Ejemplo n.º 1
0
/*
 * Process options: dcshift (double) type (amplitude, power, dB)
 */
static int sox_dcshift_getopts(sox_effect_t * effp, int argc, char **argv)
{
    priv_t * dcs = (priv_t *) effp->priv;
    dcs->dcshift = 1.0; /* default is no change */
    dcs->uselimiter = 0; /* default is no limiter */

  --argc, ++argv;
    if (argc < 1)
      return lsx_usage(effp);

    if (argc && (!sscanf(argv[0], "%lf", &dcs->dcshift)))
      return lsx_usage(effp);

    if (argc>1)
    {
        if (!sscanf(argv[1], "%lf", &dcs->limitergain))
          return lsx_usage(effp);

        dcs->uselimiter = 1; /* ok, we'll use it */
        /* The following equation is derived so that there is no
         * discontinuity in output amplitudes */
        /* and a SOX_SAMPLE_MAX input always maps to a SOX_SAMPLE_MAX output
         * when the limiter is activated. */
        /* (NOTE: There **WILL** be a discontinuity in the slope of the
         * output amplitudes when using the limiter.) */
        dcs->limiterthreshhold = SOX_SAMPLE_MAX * (1.0 - (fabs(dcs->dcshift) - dcs->limitergain));
    }

    return SOX_SUCCESS;
}
Ejemplo n.º 2
0
/*
 * Process options
 */
static int sox_trim_getopts(sox_effect_t * effp, int argc, char **argv)
{
    char *end;
    priv_t * trim = (priv_t *) effp->priv;
  --argc, ++argv;

    /* Do not know sample rate yet so hold off on completely parsing
     * time related strings.
     */
    switch (argc) {
        case 2:
            end = argv[1];
            if (*end == '=') {
                trim->end_is_absolute = sox_true;
                end++;
            } else trim->end_is_absolute = sox_false;
            trim->end_str = lsx_malloc(strlen(end)+1);
            strcpy(trim->end_str, end);
            /* Do a dummy parse to see if it will fail */
            if (lsx_parsesamples(0., trim->end_str, &trim->length, 't') == NULL)
              return lsx_usage(effp);
        case 1:
            trim->start_str = lsx_malloc(strlen(argv[0])+1);
            strcpy(trim->start_str,argv[0]);
            /* Do a dummy parse to see if it will fail */
            if (lsx_parsesamples(0., trim->start_str, &trim->start, 't') == NULL)
              return lsx_usage(effp);
            break;
        default:
            return lsx_usage(effp);

    }
    return (SOX_SUCCESS);
}
Ejemplo n.º 3
0
/*
 * Start processing
 */
static int sox_trim_start(sox_effect_t * effp)
{
    priv_t * trim = (priv_t *) effp->priv;

    if (lsx_parsesamples(effp->in_signal.rate, trim->start_str,
                         &trim->start, 't') == NULL)
        return lsx_usage(effp);
    /* Account for # of channels */
    trim->start *= effp->in_signal.channels;

    if (trim->length_str)
    {
        if (lsx_parsesamples(effp->in_signal.rate, trim->length_str,
                             &trim->length, 't') == NULL)
            return lsx_usage(effp);
    }
    else
        trim->length = 0;

    /* Account for # of channels */
    trim->length *= effp->in_signal.channels;

    trim->index = 0;
    trim->trimmed = 0;

    return (SOX_SUCCESS);
}
Ejemplo n.º 4
0
/*
 * Process options
 */
static int sox_trim_getopts(sox_effect_t * effp, int n, char **argv)
{
    priv_t * trim = (priv_t *) effp->priv;

    /* Do not know sample rate yet so hold off on completely parsing
     * time related strings.
     */
    switch (n) {
    case 2:
        trim->length_str = lsx_malloc(strlen(argv[1])+1);
        strcpy(trim->length_str,argv[1]);
        /* Do a dummy parse to see if it will fail */
        if (lsx_parsesamples(0., trim->length_str, &trim->length, 't') == NULL)
            return lsx_usage(effp);
    case 1:
        trim->start_str = lsx_malloc(strlen(argv[0])+1);
        strcpy(trim->start_str,argv[0]);
        /* Do a dummy parse to see if it will fail */
        if (lsx_parsesamples(0., trim->start_str, &trim->start, 't') == NULL)
            return lsx_usage(effp);
        break;
    default:
        return lsx_usage(effp);

    }
    return (SOX_SUCCESS);
}
Ejemplo n.º 5
0
/*
 * Process options
 */
static int getopts(sox_effect_t * effp, int argc, char **argv)
{
  priv_t * r = (priv_t *) effp->priv;
  char dummy;     /* To check for extraneous chars. */

  r->converter_type = SRC_SINC_BEST_QUALITY;

  if (argc) {
    if (!strcmp(argv[0], "-c0")) {
      r->converter_type = SRC_SINC_BEST_QUALITY;
      argc--; argv++;
    } else if (!strcmp(argv[0], "-c1")) {
      r->converter_type = SRC_SINC_MEDIUM_QUALITY;
      argc--; argv++;
    } else if (!strcmp(argv[0], "-c2")) {
      r->converter_type = SRC_SINC_FASTEST;
      argc--; argv++;
    } else if (!strcmp(argv[0], "-c3")) {
      r->converter_type = SRC_ZERO_ORDER_HOLD;
      argc--; argv++;
    } else if (!strcmp(argv[0], "-c4")) {
      r->converter_type = SRC_LINEAR;
      argc--; argv++;
    }
  }

