static void mpc_push(struct atm_vcc *vcc, struct sk_buff *skb)
{
	struct net_device *dev = (struct net_device *)vcc->proto_data;
	struct sk_buff *new_skb;
	eg_cache_entry *eg;
	struct mpoa_client *mpc;
	uint32_t tag;
	char *tmp;
	
	ddprintk("mpoa: (%s) mpc_push:\n", dev->name);
	if (skb == NULL) {
		dprintk("mpoa: (%s) mpc_push: null skb, closing VCC\n", dev->name);
		mpc_vcc_close(vcc, dev);
		return;
	}
	
	skb->dev = dev;
	if (memcmp(skb->data, &llc_snap_mpoa_ctrl, sizeof(struct llc_snap_hdr)) == 0) {
		struct sock *sk = sk_atm(vcc);

		dprintk("mpoa: (%s) mpc_push: control packet arrived\n", dev->name);
		/* Pass control packets to daemon */
		skb_queue_tail(&sk->sk_receive_queue, skb);
		sk->sk_data_ready(sk, skb->len);
		return;
	}

	/* data coming over the shortcut */
	atm_return(vcc, skb->truesize);

	mpc = find_mpc_by_lec(dev);
	if (mpc == NULL) {
		printk("mpoa: (%s) mpc_push: unknown MPC\n", dev->name);
		return;
	}

	if (memcmp(skb->data, &llc_snap_mpoa_data_tagged, sizeof(struct llc_snap_hdr)) == 0) { /* MPOA tagged data */
		ddprintk("mpoa: (%s) mpc_push: tagged data packet arrived\n", dev->name);

	} else if (memcmp(skb->data, &llc_snap_mpoa_data, sizeof(struct llc_snap_hdr)) == 0) { /* MPOA data */
		printk("mpoa: (%s) mpc_push: non-tagged data packet arrived\n", dev->name);
		printk("           mpc_push: non-tagged data unsupported, purging\n");
		dev_kfree_skb_any(skb);
		return;
	} else {
		printk("mpoa: (%s) mpc_push: garbage arrived, purging\n", dev->name);
		dev_kfree_skb_any(skb);
		return;
	}

	tmp = skb->data + sizeof(struct llc_snap_hdr);
	tag = *(uint32_t *)tmp;

	eg = mpc->eg_ops->get_by_tag(tag, mpc);
	if (eg == NULL) {
		printk("mpoa: (%s) mpc_push: Didn't find egress cache entry, tag = %u\n",
		       dev->name,tag);
		purge_egress_shortcut(vcc, NULL);
		dev_kfree_skb_any(skb);
		return;
	}
	
	/*
	 * See if ingress MPC is using shortcut we opened as a return channel.
	 * This means we have a bi-directional vcc opened by us.
	 */ 
	if (eg->shortcut == NULL) {
		eg->shortcut = vcc;
		printk("mpoa: (%s) mpc_push: egress SVC in use\n", dev->name);
	}

	skb_pull(skb, sizeof(struct llc_snap_hdr) + sizeof(tag)); /* get rid of LLC/SNAP header */
	new_skb = skb_realloc_headroom(skb, eg->ctrl_info.DH_length); /* LLC/SNAP is shorter than MAC header :( */
	dev_kfree_skb_any(skb);
	if (new_skb == NULL){
		mpc->eg_ops->put(eg);
		return;
	}
	skb_push(new_skb, eg->ctrl_info.DH_length);     /* add MAC header */
	memcpy(new_skb->data, eg->ctrl_info.DLL_header, eg->ctrl_info.DH_length);
	new_skb->protocol = eth_type_trans(new_skb, dev);
	new_skb->nh.raw = new_skb->data;

	eg->latest_ip_addr = new_skb->nh.iph->saddr;
	eg->packets_rcvd++;
	mpc->eg_ops->put(eg);

	memset(ATM_SKB(skb), 0, sizeof(struct atm_skb_data));
	netif_rx(new_skb);

	return;
}
Ejemplo n.º 2
0
Archivo: 3c527.c Proyecto: 274914765/C
static void mc32_rx_ring(struct net_device *dev)
{
    struct mc32_local *lp = netdev_priv(dev);
    volatile struct skb_header *p;
    u16 rx_ring_tail;
    u16 rx_old_tail;
    int x=0;

    rx_old_tail = rx_ring_tail = lp->rx_ring_tail;

    do
    {
        p=lp->rx_ring[rx_ring_tail].p;

        if(!(p->status & (1<<7))) { /* Not COMPLETED */
            break;
        }
        if(p->status & (1<<6)) /* COMPLETED_OK */
        {

            u16 length=p->length;
            struct sk_buff *skb;
            struct sk_buff *newskb;

            /* Try to save time by avoiding a copy on big frames */

            if ((length > RX_COPYBREAK)
                && ((newskb=dev_alloc_skb(1532)) != NULL))
            {
                skb=lp->rx_ring[rx_ring_tail].skb;
                skb_put(skb, length);

                skb_reserve(newskb,18);
                lp->rx_ring[rx_ring_tail].skb=newskb;
                p->data=isa_virt_to_bus(newskb->data);
            }
            else
            {
                skb=dev_alloc_skb(length+2);

                if(skb==NULL) {
                    lp->net_stats.rx_dropped++;
                    goto dropped;
                }

                skb_reserve(skb,2);
                memcpy(skb_put(skb, length),
                       lp->rx_ring[rx_ring_tail].skb->data, length);
            }

            skb->protocol=eth_type_trans(skb,dev);
            dev->last_rx = jiffies;
             lp->net_stats.rx_packets++;
             lp->net_stats.rx_bytes += length;
            netif_rx(skb);
        }

    dropped:
        p->length = 1532;
        p->status = 0;

        rx_ring_tail=next_rx(rx_ring_tail);
    }
        while(x++<48);

    /* If there was actually a frame to be processed, place the EOL bit */
    /* at the descriptor prior to the one to be filled next */

    if (rx_ring_tail != rx_old_tail)
    {
        lp->rx_ring[prev_rx(rx_ring_tail)].p->control |=  CONTROL_EOL;
        lp->rx_ring[prev_rx(rx_old_tail)].p->control  &= ~CONTROL_EOL;

        lp->rx_ring_tail=rx_ring_tail;
    }
}
Ejemplo n.º 3
0
/*
 * Au1000 receive routine.
 */
static int au1000_rx(struct net_device *dev)
{
	struct au1000_private *aup = (struct au1000_private *) dev->priv;
	struct sk_buff *skb;
	volatile rx_dma_t *prxd;
	u32 buff_stat, status;
	db_dest_t *pDB;
	u32	frmlen;

	if (au1000_debug > 5)
		printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);

	prxd = aup->rx_dma_ring[aup->rx_head];
	buff_stat = prxd->buff_stat;
	while (buff_stat & RX_T_DONE)  {
		status = prxd->status;
		pDB = aup->rx_db_inuse[aup->rx_head];
		update_rx_stats(dev, status);
		if (!(status & RX_ERROR))  {

			/* good frame */
			frmlen = (status & RX_FRAME_LEN_MASK);
			frmlen -= 4; /* Remove FCS */
			skb = dev_alloc_skb(frmlen + 2);
			if (skb == NULL) {
				printk(KERN_ERR
				       "%s: Memory squeeze, dropping packet.\n",
				       dev->name);
				aup->stats.rx_dropped++;
				continue;
			}
			skb->dev = dev;
			skb_reserve(skb, 2);	/* 16 byte IP header align */
			eth_copy_and_sum(skb,
				(unsigned char *)pDB->vaddr, frmlen, 0);
			skb_put(skb, frmlen);
			skb->protocol = eth_type_trans(skb, dev);
			netif_rx(skb);	/* pass the packet to upper layers */
		}
		else {
			if (au1000_debug > 4) {
				if (status & RX_MISSED_FRAME) 
					printk("rx miss\n");
				if (status & RX_WDOG_TIMER) 
					printk("rx wdog\n");
				if (status & RX_RUNT) 
					printk("rx runt\n");
				if (status & RX_OVERLEN) 
					printk("rx overlen\n");
				if (status & RX_COLL)
					printk("rx coll\n");
				if (status & RX_MII_ERROR)
					printk("rx mii error\n");
				if (status & RX_CRC_ERROR)
					printk("rx crc error\n");
				if (status & RX_LEN_ERROR)
					printk("rx len error\n");
				if (status & RX_U_CNTRL_FRAME)
					printk("rx u control frame\n");
				if (status & RX_MISSED_FRAME)
					printk("rx miss\n");
			}
		}
		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
		au_sync();

		/* next descriptor */
		prxd = aup->rx_dma_ring[aup->rx_head];
		buff_stat = prxd->buff_stat;
		dev->last_rx = jiffies;
	}
	return 0;
}
Ejemplo n.º 4
0
/* Receive data from TTY and forward it to TCP/IP stack 
   The implementation also handles partial packets.
   Ethernet hdr is appended to IP datagram before passing it to TCPIP stack.
*/
void rmnet_netif_rx_cb(struct net_device *dev, const unsigned char *buf, int sz)
{
  struct rmnet_private *p = NULL;   
  int ver = 0;
  unsigned short tempval = 0;
  pr_data_info("%s++\n", __FUNCTION__);

  //pr_data_info("<<<<<=================\n%s++\n",__FUNCTION__);
  //pr_data_info("dev->name = %s\n sz = %d\n", dev->name, sz);
  p = netdev_priv(dev);  
  if(!p){
    pr_err("%s:Error tty ldisc not opened\n", __FUNCTION__);
    return;  
  }
  while(sz) {
    if (0 == p->len) {
#if defined(__BIG_ENDIAN_BITFIELD)
      ver = buf[0] & 0x0F;
#elif defined(__LITTLE_ENDIAN_BITFIELD)
      ver = (buf[0] & 0xF0) >> 4;
#endif
      if (ver == RMNET_IPV4_VER) {
        p->len = (buf[2]<<8)| buf[3];
        //pr_data_info("transport proto type = %d\n", buf[9]);
      } else if (ver == RMNET_IPV6_VER) {
        p->len = IPV6_HEADER_SZ + ((buf[4]<<8)| buf[5]);
      } else {
        pr_err("%s:!!!!!!!!!!!!Wrong Version: sz = %d\n\n", __FUNCTION__, sz);
        return;
      }
      //pr_info("sz = %d, len = %d\n", sz, p->len);
      if (p->len + RMNET_ETH_HDR_SIZE > RMNET_MTU_SIZE) {
        p->ptr = NULL;
        sz -= p->len;
        buf += p->len;
        p->len = 0;
        continue;
      } else {
        p->len += RMNET_ETH_HDR_SIZE;
        p->skb = dev_alloc_skb(p->len + NET_IP_ALIGN);
        if (p->skb == NULL) {
          /* TODO: We need to handle this case later */
          pr_err("%s:!!!!!!!!!!!!!!!!!!skbuf alloc failed!!!!!!!!!!!!!!\n\n", __FUNCTION__);
          return;
        }
        p->skb->dev = dev;
        skb_reserve(p->skb, NET_IP_ALIGN);
        p->ptr = skb_put(p->skb, p->len);

        /* adding ethernet header */
        {
          char temp[] = {0xB6,0x91,0x24,0xa8,0x14,0x72,0xb6,0x91,0x24,
                         0xa8,0x14,0x72,0x08,0x0};
          struct ethhdr *eth_hdr = (struct ethhdr *) temp;

          if (ver == RMNET_IPV6_VER) {
            eth_hdr->h_proto = htons(IPV6_PROTO_TYPE);
          }
          memcpy((void *)eth_hdr->h_dest,
                 (void*)dev->dev_addr,
                 sizeof(eth_hdr->h_dest));
          memcpy((void *)(p->ptr),
                 (void *)eth_hdr,
                 sizeof(struct ethhdr));
        }
      }
    }

    tempval = (sz < (p->len - RMNET_ETH_HDR_SIZE - p->ip_data_in_skb))? 
               sz:(p->len - RMNET_ETH_HDR_SIZE - p->ip_data_in_skb);
    memcpy((p->ptr) + RMNET_ETH_HDR_SIZE + p->ip_data_in_skb, buf, tempval);
    p->ip_data_in_skb += tempval;      
    sz -= tempval;
    buf += tempval;
    if (p->ip_data_in_skb < (p->len - RMNET_ETH_HDR_SIZE)) {
      continue;
    }
	
#ifndef LINUX_HOST
    wake_lock_timeout(&p->rmnet_wake_lock, HZ / 2);
#endif

    p->skb->protocol = eth_type_trans(p->skb, dev);
    p->stats.rx_packets++;
    p->stats.rx_bytes += p->skb->len;
    netif_rx(p->skb);
    p->len = 0;
    p->ip_data_in_skb = 0;
  }
Ejemplo n.º 5
0
static void rx_complete(struct usb_ep *ep, struct usb_request *req)
{
	struct sk_buff	*skb = req->context, *skb2;
	struct eth_dev	*dev = ep->driver_data;
	int		status = req->status;

	switch (status) {

	/* normal completion */
	case 0:
		skb_put(skb, req->actual);

		if (dev->unwrap) {
			unsigned long	flags;

			spin_lock_irqsave(&dev->lock, flags);
			if (dev->port_usb) {
				status = dev->unwrap(dev->port_usb,
							skb,
							&dev->rx_frames);
			} else {
				dev_kfree_skb_any(skb);
				status = -ENOTCONN;
			}
			spin_unlock_irqrestore(&dev->lock, flags);
		} else {
			skb_queue_tail(&dev->rx_frames, skb);
		}
		skb = NULL;

		skb2 = skb_dequeue(&dev->rx_frames);
		while (skb2) {
			if (status < 0
					|| ETH_HLEN > skb2->len
					|| skb2->len > ETH_FRAME_LEN) {
				dev->net->stats.rx_errors++;
				dev->net->stats.rx_length_errors++;
				DBG(dev, "rx length %d\n", skb2->len);
				dev_kfree_skb_any(skb2);
				goto next_frame;
			}

#ifdef CONFIG_USB_ETH_PASS_FW
			ipt_decap_packet(skb2, ipt_cap);
#endif

			skb2->protocol = eth_type_trans(skb2, dev->net);
			dev->net->stats.rx_packets++;
			dev->net->stats.rx_bytes += skb2->len;

			/* no buffer copies needed, unless hardware can't
			 * use skb buffers.
			 */
			status = netif_rx(skb2);
next_frame:
			skb2 = skb_dequeue(&dev->rx_frames);
		}
		break;

	/* software-driven interface shutdown */
	case -ECONNRESET:		/* unlink */
	case -ESHUTDOWN:		/* disconnect etc */
		VDBG(dev, "rx shutdown, code %d\n", status);
		goto quiesce;

	/* for hardware automagic (such as pxa) */
	case -ECONNABORTED:		/* endpoint reset */
		DBG(dev, "rx %s reset\n", ep->name);
		defer_kevent(dev, WORK_RX_MEMORY);
quiesce:
		if (skb)
			dev_kfree_skb_any(skb);
		goto clean;

