Ejemplo n.º 1
1
static void gp2a_work_func_prox(struct work_struct *work)
{
	struct gp2a_data *gp2a = container_of(work, struct gp2a_data, work_prox);
	
	unsigned char value;
	unsigned char int_val=REGS_PROX;
	unsigned char vout=0;

	/* Read VO & INT Clear */
	
	gprintk("[PROXIMITY] %s : \n",__func__);

	if(INT_CLEAR)
	{
		int_val = REGS_PROX | (1 <<7);
	}
	opt_i2c_read((u8)(int_val),&value,1);
	vout = value & 0x01;
	printk(KERN_INFO "[PROXIMITY] value = %d \n",vout);



	/* Report proximity information */
	proximity_value = vout;

	
	if(proximity_value ==0)
	{
		timeB = ktime_get();
		
		timeSub = ktime_sub(timeB,timeA);
		printk(KERN_INFO "[PROXIMITY] timeSub sec = %d, timeSub nsec = %d \n",timeSub.tv.sec,timeSub.tv.nsec);
		
		if (timeSub.tv.sec>=3 )
		{
		    wake_lock_timeout(&prx_wake_lock,HZ/2);
			printk(KERN_INFO "[PROXIMITY] wake_lock_timeout : HZ/2 \n");
		}
		else
			printk(KERN_INFO "[PROXIMITY] wake_lock is already set \n");

	}

	if(USE_INPUT_DEVICE)
	{
    	input_report_abs(gp2a->input_dev,ABS_DISTANCE,(int)vout);
    	input_sync(gp2a->input_dev);
	
	
		mdelay(1);
	}

	/* Write HYS Register */

	if(!vout)
	{
		value = 0x40;


	}
	else
	{
		value = 0x23;

	}
	opt_i2c_write((u8)(REGS_HYS),&value);

	/* Forcing vout terminal to go high */

	value = 0x18;
	opt_i2c_write((u8)(REGS_CON),&value);


	/* enable INT */

	enable_irq(gp2a->irq);

	/* enabling VOUT terminal in nomal operation */

	value = 0x00;

	opt_i2c_write((u8)(REGS_CON),&value);


}
Ejemplo n.º 2
0
/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int i, retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	expires_next.tv64 = KTIME_MAX;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		struct hrtimer_clock_base *base;
		struct timerqueue_node *node;
		ktime_t basenow;

		if (!(cpu_base->active_bases & (1 << i)))
			continue;

		base = cpu_base->clock_base + i;
		basenow = ktime_add(now, base->offset);

		while ((node = timerqueue_getnext(&base->active))) {
			struct hrtimer *timer;

			timer = container_of(node, struct hrtimer, node);

			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
				ktime_t expires;

				expires = ktime_sub(hrtimer_get_expires(timer),
						    base->offset);
				if (expires.tv64 < 0)
					expires.tv64 = KTIME_MAX;
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

			__run_hrtimer(timer, &basenow);
		}
	}

	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
	cpu_base->expires_next = expires_next;
	raw_spin_unlock(&cpu_base->lock);

	/* Reprogramming necessary ? */
	if (expires_next.tv64 == KTIME_MAX ||
	    !tick_program_event(expires_next, 0)) {
		cpu_base->hang_detected = 0;
		return;
	}

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
	 */
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
	raw_spin_unlock(&cpu_base->lock);
	delta = ktime_sub(now, entry_time);
	if (delta.tv64 > cpu_base->max_hang_time.tv64)
		cpu_base->max_hang_time = delta;
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
	if (delta.tv64 > 100 * NSEC_PER_MSEC)
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
}
Ejemplo n.º 3
0
static int mmc_queue_thread(void *d)
{
	struct mmc_queue *mq = d;
	struct request_queue *q = mq->queue;
	struct request *req;