  r->out_rate = HUGE_VAL;
  if (argc) {
    if (sscanf(*argv, "%lf %c", &r->out_rate, &dummy) != 1 || r->out_rate <= 0)
      return lsx_usage(effp);
    argc--; argv++;
  }

  return argc? lsx_usage(effp) : SOX_SUCCESS;
}
Ejemplo n.º 6
0
/*
 * Process options
 */
static int getopts(sox_effect_t * effp, int argc, char **argv)
{
    priv_t * mixer = (priv_t *) effp->priv;
    double* pans = &mixer->sources[0][0];
    int i;
  --argc, ++argv;

    for (i = 0;  i < 16;  i++)
        pans[i] = 0.0;
    mixer->mix = MIX_CENTER;
    mixer->num_pans = 0;

    /* Parse parameters.  Since we don't yet know the number of */
    /* input and output channels, we'll record the information for */
    /* later. */
    if (argc == 1) {
        if      (!strcmp(argv[0], "-l")) mixer->mix = 'l';
        else if (!strcmp(argv[0], "-r")) mixer->mix = 'r';
        else if (!strcmp(argv[0], "-f")) mixer->mix = 'f';
        else if (!strcmp(argv[0], "-b")) mixer->mix = 'b';
        else if (!strcmp(argv[0], "-1")) mixer->mix = '1';
        else if (!strcmp(argv[0], "-2")) mixer->mix = '2';
        else if (!strcmp(argv[0], "-3")) mixer->mix = '3';
        else if (!strcmp(argv[0], "-4")) mixer->mix = '4';
        else if (argv[0][0] == '-' && !isdigit((int)argv[0][1])
                && argv[0][1] != '.')
          return lsx_usage(effp);
        else {
            int commas;
            char *s;
            mixer->mix = MIX_SPECIFIED;
            pans[0] = atof(argv[0]);
            for (s = argv[0], commas = 0; *s; ++s) {
                if (*s == ',') {
                    ++commas;
                    if (commas >= 16) {
                        lsx_fail("mixer can only take up to 16 pan values");
                        return (SOX_EOF);
                    }
                    pans[commas] = atof(s+1);
                }
            }
            mixer->num_pans = commas + 1;
        }
    }
    else if (argc == 0) {
        mixer->mix = MIX_CENTER;
    }
    else
      return lsx_usage(effp);

    return (SOX_SUCCESS);
}
Ejemplo n.º 7
0
static int sox_silence_start(sox_effect_t * effp)
{
    priv_t *silence = (priv_t *)effp->priv;
    uint64_t temp;

    /* When you want to remove silence, small window sizes are
     * better or else RMS will look like non-silence at
     * aburpt changes from load to silence.
     */
    silence->window_size = (effp->in_signal.rate / 50) * 
        effp->in_signal.channels;
    silence->window = lsx_malloc(silence->window_size * sizeof(double));

    clear_rms(effp);

    /* Now that we know sample rate, reparse duration. */
    if (silence->start)
    {
        if (lsx_parsesamples(effp->in_signal.rate, silence->start_duration_str,
                             &temp, 's') == NULL)
            return lsx_usage(effp);
        silence->start_duration = temp * effp->in_signal.channels;
    }
    if (silence->stop)
    {
        if (lsx_parsesamples(effp->in_signal.rate,silence->stop_duration_str,
                             &temp,'s') == NULL)
            return lsx_usage(effp);
        silence->stop_duration = temp * effp->in_signal.channels;
    }

    if (silence->start)
        silence->mode = SILENCE_TRIM;
    else
        silence->mode = SILENCE_COPY;

    silence->start_holdoff = lsx_malloc(sizeof(sox_sample_t)*silence->start_duration);
    silence->start_holdoff_offset = 0;
    silence->start_holdoff_end = 0;
    silence->start_found_periods = 0;

    silence->stop_holdoff = lsx_malloc(sizeof(sox_sample_t)*silence->stop_duration);
    silence->stop_holdoff_offset = 0;
    silence->stop_holdoff_end = 0;
    silence->stop_found_periods = 0;

    effp->out_signal.length = SOX_UNKNOWN_LEN; /* depends on input data */

    return(SOX_SUCCESS);
}
Ejemplo n.º 8
0
int lsx_biquad_getopts(sox_effect_t * effp, int argc, char **argv,
    int min_args, int max_args, int fc_pos, int width_pos, int gain_pos,
    char const * allowed_width_types, filter_t filter_type)
{
  priv_t * p = (priv_t *)effp->priv;
  char width_type = *allowed_width_types;
  char dummy, * dummy_p;     /* To check for extraneous chars. */
  --argc, ++argv;

