

    cairo_matrix_transform_point (info->path_transform, &x1, &y1);
    cairo_matrix_transform_point (info->path_transform, &x2, &y2);
    _cairo_output_stream_printf (info->output,
				 "%g %g %g %g re ",
				 x1, y1, x2 - x1, y2 - y1);

    return _cairo_output_stream_get_status (info->output);
}
Ejemplo n.º 9
0
static cairo_status_t
_cairo_pdf_path_move_to (void *closure,
			 const cairo_point_t *point)
{
    pdf_path_info_t *info = closure;
    double x = _cairo_fixed_to_double (point->x);
    double y = _cairo_fixed_to_double (point->y);

    info->last_move_to_point = *point;
    info->has_sub_path = FALSE;
    cairo_matrix_transform_point (info->path_transform, &x, &y);
    _cairo_output_stream_printf (info->output,
				 "%g %g m ", x, y);

    return _cairo_output_stream_get_status (info->output);
}
static void
_cairo_quartz_path_apply_func (void *info, const CGPathElement *el)
{
    cairo_path_fixed_t *path = (cairo_path_fixed_t *) info;

    switch (el->type) {
	case kCGPathElementMoveToPoint:
	    _cairo_path_fixed_move_to (path,
				       _cairo_fixed_from_double(el->points[0].x),
				       _cairo_fixed_from_double(el->points[0].y));
	    break;
	case kCGPathElementAddLineToPoint:
	    _cairo_path_fixed_line_to (path,
				       _cairo_fixed_from_double(el->points[0].x),
				       _cairo_fixed_from_double(el->points[0].y));
	    break;
	case kCGPathElementAddQuadCurveToPoint: {
	    cairo_fixed_t fx, fy;
	    double x, y;
	    if (!_cairo_path_fixed_get_current_point (path, &fx, &fy))
		fx = fy = 0;
	    x = _cairo_fixed_to_double (fx);
	    y = _cairo_fixed_to_double (fy);

	    _cairo_path_fixed_curve_to (path,
					_cairo_fixed_from_double((x + el->points[0].x * 2.0) / 3.0),
					_cairo_fixed_from_double((y + el->points[0].y * 2.0) / 3.0),
					_cairo_fixed_from_double((el->points[0].x * 2.0 + el->points[1].x) / 3.0),
					_cairo_fixed_from_double((el->points[0].y * 2.0 + el->points[1].y) / 3.0),
					_cairo_fixed_from_double(el->points[1].x),
					_cairo_fixed_from_double(el->points[1].y));
	}
	    break;
	case kCGPathElementAddCurveToPoint:
	    _cairo_path_fixed_curve_to (path,
					_cairo_fixed_from_double(el->points[0].x),
					_cairo_fixed_from_double(el->points[0].y),
					_cairo_fixed_from_double(el->points[1].x),
					_cairo_fixed_from_double(el->points[1].y),
					_cairo_fixed_from_double(el->points[2].x),
					_cairo_fixed_from_double(el->points[2].y));
	    break;
	case kCGPathElementCloseSubpath:
	    _cairo_path_fixed_close_path (path);
	    break;
    }
}
Ejemplo n.º 11
0
static cairo_status_t
_cairo_stroker_spline_to (void *closure,
			  const cairo_point_t *point,
			  const cairo_slope_t *tangent)
{
    cairo_stroker_t *stroker = closure;
    cairo_stroke_face_t new_face;
    double slope_dx, slope_dy;
    cairo_point_t points[3];

    stroker->has_initial_sub_path = TRUE;

    if (stroker->current_point.x == point->x &&
	stroker->current_point.y == point->y)
	return CAIRO_STATUS_SUCCESS;

    slope_dx = _cairo_fixed_to_double (tangent->dx);
    slope_dy = _cairo_fixed_to_double (tangent->dy);

    if (! _compute_normalized_device_slope (&slope_dx, &slope_dy,
				      stroker->ctm_inverse, NULL))
	return CAIRO_STATUS_SUCCESS;

    _compute_face (point, tangent,
		   slope_dx, slope_dy,
		   stroker, &new_face);

    assert(stroker->has_current_face);
    points[0] = stroker->current_face.cw;
    points[1] = stroker->current_face.ccw;
    points[2] = new_face.cw;
    stroker->add_triangle (stroker->closure, points);

    points[0] = stroker->current_face.ccw;
    points[1] = new_face.cw;
    points[2] = new_face.ccw;
    stroker->add_triangle (stroker->closure, points);

    stroker->current_face = new_face;
    stroker->has_current_face = TRUE;
    stroker->current_point = *point;

    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 12
0
static cairo_bool_t
_cairo_default_context_get_current_point (void *abstract_cr,
        double *x,
        double *y)
{
    cairo_default_context_t *cr = abstract_cr;
    cairo_fixed_t x_fixed, y_fixed;

    if (_cairo_path_fixed_get_current_point (cr->path, &x_fixed, &y_fixed))
    {
        *x = _cairo_fixed_to_double (x_fixed);
        *y = _cairo_fixed_to_double (y_fixed);
        _cairo_gstate_backend_to_user (cr->gstate, x, y);

        return TRUE;
    }
    else
    {
        return FALSE;
    }
}
Ejemplo n.º 13
0
static cairo_status_t
cpc_curve_to (void *closure,
	      const cairo_point_t *p0,
	      const cairo_point_t *p1,
	      const cairo_point_t *p2)
{
    struct cpc *cpc = static_cast <struct cpc *> (closure);
    if (cpc->matrix) {
	double x0 = _cairo_fixed_to_double (p0->x);
	double y0 = _cairo_fixed_to_double (p0->y);
	double x1 = _cairo_fixed_to_double (p1->x);
	double y1 = _cairo_fixed_to_double (p1->y);
	double x2 = _cairo_fixed_to_double (p2->x);
	double y2 = _cairo_fixed_to_double (p2->y);
	cairo_matrix_transform_point (cpc->matrix, &x0, &y0);
	cairo_matrix_transform_point (cpc->matrix, &x1, &y1);
	cairo_matrix_transform_point (cpc->matrix, &x2, &y2);