	/* data overrun */
	case -EOVERFLOW:
		dev->net->stats.rx_over_errors++;
		/* FALLTHROUGH */

	default:
		dev->net->stats.rx_errors++;
		DBG(dev, "rx status %d\n", status);
		break;
	}

	if (skb)
		dev_kfree_skb_any(skb);
	if (!netif_running(dev->net)) {
clean:
		spin_lock(&dev->req_lock);
		list_add(&req->list, &dev->rx_reqs);
		spin_unlock(&dev->req_lock);
		req = NULL;
	}
	if (req)
		rx_submit(dev, req, GFP_ATOMIC);
}
Ejemplo n.º 6
0
/* Incoming data */
static void zd1201_usbrx(struct urb *urb)
{
	struct zd1201 *zd = urb->context;
	int free = 0;
	unsigned char *data = urb->transfer_buffer;
	struct sk_buff *skb;
	unsigned char type;

	if (!zd)
		return;

	switch(urb->status) {
		case -EILSEQ:
		case -ENODEV:
		case -ETIME:
		case -ENOENT:
		case -EPIPE:
		case -EOVERFLOW:
		case -ESHUTDOWN:
			dev_warn(&zd->usb->dev, "%s: rx urb failed: %d\n",
			    zd->dev->name, urb->status);
			free = 1;
			goto exit;
	}
	
	if (urb->status != 0 || urb->actual_length == 0)
		goto resubmit;

	type = data[0];
	if (type == ZD1201_PACKET_EVENTSTAT || type == ZD1201_PACKET_RESOURCE) {
		memcpy(zd->rxdata, data, urb->actual_length);
		zd->rxlen = urb->actual_length;
		zd->rxdatas = 1;
		wake_up(&zd->rxdataq);
	}
	/* Info frame */
	if (type == ZD1201_PACKET_INQUIRE) {
		int i = 0;
		unsigned short infotype, copylen;
		infotype = le16_to_cpu(*(__le16*)&data[6]);

		if (infotype == ZD1201_INF_LINKSTATUS) {
			short linkstatus;

			linkstatus = le16_to_cpu(*(__le16*)&data[8]);
			switch(linkstatus) {
				case 1:
					netif_carrier_on(zd->dev);
					break;
				case 2:
					netif_carrier_off(zd->dev);
					break;
				case 3:
					netif_carrier_off(zd->dev);
					break;
				case 4:
					netif_carrier_on(zd->dev);
					break;
				default:
					netif_carrier_off(zd->dev);
			}
			goto resubmit;
		}
		if (infotype == ZD1201_INF_ASSOCSTATUS) {
			short status = le16_to_cpu(*(__le16*)(data+8));
			int event;
			union iwreq_data wrqu;

			switch (status) {
				case ZD1201_ASSOCSTATUS_STAASSOC:
				case ZD1201_ASSOCSTATUS_REASSOC:
					event = IWEVREGISTERED;
					break;
				case ZD1201_ASSOCSTATUS_DISASSOC:
				case ZD1201_ASSOCSTATUS_ASSOCFAIL:
				case ZD1201_ASSOCSTATUS_AUTHFAIL:
				default:
					event = IWEVEXPIRED;
			}
			memcpy(wrqu.addr.sa_data, data+10, ETH_ALEN);
			wrqu.addr.sa_family = ARPHRD_ETHER;

			/* Send event to user space */
			wireless_send_event(zd->dev, event, &wrqu, NULL);

			goto resubmit;
		}
		if (infotype == ZD1201_INF_AUTHREQ) {
			union iwreq_data wrqu;

			memcpy(wrqu.addr.sa_data, data+8, ETH_ALEN);
			wrqu.addr.sa_family = ARPHRD_ETHER;
			/* There isn't a event that trully fits this request.
			   We assume that userspace will be smart enough to
			   see a new station being expired and sends back a
			   authstation ioctl to authorize it. */
			wireless_send_event(zd->dev, IWEVEXPIRED, &wrqu, NULL);
			goto resubmit;
		}
		/* Other infotypes are handled outside this handler */
		zd->rxlen = 0;
		while (i < urb->actual_length) {
			copylen = le16_to_cpu(*(__le16*)&data[i+2]);
			/* Sanity check, sometimes we get junk */
			if (copylen+zd->rxlen > sizeof(zd->rxdata))
				break;
			memcpy(zd->rxdata+zd->rxlen, data+i+4, copylen);
			zd->rxlen += copylen;
			i += 64;
		}
		if (i >= urb->actual_length) {
			zd->rxdatas = 1;
			wake_up(&zd->rxdataq);
		}
		goto  resubmit;
	}
	/* Actual data */
	if (data[urb->actual_length-1] == ZD1201_PACKET_RXDATA) {
		int datalen = urb->actual_length-1;
		unsigned short len, fc, seq;

		len = ntohs(*(__be16 *)&data[datalen-2]);
		if (len>datalen)
			len=datalen;
		fc = le16_to_cpu(*(__le16 *)&data[datalen-16]);
		seq = le16_to_cpu(*(__le16 *)&data[datalen-24]);

		if (zd->monitor) {
			if (datalen < 24)
				goto resubmit;
			if (!(skb = dev_alloc_skb(datalen+24)))
				goto resubmit;
			
			skb_put_data(skb, &data[datalen - 16], 2);
			skb_put_data(skb, &data[datalen - 2], 2);
			skb_put_data(skb, &data[datalen - 14], 6);
			skb_put_data(skb, &data[datalen - 22], 6);
			skb_put_data(skb, &data[datalen - 8], 6);
			skb_put_data(skb, &data[datalen - 24], 2);
			skb_put_data(skb, data, len);
			skb->protocol = eth_type_trans(skb, zd->dev);
			zd->dev->stats.rx_packets++;
			zd->dev->stats.rx_bytes += skb->len;
			netif_rx(skb);
			goto resubmit;
		}
			
		if ((seq & IEEE80211_SCTL_FRAG) ||
		    (fc & IEEE80211_FCTL_MOREFRAGS)) {
			struct zd1201_frag *frag = NULL;
			char *ptr;

			if (datalen<14)
				goto resubmit;
			if ((seq & IEEE80211_SCTL_FRAG) == 0) {
				frag = kmalloc(sizeof(*frag), GFP_ATOMIC);
				if (!frag)
					goto resubmit;
				skb = dev_alloc_skb(IEEE80211_MAX_DATA_LEN +14+2);
				if (!skb) {
					kfree(frag);
					goto resubmit;
				}
				frag->skb = skb;
				frag->seq = seq & IEEE80211_SCTL_SEQ;
				skb_reserve(skb, 2);
				skb_put_data(skb, &data[datalen - 14], 12);
				skb_put_data(skb, &data[6], 2);
				skb_put_data(skb, data + 8, len);
				hlist_add_head(&frag->fnode, &zd->fraglist);
				goto resubmit;
			}
			hlist_for_each_entry(frag, &zd->fraglist, fnode)
				if (frag->seq == (seq&IEEE80211_SCTL_SEQ))
					break;
			if (!frag)
				goto resubmit;
			skb = frag->skb;
			ptr = skb_put(skb, len);
			if (ptr)
				memcpy(ptr, data+8, len);
			if (fc & IEEE80211_FCTL_MOREFRAGS)
				goto resubmit;
			hlist_del_init(&frag->fnode);
			kfree(frag);
		} else {
			if (datalen<14)
Ejemplo n.º 7
0
void wilc_wfi_monitor_rx(u8 *buff, u32 size)
{
	u32 header, pkt_offset;
	struct sk_buff *skb = NULL;
	struct wilc_wfi_radiotap_hdr *hdr;
	struct wilc_wfi_radiotap_cb_hdr *cb_hdr;

	if (!wilc_wfi_mon)
		return;

	if (!netif_running(wilc_wfi_mon))
		return;

	/* Get WILC header */
	memcpy(&header, (buff - HOST_HDR_OFFSET), HOST_HDR_OFFSET);
	le32_to_cpus(&header);
	/*
	 * The packet offset field contain info about what type of management
	 * the frame we are dealing with and ack status
	 */
	pkt_offset = GET_PKT_OFFSET(header);

	if (pkt_offset & IS_MANAGMEMENT_CALLBACK) {
		/* hostapd callback mgmt frame */

		skb = dev_alloc_skb(size + sizeof(*cb_hdr));
		if (!skb)
			return;

		skb_put_data(skb, buff, size);

		cb_hdr = skb_push(skb, sizeof(*cb_hdr));
		memset(cb_hdr, 0, sizeof(*cb_hdr));

		cb_hdr->hdr.it_version = 0; /* PKTHDR_RADIOTAP_VERSION; */

		cb_hdr->hdr.it_len = cpu_to_le16(sizeof(*cb_hdr));

		cb_hdr->hdr.it_present = cpu_to_le32(TX_RADIOTAP_PRESENT);

		cb_hdr->rate = 5;

		if (pkt_offset & IS_MGMT_STATUS_SUCCES)	{
			/* success */
			cb_hdr->tx_flags = IEEE80211_RADIOTAP_F_TX_RTS;
		} else {
			cb_hdr->tx_flags = IEEE80211_RADIOTAP_F_TX_FAIL;
		}

	} else {
		skb = dev_alloc_skb(size + sizeof(*hdr));

		if (!skb)
			return;

		skb_put_data(skb, buff, size);
		hdr = skb_push(skb, sizeof(*hdr));
		memset(hdr, 0, sizeof(struct wilc_wfi_radiotap_hdr));
		hdr->hdr.it_version = 0; /* PKTHDR_RADIOTAP_VERSION; */
		hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
		hdr->hdr.it_present = cpu_to_le32
				(1 << IEEE80211_RADIOTAP_RATE);
		hdr->rate = 5;
	}

	skb->dev = wilc_wfi_mon;
	skb_reset_mac_header(skb);
	skb->ip_summed = CHECKSUM_UNNECESSARY;
	skb->pkt_type = PACKET_OTHERHOST;
	skb->protocol = htons(ETH_P_802_2);
	memset(skb->cb, 0, sizeof(skb->cb));

	netif_rx(skb);
}
Ejemplo n.º 8
0
/*
 * RX: normal working mode
 */
static void
kni_net_rx_normal(struct kni_dev *kni)
{
	unsigned ret;
	uint32_t len;
	unsigned i, num_rx, num_fq;
	struct rte_kni_mbuf *kva;
	struct rte_kni_mbuf *va[MBUF_BURST_SZ];
	void * data_kva;

	struct sk_buff *skb;
	struct net_device *dev = kni->net_dev;

	/* Get the number of free entries in free_q */
	num_fq = kni_fifo_free_count(kni->free_q);
	if (num_fq == 0) {
		/* No room on the free_q, bail out */
		return;
	}

	/* Calculate the number of entries to dequeue from rx_q */
	num_rx = min(num_fq, (unsigned)MBUF_BURST_SZ);

	/* Burst dequeue from rx_q */
	num_rx = kni_fifo_get(kni->rx_q, (void **)va, num_rx);
	if (num_rx == 0)
		return;

	/* Transfer received packets to netif */
	for (i = 0; i < num_rx; i++) {
		kva = (void *)va[i] - kni->mbuf_va + kni->mbuf_kva;
		len = kva->data_len;
		data_kva = kva->buf_addr + kva->data_off - kni->mbuf_va
				+ kni->mbuf_kva;

		skb = dev_alloc_skb(len + 2);
		if (!skb) {
			KNI_ERR("Out of mem, dropping pkts\n");
			/* Update statistics */
			kni->stats.rx_dropped++;
		}
		else {
			/* Align IP on 16B boundary */
			skb_reserve(skb, 2);
			memcpy(skb_put(skb, len), data_kva, len);
			skb->dev = dev;
			skb->protocol = eth_type_trans(skb, dev);
			skb->ip_summed = CHECKSUM_UNNECESSARY;

			/* Call netif interface */
			netif_rx(skb);

			/* Update statistics */
			kni->stats.rx_bytes += len;
			kni->stats.rx_packets++;
		}
	}

	/* Burst enqueue mbufs into free_q */
	ret = kni_fifo_put(kni->free_q, (void **)va, num_rx);
	if (ret != num_rx)
		/* Failing should not happen */
		KNI_ERR("Fail to enqueue entries into free_q\n");
}
Ejemplo n.º 9
0
Archivo: sh_eth.c Proyecto: E-LLP/n900
/* Packet receive function */
static int sh_eth_rx(struct net_device *ndev)
{
	struct sh_eth_private *mdp = netdev_priv(ndev);
	struct sh_eth_rxdesc *rxdesc;

	int entry = mdp->cur_rx % RX_RING_SIZE;
	int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
	struct sk_buff *skb;
	u16 pkt_len = 0;
	u32 desc_status, reserve = 0;

	rxdesc = &mdp->rx_ring[entry];
	while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
		desc_status = edmac_to_cpu(mdp, rxdesc->status);
		pkt_len = rxdesc->frame_length;

		if (--boguscnt < 0)
			break;

		if (!(desc_status & RDFEND))
			mdp->stats.rx_length_errors++;

		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
			mdp->stats.rx_errors++;
			if (desc_status & RD_RFS1)
				mdp->stats.rx_crc_errors++;
			if (desc_status & RD_RFS2)
				mdp->stats.rx_frame_errors++;
			if (desc_status & RD_RFS3)
				mdp->stats.rx_length_errors++;
			if (desc_status & RD_RFS4)
				mdp->stats.rx_length_errors++;
			if (desc_status & RD_RFS6)
				mdp->stats.rx_missed_errors++;
			if (desc_status & RD_RFS10)
				mdp->stats.rx_over_errors++;
		} else {
			swaps((char *)(rxdesc->addr & ~0x3), pkt_len + 2);
			skb = mdp->rx_skbuff[entry];
			mdp->rx_skbuff[entry] = NULL;
			skb_put(skb, pkt_len);
			skb->protocol = eth_type_trans(skb, ndev);
			netif_rx(skb);
			ndev->last_rx = jiffies;
			mdp->stats.rx_packets++;
			mdp->stats.rx_bytes += pkt_len;
		}
		rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
		entry = (++mdp->cur_rx) % RX_RING_SIZE;
	}

	/* Refill the Rx ring buffers. */
	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
		entry = mdp->dirty_rx % RX_RING_SIZE;
		rxdesc = &mdp->rx_ring[entry];
		/* The size of the buffer is 16 byte boundary. */
		rxdesc->buffer_length = (mdp->rx_buf_sz + 16) & ~0x0F;

		if (mdp->rx_skbuff[entry] == NULL) {
			skb = dev_alloc_skb(mdp->rx_buf_sz);
			mdp->rx_skbuff[entry] = skb;
			if (skb == NULL)
				break;	/* Better luck next round. */
			skb->dev = ndev;
#if defined(CONFIG_CPU_SUBTYPE_SH7763)
			reserve = SH7763_SKB_ALIGN
				- ((uint32_t)skb->data & (SH7763_SKB_ALIGN-1));
			if (reserve)
				skb_reserve(skb, reserve);
#else
			skb_reserve(skb, RX_OFFSET);
#endif
			skb->ip_summed = CHECKSUM_NONE;
			rxdesc->addr = (u32)skb->data & ~0x3UL;
		}
		if (entry >= RX_RING_SIZE - 1)
			rxdesc->status |=
				cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
		else
			rxdesc->status |=
				cpu_to_edmac(mdp, RD_RACT | RD_RFP);
	}

