Ejemplo n.º 1
0
/*
 * deal with execve()
 */
int exec_keys(struct task_struct *tsk)
{
	struct key *old;

	/* newly exec'd tasks don't get a thread keyring */
	task_lock(tsk);
	old = tsk->thread_keyring;
	tsk->thread_keyring = NULL;
	task_unlock(tsk);

	key_put(old);

	/* discard the process keyring from a newly exec'd task */
	spin_lock_irq(&tsk->sighand->siglock);
	old = tsk->signal->process_keyring;
	tsk->signal->process_keyring = NULL;
	spin_unlock_irq(&tsk->sighand->siglock);

	key_put(old);

	return 0;

} /* end exec_keys() */
Ejemplo n.º 2
0
/*
 * set the attributes of an inode
 */
int afs_setattr(struct dentry *dentry, struct iattr *attr)
{
	struct afs_fs_cursor fc;
	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
	struct key *key;
	int ret;

	_enter("{%x:%u},{n=%pd},%x",
	       vnode->fid.vid, vnode->fid.vnode, dentry,
	       attr->ia_valid);

	if (!(attr->ia_valid & (ATTR_SIZE | ATTR_MODE | ATTR_UID | ATTR_GID |
				ATTR_MTIME))) {
		_leave(" = 0 [unsupported]");
		return 0;
	}

	/* flush any dirty data outstanding on a regular file */
	if (S_ISREG(vnode->vfs_inode.i_mode))
		filemap_write_and_wait(vnode->vfs_inode.i_mapping);

	if (attr->ia_valid & ATTR_FILE) {
		key = afs_file_key(attr->ia_file);
	} else {
		key = afs_request_key(vnode->volume->cell);
		if (IS_ERR(key)) {
			ret = PTR_ERR(key);
			goto error;
		}
	}

	ret = -ERESTARTSYS;
	if (afs_begin_vnode_operation(&fc, vnode, key)) {
		while (afs_select_fileserver(&fc)) {
			fc.cb_break = vnode->cb_break + vnode->cb_s_break;
			afs_fs_setattr(&fc, attr);
		}

		afs_check_for_remote_deletion(&fc, fc.vnode);
		afs_vnode_commit_status(&fc, vnode, fc.cb_break);
		ret = afs_end_vnode_operation(&fc);
	}

	if (!(attr->ia_valid & ATTR_FILE))
		key_put(key);

error:
	_leave(" = %d", ret);
	return ret;
}
Ejemplo n.º 3
0
int
init_cifs_idmap(void)
{
	struct cred *cred;
	struct key *keyring;
	int ret;

	cifs_dbg(FYI, "Registering the %s key type\n",
		 cifs_idmap_key_type.name);

	/* create an override credential set with a special thread keyring in
	 * which requests are cached
	 *
	 * this is used to prevent malicious redirections from being installed
	 * with add_key().
	 */
	cred = prepare_kernel_cred(NULL);
	if (!cred)
		return -ENOMEM;

	keyring = keyring_alloc(".cifs_idmap",
				GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, cred,
				(KEY_POS_ALL & ~KEY_POS_SETATTR) |
				KEY_USR_VIEW | KEY_USR_READ,
				KEY_ALLOC_NOT_IN_QUOTA, NULL);
	if (IS_ERR(keyring)) {
		ret = PTR_ERR(keyring);
		goto failed_put_cred;
	}

	ret = register_key_type(&cifs_idmap_key_type);
	if (ret < 0)
		goto failed_put_key;

	/* instruct request_key() to use this special keyring as a cache for
	 * the results it looks up */
	set_bit(KEY_FLAG_ROOT_CAN_CLEAR, &keyring->flags);
	cred->thread_keyring = keyring;
	cred->jit_keyring = KEY_REQKEY_DEFL_THREAD_KEYRING;
	root_cred = cred;

	cifs_dbg(FYI, "cifs idmap keyring: %d\n", key_serial(keyring));
	return 0;

failed_put_key:
	key_put(keyring);
failed_put_cred:
	put_cred(cred);
	return ret;
}
Ejemplo n.º 4
0
/*
 * return information about an AFS volume
 */
static int afs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
	struct afs_super_info *as = AFS_FS_S(dentry->d_sb);
	struct afs_fs_cursor fc;
	struct afs_volume_status vs;
	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
	struct key *key;
	int ret;

	buf->f_type	= dentry->d_sb->s_magic;
	buf->f_bsize	= AFS_BLOCK_SIZE;
	buf->f_namelen	= AFSNAMEMAX - 1;

	if (as->dyn_root) {
		buf->f_blocks	= 1;
		buf->f_bavail	= 0;
		buf->f_bfree	= 0;
		return 0;
	}