	cpc->skPath.cubicTo (SkFloatToScalar (x0),
			     SkFloatToScalar (y0),
			     SkFloatToScalar (x1),
			     SkFloatToScalar (y1),
			     SkFloatToScalar (x2),
			     SkFloatToScalar (y2));
    } else {
	cpc->skPath.cubicTo (CAIRO_FIXED_TO_SK_SCALAR (p0->x),
			     CAIRO_FIXED_TO_SK_SCALAR (p0->y),
			     CAIRO_FIXED_TO_SK_SCALAR (p1->x),
			     CAIRO_FIXED_TO_SK_SCALAR (p1->y),
			     CAIRO_FIXED_TO_SK_SCALAR (p2->x),
			     CAIRO_FIXED_TO_SK_SCALAR (p2->y));
    }
    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 14
0
static cairo_status_t
_cairo_pdf_path_line_to (void *closure,
			 const cairo_point_t *point)
{
    pdf_path_info_t *info = closure;
    double x = _cairo_fixed_to_double (point->x);
    double y = _cairo_fixed_to_double (point->y);

    if (info->line_cap != CAIRO_LINE_CAP_ROUND &&
	! info->has_sub_path &&
	point->x == info->last_move_to_point.x &&
	point->y == info->last_move_to_point.y)
    {
	return CAIRO_STATUS_SUCCESS;
    }

    info->has_sub_path = TRUE;
    cairo_matrix_transform_point (info->path_transform, &x, &y);
    _cairo_output_stream_printf (info->output,
				 "%g %g l ", x, y);

    return _cairo_output_stream_get_status (info->output);
}
Ejemplo n.º 15
0
static cairo_status_t
_cpp_line_to (void *closure,
	      const cairo_point_t *point)
{
    cpp_t *cpp = closure;
    cairo_path_data_t *data = cpp->data;
    double x, y;

    x = _cairo_fixed_to_double (point->x);
    y = _cairo_fixed_to_double (point->y);

    _cairo_backend_to_user (cpp->cr, &x, &y);

    data->header.type = CAIRO_PATH_LINE_TO;
    data->header.length = 2;

    /* We index from 1 to leave room for data->header */
    data[1].point.x = x;
    data[1].point.y = y;

    cpp->data += data->header.length;

    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 16
0
static cairo_status_t
_cairo_xml_curve_to (void *closure,
		     const cairo_point_t *p1,
		     const cairo_point_t *p2,
		     const cairo_point_t *p3)
{
    _cairo_xml_printf_continue (closure, " %f %f %f %f %f %f c",
				_cairo_fixed_to_double (p1->x),
				_cairo_fixed_to_double (p1->y),
				_cairo_fixed_to_double (p2->x),
				_cairo_fixed_to_double (p2->y),
				_cairo_fixed_to_double (p3->x),
				_cairo_fixed_to_double (p3->y));

    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 17
0
static cairo_status_t
_cairo_xml_emit_radial (cairo_xml_t *xml,
			const cairo_radial_pattern_t *radial)
{
    _cairo_xml_printf (xml,
		       "<radial x1='%f' y1='%f' r1='%f' x2='%f' y2='%f' r2='%f'>",
		       _cairo_fixed_to_double (radial->c1.x),
		       _cairo_fixed_to_double (radial->c1.y),
		       _cairo_fixed_to_double (radial->r1),
		       _cairo_fixed_to_double (radial->c2.x),
		       _cairo_fixed_to_double (radial->c2.y),
		       _cairo_fixed_to_double (radial->r2));
    _cairo_xml_indent (xml, 2);
    _cairo_xml_emit_gradient (xml, &radial->base);
    _cairo_xml_indent (xml, -2);
    _cairo_xml_printf (xml, "</radial>");
    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 18
0
/* Adjusts the fill extents (above) by the device-space pen.  */
void
_cairo_path_fixed_approximate_stroke_extents (const cairo_path_fixed_t *path,
					      const cairo_stroke_style_t *style,
					      const cairo_matrix_t *ctm,
					      cairo_bool_t is_vector,
					      cairo_rectangle_int_t *extents)
{
    if (path->has_extents) {
	cairo_box_t box_extents;
	double dx, dy;

	_cairo_stroke_style_max_distance_from_path (style, path, ctm, &dx, &dy);
	if (is_vector)
	{
	    /* When calculating extents for vector surfaces, ensure lines thinner
	     * than the fixed point resolution are not optimized away. */
	    double min = _cairo_fixed_to_double (CAIRO_FIXED_EPSILON*2);
	    if (dx < min)
		dx = min;

	    if (dy < min)
		dy = min;
	}

	box_extents = path->extents;
	box_extents.p1.x -= _cairo_fixed_from_double (dx);
	box_extents.p1.y -= _cairo_fixed_from_double (dy);
	box_extents.p2.x += _cairo_fixed_from_double (dx);
	box_extents.p2.y += _cairo_fixed_from_double (dy);

	_cairo_box_round_to_rectangle (&box_extents, extents);
    } else {
	extents->x = extents->y = 0;
	extents->width = extents->height = 0;
    }
}
Ejemplo n.º 19
0
static cairo_status_t
_cpp_curve_to (void			*closure,
	       const cairo_point_t	*p1,
	       const cairo_point_t	*p2,
	       const cairo_point_t	*p3)
{
    cpp_t *cpp = closure;
    cairo_path_data_t *data = cpp->data;
    double x1, y1;
    double x2, y2;
    double x3, y3;

    x1 = _cairo_fixed_to_double (p1->x);
    y1 = _cairo_fixed_to_double (p1->y);
    _cairo_gstate_backend_to_user (cpp->gstate, &x1, &y1);

    x2 = _cairo_fixed_to_double (p2->x);
    y2 = _cairo_fixed_to_double (p2->y);
    _cairo_gstate_backend_to_user (cpp->gstate, &x2, &y2);

    x3 = _cairo_fixed_to_double (p3->x);
    y3 = _cairo_fixed_to_double (p3->y);
    _cairo_gstate_backend_to_user (cpp->gstate, &x3, &y3);

    data->header.type = CAIRO_PATH_CURVE_TO;
    data->header.length = 4;