	/* Restart Rx engine if stopped. */
	/* If we don't need to check status, don't. -KDU */
	if (!(ctrl_inl(ndev->base_addr + EDRRR) & EDRRR_R))
		ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);

	return 0;
}
Ejemplo n.º 10
0
/*
 * Function async_bump (buf, len, stats)
 *
 *    Got a frame, make a copy of it, and pass it up the stack! We can try
 *    to inline it since it's only called from state_inside_frame
 */
static inline void
async_bump(struct net_device *dev,
	   struct net_device_stats *stats,
	   iobuff_t *rx_buff)
{
	struct sk_buff *newskb;
	struct sk_buff *dataskb;
	int		docopy;

	/* Check if we need to copy the data to a new skb or not.
	 * If the driver doesn't use ZeroCopy Rx, we have to do it.
	 * With ZeroCopy Rx, the rx_buff already point to a valid
	 * skb. But, if the frame is small, it is more efficient to
	 * copy it to save memory (copy will be fast anyway - that's
	 * called Rx-copy-break). Jean II */
	docopy = ((rx_buff->skb == NULL) ||
		  (rx_buff->len < IRDA_RX_COPY_THRESHOLD));

	/* Allocate a new skb */
	newskb = dev_alloc_skb(docopy ? rx_buff->len + 1 : rx_buff->truesize);
	if (!newskb)  {
		stats->rx_dropped++;
		/* We could deliver the current skb if doing ZeroCopy Rx,
		 * but this would stall the Rx path. Better drop the
		 * packet... Jean II */
		return;
	}

	/* Align IP header to 20 bytes (i.e. increase skb->data)
	 * Note this is only useful with IrLAN, as PPP has a variable
	 * header size (2 or 1 bytes) - Jean II */
	skb_reserve(newskb, 1);

	if(docopy) {
		/* Copy data without CRC (length already checked) */
		skb_copy_to_linear_data(newskb, rx_buff->data,
					rx_buff->len - 2);
		/* Deliver this skb */
		dataskb = newskb;
	} else {
		/* We are using ZeroCopy. Deliver old skb */
		dataskb = rx_buff->skb;
		/* And hook the new skb to the rx_buff */
		rx_buff->skb = newskb;
		rx_buff->head = newskb->data;	/* NOT newskb->head */
		//printk(KERN_DEBUG "ZeroCopy : len = %d, dataskb = %p, newskb = %p\n", rx_buff->len, dataskb, newskb);
	}

	/* Set proper length on skb (without CRC) */
	skb_put(dataskb, rx_buff->len - 2);

	/* Feed it to IrLAP layer */
	dataskb->dev = dev;
	skb_reset_mac_header(dataskb);
	dataskb->protocol = htons(ETH_P_IRDA);

	netif_rx(dataskb);

	stats->rx_packets++;
	stats->rx_bytes += rx_buff->len;

	/* Clean up rx_buff (redundant with async_unwrap_bof() ???) */
	rx_buff->data = rx_buff->head;
	rx_buff->len = 0;
}
Ejemplo n.º 11
0
void kni_net_process_rx_packet(struct sk_buff *skb,
                               struct net_device *dev,
                               struct rw_kni_mbuf_metadata *meta_data)
{
  struct kni_dev *kni = netdev_priv(dev);
  
  skb->dev = dev;
  
  if (kni->no_pci){
    skb_reset_mac_header(skb);
    skb->protocol = htons(RW_KNI_VF_GET_MDATA_ENCAP_TYPE(meta_data));
  } else {
    skb->protocol = eth_type_trans(skb, dev);
  }
  skb->ip_summed = CHECKSUM_UNNECESSARY;
  /*Eth-type trans would have populated the packet-type. Store
    the old packet-type and populate the new packet-type depending
    on the mbuf flags*/
  rw_fpath_kni_set_skb_packet_type(meta_data, skb);

  if (RW_KNI_VF_VALID_MDATA_NH_POLICY(meta_data)){
    int route_lookup;
    BUG_ON(RW_KNI_VF_VALID_MDATA_ENCAP_TYPE(meta_data) == 0);
    switch(skb->protocol){
      default:
        kni->bad_encap++;
        break;
      case htons(ETH_P_IP):
        {
          uint32_t daddr;
          
          kni->v4_policy_fwd++;
          memcpy(&daddr, RW_KNI_VF_GET_MDATA_NH_POLICY(meta_data), 4);
          daddr = htonl(daddr);
          route_lookup = ip_route_input_noref(skb, daddr,
                                              daddr, 0, dev);
          if (route_lookup){
            kni->rx_drop_noroute++;
          }else{
            struct neighbour *neigh;
            struct dst_entry *dst = dst_clone(skb_dst(skb));
            struct net_device *neighdev;
            skb_dst_drop(skb);
            neighdev = dst->dev;
                        
            if (likely(neighdev)){
              rcu_read_lock_bh();
              neigh = __neigh_lookup(&arp_tbl, &daddr, neighdev, 1);
              if (likely(neigh)){
                kni->forced_arp_sent++;
                __neigh_event_send(neigh, NULL);
              }
              rcu_read_unlock_bh();
              neigh_release(neigh);
            }
            dst_release(dst);
          }
        }
        break;
      case htons(ETH_P_IPV6):
        {
          struct neighbour *neigh = NULL;
          struct dst_entry *dst = NULL;
          int i;
          uint32_t *v6addr;
          struct flowi6 fl6;
          struct rt6_info *rt;
          struct net_device *neighdev;

          kni->v6_policy_fwd++;
          v6addr = (uint32_t*)RW_KNI_VF_GET_MDATA_NH_POLICY(meta_data);
          for (i = 0; i < 4; i++){
            fl6.daddr.s6_addr32[i] = htonl(v6addr[i]);
          }
          rt = rt6_lookup(dev_net(dev), &fl6.daddr,
                          NULL, 0, 0);
          if (!rt){
            kni->rx_drop_noroute++;
          }else{
            dst = &rt->dst;
            neighdev = dst->dev;
            if (likely(neighdev)){
              rcu_read_lock_bh();
              neigh = __neigh_lookup(ipv6_stub->nd_tbl,
                                     &fl6.daddr.s6_addr32[0],
                                     neighdev, 1);
              if (likely(neigh)){
                kni->forced_ndisc_sent++;
                __neigh_event_send(neigh, NULL);
              }
              rcu_read_unlock_bh();
              neigh_release(neigh);
            }
            dst_release(dst);
          }
        }
        break;
    }
  }

  /* Call netif interface */
  netif_rx(skb);
  
  /* Update statistics */
  kni->stats.rx_packets++;
}
Ejemplo n.º 12
0
void announce_802_3_packet(
	IN VOID *pAdSrc,
	IN PNDIS_PACKET pPacket,
	IN UCHAR OpMode)
{
	RTMP_ADAPTER *pAd;
	PNDIS_PACKET pRxPkt = pPacket;

	pAd = (RTMP_ADAPTER *)pAdSrc;

	ASSERT(pPacket);
	MEM_DBG_PKT_FREE_INC(pPacket);


#ifdef CONFIG_AP_SUPPORT
#ifdef APCLI_SUPPORT
	IF_DEV_CONFIG_OPMODE_ON_AP(pAd)
	{
		if (RTMP_MATPktRxNeedConvert(pAd, RtmpOsPktNetDevGet(pRxPkt)))
			RTMP_MATEngineRxHandle(pAd, pRxPkt, 0);
	}
#endif /* APCLI_SUPPORT */
#endif /* CONFIG_AP_SUPPORT */


    /* Push up the protocol stack */
#ifdef CONFIG_AP_SUPPORT
#ifdef PLATFORM_BL2348
{
	extern int (*pToUpperLayerPktSent)(PNDIS_PACKET *pSkb);
	RtmpOsPktProtocolAssign(pRxPkt);
	pToUpperLayerPktSent(pRxPkt);
	return;
}
#endif /* PLATFORM_BL2348 */
#endif /* CONFIG_AP_SUPPORT */

#ifdef IKANOS_VX_1X0
{
	IKANOS_DataFrameRx(pAd, pRxPkt);
	return;
}
#endif /* IKANOS_VX_1X0 */

#ifdef INF_PPA_SUPPORT
	if (ppa_hook_directpath_send_fn && pAd->PPAEnable==TRUE ) 
	{
		RtmpOsPktInfPpaSend(pRxPkt);
		pRxPkt=NULL;
		return;
	}	  	
#endif /* INF_PPA_SUPPORT */

	{
#ifdef CONFIG_RT2880_BRIDGING_ONLY
		PACKET_CB_ASSIGN(pRxPkt, 22) = 0xa8;
#endif

#if defined(CONFIG_RA_CLASSIFIER)||defined(CONFIG_RA_CLASSIFIER_MODULE)
		if(ra_classifier_hook_rx!= NULL)
		{
			unsigned int flags;
			
			RTMP_IRQ_LOCK(&pAd->page_lock, flags);
			ra_classifier_hook_rx(pRxPkt, classifier_cur_cycle);
			RTMP_IRQ_UNLOCK(&pAd->page_lock, flags);
		}
#endif /* CONFIG_RA_CLASSIFIER */

#if !defined(CONFIG_RA_NAT_NONE)
#if defined (CONFIG_RA_HW_NAT)  || defined (CONFIG_RA_HW_NAT_MODULE)
		{
			struct sk_buff *pRxPktb = RTPKT_TO_OSPKT(pRxPkt);
			FOE_MAGIC_TAG(pRxPktb) = FOE_MAGIC_WLAN;
		}
#endif

#ifdef RA_NAT_SUPPORT
#if !defined(CONFIG_RA_NAT_NONE)
		/* bruce+
		  * ra_sw_nat_hook_rx return 1 --> continue
		  * ra_sw_nat_hook_rx return 0 --> FWD & without netif_rx
		 */
		if (ra_sw_nat_hook_rx!= NULL)
		{
			unsigned int flags;
			
			RtmpOsPktProtocolAssign(pRxPkt);

			RTMP_IRQ_LOCK(&pAd->page_lock, flags);
			if(ra_sw_nat_hook_rx(pRxPkt)) 
			{
				netif_rx(pRxPkt);
			}
			RTMP_IRQ_UNLOCK(&pAd->page_lock, flags);
			return;
		}
#endif /* !CONFIG_RA_NAT_NONE */
#endif /* RA_NAT_SUPPORT */
#else
		{
#if defined (CONFIG_RA_HW_NAT)  || defined (CONFIG_RA_HW_NAT_MODULE)
			FOE_AI(((struct sk_buff *)pRxPkt)) = UN_HIT;
#endif /* CONFIG_RA_HW_NAT */
		}
#endif /* CONFIG_RA_NAT_NONE */
	}
	
#ifdef CONFIG_AP_SUPPORT
#ifdef BG_FT_SUPPORT
		if (BG_FTPH_PacketFromApHandle(pRxPkt) == 0)
			return;
#endif /* BG_FT_SUPPORT */
#endif /* CONFIG_AP_SUPPORT */

		RtmpOsPktProtocolAssign(pRxPkt);
		RtmpOsPktRcvHandle(pRxPkt);
}
Ejemplo n.º 13
0
static int vnet_start_xmit(struct sk_buff *skb, struct net_device *net)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 29))
	struct pdp_info *dev = (struct pdp_info *)net->ml_priv;
#else
	struct pdp_info *dev = (struct pdp_info *)net->priv;
#endif


#ifdef USE_LOOPBACK_PING
	int ret;
	struct sk_buff *skb2;
	struct icmphdr *icmph;
	struct iphdr *iph;
#endif

#ifdef USE_LOOPBACK_PING
	dev->vn_dev.stats.tx_bytes += skb->len;
	dev->vn_dev.stats.tx_packets++;

	skb2 = alloc_skb(skb->len, GFP_ATOMIC);
	if (skb2 == NULL) {
		DPRINTK(1, "alloc_skb() failed\n");
		dev_kfree_skb_any(skb);
		return -ENOMEM;
	}

	memcpy(skb2->data, skb->data, skb->len);
	skb_put(skb2, skb->len);
	dev_kfree_skb_any(skb);

	icmph = (struct icmphdr *)(skb2->data + sizeof(struct iphdr));
	iph = (struct iphdr *)skb2->data;

	icmph->type = __constant_htons(ICMP_ECHOREPLY);

	ret = iph->daddr;
	iph->daddr = iph->saddr;
	iph->saddr = ret;
	iph->check = 0;
	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);

	skb2->dev = net;
	skb2->protocol = __constant_htons(ETH_P_IP);

	netif_rx(skb2);

	dev->vn_dev.stats.rx_packets++;
	dev->vn_dev.stats.rx_bytes += skb->len;
#else
	if (vnet_start_xmit_flag != 0) {
		return NETDEV_TX_BUSY;   
	}
	vnet_start_xmit_flag = 1;
	workqueue_data = (unsigned long)skb;
	PREPARE_WORK(&dev->vn_dev.xmit_task,vnet_defer_xmit);
	schedule_work(&dev->vn_dev.xmit_task);
	netif_stop_queue(net);
#endif

	return 0;
}
Ejemplo n.º 14
0
static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
{
	struct can_frame *cf;
	struct sk_buff *skb;
	struct net_device_stats *stats = &dev->netdev->stats;

	skb = alloc_can_err_skb(dev->netdev, &cf);
	if (skb == NULL)
		return;

	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
		u8 state = msg->msg.can_state;

		if (state & SJA1000_SR_BS) {
			dev->can.state = CAN_STATE_BUS_OFF;
			cf->can_id |= CAN_ERR_BUSOFF;

			can_bus_off(dev->netdev);
		} else if (state & SJA1000_SR_ES) {
			dev->can.state = CAN_STATE_ERROR_WARNING;
			dev->can.can_stats.error_warning++;
		} else {
			dev->can.state = CAN_STATE_ERROR_ACTIVE;
			dev->can.can_stats.error_passive++;
		}
	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;

		/* bus error interrupt */
		dev->can.can_stats.bus_error++;
		stats->rx_errors++;

		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;

		switch (ecc & SJA1000_ECC_MASK) {
		case SJA1000_ECC_BIT:
			cf->data[2] |= CAN_ERR_PROT_BIT;
			break;
		case SJA1000_ECC_FORM:
			cf->data[2] |= CAN_ERR_PROT_FORM;
			break;
		case SJA1000_ECC_STUFF:
			cf->data[2] |= CAN_ERR_PROT_STUFF;
			break;
		default:
			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
			cf->data[3] = ecc & SJA1000_ECC_SEG;
			break;
		}

		/* Error occurred during transmission? */
		if ((ecc & SJA1000_ECC_DIR) == 0)
			cf->data[2] |= CAN_ERR_PROT_TX;

		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
			cf->data[1] = (txerr > rxerr) ?
			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
		}
	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
		cf->can_id |= CAN_ERR_CRTL;
		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;

		stats->rx_over_errors++;
		stats->rx_errors++;
	}

	netif_rx(skb);

	stats->rx_packets++;
	stats->rx_bytes += cf->can_dlc;
}
Ejemplo n.º 15
0
void nas_COMMON_receive(uint16_t dlen,
                        void *pdcp_sdu,
                        int inst,
                        struct classifier_entity *rclass,
                        nasRadioBearerId_t rb_id)
{