	key = afs_request_key(vnode->volume->cell);
	if (IS_ERR(key))
		return PTR_ERR(key);

	ret = -ERESTARTSYS;
	if (afs_begin_vnode_operation(&fc, vnode, key)) {
		fc.flags |= AFS_FS_CURSOR_NO_VSLEEP;
		while (afs_select_fileserver(&fc)) {
			fc.cb_break = afs_calc_vnode_cb_break(vnode);
			afs_fs_get_volume_status(&fc, &vs);
		}

		afs_check_for_remote_deletion(&fc, fc.vnode);
		afs_vnode_commit_status(&fc, vnode, fc.cb_break);
		ret = afs_end_vnode_operation(&fc);
	}

	key_put(key);

	if (ret == 0) {
		if (vs.max_quota == 0)
			buf->f_blocks = vs.part_max_blocks;
		else
			buf->f_blocks = vs.max_quota;
		buf->f_bavail = buf->f_bfree = buf->f_blocks - vs.blocks_in_use;
	}

	return ret;
}
Ejemplo n.º 5
0
int __init cifs_init_dns_resolver(void)
{
	struct cred *cred;
	struct key *keyring;
	int ret;

	printk(KERN_NOTICE "Registering the %s key type\n",
	       key_type_dns_resolver.name);

	/* create an override credential set with a special thread keyring in
	 * which DNS requests are cached
	 *
	 * this is used to prevent malicious redirections from being installed
	 * with add_key().
	 */
	cred = prepare_kernel_cred(NULL);
	if (!cred)
		return -ENOMEM;

	keyring = key_alloc(&key_type_keyring, ".dns_resolver", 0, 0, cred,
			    (KEY_POS_ALL & ~KEY_POS_SETATTR) |
			    KEY_USR_VIEW | KEY_USR_READ,
			    KEY_ALLOC_NOT_IN_QUOTA);
	if (IS_ERR(keyring)) {
		ret = PTR_ERR(keyring);
		goto failed_put_cred;
	}

	ret = key_instantiate_and_link(keyring, NULL, 0, NULL, NULL);
	if (ret < 0)
		goto failed_put_key;

	ret = register_key_type(&key_type_dns_resolver);
	if (ret < 0)
		goto failed_put_key;

	/* instruct request_key() to use this special keyring as a cache for
	 * the results it looks up */
	cred->thread_keyring = keyring;
	cred->jit_keyring = KEY_REQKEY_DEFL_THREAD_KEYRING;
	dns_resolver_cache = cred;
	return 0;

failed_put_key:
	key_put(keyring);
failed_put_cred:
	put_cred(cred);
	return ret;
}
Ejemplo n.º 6
0
/*
 * destroy an instantiation authorisation token key
 */
static void request_key_auth_destroy(struct key *key)
{
	struct request_key_auth *rka = key->payload.data;

	kenter("{%d}", key->serial);

	if (rka->context) {
		put_task_struct(rka->context);
		rka->context = NULL;
	}

	key_put(rka->target_key);
	kfree(rka);

} /* end request_key_auth_destroy() */
Ejemplo n.º 7
0
/*
 * release a bundle
 */
void rxrpc_put_bundle(struct rxrpc_transport *trans,
		      struct rxrpc_conn_bundle *bundle)
{
	_enter("%p,%p{%d}",trans, bundle, atomic_read(&bundle->usage));

	if (atomic_dec_and_lock(&bundle->usage, &trans->client_lock)) {
		_debug("Destroy bundle");
		rb_erase(&bundle->node, &trans->bundles);
		spin_unlock(&trans->client_lock);
		ASSERT(list_empty(&bundle->unused_conns));
		ASSERT(list_empty(&bundle->avail_conns));
		ASSERT(list_empty(&bundle->busy_conns));
		ASSERTCMP(bundle->num_conns, ==, 0);
		key_put(bundle->key);
		kfree(bundle);
	}
Ejemplo n.º 8
0
static ssize_t nfs_idmap_request_key(const char *name, size_t namelen,
                                     const char *type, void *data, size_t data_size)
{
    const struct cred *saved_cred;
    struct key *rkey;
    char *desc;
    struct user_key_payload *payload;
    ssize_t ret;

    ret = nfs_idmap_get_desc(name, namelen, type, strlen(type), &desc);
    if (ret <= 0)
        goto out;

    saved_cred = override_creds(id_resolver_cache);
    rkey = request_key(&key_type_id_resolver, desc, "");
    revert_creds(saved_cred);
    kfree(desc);
    if (IS_ERR(rkey)) {
        ret = PTR_ERR(rkey);
        goto out;
    }

