Ejemplo n.º 1
0
void OculusWindow::init_context() {

    WindowBase::init_context();

    auto const& glapi = ctx_.render_context->opengl_api();

    glapi.glGenFramebuffers(1, &blit_fbo_read_);
    glapi.glGenFramebuffers(1, &blit_fbo_write_);

    ovrSizei recommended_size_r = ovr_GetFovTextureSize(hmd_session_, ovrEye_Left, hmd_desc_.DefaultEyeFov[ovrEye_Left], 1.0f);
    ovrSizei recommended_size_l = ovr_GetFovTextureSize(hmd_session_, ovrEye_Right, hmd_desc_.DefaultEyeFov[ovrEye_Right], 1.0f);

    texture_swap_chain_desc_.Type = ovrTexture_2D;
    texture_swap_chain_desc_.ArraySize = 1;
    texture_swap_chain_desc_.Width = recommended_size_l.w + recommended_size_r.w;
    texture_swap_chain_desc_.Height = recommended_size_l.h;
    texture_swap_chain_desc_.MipLevels = 1;
    texture_swap_chain_desc_.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
    texture_swap_chain_desc_.SampleCount = 1;
    texture_swap_chain_desc_.StaticImage = ovrFalse;

    auto result = ovr_CreateTextureSwapChainGL(hmd_session_, &texture_swap_chain_desc_, &texture_swap_chain_);
    if (result != ovrSuccess)
    {
        ovrErrorInfo info;
        ovr_GetLastErrorInfo(&info);
        gua::Logger::LOG_WARNING << "Failed to create swap textures for Oculus Rift.\n" << "Error Code: " << info.ErrorString << std::endl;
    }

    color_layer_.ColorTexture[0] = texture_swap_chain_;
    color_layer_.ColorTexture[1] = texture_swap_chain_;

}
Ejemplo n.º 2
0
void OculusBaseDisplayPlugin::activate() {
    _session = acquireOculusSession();

    _hmdDesc = ovr_GetHmdDesc(_session);

    _ipd = ovr_GetFloat(_session, OVR_KEY_IPD, _ipd);

    glm::uvec2 eyeSizes[2];
    _viewScaleDesc.HmdSpaceToWorldScaleInMeters = 1.0f;

    ovr_for_each_eye([&](ovrEyeType eye) {
        _eyeFovs[eye] = _hmdDesc.DefaultEyeFov[eye];
        ovrEyeRenderDesc& erd = _eyeRenderDescs[eye] = ovr_GetRenderDesc(_session, eye, _eyeFovs[eye]);
        ovrMatrix4f ovrPerspectiveProjection =
            ovrMatrix4f_Projection(erd.Fov, DEFAULT_NEAR_CLIP, DEFAULT_FAR_CLIP, ovrProjection_RightHanded);
        _eyeProjections[eye] = toGlm(ovrPerspectiveProjection);
        _eyeOffsets[eye] = glm::translate(mat4(), toGlm(erd.HmdToEyeViewOffset));
        eyeSizes[eye] = toGlm(ovr_GetFovTextureSize(_session, eye, erd.Fov, 1.0f));
        _viewScaleDesc.HmdToEyeViewOffset[eye] = erd.HmdToEyeViewOffset;
    });

    auto combinedFov = _eyeFovs[0];
    combinedFov.LeftTan = combinedFov.RightTan = std::max(combinedFov.LeftTan, combinedFov.RightTan);
    _cullingProjection = toGlm(ovrMatrix4f_Projection(combinedFov, DEFAULT_NEAR_CLIP, DEFAULT_FAR_CLIP, ovrProjection_RightHanded));

    _renderTargetSize = uvec2(
        eyeSizes[0].x + eyeSizes[1].x,
        std::max(eyeSizes[0].y, eyeSizes[1].y));

    if (!OVR_SUCCESS(ovr_ConfigureTracking(_session,
        ovrTrackingCap_Orientation | ovrTrackingCap_Position | ovrTrackingCap_MagYawCorrection, 0))) {
        qFatal("Could not attach to sensor device");
    }

    // Parent class relies on our _session intialization, so it must come after that.
    memset(&_sceneLayer, 0, sizeof(ovrLayerEyeFov));
    _sceneLayer.Header.Type = ovrLayerType_EyeFov;
    _sceneLayer.Header.Flags = ovrLayerFlag_TextureOriginAtBottomLeft;
    ovr_for_each_eye([&](ovrEyeType eye) {
        ovrFovPort & fov = _sceneLayer.Fov[eye] = _eyeRenderDescs[eye].Fov;
        ovrSizei & size = _sceneLayer.Viewport[eye].Size = ovr_GetFovTextureSize(_session, eye, fov, 1.0f);
        _sceneLayer.Viewport[eye].Pos = { eye == ovrEye_Left ? 0 : size.w, 0 };
    });

    if (!OVR_SUCCESS(ovr_ConfigureTracking(_session,
        ovrTrackingCap_Orientation | ovrTrackingCap_Position | ovrTrackingCap_MagYawCorrection, 0))) {
        qFatal("Could not attach to sensor device");
    }