  //---------------------------------------------------------------------------
  struct sk_buff *skb;
  struct ipversion *ipv;
  struct nas_priv *gpriv=netdev_priv(nasdev[inst]);
  uint32_t odaddr,osaddr;

  //int i;

  unsigned char protocol;

  unsigned char /**addr,*/ *daddr,*saddr,*ifaddr /*,sn*/;

  //struct udphdr *uh;
  //struct tcphdr *th;
  uint16_t *cksum,check;

  struct iphdr *network_header;

#ifdef NAS_DEBUG_RECEIVE

  printk("NAS_COMMON_RECEIVE: begin RB %d Inst %d Length %d bytes\n",rb_id,inst,dlen);
#endif
  skb = dev_alloc_skb( dlen + 2 );

  if(!skb) {
    printk("NAS_COMMON_RECEIVE: low on memory\n");
    ++gpriv->stats.rx_dropped;
    return;
  }

  skb_reserve(skb,2);
  memcpy(skb_put(skb, dlen), pdcp_sdu,dlen);

  skb->dev = nasdev[inst];

  skb_reset_mac_header(skb);
  //printk("[NAC_COMMIN_RECEIVE]: Packet Type %d (%d,%d)",skb->pkt_type,PACKET_HOST,PACKET_BROADCAST);
  skb->pkt_type = PACKET_HOST;

  if (rclass->version != NAS_MPLS_VERSION_CODE) {  // This is an IP packet

    skb->ip_summed = CHECKSUM_NONE;


    ipv = (struct ipversion *)skb->data;

    switch (ipv->version) {
    case 6:
#ifdef NAS_DEBUG_RECEIVE
      printk("NAS_COMMON_RECEIVE: receive IPv6 message\n");
#endif


      skb_reset_network_header(skb);

      skb->protocol = htons(ETH_P_IPV6);
      //  printk("Writing packet with protocol %x\n",ntohs(skb->protocol));

      break;

    case 4:
#ifdef NAS_ADDRESS_FIX
      // Make the third byte of both the source and destination equal to the fourth of the destination



      daddr = (unsigned char *)&((struct iphdr *)skb->data)->daddr;
      odaddr = ((struct iphdr *)skb->data)->daddr;
      //    sn = addr[3];
      saddr = (unsigned char *)&((struct iphdr *)skb->data)->saddr;
      osaddr = ((struct iphdr *)skb->data)->saddr;

      if (daddr[0] == saddr[0]) {// same network
        daddr[2] = daddr[3]; // set third byte of destination to that of local machine so that local IP stack accepts the packet
        saddr[2] = daddr[3]; // set third byte of source to that of local machine so that local IP stack accepts the packet
      } else { // get the 3rd byte from device address in net_device structure
        ifaddr = (unsigned char *)(&(((struct in_device *)((nasdev[inst])->ip_ptr))->ifa_list->ifa_local));

        if (saddr[0] == ifaddr[0]) { // source is in same network as local machine
          daddr[0] += saddr[3];        // fix address of remote destination to undo change at source
          saddr[2] =  ifaddr[2];       // set third byte to that of local machine so that local IP stack accepts the packet
        } else {                       // source is remote machine from outside network
          saddr[0] -= daddr[3];        // fix address of remote source to be understood by destination
          daddr[2] =  daddr[3];        // fix 3rd byte of local address to be understood by IP stack of
          // destination
        }
      }

#endif //NAS_ADDRESS_FIX
#ifdef NAS_DEBUG_RECEIVE
      //    printk("NAS_TOOL_RECEIVE: receive IPv4 message\n");
      addr = (unsigned char *)&((struct iphdr *)skb->data)->saddr;

      if (addr) {
        //      addr[2]^=0x01;
        printk("[NAS][COMMON][RECEIVE] Source %d.%d.%d.%d\n",addr[0],addr[1],addr[2],addr[3]);
      }

      addr = (unsigned char *)&((struct iphdr *)skb->data)->daddr;

      if (addr) {
        //      addr[2]^=0x01;
        printk("[NAS][COMMON][RECEIVE] Dest %d.%d.%d.%d\n",addr[0],addr[1],addr[2],addr[3]);
      }

      printk("[NAS][COMMON][RECEIVE] protocol  %d\n",((struct iphdr *)skb->data)->protocol);

#endif

      skb_reset_network_header(skb);
      network_header = (struct iphdr *)skb_network_header(skb);
      protocol = network_header->protocol;

#ifdef NAS_DEBUG_RECEIVE

      switch (protocol) {
      case IPPROTO_IP:
        printk("[NAS][COMMON][RECEIVE] Received Raw IPv4 packet\n");
        break;

      case IPPROTO_IPV6:
        printk("[NAS][COMMON][RECEIVE] Received Raw IPv6 packet\n");
        break;

      case IPPROTO_ICMP:
        printk("[NAS][COMMON][RECEIVE] Received Raw ICMP packet\n");
        break;

      case IPPROTO_TCP:
        printk("[NAS][COMMON][RECEIVE] Received TCP packet\n");
        break;

      case IPPROTO_UDP:
        printk("[NAS][COMMON][RECEIVE] Received UDP packet\n");
        break;

      default:
        break;
      }

#endif

#ifdef NAS_ADDRESS_FIX

#ifdef NAS_DEBUG_RECEIVE
      printk("NAS_COMMON_RECEIVE: dumping the packet before the csum recalculation (len %d)\n",skb->len);

      for (i=0; i<skb->len; i++)
        printk("%2x ",((unsigned char *)(skb->data))[i]);

      printk("\n");
#endif //NAS_DEBUG_RECEIVE


      network_header->check = 0;
      network_header->check = ip_fast_csum((unsigned char *) network_header,
                                           network_header->ihl);
#ifdef NAS_DEBUG_RECEIVE
      printk("[NAS][COMMON][RECEIVE] IP Fast Checksum %x \n", network_header->check);
#endif

      //    if (!(skb->nh.iph->frag_off & htons(IP_OFFSET))) {




      switch(protocol) {

      case IPPROTO_TCP:

        cksum  = (uint16_t*)&(((struct tcphdr*)(((char *)network_header + (network_header->ihl<<2))))->check);
        //check  = csum_tcpudp_magic(((struct iphdr *)network_header)->saddr, ((struct iphdr *)network_header)->daddr, tcp_hdrlen(skb), IPPROTO_TCP, ~(*cksum));

#ifdef NAS_DEBUG_RECEIVE
        printk("[NAS][COMMON] Inst %d TCP packet calculated CS %x, CS = %x (before), SA (%x)%x, DA (%x)%x\n",
               inst,
               network_header->check,
               *cksum,
               osaddr,
               ((struct iphdr *)skb->data)->saddr,
               odaddr,
               ((struct iphdr *)skb->data)->daddr);
#endif
        check  = csum_tcpudp_magic(((struct iphdr *)skb->data)->saddr, ((struct iphdr *)skb->data)->daddr,0,0, ~(*cksum));
        *cksum = csum_tcpudp_magic(~osaddr, ~odaddr, 0, 0, ~check);

#ifdef NAS_DEBUG_RECEIVE
        printk("[NAS][COMMON] Inst %d TCP packet NEW CS %x\n",
               inst,
               *cksum);
#endif
        break;

      case IPPROTO_UDP:

        cksum  = (uint16_t*)&(((struct udphdr*)(((char *)network_header + (network_header->ihl<<2))))->check);
        // check = csum_tcpudp_magic(((struct iphdr *)network_header)->saddr, ((struct iphdr *)network_header)->daddr, udp_hdr(skb)->len, IPPROTO_UDP, ~(*cksum));
#ifdef NAS_DEBUG_RECEIVE
        printk("[NAS][COMMON] Inst %d UDP packet CS = %x (before), SA (%x)%x, DA (%x)%x\n",
               inst,
               *cksum,
               osaddr,
               ((struct iphdr *)skb->data)->saddr,
               odaddr,
               ((struct iphdr *)skb->data)->daddr);
#endif
        check = csum_tcpudp_magic(((struct iphdr *)skb->data)->saddr, ((struct iphdr *)skb->data)->daddr, 0,0, ~(*cksum));
        *cksum= csum_tcpudp_magic(~osaddr, ~odaddr,0,0, ~check);
        //*cksum= csum_tcpudp_magic(~osaddr, ~odaddr,udp_hdr(skb)->len, IPPROTO_UDP, ~check);

#ifdef NAS_DEBUG_RECEIVE
        printk("[NAS][COMMON] Inst %d UDP packet NEW CS %x\n",
               inst,
               *cksum);
#endif
        //    if ((check = *cksum) != 0) {
        // src, dst, len, proto, sum


        //    }

        break;

      default:
        break;
      }

      //    }

#endif //NAS_ADDRESS_FIX

      skb->protocol = htons(ETH_P_IP);
      //  printk("[NAS][COMMON] Writing packet with protocol %x\n",ntohs(skb->protocol));
      break;

    default:
      printk("NAS_COMMON_RECEIVE: begin RB %d Inst %d Length %d bytes\n",rb_id,inst,dlen);

      printk("[NAS][COMMON] Inst %d: receive unknown message (version=%d)\n",inst,ipv->version);

    }
  } else { // This is an MPLS packet

#ifdef NAS_DEBUG_RECEIVE
    printk("NAS_COMMON_RECEIVE: Received an MPLS packet on RB %d\n",rb_id);
#endif
    skb->protocol = htons(ETH_P_MPLS_UC);

  }

  ++gpriv->stats.rx_packets;
  gpriv->stats.rx_bytes += dlen;
#ifdef NAS_DEBUG_RECEIVE
  printk("NAS_COMMON_RECEIVE: sending packet of size %d to kernel\n",skb->len);

  for (i=0; i<skb->len; i++)
    printk("%2x ",((unsigned char *)(skb->data))[i]);

  printk("\n");
#endif //NAS_DEBUG_RECEIVE
  netif_rx(skb);
#ifdef NAS_DEBUG_RECEIVE
  printk("NAS_COMMON_RECEIVE: end\n");
#endif
}
Ejemplo n.º 16
0
static inline int
i596_rx(struct device *dev)
{
    struct i596_private *lp = (struct i596_private *)dev->priv;
    int frames = 0;

    if (i596_debug > 3) printk ("i596_rx()\n");

    while ((lp->scb.rfd->stat) & STAT_C)
    {
        if (i596_debug >2) print_eth(lp->scb.rfd->data);

	if ((lp->scb.rfd->stat) & STAT_OK)
	{
	    /* a good frame */
	    int pkt_len = lp->scb.rfd->count & 0x3fff;
	    struct sk_buff *skb = dev_alloc_skb(pkt_len);

	    frames++;

	    if (skb == NULL)
	    {
		printk ("%s: i596_rx Memory squeeze, dropping packet.\n", dev->name);
		lp->stats.rx_dropped++;
		break;
	    }

  	    skb->dev = dev;		
	    memcpy(skb_put(skb,pkt_len), lp->scb.rfd->data, pkt_len);

	    skb->protocol=eth_type_trans(skb,dev);
	    netif_rx(skb);
	    lp->stats.rx_packets++;

	    if (i596_debug > 4) print_eth(skb->data);
	}
	else
	{
	    lp->stats.rx_errors++;
	    if ((lp->scb.rfd->stat) & 0x0001) lp->stats.collisions++;
	    if ((lp->scb.rfd->stat) & 0x0080) lp->stats.rx_length_errors++;
	    if ((lp->scb.rfd->stat) & 0x0100) lp->stats.rx_over_errors++;
	    if ((lp->scb.rfd->stat) & 0x0200) lp->stats.rx_fifo_errors++;
	    if ((lp->scb.rfd->stat) & 0x0400) lp->stats.rx_frame_errors++;
	    if ((lp->scb.rfd->stat) & 0x0800) lp->stats.rx_crc_errors++;
	    if ((lp->scb.rfd->stat) & 0x1000) lp->stats.rx_length_errors++;
	}

	lp->scb.rfd->stat = 0;
	lp->rx_tail->cmd = 0;
	lp->rx_tail = lp->scb.rfd;
	lp->scb.rfd = lp->scb.rfd->next;
	lp->rx_tail->count = 0;
	lp->rx_tail->cmd = CMD_EOL;

    }

    if (i596_debug > 3) printk ("frames %d\n", frames);

    return 0;
}
Ejemplo n.º 17
0
static void rx_complete(struct urb *req)
{
	struct net_device *dev = req->context;
	struct usbpn_dev *pnd = netdev_priv(dev);
	struct page *page = virt_to_page(req->transfer_buffer);
	struct sk_buff *skb;
	unsigned long flags;
	int status = req->status;

	switch (status) {
	case 0:
		spin_lock_irqsave(&pnd->rx_lock, flags);
		skb = pnd->rx_skb;
		if (!skb) {
			skb = pnd->rx_skb = netdev_alloc_skb(dev, 12);
			if (likely(skb)) {
				/* Can't use pskb_pull() on page in IRQ */
				memcpy(skb_put(skb, 1), page_address(page), 1);
				skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
						page, 1, req->actual_length,
						PAGE_SIZE);
				page = NULL;
			}
		} else {
			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
					page, 0, req->actual_length,
					PAGE_SIZE);
			page = NULL;
		}
		if (req->actual_length < PAGE_SIZE)
			pnd->rx_skb = NULL; /* Last fragment */
		else
			skb = NULL;
		spin_unlock_irqrestore(&pnd->rx_lock, flags);
		if (skb) {
			skb->protocol = htons(ETH_P_PHONET);
			skb_reset_mac_header(skb);
			__skb_pull(skb, 1);
			skb->dev = dev;
			dev->stats.rx_packets++;
			dev->stats.rx_bytes += skb->len;

			netif_rx(skb);
		}
		goto resubmit;

	case -ENOENT:
	case -ECONNRESET:
	case -ESHUTDOWN:
		req = NULL;
		break;

	case -EOVERFLOW:
		dev->stats.rx_over_errors++;
		dev_dbg(&dev->dev, "RX overflow\n");
		break;

	case -EILSEQ:
		dev->stats.rx_crc_errors++;
		break;
	}

	dev->stats.rx_errors++;
resubmit:
	if (page)
		put_page(page);
	if (req)
		rx_submit(pnd, req, GFP_ATOMIC | __GFP_COLD);
}
Ejemplo n.º 18
0
int
ethernet_demuxer (mach_msg_header_t *inp,
		  mach_msg_header_t *outp)
{
  struct net_rcv_msg *msg = (struct net_rcv_msg *) inp;
  struct sk_buff *skb;
  int datalen;
  struct ether_device *edev;
  struct device *dev = 0;
  mach_port_t local_port;

  if (inp->msgh_id != NET_RCV_MSG_ID)
    return 0;

  if (MACH_MSGH_BITS_LOCAL (inp->msgh_bits) ==
      MACH_MSG_TYPE_PROTECTED_PAYLOAD)
    {
      struct port_info *pi = ports_lookup_payload (NULL,
						   inp->msgh_protected_payload,
						   NULL);
      if (pi)
	{
	  local_port = pi->port_right;
	  ports_port_deref (pi);
	}
      else
	local_port = MACH_PORT_NULL;
    }
  else
    local_port = inp->msgh_local_port;

  for (edev = ether_dev; edev; edev = edev->next)
    if (local_port == edev->readptname)
      dev = &edev->dev;

  if (! dev)
    {
      if (inp->msgh_remote_port != MACH_PORT_NULL)
	mach_port_deallocate (mach_task_self (), inp->msgh_remote_port);
      return 1;
    }

  datalen = ETH_HLEN
    + msg->packet_type.msgt_number - sizeof (struct packet_header);

  pthread_mutex_lock (&net_bh_lock);
  skb = alloc_skb (datalen, GFP_ATOMIC);
  skb_put (skb, datalen);
  skb->dev = dev;