    rcu_read_lock();
    rkey->perm |= KEY_USR_VIEW;

    ret = key_validate(rkey);
    if (ret < 0)
        goto out_up;

    payload = rcu_dereference(rkey->payload.data);
    if (IS_ERR_OR_NULL(payload)) {
        ret = PTR_ERR(payload);
        goto out_up;
    }

    ret = payload->datalen;
    if (ret > 0 && ret <= data_size)
        memcpy(data, payload->data, ret);
    else
        ret = -EINVAL;

out_up:
    rcu_read_unlock();
    key_put(rkey);
out:
    return ret;
}
Ejemplo n.º 9
0
static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns)
{
    /* Start with the same capabilities as init but useless for doing
     * anything as the capabilities are bound to the new user namespace.
     */
    cred->securebits = SECUREBITS_DEFAULT;
    cred->cap_inheritable = CAP_EMPTY_SET;
    cred->cap_permitted = CAP_FULL_SET;
    cred->cap_effective = CAP_FULL_SET;
    cred->cap_bset = CAP_FULL_SET;
#ifdef CONFIG_KEYS
    key_put(cred->request_key_auth);
    cred->request_key_auth = NULL;
#endif
    /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */
    cred->user_ns = user_ns;
}
Ejemplo n.º 10
0
/*
 * unbind a key and a ctx.
 * caller must hold write lock, as well as a ref of the key.
 */
static void unbind_key_ctx(struct key *key, struct ptlrpc_cli_ctx *ctx)
{
        LASSERT(key->payload.data == ctx);
	LASSERT(test_bit(PTLRPC_CTX_CACHED_BIT, &ctx->cc_flags) == 0);

        /* must revoke the key, or others may treat it as newly created */
        key_revoke_locked(key);

        key->payload.data = NULL;
        ctx2gctx_keyring(ctx)->gck_key = NULL;

        /* once ctx get split from key, the timer is meaningless */
        ctx_clear_timer_kr(ctx);

        ctx_put_kr(ctx, 1);
        key_put(key);
}
Ejemplo n.º 11
0
static int nfs_idmap_init_keyring(void)
{
	struct cred *cred;
	struct key *keyring;
	int ret = 0;

	printk(KERN_NOTICE "NFS: Registering the %s key type\n",
		key_type_id_resolver.name);

	cred = prepare_kernel_cred(NULL);
	if (!cred)
		return -ENOMEM;

	keyring = keyring_alloc(".id_resolver",
				GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, cred,
				(KEY_POS_ALL & ~KEY_POS_SETATTR) |
				KEY_USR_VIEW | KEY_USR_READ,
				KEY_ALLOC_NOT_IN_QUOTA, NULL);
	if (IS_ERR(keyring)) {
		ret = PTR_ERR(keyring);
		goto failed_put_cred;
	}

	ret = register_key_type(&key_type_id_resolver);
	if (ret < 0)
		goto failed_put_key;

	ret = register_key_type(&key_type_id_resolver_legacy);
	if (ret < 0)
		goto failed_reg_legacy;

	set_bit(KEY_FLAG_ROOT_CAN_CLEAR, &keyring->flags);
	cred->thread_keyring = keyring;
	cred->jit_keyring = KEY_REQKEY_DEFL_THREAD_KEYRING;
	id_resolver_cache = cred;
	return 0;

failed_reg_legacy:
	unregister_key_type(&key_type_id_resolver);
failed_put_key:
	key_put(keyring);
failed_put_cred:
	put_cred(cred);
	return ret;
}
Ejemplo n.º 12
0
/*
 * request a key
 * - search the process's keyrings
 * - check the list of keys being created or updated
 * - call out to userspace for a key if supplementary info was provided
 * - waits uninterruptible for creation to complete
 */
struct key *request_key(struct key_type *type,
			const char *description,
			const char *callout_info)
{
	struct key *key;
	int ret;