    // This must come after the initialization, so that the values calculated 
    // above are available during the customizeContext call (when not running
    // in threaded present mode)
    HmdDisplayPlugin::activate();
}
Ejemplo n.º 3
0
void VR::init()
{
#if defined(_OVR_)
	ovrInitParams initParams = { ovrInit_RequestVersion, OVR_MINOR_VERSION, NULL, 0, 0 };
	ovrResult result = ovr_Initialize(&initParams);
	if (OVR_FAILURE(result)) {
		ovrErrorInfo errorInfo;
		ovr_GetLastErrorInfo(&errorInfo);
		Log(L"ovr_Initialize failed: " << errorInfo.ErrorString << endl);
		Error(L"ovr_Initialize failed");
		return;
	}
	Log("LibOVR initialized ok!" << endl);
	result = ovr_Create(&session, &luid);
	if (OVR_FAILURE(result))
	{
		ovr_Shutdown();
		Error(L"No Oculus Rift detected. Cannot run in OVR mode without Oculus Rift device.");
		return;
	}

	desc = ovr_GetHmdDesc(session);
	resolution = desc.Resolution;
	// Start the sensor which provides the Rift’s pose and motion.
/*	result = ovr_ConfigureTracking(session, ovrTrackingCap_Orientation |
		ovrTrackingCap_MagYawCorrection |
		ovrTrackingCap_Position, 0);
	if (OVR_FAILURE(result)) Error(L"Could not enable Oculus Rift Tracking. Cannot run in OVR mode without Oculus Rift tracking.");
	*/
	// Setup VR components, filling out description
	eyeRenderDesc[0] = ovr_GetRenderDesc(session, ovrEye_Left, desc.DefaultEyeFov[0]);
	eyeRenderDesc[1] = ovr_GetRenderDesc(session, ovrEye_Right, desc.DefaultEyeFov[1]);

	nextTracking();

	// tracking setup complete, now init rendering:

	// Configure Stereo settings.
	Sizei recommenedTex0Size = ovr_GetFovTextureSize(session, ovrEye_Left, desc.DefaultEyeFov[0], 1.0f);
	Sizei recommenedTex1Size = ovr_GetFovTextureSize(session, ovrEye_Right, desc.DefaultEyeFov[1], 1.0f);
	buffersize_width = recommenedTex0Size.w + recommenedTex1Size.w;
	buffersize_height = max(recommenedTex0Size.h, recommenedTex1Size.h);
	result = ovr_RequestBoundaryVisible(session, ovrTrue);
	if (OVR_FAILURE(result)) {
		Log(L"Oculus Boundary system inactive.");
	}
	else {
		Log(L"Oculus Boundary system activated!!");
	}
#endif
}
OculusVR::RenderBuffer::RenderBuffer(const ovrSession &session)
{
    ovrHmdDesc hmdDesc = ovr_GetHmdDesc(session);
    ovrSizei eyeTextureSize0 = ovr_GetFovTextureSize(session, ovrEye_Left, hmdDesc.DefaultEyeFov[0], 1.0f);
    ovrSizei eyeTextureSize1 = ovr_GetFovTextureSize(session, ovrEye_Right, hmdDesc.DefaultEyeFov[1], 1.0f);

    m_bufferSize.w = eyeTextureSize0.w + eyeTextureSize1.w;
    m_bufferSize.h = max(eyeTextureSize0.h, eyeTextureSize1.h);

    ovrTextureSwapChainDesc desc = {};
    desc.Type = ovrTexture_2D;
    desc.ArraySize = 1;
    desc.Width = m_bufferSize.w;
    desc.Height = m_bufferSize.h;
    desc.MipLevels = 1;
    desc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
    desc.SampleCount = 1;
    desc.StaticImage = ovrFalse;

    ovrResult result = ovr_CreateTextureSwapChainGL(session, &desc, &m_swapTextureChain);

    if(result)
    {
        GLuint chainTexId;
        ovr_GetTextureSwapChainBufferGL(session, m_swapTextureChain, 0, &chainTexId);
        glBindTexture(GL_TEXTURE_2D, chainTexId);

        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
    }

    glGenFramebuffers(1, &m_eyeFbo);

    // create depth buffer
    glGenTextures(1, &m_depthBuffer);
    glBindTexture(GL_TEXTURE_2D, m_depthBuffer);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

    glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, m_bufferSize.w, m_bufferSize.h, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);