    /* We index from 1 to leave room for data->header */
    data[1].point.x = x1;
    data[1].point.y = y1;

    data[2].point.x = x2;
    data[2].point.y = y2;

    data[3].point.x = x3;
    data[3].point.y = y3;

    cpp->data += data->header.length;

    cpp->current_point = *p3;

    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 20
0
static cairo_status_t
_cairo_path_to_qpainterpath_curve_to (void *closure, const cairo_point_t *p0, const cairo_point_t *p1, const cairo_point_t *p2)
{
    qpainter_path_data *pdata = static_cast <qpainter_path_data *> (closure);
    double x0 = _cairo_fixed_to_double (p0->x);
    double y0 = _cairo_fixed_to_double (p0->y);
    double x1 = _cairo_fixed_to_double (p1->x);
    double y1 = _cairo_fixed_to_double (p1->y);
    double x2 = _cairo_fixed_to_double (p2->x);
    double y2 = _cairo_fixed_to_double (p2->y);

    if (pdata->ctm_inverse) {
        cairo_matrix_transform_point (pdata->ctm_inverse, &x0, &y0);
        cairo_matrix_transform_point (pdata->ctm_inverse, &x1, &y1);
        cairo_matrix_transform_point (pdata->ctm_inverse, &x2, &y2);
    }

    pdata->path.cubicTo (x0, y0, x1, y1, x2, y2);

    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 21
0
static cairo_status_t
_cairo_pdf_path_curve_to (void          *closure,
			  const cairo_point_t *b,
			  const cairo_point_t *c,
			  const cairo_point_t *d)
{
    pdf_path_info_t *info = closure;
    double bx = _cairo_fixed_to_double (b->x);
    double by = _cairo_fixed_to_double (b->y);
    double cx = _cairo_fixed_to_double (c->x);
    double cy = _cairo_fixed_to_double (c->y);
    double dx = _cairo_fixed_to_double (d->x);
    double dy = _cairo_fixed_to_double (d->y);

    info->has_sub_path = TRUE;
    cairo_matrix_transform_point (info->path_transform, &bx, &by);
    cairo_matrix_transform_point (info->path_transform, &cx, &cy);
    cairo_matrix_transform_point (info->path_transform, &dx, &dy);
    _cairo_output_stream_printf (info->output,
				 "%g %g %g %g %g %g c ",
				 bx, by, cx, cy, dx, dy);
    return _cairo_output_stream_get_status (info->output);
}
Ejemplo n.º 22
0
/*
 * Dashed lines.  Cap each dash end, join around turns when on
 */
static cairo_status_t
_cairo_stroker_line_to_dashed (void *closure,
			       const cairo_point_t *p2)
{
    cairo_stroker_t *stroker = closure;
    double mag, remain, step_length = 0;
    double slope_dx, slope_dy;
    double dx2, dy2;
    cairo_stroke_face_t sub_start, sub_end;
    cairo_point_t *p1 = &stroker->current_point;
    cairo_slope_t dev_slope;
    cairo_line_t segment;
    cairo_bool_t fully_in_bounds;
    cairo_status_t status;

    stroker->has_initial_sub_path = stroker->dash.dash_starts_on;

    if (p1->x == p2->x && p1->y == p2->y)
	return CAIRO_STATUS_SUCCESS;

    fully_in_bounds = TRUE;
    if (stroker->has_bounds &&
	(! _cairo_box_contains_point (&stroker->bounds, p1) ||
	 ! _cairo_box_contains_point (&stroker->bounds, p2)))
    {
	fully_in_bounds = FALSE;
    }

    _cairo_slope_init (&dev_slope, p1, p2);

    slope_dx = _cairo_fixed_to_double (p2->x - p1->x);
    slope_dy = _cairo_fixed_to_double (p2->y - p1->y);

    if (! _compute_normalized_device_slope (&slope_dx, &slope_dy,
					    stroker->ctm_inverse, &mag))
    {
	return CAIRO_STATUS_SUCCESS;
    }

    remain = mag;
    segment.p1 = *p1;
    while (remain) {
	step_length = MIN (stroker->dash.dash_remain, remain);
	remain -= step_length;
	dx2 = slope_dx * (mag - remain);
	dy2 = slope_dy * (mag - remain);
	cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);
	segment.p2.x = _cairo_fixed_from_double (dx2) + p1->x;
	segment.p2.y = _cairo_fixed_from_double (dy2) + p1->y;

	if (stroker->dash.dash_on &&
	    (fully_in_bounds ||
	     (! stroker->has_first_face && stroker->dash.dash_starts_on) ||
	     _cairo_box_intersects_line_segment (&stroker->bounds, &segment)))
	{
	    status = _cairo_stroker_add_sub_edge (stroker,
						  &segment.p1, &segment.p2,
						  &dev_slope,
						  slope_dx, slope_dy,
						  &sub_start, &sub_end);
	    if (unlikely (status))
		return status;

	    if (stroker->has_current_face)
	    {
		/* Join with final face from previous segment */
		status = _cairo_stroker_join (stroker,
					      &stroker->current_face,
					      &sub_start);
		if (unlikely (status))
		    return status;

		stroker->has_current_face = FALSE;
	    }
	    else if (! stroker->has_first_face &&
		       stroker->dash.dash_starts_on)
	    {
		/* Save sub path's first face in case needed for closing join */
		stroker->first_face = sub_start;
		stroker->has_first_face = TRUE;
	    }
	    else
	    {
		/* Cap dash start if not connecting to a previous segment */
		status = _cairo_stroker_add_leading_cap (stroker, &sub_start);
		if (unlikely (status))
		    return status;
	    }