	key = request_key_and_link(type, description, callout_info, NULL,
				   NULL, KEY_ALLOC_IN_QUOTA);
	if (!IS_ERR(key)) {
		ret = wait_for_key_construction(key, false);
		if (ret < 0) {
			key_put(key);
			return ERR_PTR(ret);
		}
	}
	return key;
}
Ejemplo n.º 13
0
/**
 * request_key_and_link - Request a key and cache it in a keyring.
 * @type: The type of key we want.
 * @description: The searchable description of the key.
 * @callout_info: The data to pass to the instantiation upcall (or NULL).
 * @callout_len: The length of callout_info.
 * @aux: Auxiliary data for the upcall.
 * @dest_keyring: Where to cache the key.
 * @flags: Flags to key_alloc().
 *
 * A key matching the specified criteria is searched for in the process's
 * keyrings and returned with its usage count incremented if found.  Otherwise,
 * if callout_info is not NULL, a key will be allocated and some service
 * (probably in userspace) will be asked to instantiate it.
 *
 * If successfully found or created, the key will be linked to the destination
 * keyring if one is provided.
 *
 * Returns a pointer to the key if successful; -EACCES, -ENOKEY, -EKEYREVOKED
 * or -EKEYEXPIRED if an inaccessible, negative, revoked or expired key was
 * found; -ENOKEY if no key was found and no @callout_info was given; -EDQUOT
 * if insufficient key quota was available to create a new key; or -ENOMEM if
 * insufficient memory was available.
 *
 * If the returned key was created, then it may still be under construction,
 * and wait_for_key_construction() should be used to wait for that to complete.
 */
struct key *request_key_and_link(struct key_type *type,
				 const char *description,
				 const void *callout_info,
				 size_t callout_len,
				 void *aux,
				 struct key *dest_keyring,
				 unsigned long flags)
{
	const struct cred *cred = current_cred();
	struct key *key;
	key_ref_t key_ref;

	kenter("%s,%s,%p,%zu,%p,%p,%lx",
	       type->name, description, callout_info, callout_len, aux,
	       dest_keyring, flags);

	/* search all the process keyrings for a key */
	key_ref = search_process_keyrings(type, description, type->match, cred);

	if (!IS_ERR(key_ref)) {
		key = key_ref_to_ptr(key_ref);
		if (dest_keyring) {
			construct_get_dest_keyring(&dest_keyring);
			key_link(dest_keyring, key);
			key_put(dest_keyring);
		}
	} else if (PTR_ERR(key_ref) != -EAGAIN) {
		key = ERR_CAST(key_ref);
	} else  {
		/* the search failed, but the keyrings were searchable, so we
		 * should consult userspace if we can */
		key = ERR_PTR(-ENOKEY);
		if (!callout_info)
			goto error;

		key = construct_key_and_link(type, description, callout_info,
					     callout_len, aux, dest_keyring,
					     flags);
	}

error:
	kleave(" = %p", key);
	return key;
}
Ejemplo n.º 14
0
/* get secret from key store */
static int get_secret(struct ceph_crypto_key *dst, const char *name) {
	struct key *ukey;
	int key_err;
	int err = 0;
	struct ceph_crypto_key *ckey;

	ukey = request_key(&key_type_ceph, name, NULL);
	if (!ukey || IS_ERR(ukey)) {
		/* request_key errors don't map nicely to mount(2)
		   errors; don't even try, but still printk */
		key_err = PTR_ERR(ukey);
		switch (key_err) {
		case -ENOKEY:
			pr_warn("ceph: Mount failed due to key not found: %s\n",
				name);
			break;
		case -EKEYEXPIRED:
			pr_warn("ceph: Mount failed due to expired key: %s\n",
				name);
			break;
		case -EKEYREVOKED:
			pr_warn("ceph: Mount failed due to revoked key: %s\n",
				name);
			break;
		default:
			pr_warn("ceph: Mount failed due to unknown key error %d: %s\n",
				key_err, name);
		}
		err = -EPERM;
		goto out;
	}

	ckey = ukey->payload.data[0];
	err = ceph_crypto_key_clone(dst, ckey);
	if (err)
		goto out_key;
	/* pass through, err is 0 */

out_key:
	key_put(ukey);
out:
	return err;
}
Ejemplo n.º 15
0
/*
 * Call out to userspace for key construction.
 *
 * Program failure is ignored in favour of key status.
 */
static int construct_key(struct key *key, const void *callout_info,
			 size_t callout_len, void *aux,
			 struct key *dest_keyring)
{
	struct key_construction *cons;
	request_key_actor_t actor;
	struct key *authkey;
	int ret;

	kenter("%d,%p,%zu,%p", key->serial, callout_info, callout_len, aux);

	cons = kmalloc(sizeof(*cons), GFP_KERNEL);
	if (!cons)
		return -ENOMEM;

	/* allocate an authorisation key */
	authkey = request_key_auth_new(key, callout_info, callout_len,
				       dest_keyring);
	if (IS_ERR(authkey)) {
		kfree(cons);
		ret = PTR_ERR(authkey);
		authkey = NULL;
	} else {
		cons->authkey = key_get(authkey);
		cons->key = key_get(key);

		/* make the call */
		actor = call_sbin_request_key;
		if (key->type->request_key)
			actor = key->type->request_key;

		ret = actor(cons, "create", aux);