    // MSAA color texture and fbo setup
    // simply comment this line out to skip MSAA altogether
    SetupMSAA();
}
bool OculusBaseDisplayPlugin::internalActivate() {
    _session = acquireOculusSession();
    if (!_session) {
        return false;
    }

    _hmdDesc = ovr_GetHmdDesc(_session);

    glm::uvec2 eyeSizes[2];
    _viewScaleDesc.HmdSpaceToWorldScaleInMeters = 1.0f;

    _ipd = 0;
    ovr_for_each_eye([&](ovrEyeType eye) {
        _eyeFovs[eye] = _hmdDesc.DefaultEyeFov[eye];
        ovrEyeRenderDesc& erd = _eyeRenderDescs[eye] = ovr_GetRenderDesc(_session, eye, _eyeFovs[eye]);
        ovrMatrix4f ovrPerspectiveProjection =
            ovrMatrix4f_Projection(erd.Fov, DEFAULT_NEAR_CLIP, DEFAULT_FAR_CLIP, ovrProjection_ClipRangeOpenGL);
        _eyeProjections[eye] = toGlm(ovrPerspectiveProjection);
        _eyeOffsets[eye] = glm::translate(mat4(), toGlm(erd.HmdToEyeOffset));
        eyeSizes[eye] = toGlm(ovr_GetFovTextureSize(_session, eye, erd.Fov, 1.0f));
        _viewScaleDesc.HmdToEyeOffset[eye] = erd.HmdToEyeOffset;
        _ipd += glm::abs(glm::length(toGlm(erd.HmdToEyeOffset)));
    });

    auto combinedFov = _eyeFovs[0];
    combinedFov.LeftTan = combinedFov.RightTan = std::max(combinedFov.LeftTan, combinedFov.RightTan);
    _cullingProjection = toGlm(ovrMatrix4f_Projection(combinedFov, DEFAULT_NEAR_CLIP, DEFAULT_FAR_CLIP, ovrProjection_ClipRangeOpenGL));

    _renderTargetSize = uvec2(
        eyeSizes[0].x + eyeSizes[1].x,
        std::max(eyeSizes[0].y, eyeSizes[1].y));

    memset(&_sceneLayer, 0, sizeof(ovrLayerEyeFov));
    _sceneLayer.Header.Type = ovrLayerType_EyeFov;
    _sceneLayer.Header.Flags = ovrLayerFlag_TextureOriginAtBottomLeft;
    ovr_for_each_eye([&](ovrEyeType eye) {
        ovrFovPort & fov = _sceneLayer.Fov[eye] = _eyeRenderDescs[eye].Fov;
        ovrSizei & size = _sceneLayer.Viewport[eye].Size = ovr_GetFovTextureSize(_session, eye, fov, 1.0f);
        _sceneLayer.Viewport[eye].Pos = { eye == ovrEye_Left ? 0 : size.w, 0 };
    });

    // This must come after the initialization, so that the values calculated 
    // above are available during the customizeContext call (when not running
    // in threaded present mode)
    return Parent::internalActivate();
}
Ejemplo n.º 6
0
void GuardianSystemDemo::InitRenderTargets(const ovrHmdDesc& hmdDesc)
{
    // For each eye
    for (int i = 0; i < ovrEye_Count; ++i) {
        // Viewport
        const float kPixelsPerDisplayPixel = 1.0f;
        ovrSizei idealSize = ovr_GetFovTextureSize(mSession, (ovrEyeType)i, hmdDesc.DefaultEyeFov[i], kPixelsPerDisplayPixel);
        mEyeRenderViewport[i] = { 0, 0, idealSize.w, idealSize.h };

        // Create Swap Chain
        ovrTextureSwapChainDesc desc = {
            ovrTexture_2D, OVR_FORMAT_R8G8B8A8_UNORM_SRGB, 1, idealSize.w, idealSize.h, 1, 1, 
            ovrFalse, ovrTextureMisc_DX_Typeless, ovrTextureBind_DX_RenderTarget
        };

        // Configure Eye render layers
        mEyeRenderLayer.Header.Type = ovrLayerType_EyeFov;
        mEyeRenderLayer.Viewport[i] = mEyeRenderViewport[i];
        mEyeRenderLayer.Fov[i] = hmdDesc.DefaultEyeFov[i];
        mHmdToEyeOffset[i] = ovr_GetRenderDesc(mSession, (ovrEyeType)i, hmdDesc.DefaultEyeFov[i]).HmdToEyeOffset;

        // DirectX 11 - Generate RenderTargetView from textures in swap chain
        // ----------------------------------------------------------------------
        ovrResult result = ovr_CreateTextureSwapChainDX(mSession, DIRECTX.Device, &desc, &mTextureChain[i]);
        if (!OVR_SUCCESS(result)) {
            printf("ovr_CreateTextureSwapChainDX failed"); exit(-1);
        }