  p->filter_type = filter_type;
  if (argc < min_args || argc > max_args ||
      (argc > fc_pos    && ((p->fc = lsx_parse_frequency(argv[fc_pos], &dummy_p)) <= 0 || *dummy_p)) ||
      (argc > width_pos && ((unsigned)(sscanf(argv[width_pos], "%lf%c %c", &p->width, &width_type, &dummy)-1) > 1 || p->width <= 0)) ||
      (argc > gain_pos  && sscanf(argv[gain_pos], "%lf %c", &p->gain, &dummy) != 1) ||
      !strchr(allowed_width_types, width_type) || (width_type == 's' && p->width > 1))
    return lsx_usage(effp);
  p->width_type = strchr(all_width_types, width_type) - all_width_types;
  if (p->width_type >= strlen(all_width_types))
    p->width_type = 0;
  if (p->width_type == width_bw_kHz) {
    p->width *= 1000;
    p->width_type = width_bw_Hz;
  }
  return SOX_SUCCESS;
}
Ejemplo n.º 9
0
/*
 * Process options
 */
static int sox_echo_getopts(sox_effect_t * effp, int argc, char **argv)
{
        priv_t * echo = (priv_t *) effp->priv;
        int i;

  --argc, ++argv;
        echo->num_delays = 0;

        if ((argc < 4) || (argc % 2))
          return lsx_usage(effp);

        i = 0;
        sscanf(argv[i++], "%f", &echo->in_gain);
        sscanf(argv[i++], "%f", &echo->out_gain);
        while (i < argc) {
                if ( echo->num_delays >= MAX_ECHOS )
                        lsx_fail("echo: to many delays, use less than %i delays",
                                MAX_ECHOS);
                /* Linux bug and it's cleaner. */
                sscanf(argv[i++], "%f", &echo->delay[echo->num_delays]);
                sscanf(argv[i++], "%f", &echo->decay[echo->num_delays]);
                echo->num_delays++;
        }
        return (SOX_SUCCESS);
}
Ejemplo n.º 10
0
static int create(sox_effect_t * effp, int argc, char * * argv)
{
  priv_t * p = (priv_t *)effp->priv;
  p->factor = 2;
  --argc, ++argv;
  do {NUMERIC_PARAMETER(factor, 1, 256)} while (0);
  return argc? lsx_usage(effp) : SOX_SUCCESS;
}
Ejemplo n.º 11
0
static int getopts(sox_effect_t * effp, int argc, char **argv)
{
  priv_t * p = (priv_t *)effp->priv;
  int c;

  p->time_constant = .05;
  p->scale = 1;
  while ((c = lsx_getopt(argc, argv, "+x:b:w:s:")) != -1) switch (c) {
    GETOPT_NUMERIC('x', hex_bits      ,  2 , 32)
    GETOPT_NUMERIC('b', scale_bits    ,  2 , 32)
    GETOPT_NUMERIC('w', time_constant ,  .01 , 10)
    GETOPT_NUMERIC('s', scale         ,  -99, 99)
    default: lsx_fail("invalid option `-%c'", optopt); return lsx_usage(effp);
  }
  if (p->hex_bits)
    p->scale_bits = p->hex_bits;
  return lsx_optind != argc? lsx_usage(effp) : SOX_SUCCESS;
}
Ejemplo n.º 12
0
Archivo: pad.c Proyecto: damien78/sox
static int parse(sox_effect_t * effp, char * * argv, sox_rate_t rate)
{
  priv_t * p = (priv_t *)effp->priv;
  char const * next;
  unsigned i;
  uint64_t last_seen = 0;
  const uint64_t in_length = argv ? 0 :
    (effp->in_signal.length != SOX_UNKNOWN_LEN ?
     effp->in_signal.length / effp->in_signal.channels : SOX_UNKNOWN_LEN);
  uint64_t pad_len = 0;
  uint64_t *arg;
  char *str;

  for (i = 0; i < p->npads; ++i) {
    if (argv) /* 1st parse only */
      p->pads[i].str = lsx_strdup(argv[i]);
    str = p->pads[i].str;
    if (*str == '%') {
      str++;
      arg = &p->pads[i].align;
    } else {
      arg = &p->pads[i].pad;
    }
    next = lsx_parsesamples(rate, str, arg, 't');
    if (next == NULL) break;
    if (*next == '\0')
      p->pads[i].start = i? in_length : 0;
    else {
      if (*next != '@') break;
      next = lsx_parseposition(rate, next+1, argv ? NULL : &p->pads[i].start,
               last_seen, in_length, '=');
      if (next == NULL || *next != '\0') break;
      last_seen = p->pads[i].start;
      if (p->pads[i].start == SOX_UNKNOWN_LEN)
        p->pads[i].start = UINT64_MAX; /* currently the same value, but ... */
    }
    if (!argv) {
      if (p->pads[i].align && p->pads[i].start != UINT64_MAX) {
        p->pads[i].pad =
          pad_align(p->pads[i].start + pad_len, p->pads[i].align);
        p->pads[i].align = 0;
      }

      pad_len += p->pads[i].pad;

      /* Do this check only during the second pass when the actual
         sample rate is known, otherwise it might fail on legal
         commands like
           pad [email protected] 1@30000s
         if the rate is, e.g., 48k. */
      if (i > 0 && p->pads[i].start <= p->pads[i-1].start) break;
    }
  }
  if (i < p->npads)
    return lsx_usage(effp);
  return SOX_SUCCESS;
}
Ejemplo n.º 13
0
static int create(sox_effect_t * effp, int argc, char * * argv)
{
  priv_t             * p = (priv_t *)effp->priv;
  double             * d = &p->b0;
  char               c;