	    if (remain) {
		/* Cap dash end if not at end of segment */
		status = _cairo_stroker_add_trailing_cap (stroker, &sub_end);
		if (unlikely (status))
		    return status;
	    } else {
		stroker->current_face = sub_end;
		stroker->has_current_face = TRUE;
	    }
	} else {
	    if (stroker->has_current_face) {
		/* Cap final face from previous segment */
		status = _cairo_stroker_add_trailing_cap (stroker,
							  &stroker->current_face);
		if (unlikely (status))
		    return status;

		stroker->has_current_face = FALSE;
	    }
	}

	_cairo_stroker_dash_step (&stroker->dash, step_length);
	segment.p1 = segment.p2;
    }

    if (stroker->dash.dash_on && ! stroker->has_current_face) {
	/* This segment ends on a transition to dash_on, compute a new face
	 * and add cap for the beginning of the next dash_on step.
	 *
	 * Note: this will create a degenerate cap if this is not the last line
	 * in the path. Whether this behaviour is desirable or not is debatable.
	 * On one side these degenerate caps can not be reproduced with regular
	 * path stroking.
	 * On the other hand, Acroread 7 also produces the degenerate caps.
	 */
	_compute_face (p2, &dev_slope,
		       slope_dx, slope_dy,
		       stroker,
		       &stroker->current_face);

	status = _cairo_stroker_add_leading_cap (stroker,
						 &stroker->current_face);
	if (unlikely (status))
	    return status;

	stroker->has_current_face = TRUE;
    }

    stroker->current_point = *p2;

    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 23
0
static double
_compute_x_intercept (cairo_line_t *l, double inverse_slope)
{
    return _cairo_fixed_to_double (l->p1.x) - inverse_slope * _cairo_fixed_to_double (l->p1.y);
}
Ejemplo n.º 24
0
static cairo_status_t
_cairo_stroker_curve_to (void *closure,
			 const cairo_point_t *b,
			 const cairo_point_t *c,
			 const cairo_point_t *d)
{
    cairo_stroker_t *stroker = closure;
    cairo_spline_t spline;
    cairo_line_join_t line_join_save;
    cairo_stroke_face_t face;
    double slope_dx, slope_dy;
    cairo_path_fixed_line_to_func_t *line_to;
    cairo_status_t status = CAIRO_STATUS_SUCCESS;

    line_to = stroker->dash.dashed ?
	_cairo_stroker_line_to_dashed :
	_cairo_stroker_line_to;

    if (! _cairo_spline_init (&spline,
			      (cairo_spline_add_point_func_t)line_to, stroker,
			      &stroker->current_point, b, c, d))
    {
	return line_to (closure, d);
    }

    /* If the line width is so small that the pen is reduced to a
       single point, then we have nothing to do. */
    if (stroker->pen.num_vertices <= 1)
	return CAIRO_STATUS_SUCCESS;

    /* Compute the initial face */
    if (! stroker->dash.dashed || stroker->dash.dash_on) {
	slope_dx = _cairo_fixed_to_double (spline.initial_slope.dx);
	slope_dy = _cairo_fixed_to_double (spline.initial_slope.dy);
	if (_compute_normalized_device_slope (&slope_dx, &slope_dy,
					      stroker->ctm_inverse, NULL))
	{
	    _compute_face (&stroker->current_point,
			   &spline.initial_slope,
			   slope_dx, slope_dy,
			   stroker, &face);
	}
	if (stroker->has_current_face) {
	    status = _cairo_stroker_join (stroker,
					  &stroker->current_face, &face);
	    if (unlikely (status))
		return status;
	} else if (! stroker->has_first_face) {
	    stroker->first_face = face;
	    stroker->has_first_face = TRUE;
	}

	stroker->current_face = face;
	stroker->has_current_face = TRUE;
    }

    /* Temporarily modify the stroker to use round joins to guarantee
     * smooth stroked curves. */
    line_join_save = stroker->style.line_join;
    stroker->style.line_join = CAIRO_LINE_JOIN_ROUND;

    status = _cairo_spline_decompose (&spline, stroker->tolerance);
    if (unlikely (status))
	return status;

    /* And join the final face */
    if (! stroker->dash.dashed || stroker->dash.dash_on) {
	slope_dx = _cairo_fixed_to_double (spline.final_slope.dx);
	slope_dy = _cairo_fixed_to_double (spline.final_slope.dy);
	if (_compute_normalized_device_slope (&slope_dx, &slope_dy,
					      stroker->ctm_inverse, NULL))
	{
	    _compute_face (&stroker->current_point,
			   &spline.final_slope,
			   slope_dx, slope_dy,
			   stroker, &face);
	}

	status = _cairo_stroker_join (stroker, &stroker->current_face, &face);
	if (unlikely (status))
	    return status;

	stroker->current_face = face;
    }

    stroker->style.line_join = line_join_save;

    return CAIRO_STATUS_SUCCESS;
}
Ejemplo n.º 25
0
cairo_status_t
_cairo_type3_glyph_surface_emit_glyph (void		     *abstract_surface,
				       cairo_output_stream_t *stream,
				       unsigned long	      glyph_index,
				       cairo_box_t           *bbox,
				       double                *width)
{
    cairo_type3_glyph_surface_t *surface = abstract_surface;
    cairo_scaled_glyph_t *scaled_glyph;
    cairo_status_t status, status2;
    double x_advance, y_advance;
    cairo_output_stream_t *mem_stream;
    cairo_matrix_t font_matrix_inverse;

    _cairo_type3_glyph_surface_set_stream (surface, stream);
    status = _cairo_scaled_glyph_lookup (surface->scaled_font,
					 glyph_index,
					 CAIRO_SCALED_GLYPH_INFO_METRICS |
					 CAIRO_SCALED_GLYPH_INFO_META_SURFACE,
					 &scaled_glyph);
    if (status && status != CAIRO_INT_STATUS_UNSUPPORTED)
	return status;

    if (status == CAIRO_INT_STATUS_UNSUPPORTED) {
	status = _cairo_scaled_glyph_lookup (surface->scaled_font,
					     glyph_index,
					     CAIRO_SCALED_GLYPH_INFO_METRICS,
					     &scaled_glyph);
	if (status)
	    return status;

	status = CAIRO_INT_STATUS_IMAGE_FALLBACK;
    }

    x_advance = scaled_glyph->metrics.x_advance;
    y_advance = scaled_glyph->metrics.y_advance;
    font_matrix_inverse = surface->scaled_font->font_matrix;
    status2 = cairo_matrix_invert (&font_matrix_inverse);