  /* Copy the two parts of the frame into the buffer. */
  memcpy (skb->data, msg->header, ETH_HLEN);
  memcpy (skb->data + ETH_HLEN,
	  msg->packet + sizeof (struct packet_header),
	  datalen - ETH_HLEN);

  /* Drop it on the queue. */
  skb->protocol = eth_type_trans (skb, dev);
  netif_rx (skb);
  pthread_mutex_unlock (&net_bh_lock);

  return 1;
}
Ejemplo n.º 19
0
static netdev_tx_t wilc_wfi_mon_xmit(struct sk_buff *skb,
				     struct net_device *dev)
{
	u32 rtap_len, ret = 0;
	struct wilc_wfi_mon_priv  *mon_priv;
	struct sk_buff *skb2;
	struct wilc_wfi_radiotap_cb_hdr *cb_hdr;

	if (!wilc_wfi_mon)
		return -EFAULT;

	mon_priv = netdev_priv(wilc_wfi_mon);
	if (!mon_priv)
		return -EFAULT;
	rtap_len = ieee80211_get_radiotap_len(skb->data);
	if (skb->len < rtap_len)
		return -1;

	skb_pull(skb, rtap_len);

	if (skb->data[0] == 0xc0 && is_broadcast_ether_addr(&skb->data[4])) {
		skb2 = dev_alloc_skb(skb->len + sizeof(*cb_hdr));
		if (!skb2)
			return -ENOMEM;

		skb_put_data(skb2, skb->data, skb->len);

		cb_hdr = skb_push(skb2, sizeof(*cb_hdr));
		memset(cb_hdr, 0, sizeof(struct wilc_wfi_radiotap_cb_hdr));

		cb_hdr->hdr.it_version = 0; /* PKTHDR_RADIOTAP_VERSION; */

		cb_hdr->hdr.it_len = cpu_to_le16(sizeof(*cb_hdr));

		cb_hdr->hdr.it_present = cpu_to_le32(TX_RADIOTAP_PRESENT);

		cb_hdr->rate = 5;
		cb_hdr->tx_flags = 0x0004;

		skb2->dev = wilc_wfi_mon;
		skb_reset_mac_header(skb2);
		skb2->ip_summed = CHECKSUM_UNNECESSARY;
		skb2->pkt_type = PACKET_OTHERHOST;
		skb2->protocol = htons(ETH_P_802_2);
		memset(skb2->cb, 0, sizeof(skb2->cb));

		netif_rx(skb2);

		return 0;
	}
	skb->dev = mon_priv->real_ndev;

	memcpy(srcadd, &skb->data[10], 6);
	memcpy(bssid, &skb->data[16], 6);
	/*
	 * Identify if data or mgmt packet, if source address and bssid
	 * fields are equal send it to mgmt frames handler
	 */
	if (!(memcmp(srcadd, bssid, 6))) {
		ret = mon_mgmt_tx(mon_priv->real_ndev, skb->data, skb->len);
		if (ret)
			netdev_err(dev, "fail to mgmt tx\n");
		dev_kfree_skb(skb);
	} else {
		ret = wilc_mac_xmit(skb, mon_priv->real_ndev);
	}

	return ret;
}
Ejemplo n.º 20
0
/*
 * netvsc_recv_callback -  Callback when we receive a packet from the
 * "wire" on the specified device.
 */
int netvsc_recv_callback(struct hv_device *device_obj,
				struct hv_netvsc_packet *packet,
				void **data,
				struct ndis_tcp_ip_checksum_info *csum_info,
				struct vmbus_channel *channel,
				u16 vlan_tci)
{
	struct net_device *net = hv_get_drvdata(device_obj);
	struct net_device_context *net_device_ctx = netdev_priv(net);
	struct sk_buff *skb;
	struct sk_buff *vf_skb;
	struct netvsc_stats *rx_stats;
	struct netvsc_device *netvsc_dev = net_device_ctx->nvdev;
	u32 bytes_recvd = packet->total_data_buflen;
	int ret = 0;

	if (!net || net->reg_state != NETREG_REGISTERED)
		return NVSP_STAT_FAIL;

	if (READ_ONCE(netvsc_dev->vf_inject)) {
		atomic_inc(&netvsc_dev->vf_use_cnt);
		if (!READ_ONCE(netvsc_dev->vf_inject)) {
			/*
			 * We raced; just move on.
			 */
			atomic_dec(&netvsc_dev->vf_use_cnt);
			goto vf_injection_done;
		}

		/*
		 * Inject this packet into the VF inerface.
		 * On Hyper-V, multicast and brodcast packets
		 * are only delivered on the synthetic interface
		 * (after subjecting these to policy filters on
		 * the host). Deliver these via the VF interface
		 * in the guest.
		 */
		vf_skb = netvsc_alloc_recv_skb(netvsc_dev->vf_netdev, packet,
					       csum_info, *data, vlan_tci);
		if (vf_skb != NULL) {
			++netvsc_dev->vf_netdev->stats.rx_packets;
			netvsc_dev->vf_netdev->stats.rx_bytes += bytes_recvd;
			netif_receive_skb(vf_skb);
		} else {
			++net->stats.rx_dropped;
			ret = NVSP_STAT_FAIL;
		}
		atomic_dec(&netvsc_dev->vf_use_cnt);
		return ret;
	}

vf_injection_done:
	rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);

	/* Allocate a skb - TODO direct I/O to pages? */
	skb = netvsc_alloc_recv_skb(net, packet, csum_info, *data, vlan_tci);
	if (unlikely(!skb)) {
		++net->stats.rx_dropped;
		return NVSP_STAT_FAIL;
	}
	skb_record_rx_queue(skb, channel->
			    offermsg.offer.sub_channel_index);

	u64_stats_update_begin(&rx_stats->syncp);
	rx_stats->packets++;
	rx_stats->bytes += packet->total_data_buflen;
	u64_stats_update_end(&rx_stats->syncp);

	/*
	 * Pass the skb back up. Network stack will deallocate the skb when it
	 * is done.
	 * TODO - use NAPI?
	 */
	netif_rx(skb);

	return 0;
}
Ejemplo n.º 21
0
static void ether00_int( int irq_num, void* dev_id, struct pt_regs* regs)
{
	struct net_device* dev=dev_id;
	struct net_priv* priv=dev->priv;

	unsigned int   interruptValue;

        int enable_tx = 0;
	struct tx_fda_ent *fda_ptr;
	struct sk_buff* skb;

	interruptValue=readl(ETHER_INT_SRC(dev->base_addr));

	if(!(readl(ETHER_INT_SRC(dev->base_addr)) & ETHER_INT_SRC_IRQ_MSK))
	{
		return;		/* Interrupt wasn't caused by us!! */
	}

	if(readl(ETHER_INT_SRC(dev->base_addr))&
	   (ETHER_INT_SRC_INTMACRX_MSK |
	    ETHER_INT_SRC_FDAEX_MSK |
	    ETHER_INT_SRC_BLEX_MSK)) {
		struct rx_blist_ent* blist_ent_ptr;
		struct rx_fda_ent* fda_ent_ptr;
		struct sk_buff* skb;

		fda_ent_ptr=priv->rx_fda_ptr;
		spin_lock(&priv->dma_lock);
		while(fda_ent_ptr<(priv->rx_fda_ptr+RX_NUM_FDESC)){
			int result;

			if(!(fda_ent_ptr->fd.FDCtl&FDCTL_COWNSFD_MSK))
			{
				/* This frame is ready for processing */
				/*find the corresponding buffer in the bufferlist */
				blist_ent_ptr=priv->rx_blist_vp+fda_ent_ptr->bd.BDStat;
				skb=(struct sk_buff*)blist_ent_ptr->fd.FDSystem;

				/* Pass this skb up the stack */
				skb->dev=dev;
				skb_put(skb,fda_ent_ptr->fd.FDLength);
				skb->protocol=eth_type_trans(skb,dev);
				skb->ip_summed=CHECKSUM_UNNECESSARY;
				result=netif_rx(skb);
				/* Update statistics */
				priv->stats.rx_packets++;
				priv->stats.rx_bytes+=fda_ent_ptr->fd.FDLength;

				/* Free the FDA entry */
				fda_ent_ptr->bd.BDStat=0xff;
				fda_ent_ptr->fd.FDCtl=FDCTL_COWNSFD_MSK;

				/* Allocate a new skb and point the bd entry to it */
				blist_ent_ptr->fd.FDSystem=0;
				skb=dev_alloc_skb(PKT_BUF_SZ);
				if(skb){
					setup_blist_entry(skb,blist_ent_ptr);

				}
				else if(!priv->memupdate_scheduled){
					int tmp;
					/* There are no buffers at the moment, so schedule */
					/* the background task to sort this out */
					schedule_task(&priv->tq_memupdate);
					priv->memupdate_scheduled=1;
					printk(KERN_DEBUG "%s:No buffers",dev->name);
					/* If this interrupt was due to a lack of buffers then
					 * we'd better stop the receiver too */
					if(interruptValue&ETHER_INT_SRC_BLEX_MSK){
						priv->rx_disabled=1;
						tmp=readl(ETHER_INT_SRC(dev->base_addr));
						writel(tmp&~ETHER_RX_CTL_RXEN_MSK,ETHER_RX_CTL(dev->base_addr));
						printk(KERN_DEBUG "%s:Halting rx",dev->name);
					}

				}

			}
			fda_ent_ptr++;
		}
		spin_unlock(&priv->dma_lock);

		/* Clear the  interrupts */
		writel(ETHER_INT_SRC_INTMACRX_MSK | ETHER_INT_SRC_FDAEX_MSK
		       | ETHER_INT_SRC_BLEX_MSK,ETHER_INT_SRC(dev->base_addr));

	}

	if(readl(ETHER_INT_SRC(dev->base_addr))&ETHER_INT_SRC_INTMACTX_MSK){

	  /* Transmit interrupt */

	  fda_ptr=(struct tx_fda_ent*) priv->tx_tail;

          /* free up all completed frames */

	  while(!(FDCTL_COWNSFD_MSK&fda_ptr->fd.FDCtl) && fda_ptr->fd.FDSystem){
	    priv->stats.tx_packets++;
	    priv->stats.tx_bytes+=fda_ptr->bd.BuffLength;
	    skb=(struct sk_buff*)fda_ptr->fd.FDSystem;
	    dev_kfree_skb_irq(skb);
	    fda_ptr->fd.FDSystem=0;
	    fda_ptr->fd.FDStat=0;
	    fda_ptr->fd.FDCtl=0;
	    fda_ptr = (struct tx_fda_ent *)__dma_va(fda_ptr->fd.FDNext);
	    enable_tx = 1;
	  }
	  priv->tx_tail = (unsigned int) fda_ptr;

	  if(priv->queue_stopped && enable_tx){
	    priv->queue_stopped=0;
	    netif_wake_queue(dev);
	  }

	  /* Clear the interrupt */
	  writel(ETHER_INT_SRC_INTMACTX_MSK,ETHER_INT_SRC(dev->base_addr));
	}

	if (readl(ETHER_INT_SRC(dev->base_addr)) & (ETHER_INT_SRC_SWINT_MSK|
						    ETHER_INT_SRC_INTEARNOT_MSK|
						    ETHER_INT_SRC_INTLINK_MSK|
						    ETHER_INT_SRC_INTEXBD_MSK|
						    ETHER_INT_SRC_INTTXCTLCMP_MSK))
	{
		/*
		 *	Not using any of these so they shouldn't happen
		 *
		 *	In the cased of INTEXBD - if you allocate more
		 *      than 28 decsriptors you may need to think about this
		 */
		printk("Not using this interrupt\n");
	}

	if (readl(ETHER_INT_SRC(dev->base_addr)) &
	    (ETHER_INT_SRC_INTSBUS_MSK |
	     ETHER_INT_SRC_INTNRABT_MSK
	     |ETHER_INT_SRC_DMPARERR_MSK))
	{
		/*
		 * Hardware errors, we can either ignore them and hope they go away
		 *or reset the device, I'll try the first for now to see if they happen
		 */
		printk("Hardware error\n");
	}
}
Ejemplo n.º 22
0
static int ipgre_rcv(struct sk_buff *skb)
{
	struct iphdr *iph;
	u8     *h;
	__be16    flags;
	__sum16   csum = 0;
	__be32 key = 0;
	u32    seqno = 0;
	struct ip_tunnel *tunnel;
	int    offset = 4;
	__be16 gre_proto;
	unsigned int len;

	if (!pskb_may_pull(skb, 16))
		goto drop_nolock;

	iph = ip_hdr(skb);
	h = skb->data;
	flags = *(__be16*)h;

	if (flags&(GRE_CSUM|GRE_KEY|GRE_ROUTING|GRE_SEQ|GRE_VERSION)) {
		/* - Version must be 0.
		   - We do not support routing headers.
		 */
		if (flags&(GRE_VERSION|GRE_ROUTING))
			goto drop_nolock;

		if (flags&GRE_CSUM) {
			switch (skb->ip_summed) {
			case CHECKSUM_COMPLETE:
				csum = csum_fold(skb->csum);
				if (!csum)
					break;
				/* fall through */
			case CHECKSUM_NONE:
				skb->csum = 0;
				csum = __skb_checksum_complete(skb);
				skb->ip_summed = CHECKSUM_COMPLETE;
			}
			offset += 4;
		}
		if (flags&GRE_KEY) {
			key = *(__be32*)(h + offset);
			offset += 4;
		}
		if (flags&GRE_SEQ) {
			seqno = ntohl(*(__be32*)(h + offset));
			offset += 4;
		}
	}

	gre_proto = *(__be16 *)(h + 2);

	read_lock(&ipgre_lock);
	if ((tunnel = ipgre_tunnel_lookup(skb->dev,
					  iph->saddr, iph->daddr, key,
					  gre_proto))) {
		struct net_device_stats *stats = &tunnel->dev->stats;

		secpath_reset(skb);

		skb->protocol = gre_proto;
		/* WCCP version 1 and 2 protocol decoding.
		 * - Change protocol to IP
		 * - When dealing with WCCPv2, Skip extra 4 bytes in GRE header
		 */
		if (flags == 0 && gre_proto == htons(ETH_P_WCCP)) {
			skb->protocol = htons(ETH_P_IP);
			if ((*(h + offset) & 0xF0) != 0x40)
				offset += 4;
		}

		skb->mac_header = skb->network_header;
		__pskb_pull(skb, offset);
		skb_postpull_rcsum(skb, skb_transport_header(skb), offset);
		skb->pkt_type = PACKET_HOST;
#ifdef CONFIG_NET_IPGRE_BROADCAST
		if (ipv4_is_multicast(iph->daddr)) {
			/* Looped back packet, drop it! */
			if (skb_rtable(skb)->fl.iif == 0)
				goto drop;
			stats->multicast++;
			skb->pkt_type = PACKET_BROADCAST;
		}
#endif

		if (((flags&GRE_CSUM) && csum) ||
		    (!(flags&GRE_CSUM) && tunnel->parms.i_flags&GRE_CSUM)) {
			stats->rx_crc_errors++;
			stats->rx_errors++;
			goto drop;
		}
		if (tunnel->parms.i_flags&GRE_SEQ) {
			if (!(flags&GRE_SEQ) ||
			    (tunnel->i_seqno && (s32)(seqno - tunnel->i_seqno) < 0)) {
				stats->rx_fifo_errors++;
				stats->rx_errors++;
				goto drop;
			}
			tunnel->i_seqno = seqno + 1;
		}

		len = skb->len;