  --argc, ++argv;
  if (argc == 6)
    for (; argc && sscanf(*argv, "%lf%c", d, &c) == 1; --argc, ++argv, ++d);
  return argc? lsx_usage(effp) : SOX_SUCCESS;
}
Ejemplo n.º 14
0
static int create(sox_effect_t * effp, int argc, char * * argv)
{
  priv_t * p = (priv_t *)effp->priv;
  dft_filter_priv_t * b = &p->base;
  char * parse_ptr = argv[0];
  int i = 0;

  b->filter_ptr = &b->filter;
  p->phase = 50;
  p->beta = -1;
  while (i < 2) {
    int c = 1;
    while (c && (c = lsx_getopt(argc, argv, "+ra:b:p:MILt:n:")) != -1) switch (c) {
      char * parse_ptr;
      case 'r': p->round = sox_true; break;
      GETOPT_NUMERIC('a', att,  40 , 180)
      GETOPT_NUMERIC('b', beta,  0 , 256)
      GETOPT_NUMERIC('p', phase, 0, 100)
      case 'M': p->phase =  0; break;
      case 'I': p->phase = 25; break;
      case 'L': p->phase = 50; break;
      GETOPT_NUMERIC('n', num_taps[1], 11, 32767)
      case 't': p->tbw1 = lsx_parse_frequency(lsx_optarg, &parse_ptr);
        if (p->tbw1 < 1 || *parse_ptr) return lsx_usage(effp);
        break;
      default: c = 0;
    }
    if ((p->att && p->beta >= 0) || (p->tbw1 && p->num_taps[1]))
      return lsx_usage(effp);
    if (!i || !p->Fc1)
      p->tbw0 = p->tbw1, p->num_taps[0] = p->num_taps[1];
    if (!i++ && lsx_optind < argc) {
      if (*(parse_ptr = argv[lsx_optind++]) != '-')
        p->Fc0 = lsx_parse_frequency(parse_ptr, &parse_ptr);
      if (*parse_ptr == '-')
        p->Fc1 = lsx_parse_frequency(parse_ptr + 1, &parse_ptr);
    }
  }
  return lsx_optind != argc || p->Fc0 < 0 || p->Fc1 < 0 || *parse_ptr ?
      lsx_usage(effp) : SOX_SUCCESS;
}
Ejemplo n.º 15
0
Archivo: contrast.c Proyecto: vkeep/sox
static int create(sox_effect_t * effp, int argc, char * * argv)
{
    priv_t * p = (priv_t *)effp->priv;
    p->contrast = 75;
    --argc, ++argv;
    do {
        NUMERIC_PARAMETER(contrast, 0, 100)
    }
    while (0);
    p->contrast /= 750; /* shift range to 0 to 0.1333, default 0.1 */
    return argc? lsx_usage(effp) : SOX_SUCCESS;
}
Ejemplo n.º 16
0
/*
 * Process options
 */
static int sox_pan_getopts(sox_effect_t * effp, int argc, char **argv)
{
    priv_t * pan = (priv_t *) effp->priv;
  --argc, ++argv;

    pan->direction = 0.0; /* default is no change */

    if (argc && (!sscanf(argv[0], "%lf", &pan->direction) ||
              pan->direction < -1.0 || pan->direction > 1.0))
      return lsx_usage(effp);

    return SOX_SUCCESS;
}
Ejemplo n.º 17
0
/*
 * Start processing
 */
static int sox_trim_start(sox_effect_t * effp)
{
    priv_t * trim = (priv_t *) effp->priv;

    if (lsx_parsesamples(effp->in_signal.rate, trim->start_str,
                        &trim->start, 't') == NULL)
      return lsx_usage(effp);

    if (trim->end_str)
    {
        if (lsx_parsesamples(effp->in_signal.rate, trim->end_str,
                    &trim->length, 't') == NULL)
          return lsx_usage(effp);
        if (trim->end_is_absolute) {
            if (trim->length < trim->start) {
                lsx_warn("end earlier than start");
                trim->length = 0;
                  /* with trim->end_str != NULL, this really means zero */
            } else
                trim->length -= trim->start;
        }
    }
    else
        trim->length = 0;
          /* with trim->end_str == NULL, this means indefinite length */

    lsx_debug("start at %lus, length %lu", trim->start, trim->length);

    /* Account for # of channels */
    trim->start *= effp->in_signal.channels;
    trim->length *= effp->in_signal.channels;

    trim->index = 0;
    trim->trimmed = 0;

    effp->out_signal.length = trim->length;
    return (SOX_SUCCESS);
}
Ejemplo n.º 18
0
static int parse(sox_effect_t * effp, char * * argv, sox_rate_t rate)
{
  priv_t * p = (priv_t *)effp->priv;
  char const * s, * q;
  int i;

  for (i = p->argc - 1; i == 0 || i == 1; --i) {
    if (argv) /* 1st parse only */
      p->pos[i].str = lsx_strdup(argv[i]);
    s = p->pos[i].str;
    if (strchr("+-" + 1 - i, *s))
      p->pos[i].flag = *s++;
    if (!(q = lsx_parsesamples(rate, s, &p->pos[i].at, 't')) || *q)
      break;
  }
  return i >= 0 ? lsx_usage(effp) : SOX_SUCCESS;
}
Ejemplo n.º 19
0
static int parse(sox_effect_t * effp, char **argv, sox_rate_t rate)
{
  priv_t *p = (priv_t *) effp->priv;
  size_t i;
  char const *next;
  uint64_t last_seen = 0;
  const uint64_t in_length = argv ? 0 :
    (effp->in_signal.length != SOX_UNKNOWN_LEN ?
     effp->in_signal.length / effp->in_signal.channels : SOX_UNKNOWN_LEN);