    /* The invertability of font_matrix is tested in
     * pdf_operators_show_glyphs before any glyphs are mappped to the
     * subset. */
    assert (status2 == CAIRO_STATUS_SUCCESS);

    cairo_matrix_transform_distance (&font_matrix_inverse, &x_advance, &y_advance);
    *width = x_advance;

    *bbox = scaled_glyph->bbox;
    _cairo_matrix_transform_bounding_box_fixed (&surface->scaled_font->scale_inverse,
						bbox, NULL);

    _cairo_output_stream_printf (surface->stream,
				 "%f 0 %f %f %f %f d1\n",
                                 x_advance,
				 _cairo_fixed_to_double (bbox->p1.x),
				 - _cairo_fixed_to_double (bbox->p2.y),
				 _cairo_fixed_to_double (bbox->p2.x),
				 - _cairo_fixed_to_double (bbox->p1.y));

    if (status == CAIRO_STATUS_SUCCESS) {
	mem_stream = _cairo_memory_stream_create ();
	_cairo_type3_glyph_surface_set_stream (surface, mem_stream);

	_cairo_output_stream_printf (surface->stream, "q\n");
	status = _cairo_meta_surface_replay (scaled_glyph->meta_surface,
					 &surface->base);

	status = _cairo_pdf_operators_flush (&surface->pdf_operators);
	if (status)
	    return status;

	_cairo_output_stream_printf (surface->stream, "Q\n");

	_cairo_type3_glyph_surface_set_stream (surface, stream);
	if (status == CAIRO_STATUS_SUCCESS)
	    _cairo_memory_stream_copy (mem_stream, stream);

	status2 = _cairo_output_stream_destroy (mem_stream);
	if (status2)
	    return status2;
    }

    if (status == CAIRO_INT_STATUS_IMAGE_FALLBACK)
	status = _cairo_type3_glyph_surface_emit_fallback_image (surface, glyph_index);

    return status;
}
Ejemplo n.º 26
0
static cairo_status_t
_cairo_stroker_join (cairo_stroker_t *stroker, cairo_stroke_face_t *in, cairo_stroke_face_t *out)
{
    int			clockwise = _cairo_stroker_face_clockwise (out, in);
    cairo_point_t	*inpt, *outpt;
    cairo_status_t status;

    if (in->cw.x == out->cw.x
	&& in->cw.y == out->cw.y
	&& in->ccw.x == out->ccw.x
	&& in->ccw.y == out->ccw.y)
    {
	return CAIRO_STATUS_SUCCESS;
    }

    if (clockwise) {
	inpt = &in->ccw;
	outpt = &out->ccw;
    } else {
	inpt = &in->cw;
	outpt = &out->cw;
    }

    switch (stroker->style->line_join) {
    case CAIRO_LINE_JOIN_ROUND: {
	int i;
	int start, step, stop;
	cairo_point_t tri[3];
	cairo_pen_t *pen = &stroker->pen;

	tri[0] = in->point;
	if (clockwise) {
	    start =
		_cairo_pen_find_active_ccw_vertex_index (pen, &in->dev_vector);
	    stop =
		_cairo_pen_find_active_ccw_vertex_index (pen, &out->dev_vector);
	    step = -1;
	} else {
	    start =
		_cairo_pen_find_active_cw_vertex_index (pen, &in->dev_vector);
	    stop =
		_cairo_pen_find_active_cw_vertex_index (pen, &out->dev_vector);
	    step = +1;
	}

	i = start;
	tri[1] = *inpt;
	while (i != stop) {
	    tri[2] = in->point;
	    _translate_point (&tri[2], &pen->vertices[i].point);
	    status = _cairo_traps_tessellate_triangle (stroker->traps, tri);
	    if (unlikely (status))
		return status;
	    tri[1] = tri[2];
	    i += step;
	    if (i < 0)
		i = pen->num_vertices - 1;
	    if (i >= pen->num_vertices)
		i = 0;
	}

	tri[2] = *outpt;

	return _cairo_traps_tessellate_triangle (stroker->traps, tri);
    }
    case CAIRO_LINE_JOIN_MITER:
    default: {
	/* dot product of incoming slope vector with outgoing slope vector */
	double	in_dot_out = ((-in->usr_vector.x * out->usr_vector.x)+
			      (-in->usr_vector.y * out->usr_vector.y));
	double	ml = stroker->style->miter_limit;

	/* Check the miter limit -- lines meeting at an acute angle
	 * can generate long miters, the limit converts them to bevel
	 *
	 * Consider the miter join formed when two line segments
	 * meet at an angle psi:
	 *
	 *	   /.\
	 *	  /. .\
	 *	 /./ \.\
	 *	/./psi\.\
	 *
	 * We can zoom in on the right half of that to see:
	 *
	 *	    |\
	 *	    | \ psi/2
	 *	    |  \
	 *	    |   \
	 *	    |    \
	 *	    |     \
	 *	  miter    \
	 *	 length     \
	 *	    |        \
	 *	    |        .\
	 *	    |    .     \
	 *	    |.   line   \
	 *	     \    width  \
	 *	      \           \
	 *
	 *
	 * The right triangle in that figure, (the line-width side is
	 * shown faintly with three '.' characters), gives us the
	 * following expression relating miter length, angle and line
	 * width:
	 *
	 *	1 /sin (psi/2) = miter_length / line_width
	 *
	 * The right-hand side of this relationship is the same ratio
	 * in which the miter limit (ml) is expressed. We want to know
	 * when the miter length is within the miter limit. That is
	 * when the following condition holds:
	 *
	 *	1/sin(psi/2) <= ml
	 *	1 <= ml sin(psi/2)
	 *	1 <= ml² sin²(psi/2)
	 *	2 <= ml² 2 sin²(psi/2)
	 *				2·sin²(psi/2) = 1-cos(psi)
	 *	2 <= ml² (1-cos(psi))
	 *
	 *				in · out = |in| |out| cos (psi)
	 *
	 * in and out are both unit vectors, so:
	 *
	 *				in · out = cos (psi)
	 *
	 *	2 <= ml² (1 - in · out)
	 *
	 */
	if (2 <= ml * ml * (1 - in_dot_out))
	{
	    double		x1, y1, x2, y2;
	    double		mx, my;
	    double		dx1, dx2, dy1, dy2;
	    cairo_point_t	outer;
	    cairo_point_t	quad[4];
	    double		ix, iy;
	    double		fdx1, fdy1, fdx2, fdy2;
	    double		mdx, mdy;