		/* check that the actor called complete_request_key() prior to
		 * returning an error */
		WARN_ON(ret < 0 &&
			!test_bit(KEY_FLAG_REVOKED, &authkey->flags));
		key_put(authkey);
	}

	kleave(" = %d", ret);
	return ret;
}
Ejemplo n.º 16
0
/*
 * install a session keyring, discarding the old one
 * - if a keyring is not supplied, an empty one is invented
 */
static int install_session_keyring(struct task_struct *tsk,
				   struct key *keyring)
{
	unsigned long flags;
	struct key *old;
	char buf[20];

	might_sleep();

	/* create an empty session keyring */
	if (!keyring) {
		sprintf(buf, "_ses.%u", tsk->tgid);

		flags = KEY_ALLOC_QUOTA_OVERRUN;
		if (tsk->signal->session_keyring)
			flags = KEY_ALLOC_IN_QUOTA;

		keyring = keyring_alloc(buf, tsk->uid, tsk->gid, tsk,
					flags, NULL);
		if (IS_ERR(keyring))
			return PTR_ERR(keyring);
	}
	else {
		atomic_inc(&keyring->usage);
	}

	/* install the keyring */
	spin_lock_irq(&tsk->sighand->siglock);
	old = tsk->signal->session_keyring;
	rcu_assign_pointer(tsk->signal->session_keyring, keyring);
	spin_unlock_irq(&tsk->sighand->siglock);

	/* we're using RCU on the pointer, but there's no point synchronising
	 * on it if it didn't previously point to anything */
	if (old) {
		synchronize_rcu();
		key_put(old);
	}

	return 0;

} /* end install_session_keyring() */
Ejemplo n.º 17
0
/**
 * request_key_with_auxdata - Request a key with auxiliary data for the upcaller
 * @type: The type of key we want.
 * @description: The searchable description of the key.
 * @callout_info: The data to pass to the instantiation upcall (or NULL).
 * @callout_len: The length of callout_info.
 * @aux: Auxiliary data for the upcall.
 *
 * As for request_key_and_link() except that it does not add the returned key
 * to a keyring if found and new keys are always allocated in the user's quota.
 *
 * Furthermore, it then works as wait_for_key_construction() to wait for the
 * completion of keys undergoing construction with a non-interruptible wait.
 */
struct key *request_key_with_auxdata(struct key_type *type,
				     const char *description,
				     const void *callout_info,
				     size_t callout_len,
				     void *aux)
{
	struct key *key;
	int ret;

	key = request_key_and_link(type, description, callout_info, callout_len,
				   aux, NULL, KEY_ALLOC_IN_QUOTA);
	if (!IS_ERR(key)) {
		ret = wait_for_key_construction(key, false);
		if (ret < 0) {
			key_put(key);
			return ERR_PTR(ret);
		}
	}
	return key;
}
Ejemplo n.º 18
0
Archivo: dh.c Proyecto: krzk/linux
static ssize_t dh_data_from_key(key_serial_t keyid, void **data)
{
	struct key *key;
	key_ref_t key_ref;
	long status;
	ssize_t ret;

	key_ref = lookup_user_key(keyid, 0, KEY_NEED_READ);
	if (IS_ERR(key_ref)) {
		ret = -ENOKEY;
		goto error;
	}

	key = key_ref_to_ptr(key_ref);

	ret = -EOPNOTSUPP;
	if (key->type == &key_type_user) {
		down_read(&key->sem);
		status = key_validate(key);
		if (status == 0) {
			const struct user_key_payload *payload;
			uint8_t *duplicate;

			payload = user_key_payload_locked(key);

			duplicate = kmemdup(payload->data, payload->datalen,
					    GFP_KERNEL);
			if (duplicate) {
				*data = duplicate;
				ret = payload->datalen;
			} else {
				ret = -ENOMEM;
			}
		}
		up_read(&key->sem);
	}

	key_put(key);
error:
	return ret;
}
Ejemplo n.º 19
0
static int afs_readpage(struct file *file, struct page *page)
{
	struct key *key;
	int ret;

	if (file) {
		key = file->private_data;
		ASSERT(key != NULL);
		ret = afs_page_filler(key, page);
	} else {
		struct inode *inode = page->mapping->host;
		key = afs_request_key(AFS_FS_S(inode->i_sb)->volume->cell);
		if (IS_ERR(key)) {
			ret = PTR_ERR(key);
		} else {
			ret = afs_page_filler(key, page);
			key_put(key);
		}
	}
	return ret;
}
Ejemplo n.º 20
0
Archivo: inode.c Proyecto: 020gzh/linux
/*
 * set the attributes of an inode
 */
int afs_setattr(struct dentry *dentry, struct iattr *attr)
{
	struct afs_vnode *vnode = AFS_FS_I(d_inode(dentry));
	struct key *key;
	int ret;