        // Render Target, normally triple-buffered
        int textureCount = 0;
        ovr_GetTextureSwapChainLength(mSession, mTextureChain[i], &textureCount);
        for (int j = 0; j < textureCount; ++j) {
            ID3D11Texture2D* renderTexture = nullptr;
            ovr_GetTextureSwapChainBufferDX(mSession, mTextureChain[i], j, IID_PPV_ARGS(&renderTexture));
            
            D3D11_RENDER_TARGET_VIEW_DESC renderTargetViewDesc = {
                DXGI_FORMAT_R8G8B8A8_UNORM, D3D11_RTV_DIMENSION_TEXTURE2D
            };

            ID3D11RenderTargetView* renderTargetView = nullptr;
            DIRECTX.Device->CreateRenderTargetView(renderTexture, &renderTargetViewDesc, &renderTargetView);
            mEyeRenderTargets[i].push_back(renderTargetView);
            renderTexture->Release();
        }

        // DirectX 11 - Generate Depth
        // ----------------------------------------------------------------------
        D3D11_TEXTURE2D_DESC depthTextureDesc = {
            (UINT)idealSize.w, (UINT)idealSize.h, 1, 1, DXGI_FORMAT_D32_FLOAT, {1, 0},
            D3D11_USAGE_DEFAULT, D3D11_BIND_DEPTH_STENCIL, 0, 0
        };
        
        ID3D11Texture2D* depthTexture = nullptr;
        DIRECTX.Device->CreateTexture2D(&depthTextureDesc, NULL, &depthTexture);
        DIRECTX.Device->CreateDepthStencilView(depthTexture, NULL, &mEyeDepthTarget[i]);
        depthTexture->Release();
    }
}
Ejemplo n.º 7
0
void vx_ovr_namespace_::OVRHMDHandleWithDevice::createTextureSet()
{
	int i;
	ovrResult result;

	texSizeLeft_ = ovr_GetFovTextureSize(session_, ovrEye_Left, description_.DefaultEyeFov[0], 1);
	result = ovr_CreateSwapTextureSetGL(session_, GL_SRGB8_ALPHA8, texSizeLeft_.w, texSizeLeft_.h, &textureSetLeft_);
	if (!OVR_SUCCESS(result)) {
		throw new VX_OVR_RunTimeError("Failed to create Texture Set for Left Eye");
	}

	for (i = 0; i < textureSetLeft_->TextureCount; ++i) {
		ovrGLTexture *tex = (ovrGLTexture *)&textureSetLeft_->Textures[i];
		glBindTexture(GL_TEXTURE_2D, tex->OGL.TexId);

		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	}

	fboLeft_ = vxWnd::GLEWWrapper::generateFramebufferObject(texSizeLeft_.w, texSizeLeft_.h);

	texSizeRight_ = ovr_GetFovTextureSize(session_, ovrEye_Right, description_.DefaultEyeFov[0], 1);
	result = ovr_CreateSwapTextureSetGL(session_, GL_SRGB8_ALPHA8, texSizeRight_.w, texSizeRight_.h, &textureSetRight_);

	if (!OVR_SUCCESS(result)) {
		throw new VX_OVR_RunTimeError("Failed to create Texture Set for Right Eye");
	}

	for (i = 0; i < textureSetRight_->TextureCount; ++i) {
		ovrGLTexture *tex = (ovrGLTexture *)&textureSetLeft_->Textures[i];
		glBindTexture(GL_TEXTURE_2D, tex->OGL.TexId);

		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
		glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	}

	fboRight_ = vxWnd::GLEWWrapper::generateFramebufferObject(texSizeRight_.w, texSizeRight_.h);

	glBindTexture(GL_TEXTURE_2D, 0);
}
Ejemplo n.º 8
0
OVR_PUBLIC_FUNCTION(ovrEyeRenderDesc) ovr_GetRenderDesc(ovrSession session, ovrEyeType eyeType, ovrFovPort fov)
{
	ovrEyeRenderDesc desc;
	desc.Eye = eyeType;
	desc.Fov = fov;