		/* Warning: All skb pointers will be invalidated! */
		if (tunnel->dev->type == ARPHRD_ETHER) {
			if (!pskb_may_pull(skb, ETH_HLEN)) {
				stats->rx_length_errors++;
				stats->rx_errors++;
				goto drop;
			}

			iph = ip_hdr(skb);
			skb->protocol = eth_type_trans(skb, tunnel->dev);
			skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
		}

		stats->rx_packets++;
		stats->rx_bytes += len;
		skb->dev = tunnel->dev;
		skb_dst_drop(skb);
		nf_reset(skb);

		skb_reset_network_header(skb);
		ipgre_ecn_decapsulate(iph, skb);

		netif_rx(skb);
		read_unlock(&ipgre_lock);
		return(0);
	}
	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);

drop:
	read_unlock(&ipgre_lock);
drop_nolock:
	kfree_skb(skb);
	return(0);
}
Ejemplo n.º 23
0
static int ax25_rcv(struct sk_buff *skb, struct net_device *dev,
	ax25_address *dev_addr, struct packet_type *ptype)
{
	ax25_address src, dest, *next_digi = NULL;
	int type = 0, mine = 0, dama;
	struct sock *make, *sk;
	ax25_digi dp, reverse_dp;
	ax25_cb *ax25;
	ax25_dev *ax25_dev;

	/*
	 *	Process the AX.25/LAPB frame.
	 */

	skb_reset_transport_header(skb);

	if ((ax25_dev = ax25_dev_ax25dev(dev)) == NULL)
		goto free;

	/*
	 *	Parse the address header.
	 */

	if (ax25_addr_parse(skb->data, skb->len, &src, &dest, &dp, &type, &dama) == NULL)
		goto free;

	/*
	 *	Ours perhaps ?
	 */
	if (dp.lastrepeat + 1 < dp.ndigi)		/* Not yet digipeated completely */
		next_digi = &dp.calls[dp.lastrepeat + 1];

	/*
	 *	Pull of the AX.25 headers leaving the CTRL/PID bytes
	 */
	skb_pull(skb, ax25_addr_size(&dp));

	/* For our port addresses ? */
	if (ax25cmp(&dest, dev_addr) == 0 && dp.lastrepeat + 1 == dp.ndigi)
		mine = 1;

	/* Also match on any registered callsign from L3/4 */
	if (!mine && ax25_listen_mine(&dest, dev) && dp.lastrepeat + 1 == dp.ndigi)
		mine = 1;

	/* UI frame - bypass LAPB processing */
	if ((*skb->data & ~0x10) == AX25_UI && dp.lastrepeat + 1 == dp.ndigi) {
		skb_set_transport_header(skb, 2); /* skip control and pid */

		ax25_send_to_raw(&dest, skb, skb->data[1]);

		if (!mine && ax25cmp(&dest, (ax25_address *)dev->broadcast) != 0)
			goto free;

		/* Now we are pointing at the pid byte */
		switch (skb->data[1]) {
		case AX25_P_IP:
			skb_pull(skb,2);		/* drop PID/CTRL */
			skb_reset_transport_header(skb);
			skb_reset_network_header(skb);
			skb->dev      = dev;
			skb->pkt_type = PACKET_HOST;
			skb->protocol = htons(ETH_P_IP);
			netif_rx(skb);
			break;

		case AX25_P_ARP:
			skb_pull(skb,2);
			skb_reset_transport_header(skb);
			skb_reset_network_header(skb);
			skb->dev      = dev;
			skb->pkt_type = PACKET_HOST;
			skb->protocol = htons(ETH_P_ARP);
			netif_rx(skb);
			break;
		case AX25_P_TEXT:
			/* Now find a suitable dgram socket */
			sk = ax25_get_socket(&dest, &src, SOCK_DGRAM);
			if (sk != NULL) {
				bh_lock_sock(sk);
				if (atomic_read(&sk->sk_rmem_alloc) >=
				    sk->sk_rcvbuf) {
					kfree_skb(skb);
				} else {
					/*
					 *	Remove the control and PID.
					 */
					skb_pull(skb, 2);
					if (sock_queue_rcv_skb(sk, skb) != 0)
						kfree_skb(skb);
				}
				bh_unlock_sock(sk);
				sock_put(sk);
			} else {
				kfree_skb(skb);
			}
			break;

		default:
			kfree_skb(skb);	/* Will scan SOCK_AX25 RAW sockets */
			break;
		}

		return 0;
	}

	/*
	 *	Is connected mode supported on this device ?
	 *	If not, should we DM the incoming frame (except DMs) or
	 *	silently ignore them. For now we stay quiet.
	 */
	if (ax25_dev->values[AX25_VALUES_CONMODE] == 0)
		goto free;

	/* LAPB */

	/* AX.25 state 1-4 */

	ax25_digi_invert(&dp, &reverse_dp);

	if ((ax25 = ax25_find_cb(&dest, &src, &reverse_dp, dev)) != NULL) {
		/*
		 *	Process the frame. If it is queued up internally it
		 *	returns one otherwise we free it immediately. This
		 *	routine itself wakes the user context layers so we do
		 *	no further work
		 */
		if (ax25_process_rx_frame(ax25, skb, type, dama) == 0)
			kfree_skb(skb);

		ax25_cb_put(ax25);
		return 0;
	}

	/* AX.25 state 0 (disconnected) */

	/* a) received not a SABM(E) */

	if ((*skb->data & ~AX25_PF) != AX25_SABM &&
	    (*skb->data & ~AX25_PF) != AX25_SABME) {
		/*
		 *	Never reply to a DM. Also ignore any connects for
		 *	addresses that are not our interfaces and not a socket.
		 */
		if ((*skb->data & ~AX25_PF) != AX25_DM && mine)
			ax25_return_dm(dev, &src, &dest, &dp);

		goto free;
	}

	/* b) received SABM(E) */

	if (dp.lastrepeat + 1 == dp.ndigi)
		sk = ax25_find_listener(&dest, 0, dev, SOCK_SEQPACKET);
	else
		sk = ax25_find_listener(next_digi, 1, dev, SOCK_SEQPACKET);

	if (sk != NULL) {
		bh_lock_sock(sk);
		if (sk_acceptq_is_full(sk) ||
		    (make = ax25_make_new(sk, ax25_dev)) == NULL) {
			if (mine)
				ax25_return_dm(dev, &src, &dest, &dp);
			kfree_skb(skb);
			bh_unlock_sock(sk);
			sock_put(sk);

			return 0;
		}

		ax25 = ax25_sk(make);
		skb_set_owner_r(skb, make);
		skb_queue_head(&sk->sk_receive_queue, skb);

		make->sk_state = TCP_ESTABLISHED;

		sk->sk_ack_backlog++;
		bh_unlock_sock(sk);
	} else {
		if (!mine)
			goto free;

		if ((ax25 = ax25_create_cb()) == NULL) {
			ax25_return_dm(dev, &src, &dest, &dp);
			goto free;
		}

		ax25_fillin_cb(ax25, ax25_dev);
	}

	ax25->source_addr = dest;
	ax25->dest_addr   = src;

	/*
	 *	Sort out any digipeated paths.
	 */
	if (dp.ndigi && !ax25->digipeat &&
	    (ax25->digipeat = kmalloc(sizeof(ax25_digi), GFP_ATOMIC)) == NULL) {
		kfree_skb(skb);
		ax25_destroy_socket(ax25);
		if (sk)
			sock_put(sk);
		return 0;
	}

	if (dp.ndigi == 0) {
		kfree(ax25->digipeat);
		ax25->digipeat = NULL;
	} else {
		/* Reverse the source SABM's path */
		memcpy(ax25->digipeat, &reverse_dp, sizeof(ax25_digi));
	}

	if ((*skb->data & ~AX25_PF) == AX25_SABME) {
		ax25->modulus = AX25_EMODULUS;
		ax25->window  = ax25_dev->values[AX25_VALUES_EWINDOW];
	} else {
		ax25->modulus = AX25_MODULUS;
		ax25->window  = ax25_dev->values[AX25_VALUES_WINDOW];
	}

	ax25_send_control(ax25, AX25_UA, AX25_POLLON, AX25_RESPONSE);

#ifdef CONFIG_AX25_DAMA_SLAVE
	if (dama && ax25->ax25_dev->values[AX25_VALUES_PROTOCOL] == AX25_PROTO_DAMA_SLAVE)
		ax25_dama_on(ax25);
#endif

	ax25->state = AX25_STATE_3;

	ax25_cb_add(ax25);

	ax25_start_heartbeat(ax25);
	ax25_start_t3timer(ax25);
	ax25_start_idletimer(ax25);

	if (sk) {
		if (!sock_flag(sk, SOCK_DEAD))
			sk->sk_data_ready(sk, skb->len);
		sock_put(sk);
	} else {
free:
		kfree_skb(skb);
	}
	return 0;
}
Ejemplo n.º 24
0
/* receive a single frame and assemble datagram
 * (this is the heart of the interrupt routine)
 */
static inline int
sb1000_rx(struct net_device *dev)
{

#define FRAMESIZE 184
	unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
	short dlen;
	int ioaddr, ns;
	unsigned int skbsize;
	struct sk_buff *skb;
	struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
	struct net_device_stats *stats = &lp->stats;

	/* SB1000 frame constants */
	const int FrameSize = FRAMESIZE;
	const int NewDatagramHeaderSkip = 8;
	const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
	const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
	const int ContDatagramHeaderSkip = 7;
	const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
	const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
	const int TrailerSize = 4;

	ioaddr = dev->base_addr;

	insw(ioaddr, (unsigned short*) st, 1);
#ifdef XXXDEBUG
printk("cm0: received: %02x %02x\n", st[0], st[1]);
#endif /* XXXDEBUG */
	lp->rx_frames++;

	/* decide if it is a good or bad frame */
	for (ns = 0; ns < NPIDS; ns++) {
		session_id = lp->rx_session_id[ns];
		frame_id = lp->rx_frame_id[ns];
		if (st[0] == session_id) {
			if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
				goto good_frame;
			} else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
				goto skipped_frame;
			} else {
				goto bad_frame;
			}
		} else if (st[0] == (session_id | 0x40)) {
			if ((st[1] & 0xf0) == 0x30) {
				goto skipped_frame;
			} else {
				goto bad_frame;
			}
		}
	}
	goto bad_frame;

skipped_frame:
	stats->rx_frame_errors++;
	skb = lp->rx_skb[ns];
	if (sb1000_debug > 1)
		printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
			"expecting %02x %02x\n", dev->name, st[0], st[1],
			skb ? session_id : session_id | 0x40, frame_id);
	if (skb) {
		dev_kfree_skb(skb);
		skb = 0;
	}

good_frame:
	lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
	/* new datagram */
	if (st[0] & 0x40) {
		/* get data length */
		insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
#ifdef XXXDEBUG
printk("cm0: IP identification: %02x%02x  fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
#endif /* XXXDEBUG */
		if (buffer[0] != NewDatagramHeaderSkip) {
			if (sb1000_debug > 1)
				printk(KERN_WARNING "%s: new datagram header skip error: "
					"got %02x expecting %02x\n", dev->name, buffer[0],
					NewDatagramHeaderSkip);
			stats->rx_length_errors++;
			insw(ioaddr, buffer, NewDatagramDataSize / 2);
			goto bad_frame_next;
		}
		dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
			buffer[NewDatagramHeaderSkip + 4]) - 17;
		if (dlen > SB1000_MRU) {
			if (sb1000_debug > 1)
				printk(KERN_WARNING "%s: datagram length (%d) greater "
					"than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
			stats->rx_length_errors++;
			insw(ioaddr, buffer, NewDatagramDataSize / 2);
			goto bad_frame_next;
		}
		lp->rx_dlen[ns] = dlen;
		/* compute size to allocate for datagram */
		skbsize = dlen + FrameSize;
		if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
			if (sb1000_debug > 1)
				printk(KERN_WARNING "%s: can't allocate %d bytes long "
					"skbuff\n", dev->name, skbsize);
			stats->rx_dropped++;
			insw(ioaddr, buffer, NewDatagramDataSize / 2);
			goto dropped_frame;
		}
		skb->dev = dev;
		skb->mac.raw = skb->data;
		skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
		insw(ioaddr, skb_put(skb, NewDatagramDataSize),
			NewDatagramDataSize / 2);
		lp->rx_skb[ns] = skb;
	} else {
		/* continuation of previous datagram */
		insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
		if (buffer[0] != ContDatagramHeaderSkip) {
			if (sb1000_debug > 1)
				printk(KERN_WARNING "%s: cont datagram header skip error: "
					"got %02x expecting %02x\n", dev->name, buffer[0],
					ContDatagramHeaderSkip);
			stats->rx_length_errors++;
			insw(ioaddr, buffer, ContDatagramDataSize / 2);
			goto bad_frame_next;
		}
		skb = lp->rx_skb[ns];
		insw(ioaddr, skb_put(skb, ContDatagramDataSize),
			ContDatagramDataSize / 2);
		dlen = lp->rx_dlen[ns];
	}
	if (skb->len < dlen + TrailerSize) {
		lp->rx_session_id[ns] &= ~0x40;
		return 0;
	}

	/* datagram completed: send to upper level */
	skb_trim(skb, dlen);
	netif_rx(skb);
	dev->last_rx = jiffies;
	stats->rx_bytes+=dlen;
	stats->rx_packets++;
	lp->rx_skb[ns] = 0;
	lp->rx_session_id[ns] |= 0x40;
	return 0;

bad_frame:
	insw(ioaddr, buffer, FrameSize / 2);
	if (sb1000_debug > 1)
		printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
			dev->name, st[0], st[1]);
	stats->rx_frame_errors++;
bad_frame_next:
	if (sb1000_debug > 2)
		sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
dropped_frame:
	stats->rx_errors++;
	if (ns < NPIDS) {
		if ((skb = lp->rx_skb[ns])) {
			dev_kfree_skb(skb);
			lp->rx_skb[ns] = 0;
		}
		lp->rx_session_id[ns] |= 0x40;
	}
	return -1;
}
Ejemplo n.º 25
0
/*
  Received a packet and pass to upper layer
*/
static void dmfe_packet_receive(struct net_device *dev)
{
	board_info_t *db = (board_info_t *)dev->priv;
	struct sk_buff *skb;
	u8 rxbyte;
	u16 i, GoodPacket, tmplen = 0, MDRAH, MDRAL;
	u32 tmpdata;

	rx_t rx;

	u16 * ptr = (u16*)&rx;
	u8* rdptr;