#ifdef CONFIG_MMC_PERF_PROFILING
	ktime_t start, diff;
	struct mmc_host *host = mq->card->host;
	unsigned long bytes_xfer;
#endif


	current->flags |= PF_MEMALLOC;

	down(&mq->thread_sem);
	do {
		req = NULL;	/* Must be set to NULL at each iteration */

		spin_lock_irq(q->queue_lock);
		set_current_state(TASK_INTERRUPTIBLE);
		if (!blk_queue_plugged(q))
			req = blk_fetch_request(q);
		mq->req = req;
		spin_unlock_irq(q->queue_lock);

		if (!req) {
			if (kthread_should_stop()) {
				set_current_state(TASK_RUNNING);
				break;
			}
			up(&mq->thread_sem);
			schedule();
			down(&mq->thread_sem);
			continue;
		}
		set_current_state(TASK_RUNNING);

#ifdef CONFIG_MMC_PERF_PROFILING
		bytes_xfer = blk_rq_bytes(req);
		if (rq_data_dir(req) == READ) {
			start = ktime_get();
			mq->issue_fn(mq, req);
			diff = ktime_sub(ktime_get(), start);
			host->perf.rbytes_mmcq += bytes_xfer;
			host->perf.rtime_mmcq =
				ktime_add(host->perf.rtime_mmcq, diff);
		} else {
			start = ktime_get();
			mq->issue_fn(mq, req);
			diff = ktime_sub(ktime_get(), start);
			host->perf.wbytes_mmcq += bytes_xfer;
			host->perf.wtime_mmcq =
				ktime_add(host->perf.wtime_mmcq, diff);
		}
#else
			mq->issue_fn(mq, req);
#endif
	} while (1);
	up(&mq->thread_sem);

	return 0;
}
Ejemplo n.º 4
0
/**
 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called either from the idle loop or from irq_exit() when an idle period was
 * just interrupted by an interrupt which did not cause a reschedule.
 */
void tick_nohz_stop_sched_tick(int inidle)
{
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags;
	struct tick_sched *ts;
	ktime_t last_update, expires, now;
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
	u64 time_delta;
	int cpu;

	local_irq_save(flags);

	cpu = smp_processor_id();
	ts = &per_cpu(tick_cpu_sched, cpu);

	/*
	 * Call to tick_nohz_start_idle stops the last_update_time from being
	 * updated. Thus, it must not be called in the event we are called from
	 * irq_exit() with the prior state different than idle.
	 */
	if (!inidle && !ts->inidle)
		goto end;

	/*
	 * Set ts->inidle unconditionally. Even if the system did not
	 * switch to NOHZ mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;

	now = tick_nohz_start_idle(cpu, ts);

	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
	}

	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
		goto end;

	if (need_resched())
		goto end;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

		if (ratelimit < 10) {
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
			       (unsigned int) local_softirq_pending());
			ratelimit++;
		}
		goto end;
	}

	ts->idle_calls++;
	/* Read jiffies and the time when jiffies were updated last */
	do {
		seq = read_seqbegin(&xtime_lock);
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
		time_delta = timekeeping_max_deferment();
	} while (read_seqretry(&xtime_lock, seq));

	if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
	    arch_needs_cpu(cpu)) {
		next_jiffies = last_jiffies + 1;
		delta_jiffies = 1;
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
	}
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
	if (!ts->tick_stopped && delta_jiffies == 1)
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
		 */
		if (cpu == tick_do_timer_cpu) {
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

		/*
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}

		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;

		if (delta_jiffies > 1)
			cpumask_set_cpu(cpu, nohz_cpu_mask);

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
			select_nohz_load_balancer(1);

			ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
			ts->tick_stopped = 1;
			ts->idle_jiffies = last_jiffies;
			rcu_enter_nohz();
		}

		ts->idle_sleeps++;

		/* Mark expires */
		ts->idle_expires = expires;

		/*
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
		 */
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
				      HRTIMER_MODE_ABS_PINNED);
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
		} else if (!tick_program_event(expires, 0))
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
		cpumask_clear_cpu(cpu, nohz_cpu_mask);
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
	ts->sleep_length = ktime_sub(dev->next_event, now);
end:
	local_irq_restore(flags);
}
Ejemplo n.º 5
0
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
	return ktime_sub(dev->next_event, ts->idle_entrytime);
}