	OVR::Matrix4f HmdToEyeMatrix = REV_HmdMatrixToOVRMatrix(g_VRSystem->GetEyeToHeadTransform((vr::EVREye)eyeType));
	float WidthTan = fov.LeftTan + fov.RightTan;
	float HeightTan = fov.UpTan + fov.DownTan;
	ovrSizei size = ovr_GetFovTextureSize(session, eyeType, fov, 1.0);

	desc.DistortedViewport = OVR::Recti(eyeType == ovrEye_Right ? size.w : 0, 0, size.w, size.h);
	desc.PixelsPerTanAngleAtCenter = OVR::Vector2f(size.w / WidthTan, size.h / HeightTan);
	desc.HmdToEyeOffset = HmdToEyeMatrix.GetTranslation();

	return desc;
}
Ejemplo n.º 9
0
///@brief Called once a GL context has been set up.
void initVR()
{
    const ovrHmdDesc& hmd = m_Hmd;

    for (int eye = 0; eye < 2; ++eye)
    {
        const ovrSizei& bufferSize = ovr_GetFovTextureSize(g_session, ovrEyeType(eye), hmd.DefaultEyeFov[eye], 1.f);
        LOG_INFO("Eye %d tex : %dx%d @ ()", eye, bufferSize.w, bufferSize.h);

        ovrTextureSwapChain textureSwapChain = 0;
        ovrTextureSwapChainDesc desc = {};
        desc.Type = ovrTexture_2D;
        desc.ArraySize = 1;
        desc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
        desc.Width = bufferSize.w;
        desc.Height = bufferSize.h;
        desc.MipLevels = 1;
        desc.SampleCount = 1;
        desc.StaticImage = ovrFalse;

        // Allocate the frameBuffer that will hold the scene, and then be
        // re-rendered to the screen with distortion
        ovrTextureSwapChain& chain = g_textureSwapChain[eye];
        if (ovr_CreateTextureSwapChainGL(g_session, &desc, &chain) == ovrSuccess)
        {
            int length = 0;
            ovr_GetTextureSwapChainLength(g_session, chain, &length);

            for (int i = 0; i < length; ++i)
            {
                GLuint chainTexId;
                ovr_GetTextureSwapChainBufferGL(g_session, chain, i, &chainTexId);
                glBindTexture(GL_TEXTURE_2D, chainTexId);
                glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
                glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
                glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
                glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
            }
        }
        else
        {
            LOG_ERROR("Unable to create swap textures");
            return;
        }

        // Manually assemble swap FBO
        FBO& swapfbo = m_swapFBO[eye];
        swapfbo.w = bufferSize.w;
        swapfbo.h = bufferSize.h;
        glGenFramebuffers(1, &swapfbo.id);
        glBindFramebuffer(GL_FRAMEBUFFER, swapfbo.id);
        glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, swapfbo.tex, 0);

        swapfbo.depth = 0;
        glGenRenderbuffers(1, &swapfbo.depth);
        glBindRenderbuffer(GL_RENDERBUFFER, swapfbo.depth);
        glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, bufferSize.w, bufferSize.h);
        glBindRenderbuffer(GL_RENDERBUFFER, 0);
        glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, swapfbo.depth);

        // Check status
        const GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
        if (status != GL_FRAMEBUFFER_COMPLETE)
        {
            LOG_ERROR("Framebuffer status incomplete: %d %x", status, status);
        }
        glBindFramebuffer(GL_FRAMEBUFFER, 0);
    }

    // Initialize mirror texture
    ovrMirrorTextureDesc desc;
    memset(&desc, 0, sizeof(desc));
    desc.Width = g_mirrorWindowSz.x;
    desc.Height = g_mirrorWindowSz.y;
    desc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;

    const ovrResult result = ovr_CreateMirrorTextureGL(g_session, &desc, &g_mirrorTexture);
    if (!OVR_SUCCESS(result))
    {
        LOG_ERROR("Unable to create mirror texture");
        return;
    }

    // Manually assemble mirror FBO
    m_mirrorFBO.w = g_mirrorWindowSz.x;
    m_mirrorFBO.h = g_mirrorWindowSz.y;
    glGenFramebuffers(1, &m_mirrorFBO.id);
    glBindFramebuffer(GL_FRAMEBUFFER, m_mirrorFBO.id);
    GLuint texId;
    ovr_GetMirrorTextureBufferGL(g_session, g_mirrorTexture, &texId);
    m_mirrorFBO.tex = texId;
    glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, m_mirrorFBO.tex, 0);

    const ovrSizei sz = { 600, 600 };
    g_tweakbarQuad.initGL(g_session, sz);

    glBindFramebuffer(GL_FRAMEBUFFER, 0);
    glBindTexture(GL_TEXTURE_2D, 0);

    g_hmdVisible = true;
}
Ejemplo n.º 10
0
	DLL_EXPORT_API npBool xnOvrCreateTexturesDx(xnOvrSession* session, void* dxDevice, int* outTextureCount, float pixelPerDisplayPixel, int mirrorBufferWidth, int mirrorBufferHeight)
	{
		session->HmdDesc = ovr_GetHmdDesc(session->Session);
		ovrSizei sizel = ovr_GetFovTextureSize(session->Session, ovrEye_Left, session->HmdDesc.DefaultEyeFov[0], pixelPerDisplayPixel);
		ovrSizei sizer = ovr_GetFovTextureSize(session->Session, ovrEye_Right, session->HmdDesc.DefaultEyeFov[1], pixelPerDisplayPixel);
		ovrSizei bufferSize;
		bufferSize.w = sizel.w + sizer.w;
		bufferSize.h = fmax(sizel.h, sizer.h);