	DMFE_DBUG(0, "dmfe_packet_receive()", 0);

	db->cont_rx_pkt_cnt=0;
	
	do {
		/*store the value of Memory Data Read address register*/
		MDRAH=ior(db, DM9KS_MDRAH);
		MDRAL=ior(db, DM9KS_MDRAL);
		
		ior(db, DM9KS_MRCMDX);		/* Dummy read */
		rxbyte = inb(db->io_data);	/* Got most updated data */

#ifdef CHECKSUM	
		if (rxbyte&0x2)			/* check RX byte */
		{	
      printk("dm9ks: abnormal!\n");
			dmfe_reset(dev); 
			break;	
    }else { 
      if (!(rxbyte&0x1))
				break;	
    }		
#else
		if (rxbyte==0)
			break;
		
		if (rxbyte>1)
		{	
      printk("dm9ks: Rxbyte error!\n");
		  dmfe_reset(dev);
      break;	
    }
#endif

		/* A packet ready now  & Get status/length */
		GoodPacket = TRUE;
		outb(DM9KS_MRCMD, db->io_addr);

		/* Read packet status & length */
		switch (db->io_mode) 
			{
			  case DM9KS_BYTE_MODE: 
 				    *ptr = inb(db->io_data) + 
				               (inb(db->io_data) << 8);
				    *(ptr+1) = inb(db->io_data) + 
					    (inb(db->io_data) << 8);
				    break;
			  case DM9KS_WORD_MODE:
				    *ptr = inw(db->io_data);
				    *(ptr+1)    = inw(db->io_data);
				    break;
			  case DM9KS_DWORD_MODE:
				    tmpdata  = inl(db->io_data);
				    *ptr = tmpdata;
				    *(ptr+1)    = tmpdata >> 16;
				    break;
			  default:
				    break;
			}

		/* Packet status check */
		if (rx.desc.status & 0xbf)
		{
			GoodPacket = FALSE;
			if (rx.desc.status & 0x01) 
			{
				db->stats.rx_fifo_errors++;
				printk(KERN_INFO"<RX FIFO error>\n");
			}
			if (rx.desc.status & 0x02) 
			{
				db->stats.rx_crc_errors++;
				printk(KERN_INFO"<RX CRC error>\n");
			}
			if (rx.desc.status & 0x80) 
			{
				db->stats.rx_length_errors++;
				printk(KERN_INFO"<RX Length error>\n");
			}
			if (rx.desc.status & 0x08)
				printk(KERN_INFO"<Physical Layer error>\n");
		}

		if (!GoodPacket)
		{
			// drop this packet!!!
			switch (db->io_mode)
			{
				case DM9KS_BYTE_MODE:
			 		for (i=0; i<rx.desc.length; i++)
						inb(db->io_data);
					break;
				case DM9KS_WORD_MODE:
					tmplen = (rx.desc.length + 1) / 2;
					for (i = 0; i < tmplen; i++)
						inw(db->io_data);
					break;
				case DM9KS_DWORD_MODE:
					tmplen = (rx.desc.length + 3) / 4;
					for (i = 0; i < tmplen; i++)
						inl(db->io_data);
					break;
			}
			continue;/*next the packet*/
		}
		
		skb = dev_alloc_skb(rx.desc.length+4);
		if (skb == NULL )
		{	
			printk(KERN_INFO "%s: Memory squeeze.\n", dev->name);
			/*re-load the value into Memory data read address register*/
			iow(db,DM9KS_MDRAH,MDRAH);
			iow(db,DM9KS_MDRAL,MDRAL);
			return;
		}
		else
		{
			/* Move data from DM9000 */
			skb->dev = dev;
			skb_reserve(skb, 2);
			rdptr = (u8*)skb_put(skb, rx.desc.length - 4);
			
			/* Read received packet from RX SARM */
			switch (db->io_mode)
			{
				case DM9KS_BYTE_MODE:
			 		for (i=0; i<rx.desc.length; i++)
						rdptr[i]=inb(db->io_data);
					break;
				case DM9KS_WORD_MODE:
					tmplen = (rx.desc.length + 1) / 2;
					for (i = 0; i < tmplen; i++)
						((u16 *)rdptr)[i] = inw(db->io_data);
					break;
				case DM9KS_DWORD_MODE:
					tmplen = (rx.desc.length + 3) / 4;
					for (i = 0; i < tmplen; i++)
						((u32 *)rdptr)[i] = inl(db->io_data);
					break;
			}
		
			/* Pass to upper layer */
			skb->protocol = eth_type_trans(skb,dev);

#ifdef CHECKSUM
		if((rxbyte&0xe0)==0)	/* receive packet no checksum fail */
				skb->ip_summed = CHECKSUM_UNNECESSARY;
#endif
		
			netif_rx(skb);
			dev->last_rx=jiffies;
			db->stats.rx_packets++;
			db->stats.rx_bytes += rx.desc.length;
			db->cont_rx_pkt_cnt++;
#ifdef RDBG /* check RX FIFO pointer */
			u16 MDRAH1, MDRAL1;
			u16 tmp_ptr;
			MDRAH1 = ior(db,DM9KS_MDRAH);
			MDRAL1 = ior(db,DM9KS_MDRAL);
			tmp_ptr = (MDRAH<<8)|MDRAL;
			switch (db->io_mode)
			{
				case DM9KS_BYTE_MODE:
					tmp_ptr += rx.desc.length+4;
					break;
				case DM9KS_WORD_MODE:
					tmp_ptr += ((rx.desc.length+1)/2)*2+4;
					break;
				case DM9KS_DWORD_MODE:
					tmp_ptr += ((rx.desc.length+3)/4)*4+4;
					break;
			}
			if (tmp_ptr >=0x4000)
				tmp_ptr = (tmp_ptr - 0x4000) + 0xc00;
			if (tmp_ptr != ((MDRAH1<<8)|MDRAL1))
				printk("[dm9ks:RX FIFO ERROR\n");
#endif
				
			if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
			{
				dmfe_tx_done(0);
				break;
			}
		}
			
	}while((rxbyte & 0x01) == DM9KS_PKT_RDY);
	DMFE_DBUG(0, "[END]dmfe_packet_receive()", 0);
	
}
Ejemplo n.º 26
0
/* packet receiver */
static void rx(struct net_device *dev, int bufnum,
	       struct archdr *pkthdr, int length)
{
	struct arcnet_local *lp = netdev_priv(dev);
	struct sk_buff *skb;
	struct archdr *pkt = pkthdr;
	struct arc_rfc1201 *soft = &pkthdr->soft.rfc1201;
	int saddr = pkt->hard.source, ofs;
	struct Incoming *in = &lp->rfc1201.incoming[saddr];

	BUGMSG(D_DURING, "it's an RFC1201 packet (length=%d)\n", length);

	if (length >= MinTU)
		ofs = 512 - length;
	else
		ofs = 256 - length;

	if (soft->split_flag == 0xFF) {		/* Exception Packet */
		if (length >= 4 + RFC1201_HDR_SIZE)
			BUGMSG(D_DURING, "compensating for exception packet\n");
		else {
			BUGMSG(D_EXTRA, "short RFC1201 exception packet from %02Xh",
			       saddr);
			return;
		}

		/* skip over 4-byte junkola */
		length -= 4;
		ofs += 4;
		lp->hw.copy_from_card(dev, bufnum, 512 - length,
				      soft, sizeof(pkt->soft));
	}
	if (!soft->split_flag) {	/* not split */
		BUGMSG(D_RX, "incoming is not split (splitflag=%d)\n",
		       soft->split_flag);

		if (in->skb) {	/* already assembling one! */
			BUGMSG(D_EXTRA, "aborting assembly (seq=%d) for unsplit packet (splitflag=%d, seq=%d)\n",
			 in->sequence, soft->split_flag, soft->sequence);
			lp->rfc1201.aborted_seq = soft->sequence;
			dev_kfree_skb_irq(in->skb);
			dev->stats.rx_errors++;
			dev->stats.rx_missed_errors++;
			in->skb = NULL;
		}
		in->sequence = soft->sequence;

		skb = alloc_skb(length + ARC_HDR_SIZE, GFP_ATOMIC);
		if (skb == NULL) {
			BUGMSG(D_NORMAL, "Memory squeeze, dropping packet.\n");
			dev->stats.rx_dropped++;
			return;
		}
		skb_put(skb, length + ARC_HDR_SIZE);
		skb->dev = dev;

		pkt = (struct archdr *) skb->data;
		soft = &pkt->soft.rfc1201;

		/* up to sizeof(pkt->soft) has already been copied from the card */
		memcpy(pkt, pkthdr, sizeof(struct archdr));
		if (length > sizeof(pkt->soft))
			lp->hw.copy_from_card(dev, bufnum, ofs + sizeof(pkt->soft),
				       pkt->soft.raw + sizeof(pkt->soft),
					      length - sizeof(pkt->soft));

		/*
		 * ARP packets have problems when sent from some DOS systems: the
		 * source address is always 0!  So we take the hardware source addr
		 * (which is impossible to fumble) and insert it ourselves.
		 */
		if (soft->proto == ARC_P_ARP) {
			struct arphdr *arp = (struct arphdr *) soft->payload;

			/* make sure addresses are the right length */
			if (arp->ar_hln == 1 && arp->ar_pln == 4) {
				uint8_t *cptr = (uint8_t *) arp + sizeof(struct arphdr);

				if (!*cptr) {	/* is saddr = 00? */
					BUGMSG(D_EXTRA,
					       "ARP source address was 00h, set to %02Xh.\n",
					       saddr);
					dev->stats.rx_crc_errors++;
					*cptr = saddr;
				} else {
					BUGMSG(D_DURING, "ARP source address (%Xh) is fine.\n",
					       *cptr);
				}
			} else {
				BUGMSG(D_NORMAL, "funny-shaped ARP packet. (%Xh, %Xh)\n",
				       arp->ar_hln, arp->ar_pln);
				dev->stats.rx_errors++;
				dev->stats.rx_crc_errors++;
			}
		}
		BUGLVL(D_SKB) arcnet_dump_skb(dev, skb, "rx");

		skb->protocol = type_trans(skb, dev);
		netif_rx(skb);
	} else {		/* split packet */
		/*
		 * NOTE: MSDOS ARP packet correction should only need to apply to
		 * unsplit packets, since ARP packets are so short.
		 *
		 * My interpretation of the RFC1201 document is that if a packet is
		 * received out of order, the entire assembly process should be
		 * aborted.
		 *
		 * The RFC also mentions "it is possible for successfully received
		 * packets to be retransmitted." As of 0.40 all previously received
		 * packets are allowed, not just the most recent one.
		 *
		 * We allow multiple assembly processes, one for each ARCnet card
		 * possible on the network.  Seems rather like a waste of memory,
		 * but there's no other way to be reliable.
		 */

		BUGMSG(D_RX, "packet is split (splitflag=%d, seq=%d)\n",
		       soft->split_flag, in->sequence);

		if (in->skb && in->sequence != soft->sequence) {
			BUGMSG(D_EXTRA, "wrong seq number (saddr=%d, expected=%d, seq=%d, splitflag=%d)\n",
			       saddr, in->sequence, soft->sequence,
			       soft->split_flag);
			dev_kfree_skb_irq(in->skb);
			in->skb = NULL;
			dev->stats.rx_errors++;
			dev->stats.rx_missed_errors++;
			in->lastpacket = in->numpackets = 0;
		}
		if (soft->split_flag & 1) {	/* first packet in split */
			BUGMSG(D_RX, "brand new splitpacket (splitflag=%d)\n",
			       soft->split_flag);
			if (in->skb) {	/* already assembling one! */
				BUGMSG(D_EXTRA, "aborting previous (seq=%d) assembly "
				       "(splitflag=%d, seq=%d)\n",
				       in->sequence, soft->split_flag,
				       soft->sequence);
				dev->stats.rx_errors++;
				dev->stats.rx_missed_errors++;
				dev_kfree_skb_irq(in->skb);
			}
			in->sequence = soft->sequence;
			in->numpackets = ((unsigned) soft->split_flag >> 1) + 2;
			in->lastpacket = 1;

			if (in->numpackets > 16) {
				BUGMSG(D_EXTRA, "incoming packet more than 16 segments; dropping. (splitflag=%d)\n",
				       soft->split_flag);
				lp->rfc1201.aborted_seq = soft->sequence;
				dev->stats.rx_errors++;
				dev->stats.rx_length_errors++;
				return;
			}
			in->skb = skb = alloc_skb(508 * in->numpackets + ARC_HDR_SIZE,
						  GFP_ATOMIC);
			if (skb == NULL) {
				BUGMSG(D_NORMAL, "(split) memory squeeze, dropping packet.\n");
				lp->rfc1201.aborted_seq = soft->sequence;
				dev->stats.rx_dropped++;
				return;
			}
			skb->dev = dev;
			pkt = (struct archdr *) skb->data;
			soft = &pkt->soft.rfc1201;

			memcpy(pkt, pkthdr, ARC_HDR_SIZE + RFC1201_HDR_SIZE);
			skb_put(skb, ARC_HDR_SIZE + RFC1201_HDR_SIZE);

			soft->split_flag = 0;	/* end result won't be split */
		} else {	/* not first packet */
Ejemplo n.º 27
0
bool
device_receive_frame(
	PSDevice pDevice,
	PSRxDesc pCurrRD
)
{
	PDEVICE_RD_INFO  pRDInfo = pCurrRD->pRDInfo;
	struct net_device_stats *pStats = &pDevice->stats;
	struct sk_buff *skb;
	PSMgmtObject    pMgmt = pDevice->pMgmt;
	PSRxMgmtPacket  pRxPacket = &(pDevice->pMgmt->sRxPacket);
	PS802_11Header  p802_11Header;
	unsigned char *pbyRsr;
	unsigned char *pbyNewRsr;
	unsigned char *pbyRSSI;
	PQWORD          pqwTSFTime;
	unsigned short *pwFrameSize;
	unsigned char *pbyFrame;
	bool bDeFragRx = false;
	bool bIsWEP = false;
	unsigned int cbHeaderOffset;
	unsigned int FrameSize;
	unsigned short wEtherType = 0;
	int             iSANodeIndex = -1;
	int             iDANodeIndex = -1;
	unsigned int ii;
	unsigned int cbIVOffset;
	bool bExtIV = false;
	unsigned char *pbyRxSts;
	unsigned char *pbyRxRate;
	unsigned char *pbySQ;
	unsigned int cbHeaderSize;
	PSKeyItem       pKey = NULL;
	unsigned short wRxTSC15_0 = 0;
	unsigned long dwRxTSC47_16 = 0;
	SKeyItem        STempKey;
	// 802.11h RPI
	unsigned long dwDuration = 0;
	long            ldBm = 0;
	long            ldBmThreshold = 0;
	PS802_11Header pMACHeader;
	bool bRxeapol_key = false;