	_enter("{%x:%u},{n=%pd},%x",
	       vnode->fid.vid, vnode->fid.vnode, dentry,
	       attr->ia_valid);

	if (!(attr->ia_valid & (ATTR_SIZE | ATTR_MODE | ATTR_UID | ATTR_GID |
				ATTR_MTIME))) {
		_leave(" = 0 [unsupported]");
		return 0;
	}

	/* flush any dirty data outstanding on a regular file */
	if (S_ISREG(vnode->vfs_inode.i_mode)) {
		filemap_write_and_wait(vnode->vfs_inode.i_mapping);
		afs_writeback_all(vnode);
	}

	if (attr->ia_valid & ATTR_FILE) {
		key = attr->ia_file->private_data;
	} else {
		key = afs_request_key(vnode->volume->cell);
		if (IS_ERR(key)) {
			ret = PTR_ERR(key);
			goto error;
		}
	}

	ret = afs_vnode_setattr(vnode, key, attr);
	if (!(attr->ia_valid & ATTR_FILE))
		key_put(key);

error:
	_leave(" = %d", ret);
	return ret;
}
Ejemplo n.º 21
0
int nfs_idmap_init(void)
{
    struct cred *cred;
    struct key *keyring;
    int ret = 0;

    ;

    cred = prepare_kernel_cred(NULL);
    if (!cred)
        return -ENOMEM;

    keyring = key_alloc(&key_type_keyring, ".id_resolver", 0, 0, cred,
                        (KEY_POS_ALL & ~KEY_POS_SETATTR) |
                        KEY_USR_VIEW | KEY_USR_READ,
                        KEY_ALLOC_NOT_IN_QUOTA);
    if (IS_ERR(keyring)) {
        ret = PTR_ERR(keyring);
        goto failed_put_cred;
    }

    ret = key_instantiate_and_link(keyring, NULL, 0, NULL, NULL);
    if (ret < 0)
        goto failed_put_key;

    ret = register_key_type(&key_type_id_resolver);
    if (ret < 0)
        goto failed_put_key;

    cred->thread_keyring = keyring;
    cred->jit_keyring = KEY_REQKEY_DEFL_THREAD_KEYRING;
    id_resolver_cache = cred;
    return 0;

failed_put_key:
    key_put(keyring);
failed_put_cred:
    put_cred(cred);
    return ret;
}
Ejemplo n.º 22
0
int asymmetric_verify(struct key *keyring, const char *sig,
		      int siglen, const char *data, int datalen)
{
	struct public_key_signature pks;
	struct signature_v2_hdr *hdr = (struct signature_v2_hdr *)sig;
	struct key *key;
	int ret = -ENOMEM;

	if (siglen <= sizeof(*hdr))
		return -EBADMSG;

	siglen -= sizeof(*hdr);

	if (siglen != __be16_to_cpu(hdr->sig_size))
		return -EBADMSG;

	if (hdr->hash_algo >= PKEY_HASH__LAST)
		return -ENOPKG;

	key = request_asymmetric_key(keyring, __be32_to_cpu(hdr->keyid));
	if (IS_ERR(key))
		return PTR_ERR(key);

	memset(&pks, 0, sizeof(pks));

	pks.pkey_hash_algo = hdr->hash_algo;
	pks.digest = (u8 *)data;
	pks.digest_size = datalen;
	pks.nr_mpi = 1;
	pks.rsa.s = mpi_read_raw_data(hdr->sig, siglen);

	if (pks.rsa.s)
		ret = verify_signature(key, &pks);

	mpi_free(pks.rsa.s);
	key_put(key);
	pr_debug("%s() = %d\n", __func__, ret);
	return ret;
}
Ejemplo n.º 23
0
/*
 * deal with the UID changing
 */
void switch_uid_keyring(struct user_struct *new_user)
{
#if 0 /* do nothing for now */
	struct key *old;

	/* switch to the new user's session keyring if we were running under
	 * root's default session keyring */
	if (new_user->uid != 0 &&
	    current->session_keyring == &root_session_keyring
	    ) {
		atomic_inc(&new_user->session_keyring->usage);

		task_lock(current);
		old = current->session_keyring;
		current->session_keyring = new_user->session_keyring;
		task_unlock(current);

		key_put(old);
	}
#endif

} /* end switch_uid_keyring() */
Ejemplo n.º 24
0
/*
 * Check the new certificate against the ones in the trust keyring.  If one of
 * those is the signing key and validates the new certificate, then mark the
 * new certificate as being trusted.
 *
 * Return 0 if the new certificate was successfully validated, 1 if we couldn't
 * find a matching parent certificate in the trusted list and an error if there
 * is a matching certificate but the signature check fails.
 */
static int x509_validate_trust(struct x509_certificate *cert,
			       struct key *trust_keyring)
{
	struct key *key;
	int ret = 1;