		ovrTextureSwapChainDesc texDesc = {};
		texDesc.Type = ovrTexture_2D;
		texDesc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
		texDesc.ArraySize = 1;
		texDesc.Width = bufferSize.w;
		texDesc.Height = bufferSize.h;
		texDesc.MipLevels = 1;
		texDesc.SampleCount = 1;
		texDesc.StaticImage = ovrFalse;
		texDesc.MiscFlags = ovrTextureMisc_None;
		texDesc.BindFlags = ovrTextureBind_DX_RenderTarget;

		if(!OVR_SUCCESS(ovr_CreateTextureSwapChainDX(session->Session, dxDevice, &texDesc, &session->SwapChain)))
		{
			return false;
		}

		auto count = 0;
		ovr_GetTextureSwapChainLength(session->Session, session->SwapChain, &count);
		*outTextureCount = count;
		
		//init structures
		session->EyeRenderDesc[0] = ovr_GetRenderDesc(session->Session, ovrEye_Left, session->HmdDesc.DefaultEyeFov[0]);
		session->EyeRenderDesc[1] = ovr_GetRenderDesc(session->Session, ovrEye_Right, session->HmdDesc.DefaultEyeFov[1]);
		session->HmdToEyeViewOffset[0] = session->EyeRenderDesc[0].HmdToEyeOffset;
		session->HmdToEyeViewOffset[1] = session->EyeRenderDesc[1].HmdToEyeOffset;

		session->Layer.Header.Type = ovrLayerType_EyeFov;
		session->Layer.Header.Flags = 0;
		session->Layer.ColorTexture[0] = session->SwapChain;
		session->Layer.ColorTexture[1] = session->SwapChain;
		session->Layer.Fov[0] = session->EyeRenderDesc[0].Fov;
		session->Layer.Fov[1] = session->EyeRenderDesc[1].Fov;
		session->Layer.Viewport[0].Pos.x = 0;
		session->Layer.Viewport[0].Pos.y = 0;
		session->Layer.Viewport[0].Size.w = bufferSize.w / 2;
		session->Layer.Viewport[0].Size.h = bufferSize.h;
		session->Layer.Viewport[1].Pos.x = bufferSize.w / 2;
		session->Layer.Viewport[1].Pos.y = 0;
		session->Layer.Viewport[1].Size.w = bufferSize.w / 2;
		session->Layer.Viewport[1].Size.h = bufferSize.h;

		//create mirror as well
		if (mirrorBufferHeight != 0 && mirrorBufferWidth != 0)
		{
			ovrMirrorTextureDesc mirrorDesc = {};
			mirrorDesc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
			mirrorDesc.Width = mirrorBufferWidth;
			mirrorDesc.Height = mirrorBufferHeight;
			if (!OVR_SUCCESS(ovr_CreateMirrorTextureDX(session->Session, dxDevice, &mirrorDesc, &session->Mirror)))
			{
				return false;
			}
		}
		
		return true;
	}
Ejemplo n.º 11
0
int main(int argc, char **argv)
{
	// Initialize SDL2's context
	SDL_Init(SDL_INIT_VIDEO);
	// Initialize Oculus' context
	ovrResult result = ovr_Initialize(nullptr);
	if (OVR_FAILURE(result))
	{
		std::cout << "ERROR: Failed to initialize libOVR" << std::endl;
		SDL_Quit();
		return -1;
	}
	
	ovrSession  session;
	ovrGraphicsLuid luid;
	// Connect to the Oculus headset
	result = ovr_Create(&session, &luid);
	if (OVR_FAILURE(result))
	{
		std::cout << "ERROR: Oculus Rift not detected" << std::endl;
		ovr_Shutdown();
		SDL_Quit();
		return -1;
	}
	
	int x = SDL_WINDOWPOS_CENTERED, y = SDL_WINDOWPOS_CENTERED;
	int winWidth = 1280;
	int winHeight = 720;
	Uint32 flags = SDL_WINDOW_OPENGL | SDL_WINDOW_SHOWN;
	// Create SDL2 Window
	SDL_Window* window = SDL_CreateWindow("OVR ZED App", x, y, winWidth, winHeight, flags);
	// Create OpenGL context
	SDL_GLContext glContext = SDL_GL_CreateContext(window);
	// Initialize GLEW
	glewInit();
	// Turn off vsync to let the compositor do its magic
	SDL_GL_SetSwapInterval(0);