//    DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---------- device_receive_frame---\n");

	skb = pRDInfo->skb;

//PLICE_DEBUG->
#if 1
	pci_unmap_single(pDevice->pcid, pRDInfo->skb_dma,
			 pDevice->rx_buf_sz, PCI_DMA_FROMDEVICE);
#endif
//PLICE_DEBUG<-
	pwFrameSize = (unsigned short *)(skb->data + 2);
	FrameSize = cpu_to_le16(pCurrRD->m_rd1RD1.wReqCount) - cpu_to_le16(pCurrRD->m_rd0RD0.wResCount);

	// Max: 2312Payload + 30HD +4CRC + 2Padding + 4Len + 8TSF + 4RSR
	// Min (ACK): 10HD +4CRC + 2Padding + 4Len + 8TSF + 4RSR
	if ((FrameSize > 2364) || (FrameSize <= 32)) {
		// Frame Size error drop this packet.
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---------- WRONG Length 1 \n");
		return false;
	}

	pbyRxSts = (unsigned char *)(skb->data);
	pbyRxRate = (unsigned char *)(skb->data + 1);
	pbyRsr = (unsigned char *)(skb->data + FrameSize - 1);
	pbyRSSI = (unsigned char *)(skb->data + FrameSize - 2);
	pbyNewRsr = (unsigned char *)(skb->data + FrameSize - 3);
	pbySQ = (unsigned char *)(skb->data + FrameSize - 4);
	pqwTSFTime = (PQWORD)(skb->data + FrameSize - 12);
	pbyFrame = (unsigned char *)(skb->data + 4);

	// get packet size
	FrameSize = cpu_to_le16(*pwFrameSize);

	if ((FrameSize > 2346)|(FrameSize < 14)) { // Max: 2312Payload + 30HD +4CRC
		// Min: 14 bytes ACK
		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---------- WRONG Length 2 \n");
		return false;
	}
//PLICE_DEBUG->
#if 1
	// update receive statistic counter
	STAvUpdateRDStatCounter(&pDevice->scStatistic,
				*pbyRsr,
				*pbyNewRsr,
				*pbyRxRate,
				pbyFrame,
				FrameSize);

#endif

	pMACHeader = (PS802_11Header)((unsigned char *)(skb->data) + 8);
//PLICE_DEBUG<-
	if (pDevice->bMeasureInProgress == true) {
		if ((*pbyRsr & RSR_CRCOK) != 0) {
			pDevice->byBasicMap |= 0x01;
		}
		dwDuration = (FrameSize << 4);
		dwDuration /= acbyRxRate[*pbyRxRate%MAX_RATE];
		if (*pbyRxRate <= RATE_11M) {
			if (*pbyRxSts & 0x01) {
				// long preamble
				dwDuration += 192;
			} else {
				// short preamble
				dwDuration += 96;
			}
		} else {
			dwDuration += 16;
		}
		RFvRSSITodBm(pDevice, *pbyRSSI, &ldBm);
		ldBmThreshold = -57;
		for (ii = 7; ii > 0;) {
			if (ldBm > ldBmThreshold) {
				break;
			}
			ldBmThreshold -= 5;
			ii--;
		}
		pDevice->dwRPIs[ii] += dwDuration;
		return false;
	}

	if (!is_multicast_ether_addr(pbyFrame)) {
		if (WCTLbIsDuplicate(&(pDevice->sDupRxCache), (PS802_11Header)(skb->data + 4))) {
			pDevice->s802_11Counter.FrameDuplicateCount++;
			return false;
		}
	}

	// Use for TKIP MIC
	s_vGetDASA(skb->data+4, &cbHeaderSize, &pDevice->sRxEthHeader);

	// filter packet send from myself
	if (ether_addr_equal(pDevice->sRxEthHeader.abySrcAddr,
			     pDevice->abyCurrentNetAddr))
		return false;

	if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA)) {
		if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
			p802_11Header = (PS802_11Header)(pbyFrame);
			// get SA NodeIndex
			if (BSSDBbIsSTAInNodeDB(pMgmt, (unsigned char *)(p802_11Header->abyAddr2), &iSANodeIndex)) {
				pMgmt->sNodeDBTable[iSANodeIndex].ulLastRxJiffer = jiffies;
				pMgmt->sNodeDBTable[iSANodeIndex].uInActiveCount = 0;
			}
		}
	}

	if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
		if (s_bAPModeRxCtl(pDevice, pbyFrame, iSANodeIndex) == true) {
			return false;
		}
	}

	if (IS_FC_WEP(pbyFrame)) {
		bool bRxDecryOK = false;

		DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "rx WEP pkt\n");
		bIsWEP = true;
		if ((pDevice->bEnableHostWEP) && (iSANodeIndex >= 0)) {
			pKey = &STempKey;
			pKey->byCipherSuite = pMgmt->sNodeDBTable[iSANodeIndex].byCipherSuite;
			pKey->dwKeyIndex = pMgmt->sNodeDBTable[iSANodeIndex].dwKeyIndex;
			pKey->uKeyLength = pMgmt->sNodeDBTable[iSANodeIndex].uWepKeyLength;
			pKey->dwTSC47_16 = pMgmt->sNodeDBTable[iSANodeIndex].dwTSC47_16;
			pKey->wTSC15_0 = pMgmt->sNodeDBTable[iSANodeIndex].wTSC15_0;
			memcpy(pKey->abyKey,
			       &pMgmt->sNodeDBTable[iSANodeIndex].abyWepKey[0],
			       pKey->uKeyLength
);

			bRxDecryOK = s_bHostWepRxEncryption(pDevice,
							    pbyFrame,
							    FrameSize,
							    pbyRsr,
							    pMgmt->sNodeDBTable[iSANodeIndex].bOnFly,
							    pKey,
							    pbyNewRsr,
							    &bExtIV,
							    &wRxTSC15_0,
							    &dwRxTSC47_16);
		} else {
			bRxDecryOK = s_bHandleRxEncryption(pDevice,
							   pbyFrame,
							   FrameSize,
							   pbyRsr,
							   pbyNewRsr,
							   &pKey,
							   &bExtIV,
							   &wRxTSC15_0,
							   &dwRxTSC47_16);
		}

		if (bRxDecryOK) {
			if ((*pbyNewRsr & NEWRSR_DECRYPTOK) == 0) {
				DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ICV Fail\n");
				if ((pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
				    (pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
				    (pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
				    (pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
				    (pDevice->pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
					if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
						pDevice->s802_11Counter.TKIPICVErrors++;
					} else if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP)) {
						pDevice->s802_11Counter.CCMPDecryptErrors++;
					} else if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_WEP)) {
//                      pDevice->s802_11Counter.WEPICVErrorCount.QuadPart++;
					}
				}
				return false;
			}
		} else {
			DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "WEP Func Fail\n");
			return false;
		}
		if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP))
			FrameSize -= 8;         // Message Integrity Code
		else
			FrameSize -= 4;         // 4 is ICV
	}

	//
	// RX OK
	//
	//remove the CRC length
	FrameSize -= ETH_FCS_LEN;

	if ((!(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI))) && // unicast address
	    (IS_FRAGMENT_PKT((skb->data+4)))
) {
		// defragment
		bDeFragRx = WCTLbHandleFragment(pDevice, (PS802_11Header)(skb->data+4), FrameSize, bIsWEP, bExtIV);
		pDevice->s802_11Counter.ReceivedFragmentCount++;
		if (bDeFragRx) {
			// defrag complete
			skb = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].skb;
			FrameSize = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].cbFrameLength;

		} else {
			return false;
		}
	}

// Management & Control frame Handle
	if ((IS_TYPE_DATA((skb->data+4))) == false) {
		// Handle Control & Manage Frame

		if (IS_TYPE_MGMT((skb->data+4))) {
			unsigned char *pbyData1;
			unsigned char *pbyData2;

			pRxPacket->p80211Header = (PUWLAN_80211HDR)(skb->data+4);
			pRxPacket->cbMPDULen = FrameSize;
			pRxPacket->uRSSI = *pbyRSSI;
			pRxPacket->bySQ = *pbySQ;
			HIDWORD(pRxPacket->qwLocalTSF) = cpu_to_le32(HIDWORD(*pqwTSFTime));
			LODWORD(pRxPacket->qwLocalTSF) = cpu_to_le32(LODWORD(*pqwTSFTime));
			if (bIsWEP) {
				// strip IV
				pbyData1 = WLAN_HDR_A3_DATA_PTR(skb->data+4);
				pbyData2 = WLAN_HDR_A3_DATA_PTR(skb->data+4) + 4;
				for (ii = 0; ii < (FrameSize - 4); ii++) {
					*pbyData1 = *pbyData2;
					pbyData1++;
					pbyData2++;
				}
			}
			pRxPacket->byRxRate = s_byGetRateIdx(*pbyRxRate);
			pRxPacket->byRxChannel = (*pbyRxSts) >> 2;
//PLICE_DEBUG->
//EnQueue(pDevice,pRxPacket);

#ifdef	THREAD
			EnQueue(pDevice, pRxPacket);

			//up(&pDevice->mlme_semaphore);
			//Enque (pDevice->FirstRecvMngList,pDevice->LastRecvMngList,pMgmt);
#else

#ifdef	TASK_LET
			EnQueue(pDevice, pRxPacket);
			tasklet_schedule(&pDevice->RxMngWorkItem);
#else
			vMgrRxManagePacket((void *)pDevice, pDevice->pMgmt, pRxPacket);
			//tasklet_schedule(&pDevice->RxMngWorkItem);
#endif

#endif
//PLICE_DEBUG<-
			//vMgrRxManagePacket((void *)pDevice, pDevice->pMgmt, pRxPacket);
			// hostap Deamon handle 802.11 management
			if (pDevice->bEnableHostapd) {
				skb->dev = pDevice->apdev;
				skb->data += 4;
				skb->tail += 4;
				skb_put(skb, FrameSize);
				skb_reset_mac_header(skb);
				skb->pkt_type = PACKET_OTHERHOST;
				skb->protocol = htons(ETH_P_802_2);
				memset(skb->cb, 0, sizeof(skb->cb));
				netif_rx(skb);
				return true;
			}
		} else {
			// Control Frame
		};
Ejemplo n.º 28
0
Archivo: u_ether.c Proyecto: vM00/xm01
static void rx_complete(struct usb_ep *ep, struct usb_request *req)
{
	struct sk_buff	*skb = req->context;
	struct eth_dev	*dev = ep->driver_data;
	int		status = req->status;

	switch (status) {

	/* normal completion */
	case 0:
		skb_put(skb, req->actual);
		if (dev->unwrap)
			status = dev->unwrap(skb);
		if (status < 0
				|| ETH_HLEN > skb->len
				|| skb->len > ETH_FRAME_LEN) {
			dev->net->stats.rx_errors++;
			dev->net->stats.rx_length_errors++;
			DBG(dev, "rx length %d\n", skb->len);
			break;
		}

		skb->protocol = eth_type_trans(skb, dev->net);
		dev->net->stats.rx_packets++;
		dev->net->stats.rx_bytes += skb->len;

		/* no buffer copies needed, unless hardware can't
		 * use skb buffers.
		 */
		status = netif_rx(skb);
		skb = NULL;
		break;

	/* software-driven interface shutdown */
	case -ECONNRESET:		/* unlink */
	case -ESHUTDOWN:		/* disconnect etc */
		VDBG(dev, "rx shutdown, code %d\n", status);
		goto quiesce;

	/* for hardware automagic (such as pxa) */
	case -ECONNABORTED:		/* endpoint reset */
		DBG(dev, "rx %s reset\n", ep->name);
		defer_kevent(dev, WORK_RX_MEMORY);
quiesce:
		dev_kfree_skb_any(skb);
		goto clean;

	/* data overrun */
	case -EOVERFLOW:
		dev->net->stats.rx_over_errors++;
		/* FALLTHROUGH */

	default:
		dev->net->stats.rx_errors++;
		DBG(dev, "rx status %d\n", status);
		break;
	}

	if (skb)
		dev_kfree_skb_any(skb);
	if (!netif_running(dev->net)) {
clean:
		spin_lock(&dev->req_rx_lock);
		list_add(&req->list, &dev->rx_reqs);
		spin_unlock(&dev->req_rx_lock);
		req = NULL;
	}
	if (req)
		rx_submit(dev, req, GFP_ATOMIC);
}
Ejemplo n.º 29
0
static int sendup_buffer (struct net_device *dev)
{
	/* on entry, command is in ltdmacbuf, data in ltdmabuf */
	/* called from idle, non-reentrant */

	int dnode, snode, llaptype, len; 
	int sklen;
	struct sk_buff *skb;
	struct lt_rcvlap *ltc = (struct lt_rcvlap *) ltdmacbuf;

	if (ltc->command != LT_RCVLAP) {
		printk("unknown command 0x%02x from ltpc card\n",ltc->command);
		return(-1);
	}
	dnode = ltc->dnode;
	snode = ltc->snode;
	llaptype = ltc->laptype;
	len = ltc->length; 

	sklen = len;
	if (llaptype == 1) 
		sklen += 8;  /* correct for short ddp */
	if(sklen > 800) {
		printk(KERN_INFO "%s: nonsense length in ltpc command 0x14: 0x%08x\n",
			dev->name,sklen);
		return -1;
	}

	if ( (llaptype==0) || (llaptype>2) ) {
		printk(KERN_INFO "%s: unknown LLAP type: %d\n",dev->name,llaptype);
		return -1;
	}


	skb = dev_alloc_skb(3+sklen);
	if (skb == NULL) 
	{
		printk("%s: dropping packet due to memory squeeze.\n",
			dev->name);
		return -1;
	}
	skb->dev = dev;

	if (sklen > len)
		skb_reserve(skb,8);
	skb_put(skb,len+3);
	skb->protocol = htons(ETH_P_LOCALTALK);
	/* add LLAP header */
	skb->data[0] = dnode;
	skb->data[1] = snode;
	skb->data[2] = llaptype;
	skb_reset_mac_header(skb);	/* save pointer to llap header */
	skb_pull(skb,3);

	/* copy ddp(s,e)hdr + contents */
	skb_copy_to_linear_data(skb, ltdmabuf, len);

	skb_reset_transport_header(skb);

	dev->stats.rx_packets++;
	dev->stats.rx_bytes += skb->len;

	/* toss it onwards */
	netif_rx(skb);
	return 0;
}
Ejemplo n.º 30
0
/* VLAN rx hw acceleration helper.  This acts like netif_{rx,receive_skb}(). */
int __vlan_hwaccel_rx(struct sk_buff *skb, struct vlan_group *grp,
		      u16 vlan_tci, int polling)
{
	__vlan_hwaccel_put_tag(skb, vlan_tci);
	return polling ? netif_receive_skb(skb) : netif_rx(skb);
}