	if (!trust_keyring)
		return -EOPNOTSUPP;

	if (ca_keyid && !asymmetric_key_id_partial(cert->akid_skid, ca_keyid))
		return -EPERM;

	key = x509_request_asymmetric_key(trust_keyring, cert->akid_skid,
					  false);
	if (!IS_ERR(key))  {
		if (!use_builtin_keys
		    || test_bit(KEY_FLAG_BUILTIN, &key->flags))
			ret = x509_check_signature(key->payload.data, cert);
		key_put(key);
	}
	return ret;
}
Ejemplo n.º 25
0
/*
 * allocate the keyrings to be associated with a UID
 */
int alloc_uid_keyring(struct user_struct *user,
		      struct task_struct *ctx)
{
	struct key *uid_keyring, *session_keyring;
	char buf[20];
	int ret;

	/* concoct a default session keyring */
	sprintf(buf, "_uid_ses.%u", user->uid);

	session_keyring = keyring_alloc(buf, user->uid, (gid_t) -1, ctx,
					KEY_ALLOC_IN_QUOTA, NULL);
	if (IS_ERR(session_keyring)) {
		ret = PTR_ERR(session_keyring);
		goto error;
	}

	/* and a UID specific keyring, pointed to by the default session
	 * keyring */
	sprintf(buf, "_uid.%u", user->uid);

	uid_keyring = keyring_alloc(buf, user->uid, (gid_t) -1, ctx,
				    KEY_ALLOC_IN_QUOTA, session_keyring);
	if (IS_ERR(uid_keyring)) {
		key_put(session_keyring);
		ret = PTR_ERR(uid_keyring);
		goto error;
	}

	/* install the keyrings */
	user->uid_keyring = uid_keyring;
	user->session_keyring = session_keyring;
	ret = 0;

error:
	return ret;

} /* end alloc_uid_keyring() */
Ejemplo n.º 26
0
/*
 * negatively instantiate the key with the given timeout (in seconds), and, if
 * one is given, link the key into the keyring
 */
long keyctl_negate_key(key_serial_t id, unsigned timeout, key_serial_t ringid)
{
	struct request_key_auth *rka;
	struct key *instkey;
	key_ref_t keyring_ref;
	long ret;

	/* find the instantiation authorisation key */
	instkey = key_get_instantiation_authkey(id);
	if (IS_ERR(instkey)) {
		ret = PTR_ERR(instkey);
		goto error;
	}

	rka = instkey->payload.data;

	/* find the destination keyring if present (which must also be
	 * writable) */
	keyring_ref = NULL;
	if (ringid) {
		keyring_ref = lookup_user_key(NULL, ringid, 1, 0, KEY_WRITE);
		if (IS_ERR(keyring_ref)) {
			ret = PTR_ERR(keyring_ref);
			goto error2;
		}
	}

	/* instantiate the key and link it into a keyring */
	ret = key_negate_and_link(rka->target_key, timeout,
				  key_ref_to_ptr(keyring_ref), instkey);

	key_ref_put(keyring_ref);
 error2:
	key_put(instkey);
 error:
	return ret;

} /* end keyctl_negate_key() */
/**
 * restrict_link_by_signature - Restrict additions to a ring of public keys
 * @trust_keyring: A ring of keys that can be used to vouch for the new cert.
 * @type: The type of key being added.
 * @payload: The payload of the new key.
 *
 * Check the new certificate against the ones in the trust keyring.  If one of
 * those is the signing key and validates the new certificate, then mark the
 * new certificate as being trusted.
 *
 * Returns 0 if the new certificate was accepted, -ENOKEY if we couldn't find a
 * matching parent certificate in the trusted list, -EKEYREJECTED if the
 * signature check fails or the key is blacklisted and some other error if
 * there is a matching certificate but the signature check cannot be performed.
 */
int restrict_link_by_signature(struct key *trust_keyring,
			       const struct key_type *type,
			       const union key_payload *payload)
{
	const struct public_key_signature *sig;
	struct key *key;
	int ret;

	pr_devel("==>%s()\n", __func__);

	if (!trust_keyring)
		return -ENOKEY;

	if (type != &key_type_asymmetric)
		return -EOPNOTSUPP;

	sig = payload->data[asym_auth];
	if (!sig->auth_ids[0] && !sig->auth_ids[1])
		return -ENOKEY;

	if (ca_keyid && !asymmetric_key_id_partial(sig->auth_ids[1], ca_keyid))
		return -EPERM;