  for (i = 0; i < p->nbends; ++i) {
    if (argv)   /* 1st parse only */
      p->bends[i].str = lsx_strdup(argv[i]);

    next = lsx_parseposition(rate, p->bends[i].str,
             argv ? NULL : &p->bends[i].start, last_seen, in_length, '+');
    last_seen = p->bends[i].start;
    if (next == NULL || *next != ',')
      break;

    p->bends[i].cents = strtod(next + 1, (char **)&next);
    if (p->bends[i].cents == 0 || *next != ',')
      break;

    next = lsx_parseposition(rate, next + 1,
             argv ? NULL : &p->bends[i].duration, last_seen, in_length, '+');
    last_seen = p->bends[i].duration;
    if (next == NULL || *next != '\0')
      break;

    /* sanity checks */
    if (!argv && p->bends[i].duration < p->bends[i].start) {
      lsx_fail("Bend %" PRIuPTR " has negative width", i+1);
      break;
    }
    if (!argv && i && p->bends[i].start < p->bends[i-1].start) {
      lsx_fail("Bend %" PRIuPTR " overlaps with previous one", i+1);
      break;
    }

    p->bends[i].duration -= p->bends[i].start;
  }
  if (i < p->nbends)
    return lsx_usage(effp);
  return SOX_SUCCESS;
}
Ejemplo n.º 20
0
static int getopts(sox_effect_t * effp, int argc, char * * argv)
{
  priv_t * p = (priv_t *) effp->priv;
  sox_bool is_cents = sox_false;

  --argc, ++argv;
  if (argc == 1) {
    char c, dummy;
    int scanned = sscanf(*argv, "%lf%c %c", &p->factor, &c, &dummy);
    if (scanned == 1 || (scanned == 2 && c == 'c')) {
      is_cents |= scanned == 2;
      if (is_cents || p->factor > 0) {
        p->factor = is_cents? pow(2., p->factor / 1200) : p->factor;
        return SOX_SUCCESS;
      }
    }
  }
  return lsx_usage(effp);
}
Ejemplo n.º 21
0
static int create(sox_effect_t * effp, int argc, char **argv)
{
  priv_t *p = (priv_t *) effp->priv;
  char const * opts = "f:o:";
  int c;
  lsx_getopt_t optstate;
  lsx_getopt_init(argc, argv, opts, NULL, lsx_getopt_flag_none, 1, &optstate);

  p->frame_rate = 25;
  p->ovsamp = 16;
  while ((c = lsx_getopt(&optstate)) != -1) switch (c) {
    GETOPT_NUMERIC(optstate, 'f', frame_rate, 10 , 80)
    GETOPT_NUMERIC(optstate, 'o', ovsamp,  4 , 32)
    default: lsx_fail("unknown option `-%c'", optstate.opt); return lsx_usage(effp);
  }
  argc -= optstate.ind, argv += optstate.ind;

  p->nbends = argc;
  p->bends = lsx_calloc(p->nbends, sizeof(*p->bends));
  return parse(effp, argv, 0.);     /* No rate yet; parse with dummy */
}
Ejemplo n.º 22
0
static int create(sox_effect_t * effp, int argc, char * * argv)
{
  priv_t * p = (priv_t *)effp->priv;
  size_t delay, max_samples = 0;
  unsigned i;

  --argc, ++argv;
  p->argv = lsx_calloc(p->argc = argc, sizeof(*p->argv));
  for (i = 0; i < p->argc; ++i) {
    char const * next = lsx_parsesamples(1e5, p->argv[i] = lsx_strdup(argv[i]), &delay, 't');
    if (!next || *next) {
      kill(effp);
      return lsx_usage(effp);
    }
    if (delay > max_samples) {
      max_samples = delay;
      p->max_arg = p->argv[i];
    }
  }
  return SOX_SUCCESS;
}
Ejemplo n.º 23
0
static int parse(sox_effect_t * effp, char * * argv, sox_rate_t rate)
{
    priv_t * p = (priv_t *)effp->priv;
    char const * next;
    unsigned i;

    for (i = 0; i < p->npads; ++i) {
        if (argv) /* 1st parse only */
            p->pads[i].str = lsx_strdup(argv[i]);
        next = lsx_parsesamples(rate, p->pads[i].str, &p->pads[i].pad, 't');
        if (next == NULL) break;
        if (*next == '\0')
            p->pads[i].start = i? SOX_SIZE_MAX : 0;
        else {
            if (*next != '@') break;
            next = lsx_parsesamples(rate, next+1, &p->pads[i].start, 't');
            if (next == NULL || *next != '\0') break;
        }
        if (i > 0 && p->pads[i].start <= p->pads[i-1].start) break;
    }
    if (i < p->npads)
        return lsx_usage(effp);
    return SOX_SUCCESS;
}
Ejemplo n.º 24
0
/*
 * Process command-line options but don't do other
 * initialization now: effp->in_signal & effp->out_signal are not
 * yet filled in.
 */
static int getopts(sox_effect_t* effp, int argc, char** argv)
{
    priv_t* p = (priv_t*)effp->priv;
    const size_t agcDefault = 100;
    const size_t denoiseDefault = 15;
    const size_t fpsDefault = 50;