	// Initialize the ZED Camera
	sl::zed::Camera* zed = 0;
	zed = new sl::zed::Camera(sl::zed::HD720);
	sl::zed::ERRCODE zederr = zed->init(sl::zed::MODE::PERFORMANCE, 0);
	int zedWidth = zed->getImageSize().width;
	int zedHeight = zed->getImageSize().height;
	if (zederr != sl::zed::SUCCESS)
	{
		std::cout << "ERROR: " << sl::zed::errcode2str(zederr) << std::endl;
		ovr_Destroy(session);
		ovr_Shutdown();
		SDL_GL_DeleteContext(glContext);
		SDL_DestroyWindow(window);
		SDL_Quit();
		delete zed;
		return -1;
	}

	GLuint zedTextureID_L, zedTextureID_R;
	// Generate OpenGL texture for left images of the ZED camera
	glGenTextures(1, &zedTextureID_L);
	glBindTexture(GL_TEXTURE_2D, zedTextureID_L);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, zedWidth, zedHeight, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	// Generate OpenGL texture for right images of the ZED camera
	glGenTextures(1, &zedTextureID_R);
	glBindTexture(GL_TEXTURE_2D, zedTextureID_R);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, zedWidth, zedHeight, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	glBindTexture(GL_TEXTURE_2D, 0);

#if OPENGL_GPU_INTEROP
	cudaGraphicsResource* cimg_L;
	cudaGraphicsResource* cimg_R;
	cudaError_t errL, errR;
	errL = cudaGraphicsGLRegisterImage(&cimg_L, zedTextureID_L, GL_TEXTURE_2D, cudaGraphicsMapFlagsNone);
	errR = cudaGraphicsGLRegisterImage(&cimg_R, zedTextureID_R, GL_TEXTURE_2D, cudaGraphicsMapFlagsNone);
	if (errL != cudaSuccess || errR != cudaSuccess)
	{
		std::cout << "ERROR: cannot create CUDA texture : " << errL << "|" << errR << std::endl;
	}
#endif

	ovrHmdDesc hmdDesc = ovr_GetHmdDesc(session);
	// Get the texture sizes of Oculus eyes
	ovrSizei textureSize0 = ovr_GetFovTextureSize(session, ovrEye_Left, hmdDesc.DefaultEyeFov[0], 1.0f);
	ovrSizei textureSize1 = ovr_GetFovTextureSize(session, ovrEye_Right, hmdDesc.DefaultEyeFov[1], 1.0f);
	// Compute the final size of the render buffer
	ovrSizei bufferSize;
	bufferSize.w = textureSize0.w + textureSize1.w;
	bufferSize.h = std::max(textureSize0.h, textureSize1.h);
	// Initialize OpenGL swap textures to render
	ovrTextureSwapChain textureChain = nullptr;
	// Description of the swap chain
	ovrTextureSwapChainDesc descTextureSwap = {};
	descTextureSwap.Type = ovrTexture_2D;
	descTextureSwap.ArraySize = 1;
	descTextureSwap.Width = bufferSize.w;
	descTextureSwap.Height = bufferSize.h;
	descTextureSwap.MipLevels = 1;
	descTextureSwap.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
	descTextureSwap.SampleCount = 1;
	descTextureSwap.StaticImage = ovrFalse;
	// Create the OpenGL texture swap chain
	result = ovr_CreateTextureSwapChainGL(session, &descTextureSwap, &textureChain);

	int length = 0;
	ovr_GetTextureSwapChainLength(session, textureChain, &length);
	
	if (OVR_SUCCESS(result))
	{
		for (int i = 0; i < length; ++i)
		{
			GLuint chainTexId;
			ovr_GetTextureSwapChainBufferGL(session, textureChain, i, &chainTexId);
			glBindTexture(GL_TEXTURE_2D, chainTexId);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
		}
	}
	else
	{
		std::cout << "ERROR: failed creating swap texture" << std::endl;
		ovr_Destroy(session);
		ovr_Shutdown();
		SDL_GL_DeleteContext(glContext);
		SDL_DestroyWindow(window);
		SDL_Quit();
		delete zed;
		return -1;
	}
	// Generate frame buffer to render
	GLuint fboID;
	glGenFramebuffers(1, &fboID);
	// Generate depth buffer of the frame buffer
	GLuint depthBuffID;
	glGenTextures(1, &depthBuffID);
	glBindTexture(GL_TEXTURE_2D, depthBuffID);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	GLenum internalFormat = GL_DEPTH_COMPONENT24;
	GLenum type = GL_UNSIGNED_INT;
	glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, bufferSize.w, bufferSize.h, 0, GL_DEPTH_COMPONENT, type, NULL);