	/* See if we have a key that signed this one. */
	key = find_asymmetric_key(trust_keyring,
				  sig->auth_ids[0], sig->auth_ids[1],
				  false);
	if (IS_ERR(key))
		return -ENOKEY;

	if (use_builtin_keys && !test_bit(KEY_FLAG_BUILTIN, &key->flags))
		ret = -ENOKEY;
	else
		ret = verify_signature(key, sig);
	key_put(key);
	return ret;
}
Ejemplo n.º 28
0
/*
 * Get the key from the TPM for the SHA1-HMAC
 */
int evm_init_key(void)
{
	struct key *evm_key;
	struct encrypted_key_payload *ekp;
	int rc = 0;

	evm_key = request_key(&key_type_encrypted, EVMKEY, NULL);
	if (IS_ERR(evm_key))
		return -ENOENT;

	down_read(&evm_key->sem);
	ekp = evm_key->payload.data;
	if (ekp->decrypted_datalen > MAX_KEY_SIZE) {
		rc = -EINVAL;
		goto out;
	}
	memcpy(evmkey, ekp->decrypted_data, ekp->decrypted_datalen);
out:
	/* burn the original key contents */
	memset(ekp->decrypted_data, 0, ekp->decrypted_datalen);
	up_read(&evm_key->sem);
	key_put(evm_key);
	return rc;
}
Ejemplo n.º 29
0
/*
 * This is the task which runs the usermode application
 */
int
__exec_usermodehelper(char *path, char **argv, char **envp, struct key *ring)
{
	struct key *new_session, *old_session;
	int retval;

	/* Unblock all signals and set the session keyring. */
	new_session = key_get(ring);
	flush_signals(current);
	spin_lock_irq(&current->sighand->siglock);
	old_session = __install_session_keyring(current, new_session);
	flush_signal_handlers(current, 1);
	sigemptyset(&current->blocked);
	recalc_sigpending();
	spin_unlock_irq(&current->sighand->siglock);

	key_put(old_session);

	retval = -EPERM;
	if (current->fs->root)
		retval = execve(path, argv, envp);

	return retval;
}
Ejemplo n.º 30
0
/* Resolves server name to ip address.
 * input:
 * 	unc - server UNC
 * output:
 * 	*ip_addr - pointer to server ip, caller responcible for freeing it.
 * return 0 on success
 */
int
dns_resolve_server_name_to_ip(const char *unc, char **ip_addr)
{
	const struct cred *saved_cred;
	int rc = -EAGAIN;
	struct key *rkey = ERR_PTR(-EAGAIN);
	char *name;
	char *data = NULL;
	int len;

	if (!ip_addr || !unc)
		return -EINVAL;

	/* search for server name delimiter */
	len = strlen(unc);
	if (len < 3) {
		cFYI(1, ("%s: unc is too short: %s", __func__, unc));
		return -EINVAL;
	}
	len -= 2;
	name = memchr(unc+2, '\\', len);
	if (!name) {
		cFYI(1, ("%s: probably server name is whole unc: %s",
					__func__, unc));
	} else {
		len = (name - unc) - 2/* leading // */;
	}

	name = kmalloc(len+1, GFP_KERNEL);
	if (!name) {
		rc = -ENOMEM;
		return rc;
	}
	memcpy(name, unc+2, len);
	name[len] = 0;

	if (is_ip(name)) {
		cFYI(1, ("%s: it is IP, skipping dns upcall: %s",
					__func__, name));
		data = name;
		goto skip_upcall;
	}

	saved_cred = override_creds(dns_resolver_cache);
	rkey = request_key(&key_type_dns_resolver, name, "");
	revert_creds(saved_cred);
	if (!IS_ERR(rkey)) {
		if (!(rkey->perm & KEY_USR_VIEW)) {
			down_read(&rkey->sem);
			rkey->perm |= KEY_USR_VIEW;
			up_read(&rkey->sem);
		}
		len = rkey->type_data.x[0];
		data = rkey->payload.data;
	} else {
		cERROR(1, ("%s: unable to resolve: %s", __func__, name));
		goto out;
	}

skip_upcall:
	if (data) {
		*ip_addr = kmalloc(len + 1, GFP_KERNEL);
		if (*ip_addr) {
			memcpy(*ip_addr, data, len + 1);
			if (!IS_ERR(rkey))
				cFYI(1, ("%s: resolved: %s to %s", __func__,
							name,
							*ip_addr
					));
			rc = 0;
		} else {
			rc = -ENOMEM;
		}
		if (!IS_ERR(rkey))
			key_put(rkey);
	}

out:
	kfree(name);
	return rc;
}