    for (argc--, argv++; argc; argc--, argv++)
    {
        if (!strcasecmp("-agc", argv[0]))
        {
            /* AGC level argument is optional. If not specified, it defaults to agcDefault.
               If specified, it must be from 0 to 100. */
            if (!get_param(&argc, &argv, &p->agc, agcDefault, 0, 100))
            {
                lsx_fail("Invalid argument \"%s\" to -agc parameter - expected number from 0 to 100.", argv[1]);
                return lsx_usage(effp);
            }
        }
        else if (!strcasecmp("-denoise", argv[0]))
        {
            /* Denoise level argument is optional. If not specified, it defaults to denoiseDefault.
               If specified, it must be from 0 to 100. */
            if (!get_param(&argc, &argv, &p->denoise, denoiseDefault, 0, 100))
            {
                lsx_fail("Invalid argument \"%s\" to -denoise parameter - expected number from 0 to 100.", argv[1]);
                return lsx_usage(effp);
            }
        }
        else if (!strcasecmp("-dereverb", argv[0]))
        {
            p->dereverb = 1;
        }
        else if (!strcasecmp("-spf", argv[0]))
        {
            /* If samples_per_frame option is given, argument is required and must be
               greater than 0. */
            if (!get_param(&argc, &argv, &p->samples_per_frame, 0, 1, 1000000000) || !p->samples_per_frame)
            {
                lsx_fail("Invalid argument \"%s\" to -spf parameter - expected positive number.", argv[1]);
                return lsx_usage(effp);
            }
        }
        else if (!strcasecmp("-fps", argv[0]))
        {
            /* If frames_per_second option is given, argument is required and must be
               from 1 to 100. This will be used later to compute samples_per_frame once
               we know the sample rate). */
            if (!get_param(&argc, &argv, &p->frames_per_second, 0, 1, 100) || !p->frames_per_second)
            {
                lsx_fail("Invalid argument \"%s\" to -fps parameter - expected number from 1 to 100.", argv[1]);
                return lsx_usage(effp);
            }
        }
        else
        {
            lsx_fail("Invalid parameter \"%s\".", argv[0]);
            return lsx_usage(effp);
        }
    }

    if (!p->frames_per_second)
        p->frames_per_second = fpsDefault;

    if (!p->agc && !p->denoise && !p->dereverb)
    {
        lsx_report("No features specified. Enabling default settings \"-agc %u -denoise %u\".", agcDefault, denoiseDefault);
        p->agc = agcDefault;
        p->denoise = denoiseDefault;
    }

    return SOX_SUCCESS;
}
Ejemplo n.º 25
0
static int getopts(sox_effect_t * effp, int argc, char * * argv)
{
  priv_t * l = (priv_t *) effp->priv;
  char * s;
  char dummy;     /* To check for extraneous chars. */
  unsigned pairs, i, j, commas;

  --argc, ++argv;
  if (argc < 2 || argc > 5)
    return lsx_usage(effp);

  /* Start by checking the attack and decay rates */
  for (s = argv[0], commas = 0; *s; ++s) if (*s == ',') ++commas;
  if ((commas % 2) == 0) {
    lsx_fail("there must be an even number of attack/decay parameters");
    return SOX_EOF;
  }
  pairs = 1 + commas/2;
  l->channels = lsx_calloc(pairs, sizeof(*l->channels));
  l->expectedChannels = pairs;

  /* Now tokenise the rates string and set up these arrays.  Keep
     them in seconds at the moment: we don't know the sample rate yet. */
  for (i = 0, s = strtok(argv[0], ","); s != NULL; ++i) {
    for (j = 0; j < 2; ++j) {
      if (sscanf(s, "%lf %c", &l->channels[i].attack_times[j], &dummy) != 1) {
        lsx_fail("syntax error trying to read attack/decay time");
        return SOX_EOF;
      } else if (l->channels[i].attack_times[j] < 0) {
        lsx_fail("attack & decay times can't be less than 0 seconds");
        return SOX_EOF;
      }
      s = strtok(NULL, ",");
    }
  }

  if (!lsx_compandt_parse(&l->transfer_fn, argv[1], argc>2 ? argv[2] : 0))
    return SOX_EOF;

  /* Set the initial "volume" to be attibuted to the input channels.
     Unless specified, choose 0dB otherwise clipping will
     result if the user has seleced a long attack time */
  for (i = 0; i < l->expectedChannels; ++i) {
    double init_vol_dB = 0;
    if (argc > 3 && sscanf(argv[3], "%lf %c", &init_vol_dB, &dummy) != 1) {
      lsx_fail("syntax error trying to read initial volume");
      return SOX_EOF;
    } else if (init_vol_dB > 0) {
      lsx_fail("initial volume is relative to maximum volume so can't exceed 0dB");
      return SOX_EOF;
    }
    l->channels[i].volume = pow(10., init_vol_dB / 20);
  }