	    /*
	     * we've got the points already transformed to device
	     * space, but need to do some computation with them and
	     * also need to transform the slope from user space to
	     * device space
	     */
	    /* outer point of incoming line face */
	    x1 = _cairo_fixed_to_double (inpt->x);
	    y1 = _cairo_fixed_to_double (inpt->y);
	    dx1 = in->usr_vector.x;
	    dy1 = in->usr_vector.y;
	    cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);

	    /* outer point of outgoing line face */
	    x2 = _cairo_fixed_to_double (outpt->x);
	    y2 = _cairo_fixed_to_double (outpt->y);
	    dx2 = out->usr_vector.x;
	    dy2 = out->usr_vector.y;
	    cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);

	    /*
	     * Compute the location of the outer corner of the miter.
	     * That's pretty easy -- just the intersection of the two
	     * outer edges.  We've got slopes and points on each
	     * of those edges.  Compute my directly, then compute
	     * mx by using the edge with the larger dy; that avoids
	     * dividing by values close to zero.
	     */
	    my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
		  (dx1 * dy2 - dx2 * dy1));
	    if (fabs (dy1) >= fabs (dy2))
		mx = (my - y1) * dx1 / dy1 + x1;
	    else
		mx = (my - y2) * dx2 / dy2 + x2;

	    /*
	     * When the two outer edges are nearly parallel, slight
	     * perturbations in the position of the outer points of the lines
	     * caused by representing them in fixed point form can cause the
	     * intersection point of the miter to move a large amount. If
	     * that moves the miter intersection from between the two faces,
	     * then draw a bevel instead.
	     */

	    ix = _cairo_fixed_to_double (in->point.x);
	    iy = _cairo_fixed_to_double (in->point.y);

	    /* slope of one face */
	    fdx1 = x1 - ix; fdy1 = y1 - iy;

	    /* slope of the other face */
	    fdx2 = x2 - ix; fdy2 = y2 - iy;

	    /* slope from the intersection to the miter point */
	    mdx = mx - ix; mdy = my - iy;

	    /*
	     * Make sure the miter point line lies between the two
	     * faces by comparing the slopes
	     */
	    if (_cairo_slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
		_cairo_slope_compare_sgn (fdx2, fdy2, mdx, mdy))
	    {
		/*
		 * Draw the quadrilateral
		 */
		outer.x = _cairo_fixed_from_double (mx);
		outer.y = _cairo_fixed_from_double (my);

		quad[0] = in->point;
		quad[1] = *inpt;
		quad[2] = outer;
		quad[3] = *outpt;

		return _cairo_traps_tessellate_convex_quad (stroker->traps, quad);
	    }
	}
	/* fall through ... */
    }
    case CAIRO_LINE_JOIN_BEVEL: {
	cairo_point_t tri[3];
	tri[0] = in->point;
	tri[1] = *inpt;
	tri[2] = *outpt;

	return _cairo_traps_tessellate_triangle (stroker->traps, tri);
    }
    }
}
Ejemplo n.º 27
0
static cairo_status_t
_cairo_stroker_curve_to (void *closure,
			 const cairo_point_t *b,
			 const cairo_point_t *c,
			 const cairo_point_t *d)
{
    cairo_stroker_t *stroker = closure;
    cairo_pen_stroke_spline_t spline_pen;
    cairo_stroke_face_t start, end;
    cairo_point_t extra_points[4];
    cairo_point_t *a = &stroker->current_point;
    double initial_slope_dx, initial_slope_dy;
    double final_slope_dx, final_slope_dy;
    cairo_status_t status;

    status = _cairo_pen_stroke_spline_init (&spline_pen,
					    &stroker->pen,
					    a, b, c, d);
    if (status == CAIRO_INT_STATUS_DEGENERATE)
	return _cairo_stroker_line_to (closure, d);
    else if (unlikely (status))
	return status;

    initial_slope_dx = _cairo_fixed_to_double (spline_pen.spline.initial_slope.dx);
    initial_slope_dy = _cairo_fixed_to_double (spline_pen.spline.initial_slope.dy);
    final_slope_dx = _cairo_fixed_to_double (spline_pen.spline.final_slope.dx);
    final_slope_dy = _cairo_fixed_to_double (spline_pen.spline.final_slope.dy);

    if (_compute_normalized_device_slope (&initial_slope_dx, &initial_slope_dy,
					  stroker->ctm_inverse, NULL))
    {
	_compute_face (a,
		       &spline_pen.spline.initial_slope,
		       initial_slope_dx, initial_slope_dy,
		       stroker, &start);
    }

    if (_compute_normalized_device_slope (&final_slope_dx, &final_slope_dy,
					  stroker->ctm_inverse, NULL))
    {
	_compute_face (d,
		       &spline_pen.spline.final_slope,
		       final_slope_dx, final_slope_dy,
		       stroker, &end);
    }

    if (stroker->has_current_face) {
	status = _cairo_stroker_join (stroker, &stroker->current_face, &start);
	if (unlikely (status))
	    goto CLEANUP_PEN;
    } else if (! stroker->has_first_face) {
	stroker->first_face = start;
	stroker->has_first_face = TRUE;
    }
    stroker->current_face = end;
    stroker->has_current_face = TRUE;

    extra_points[0] = start.cw;
    extra_points[0].x -= start.point.x;
    extra_points[0].y -= start.point.y;
    extra_points[1] = start.ccw;
    extra_points[1].x -= start.point.x;
    extra_points[1].y -= start.point.y;
    extra_points[2] = end.cw;
    extra_points[2].x -= end.point.x;
    extra_points[2].y -= end.point.y;
    extra_points[3] = end.ccw;
    extra_points[3].x -= end.point.x;
    extra_points[3].y -= end.point.y;

    status = _cairo_pen_add_points (&spline_pen.pen, extra_points, 4);
    if (unlikely (status))
	goto CLEANUP_PEN;

    status = _cairo_pen_stroke_spline (&spline_pen,
				       stroker->tolerance,
				       stroker->traps);