  /* If there is a delay, store it. */
  if (argc > 4 && sscanf(argv[4], "%lf %c", &l->delay, &dummy) != 1) {
    lsx_fail("syntax error trying to read delay value");
    return SOX_EOF;
  } else if (l->delay < 0) {
    lsx_fail("delay can't be less than 0 seconds");
    return SOX_EOF;
  }

  return SOX_SUCCESS;
}
Ejemplo n.º 26
0
static int sox_fade_getopts(sox_effect_t * effp, int argc, char **argv)
{

    priv_t * fade = (priv_t *) effp->priv;
    char t_char[2];
    int t_argno;
    uint64_t samples;
    const char *n;
  --argc, ++argv;

    if (argc < 1 || argc > 4)
         return lsx_usage(effp);

    /* because sample rate is unavailable at this point we store the
     * string off for later computations.
     */

    if (sscanf(argv[0], "%1[qhltp]", t_char))
    {
        fade->in_fadetype = *t_char;
        fade->out_fadetype = *t_char;

        argv++;
        argc--;
    }
    else
    {
        /* No type given. */
        fade->in_fadetype = 'l';
        fade->out_fadetype = 'l';
    }

    fade->in_stop_str = lsx_strdup(argv[0]);
    /* Do a dummy parse to see if it will fail */
    n = lsx_parsesamples(0., fade->in_stop_str, &samples, 't');
    if (!n || *n)
      return lsx_usage(effp);

    fade->in_stop = samples;
    fade->out_start_str = fade->out_stop_str = 0;

    for (t_argno = 1; t_argno < argc && t_argno < 3; t_argno++)
    {
        /* See if there is fade-in/fade-out times/curves specified. */
        if(t_argno == 1)
        {
            fade->out_stop_str = lsx_strdup(argv[t_argno]);

            /* Do a dummy parse to see if it will fail */
            n = lsx_parseposition(0., fade->out_stop_str, NULL, (uint64_t)0, (uint64_t)0, '=');
            if (!n || *n)
              return lsx_usage(effp);
            fade->out_stop = samples;
        }
        else
        {
            fade->out_start_str = lsx_strdup(argv[t_argno]);

            /* Do a dummy parse to see if it will fail */
            n = lsx_parsesamples(0., fade->out_start_str, &samples, 't');
            if (!n || *n)
              return lsx_usage(effp);
            fade->out_start = samples;
        }
    } /* End for(t_argno) */

    return(SOX_SUCCESS);
}
Ejemplo n.º 27
0
static int sox_silence_getopts(sox_effect_t * effp, int argc, char **argv)
{
    priv_t *   silence = (priv_t *) effp->priv;
    int parse_count;
    uint64_t temp;
    const char *n;
  --argc, ++argv;

    /* check for option switches */
    silence->leave_silence = sox_false;
    if (argc > 0)
    {
        if (!strcmp("-l", *argv)) {
            argc--; argv++;
            silence->leave_silence = sox_true;
        }
    }

    if (argc < 1)
      return lsx_usage(effp);

    /* Parse data related to trimming front side */
    silence->start = sox_false;
    if (sscanf(argv[0], "%d", &silence->start_periods) != 1)
      return lsx_usage(effp);
    if (silence->start_periods < 0)
    {
        lsx_fail("Periods must not be negative");
        return(SOX_EOF);
    }
    argv++;
    argc--;

    if (silence->start_periods > 0)
    {
        silence->start = sox_true;
        if (argc < 2)
          return lsx_usage(effp);

        /* We do not know the sample rate so we can not fully
         * parse the duration info yet.  So save argument off
         * for future processing.
         */
        silence->start_duration_str = lsx_strdup(argv[0]);
        /* Perform a fake parse to do error checking */
        n = lsx_parsesamples(0.,silence->start_duration_str,&temp,'s');
        if (!n || *n)
          return lsx_usage(effp);
        silence->start_duration = temp;

        parse_count = sscanf(argv[1], "%lf%c", &silence->start_threshold,
                &silence->start_unit);
        if (parse_count < 1)
          return lsx_usage(effp);
        else if (parse_count < 2)
            silence->start_unit = '%';

        argv++; argv++;
        argc--; argc--;
    }

    silence->stop = sox_false;
    /* Parse data needed for trimming of backside */
    if (argc > 0)
    {
        if (argc < 3)
          return lsx_usage(effp);
        if (sscanf(argv[0], "%d", &silence->stop_periods) != 1)
          return lsx_usage(effp);
        if (silence->stop_periods < 0)
        {
            silence->stop_periods = -silence->stop_periods;
            silence->restart = 1;
        }
        else
            silence->restart = 0;
        silence->stop = sox_true;
        argv++;
        argc--;

        /* We do not know the sample rate so we can not fully
         * parse the duration info yet.  So save argument off
         * for future processing.
         */
        silence->stop_duration_str = lsx_strdup(argv[0]);
        /* Perform a fake parse to do error checking */
        n = lsx_parsesamples(0.,silence->stop_duration_str,&temp,'s');
        if (!n || *n)
          return lsx_usage(effp);
        silence->stop_duration = temp;

        parse_count = sscanf(argv[1], "%lf%c", &silence->stop_threshold,
                             &silence->stop_unit);
        if (parse_count < 1)
          return lsx_usage(effp);
        else if (parse_count < 2)
            silence->stop_unit = '%';

        argv++; argv++;
        argc--; argc--;
    }

    /* Error checking */
    if (silence->start)
    {
        if ((silence->start_unit != '%') && (silence->start_unit != 'd'))
        {
            lsx_fail("Invalid unit specified");
            return lsx_usage(effp);
        }
        if ((silence->start_unit == '%') && ((silence->start_threshold < 0.0)
            || (silence->start_threshold > 100.0)))
        {
            lsx_fail("silence threshold should be between 0.0 and 100.0 %%");
            return (SOX_EOF);
        }
        if ((silence->start_unit == 'd') && (silence->start_threshold >= 0.0))
        {
            lsx_fail("silence threshold should be less than 0.0 dB");
            return(SOX_EOF);
        }
    }

    if (silence->stop)
    {
        if ((silence->stop_unit != '%') && (silence->stop_unit != 'd'))
        {
            lsx_fail("Invalid unit specified");
            return(SOX_EOF);
        }
        if ((silence->stop_unit == '%') && ((silence->stop_threshold < 0.0) ||
                    (silence->stop_threshold > 100.0)))
        {
            lsx_fail("silence threshold should be between 0.0 and 100.0 %%");
            return (SOX_EOF);
        }
        if ((silence->stop_unit == 'd') && (silence->stop_threshold >= 0.0))
        {
            lsx_fail("silence threshold should be less than 0.0 dB");
            return(SOX_EOF);
        }
    }
    return(SOX_SUCCESS);
}
Ejemplo n.º 28
0
static int getopts(sox_effect_t * effp, int argc, char **argv)
{
  priv_t * p = (priv_t *)effp->priv;
  do {NUMERIC_PARAMETER(repeats, 0, 1e6)} while (0);
  return argc? lsx_usage(effp) : SOX_SUCCESS;
}
Ejemplo n.º 29
0
static int oops_getopts(sox_effect_t * effp, int argc, char * * argv)
{
  char * args[] = {0, "1,1,-1,-1"};
  args[0] = argv[0];
  return --argc? lsx_usage(effp) : lsx_mixer_effect_fn()->getopts(effp, (int)array_length(args), args);
}
Ejemplo n.º 30
0
/*
 * Prepare processing.
 * Do all initializations.
 */
static int sox_fade_start(sox_effect_t * effp)
{
    priv_t * fade = (priv_t *) effp->priv;
    sox_bool truncate = sox_false;
    uint64_t samples;
    uint64_t in_length = effp->in_signal.length != SOX_UNKNOWN_LEN ?
      effp->in_signal.length / effp->in_signal.channels : SOX_UNKNOWN_LEN;

    /* converting time values to samples */
    fade->in_start = 0;
    if (lsx_parsesamples(effp->in_signal.rate, fade->in_stop_str,
                        &samples, 't') == NULL)
      return lsx_usage(effp);

    fade->in_stop = samples;
    fade->do_out = 0;
    /* See if user specified a stop time */
    if (fade->out_stop_str)
    {
        fade->do_out = 1;
        if (!lsx_parseposition(effp->in_signal.rate, fade->out_stop_str,
                            &samples, (uint64_t)0, in_length, '=') ||
            samples == SOX_UNKNOWN_LEN) {
          lsx_fail("audio length is unknown");
          return SOX_EOF;
        }
        fade->out_stop = samples;

        if (!(truncate = !!fade->out_stop)) {
          fade->out_stop = effp->in_signal.length != SOX_UNKNOWN_LEN ?
              effp->in_signal.length / effp->in_signal.channels :
              0;
          if (!fade->out_stop) {
            lsx_fail("cannot fade out: audio length is neither known nor given");
            return SOX_EOF;
          }
        }

        /* See if user wants to fade out. */
        if (fade->out_start_str)
        {
            if (lsx_parsesamples(effp->in_signal.rate, fade->out_start_str,
                        &samples, 't') == NULL)
              return lsx_usage(effp);
            /* Fade time is relative to stop time. */
            fade->out_start = fade->out_stop - samples;
        }
        else
            /* If user doesn't specify fade out length then
             * use same length as input side.  This is stored
             * in in_stop.
             */
            fade->out_start = fade->out_stop - fade->in_stop;
    }
    else
        /* If not specified then user wants to process all
         * of file.  Use a value of zero to indicate this.
         */
        fade->out_stop = 0;

    if (fade->out_start) {              /* Sanity check */
      if (fade->in_stop > fade->out_start)
        --fade->in_stop;                /* 1 sample grace for rounding error. */
      if (fade->in_stop > fade->out_start) {
        lsx_fail("fade-out overlaps fade-in");
        return SOX_EOF;
      }
    }

    fade->samplesdone = fade->in_start;
    fade->endpadwarned = 0;

    lsx_debug("in_start = %" PRIu64 " in_stop = %" PRIu64 " "
      "out_start = %" PRIu64 " out_stop = %" PRIu64,
      fade->in_start, fade->in_stop, fade->out_start, fade->out_stop);

    if (fade->in_start == fade->in_stop && !truncate &&
        fade->out_start == fade->out_stop)
      return SOX_EFF_NULL;

    effp->out_signal.length = truncate ?
        fade->out_stop * effp->in_signal.channels : effp->in_signal.length;

    return SOX_SUCCESS;
}