  CLEANUP_PEN:
    _cairo_pen_stroke_spline_fini (&spline_pen);

    stroker->current_point = *d;

    return status;
}
Ejemplo n.º 28
0
static void
outer_join (struct stroker *stroker,
            const cairo_stroke_face_t *in,
            const cairo_stroke_face_t *out,
            int clockwise)
{
    const cairo_point_t	*inpt, *outpt;

    if (in->cw.x == out->cw.x && in->cw.y == out->cw.y &&
            in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y)
    {
        return;
    }
    if (clockwise) {
        inpt = &in->cw;
        outpt = &out->cw;
    } else {
        inpt = &in->ccw;
        outpt = &out->ccw;
    }

    switch (stroker->style.line_join) {
    case CAIRO_LINE_JOIN_ROUND:
        /* construct a fan around the common midpoint */
        add_fan (stroker,
                 &in->dev_vector,
                 &out->dev_vector,
                 &in->point, inpt, outpt,
                 clockwise);
        break;

    case CAIRO_LINE_JOIN_MITER:
    default: {
        /* dot product of incoming slope vector with outgoing slope vector */
        double	in_dot_out = -in->usr_vector.x * out->usr_vector.x +
                             -in->usr_vector.y * out->usr_vector.y;
        double	ml = stroker->style.miter_limit;

        /* Check the miter limit -- lines meeting at an acute angle
         * can generate long miters, the limit converts them to bevel
         *
         * Consider the miter join formed when two line segments
         * meet at an angle psi:
         *
         *	   /.\
         *	  /. .\
         *	 /./ \.\
         *	/./psi\.\
         *
         * We can zoom in on the right half of that to see:
         *
         *	    |\
         *	    | \ psi/2
         *	    |  \
         *	    |   \
         *	    |    \
         *	    |     \
         *	  miter    \
         *	 length     \
         *	    |        \
         *	    |        .\
         *	    |    .     \
         *	    |.   line   \
         *	     \    width  \
         *	      \           \
         *
         *
         * The right triangle in that figure, (the line-width side is
         * shown faintly with three '.' characters), gives us the
         * following expression relating miter length, angle and line
         * width:
         *
         *	1 /sin (psi/2) = miter_length / line_width
         *
         * The right-hand side of this relationship is the same ratio
         * in which the miter limit (ml) is expressed. We want to know
         * when the miter length is within the miter limit. That is
         * when the following condition holds:
         *
         *	1/sin(psi/2) <= ml
         *	1 <= ml sin(psi/2)
         *	1 <= ml² sin²(psi/2)
         *	2 <= ml² 2 sin²(psi/2)
         *				2·sin²(psi/2) = 1-cos(psi)
         *	2 <= ml² (1-cos(psi))
         *
         *				in · out = |in| |out| cos (psi)
         *
         * in and out are both unit vectors, so:
         *
         *				in · out = cos (psi)
         *
         *	2 <= ml² (1 - in · out)
         *
         */
        if (2 <= ml * ml * (1 - in_dot_out)) {
            double		x1, y1, x2, y2;
            double		mx, my;
            double		dx1, dx2, dy1, dy2;
            double		ix, iy;
            double		fdx1, fdy1, fdx2, fdy2;
            double		mdx, mdy;

            /*
             * we've got the points already transformed to device
             * space, but need to do some computation with them and
             * also need to transform the slope from user space to
             * device space
             */
            /* outer point of incoming line face */
            x1 = _cairo_fixed_to_double (inpt->x);
            y1 = _cairo_fixed_to_double (inpt->y);
            dx1 = in->usr_vector.x;
            dy1 = in->usr_vector.y;
            cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1);

            /* outer point of outgoing line face */
            x2 = _cairo_fixed_to_double (outpt->x);
            y2 = _cairo_fixed_to_double (outpt->y);
            dx2 = out->usr_vector.x;
            dy2 = out->usr_vector.y;
            cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2);

            /*
             * Compute the location of the outer corner of the miter.
             * That's pretty easy -- just the intersection of the two
             * outer edges.  We've got slopes and points on each
             * of those edges.  Compute my directly, then compute
             * mx by using the edge with the larger dy; that avoids
             * dividing by values close to zero.
             */
            my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
                  (dx1 * dy2 - dx2 * dy1));
            if (fabs (dy1) >= fabs (dy2))
                mx = (my - y1) * dx1 / dy1 + x1;
            else
                mx = (my - y2) * dx2 / dy2 + x2;

            /*
             * When the two outer edges are nearly parallel, slight
             * perturbations in the position of the outer points of the lines
             * caused by representing them in fixed point form can cause the
             * intersection point of the miter to move a large amount. If
             * that moves the miter intersection from between the two faces,
             * then draw a bevel instead.
             */

            ix = _cairo_fixed_to_double (in->point.x);
            iy = _cairo_fixed_to_double (in->point.y);

            /* slope of one face */
            fdx1 = x1 - ix;
            fdy1 = y1 - iy;

            /* slope of the other face */
            fdx2 = x2 - ix;
            fdy2 = y2 - iy;

            /* slope from the intersection to the miter point */
            mdx = mx - ix;
            mdy = my - iy;

            /*
             * Make sure the miter point line lies between the two
             * faces by comparing the slopes
             */
            if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) !=
                    slope_compare_sgn (fdx2, fdy2, mdx, mdy))
            {
                cairo_point_t p;

                p.x = _cairo_fixed_from_double (mx);
                p.y = _cairo_fixed_from_double (my);

                //*_cairo_contour_last_point (&outer->contour) = p;
                return;
            }
        }
        break;
    }

    case CAIRO_LINE_JOIN_BEVEL:
        break;
    }
    //contour_add_point (stroker,outer, outpt);
}
Ejemplo n.º 29
0
static void
compute_face (const cairo_point_t *point,
              const cairo_slope_t *dev_slope,
              struct stroker *stroker,
              cairo_stroke_face_t *face)
{
    double face_dx, face_dy;
    cairo_point_t offset_ccw, offset_cw;
    double slope_dx, slope_dy;

    slope_dx = _cairo_fixed_to_double (dev_slope->dx);
    slope_dy = _cairo_fixed_to_double (dev_slope->dy);
    face->length = normalize_slope (&slope_dx, &slope_dy);
    face->dev_slope.x = slope_dx;
    face->dev_slope.y = slope_dy;

    /*
     * rotate to get a line_width/2 vector along the face, note that
     * the vector must be rotated the right direction in device space,
     * but by 90° in user space. So, the rotation depends on
     * whether the ctm reflects or not, and that can be determined
     * by looking at the determinant of the matrix.
     */
    if (! _cairo_matrix_is_identity (stroker->ctm_inverse)) {
        /* Normalize the matrix! */
        cairo_matrix_transform_distance (stroker->ctm_inverse,
                                         &slope_dx, &slope_dy);
        normalize_slope (&slope_dx, &slope_dy);

        if (stroker->ctm_det_positive) {
            face_dx = - slope_dy * (stroker->style.line_width / 2.0);
            face_dy = slope_dx * (stroker->style.line_width / 2.0);
        } else {
            face_dx = slope_dy * (stroker->style.line_width / 2.0);
            face_dy = - slope_dx * (stroker->style.line_width / 2.0);
        }

        /* back to device space */
        cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy);
    } else {
        face_dx = - slope_dy * (stroker->style.line_width / 2.0);
        face_dy = slope_dx * (stroker->style.line_width / 2.0);
    }

    offset_ccw.x = _cairo_fixed_from_double (face_dx);
    offset_ccw.y = _cairo_fixed_from_double (face_dy);
    offset_cw.x = -offset_ccw.x;
    offset_cw.y = -offset_ccw.y;

    face->ccw = *point;
    translate_point (&face->ccw, &offset_ccw);

    face->point = *point;

    face->cw = *point;
    translate_point (&face->cw, &offset_cw);

    face->usr_vector.x = slope_dx;
    face->usr_vector.y = slope_dy;

    face->dev_vector = *dev_slope;
}
Ejemplo n.º 30
0
static cairo_status_t
_cairo_rectilinear_stroker_line_to_dashed (void		*closure,
					   const cairo_point_t	*point)
{
    cairo_rectilinear_stroker_t *stroker = closure;
    const cairo_point_t *a = &stroker->current_point;
    const cairo_point_t *b = point;
    cairo_bool_t fully_in_bounds;
    double sf, sign, remain;
    cairo_fixed_t mag;
    cairo_status_t status;
    cairo_line_t segment;
    cairo_bool_t dash_on = FALSE;
    unsigned is_horizontal;

    /* We don't draw anything for degenerate paths. */
    if (a->x == b->x && a->y == b->y)
	return CAIRO_STATUS_SUCCESS;

    /* We only support horizontal or vertical elements. */
    assert (a->x == b->x || a->y == b->y);

    fully_in_bounds = TRUE;
    if (stroker->has_bounds &&
	(! _cairo_box_contains_point (&stroker->bounds, a) ||
	 ! _cairo_box_contains_point (&stroker->bounds, b)))
    {
	fully_in_bounds = FALSE;
    }

    is_horizontal = a->y == b->y;
    if (is_horizontal) {
	mag = b->x - a->x;
	sf = fabs (stroker->ctm->xx);
    } else {
	mag = b->y - a->y;
	sf = fabs (stroker->ctm->yy);
    }
    if (mag < 0) {
	remain = _cairo_fixed_to_double (-mag);
	sign = 1.;
    } else {
	remain = _cairo_fixed_to_double (mag);
	is_horizontal |= FORWARDS;
	sign = -1.;
    }

    segment.p2 = segment.p1 = *a;
    while (remain > 0.) {
	double step_length;

	step_length = MIN (sf * stroker->dash.dash_remain, remain);
	remain -= step_length;

	mag = _cairo_fixed_from_double (sign*remain);
	if (is_horizontal & 0x1)
	    segment.p2.x = b->x + mag;
	else
	    segment.p2.y = b->y + mag;

	if (stroker->dash.dash_on &&
	    (fully_in_bounds ||
	     _cairo_box_intersects_line_segment (&stroker->bounds, &segment)))
	{
	    status = _cairo_rectilinear_stroker_add_segment (stroker,
							     &segment.p1,
							     &segment.p2,
							     is_horizontal | (remain <= 0.) << 2);
	    if (unlikely (status))
		return status;

	    dash_on = TRUE;
	}
	else
	{
	    dash_on = FALSE;
	}

	_cairo_stroker_dash_step (&stroker->dash, step_length / sf);
	segment.p1 = segment.p2;
    }

    if (stroker->dash.dash_on && ! dash_on &&
	(fully_in_bounds ||
	 _cairo_box_intersects_line_segment (&stroker->bounds, &segment)))
    {

	/* This segment ends on a transition to dash_on, compute a new face
	 * and add cap for the beginning of the next dash_on step.
	 */

	status = _cairo_rectilinear_stroker_add_segment (stroker,
							 &segment.p1,
							 &segment.p1,
							 is_horizontal | JOIN);
	if (unlikely (status))
	    return status;
    }

    stroker->current_point = *point;
    stroker->open_sub_path = TRUE;

    return CAIRO_STATUS_SUCCESS;
}