	// Create a mirror texture to display the render result in the SDL2 window
	ovrMirrorTextureDesc descMirrorTexture;
	memset(&descMirrorTexture, 0, sizeof(descMirrorTexture));
	descMirrorTexture.Width = winWidth;
	descMirrorTexture.Height = winHeight;
	descMirrorTexture.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;

	ovrMirrorTexture mirrorTexture = nullptr;
	result = ovr_CreateMirrorTextureGL(session, &descMirrorTexture, &mirrorTexture);
	if (!OVR_SUCCESS(result))
	{
		std::cout << "ERROR: Failed to create mirror texture" << std::endl;
	}
	GLuint mirrorTextureId;
	ovr_GetMirrorTextureBufferGL(session, mirrorTexture, &mirrorTextureId);

	GLuint mirrorFBOID;
	glGenFramebuffers(1, &mirrorFBOID);
	glBindFramebuffer(GL_READ_FRAMEBUFFER, mirrorFBOID);
	glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, mirrorTextureId, 0);
	glFramebufferRenderbuffer(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, 0);
	glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
	// Frame index used by the compositor
	// it needs to be updated each new frame
	long long frameIndex = 0;

	// FloorLevel will give tracking poses where the floor height is 0
	ovr_SetTrackingOriginType(session, ovrTrackingOrigin_FloorLevel);

	// Initialize a default Pose
	ovrPosef eyeRenderPose[2];

	// Get the render description of the left and right "eyes" of the Oculus headset
	ovrEyeRenderDesc eyeRenderDesc[2];
	eyeRenderDesc[0] = ovr_GetRenderDesc(session, ovrEye_Left, hmdDesc.DefaultEyeFov[0]);
	eyeRenderDesc[1] = ovr_GetRenderDesc(session, ovrEye_Right, hmdDesc.DefaultEyeFov[1]);
	// Get the Oculus view scale description
	ovrVector3f hmdToEyeOffset[2];
	double sensorSampleTime;

	// Create and compile the shader's sources
	Shader shader(OVR_ZED_VS, OVR_ZED_FS);

	// Compute the ZED image field of view with the ZED parameters
	float zedFovH = atanf(zed->getImageSize().width / (zed->getParameters()->LeftCam.fx *2.f)) * 2.f;
	// Compute the Horizontal Oculus' field of view with its parameters
	float ovrFovH = (atanf(hmdDesc.DefaultEyeFov[0].LeftTan) + atanf(hmdDesc.DefaultEyeFov[0].RightTan));
	// Compute the useful part of the ZED image
	unsigned int usefulWidth = zed->getImageSize().width * ovrFovH / zedFovH;
	// Compute the size of the final image displayed in the headset with the ZED image's aspect-ratio kept
	unsigned int widthFinal = bufferSize.w / 2;
	float heightGL = 1.f;
	float widthGL = 1.f;
	if (usefulWidth > 0.f)
	{
		unsigned int heightFinal = zed->getImageSize().height * widthFinal / usefulWidth;
		// Convert this size to OpenGL viewport's frame's coordinates
		heightGL = (heightFinal) / (float)(bufferSize.h);
		widthGL = ((zed->getImageSize().width * (heightFinal / (float)zed->getImageSize().height)) / (float)widthFinal);
	}
	else
	{
		std::cout << "WARNING: ZED parameters got wrong values."
			"Default vertical and horizontal FOV are used.\n"
			"Check your calibration file or check if your ZED is not too close to a surface or an object."
			<< std::endl;
	}

	// Compute the Vertical Oculus' field of view with its parameters
	float ovrFovV = (atanf(hmdDesc.DefaultEyeFov[0].UpTan) + atanf(hmdDesc.DefaultEyeFov[0].DownTan));

	// Compute the center of the optical lenses of the headset
	float offsetLensCenterX = ((atanf(hmdDesc.DefaultEyeFov[0].LeftTan)) / ovrFovH) * 2.f - 1.f;
	float offsetLensCenterY = ((atanf(hmdDesc.DefaultEyeFov[0].UpTan)) / ovrFovV) * 2.f - 1.f;


	// Create a rectangle with the computed coordinates and push it in GPU memory.
	struct GLScreenCoordinates
	{
		float left, up, right, down;
	} screenCoord;
	screenCoord.up    = heightGL + offsetLensCenterY;
	screenCoord.down  = heightGL - offsetLensCenterY;
	screenCoord.right = widthGL + offsetLensCenterX;
	screenCoord.left  = widthGL - offsetLensCenterX;

	float rectVertices[12] = { -screenCoord.left,  -screenCoord.up,   0,
								screenCoord.right, -screenCoord.up,   0, 
								screenCoord.right,  screenCoord.down, 0, 
							   -screenCoord.left,   screenCoord.down, 0 };
	GLuint rectVBO[3];
	glGenBuffers(1, &rectVBO[0]);
	glBindBuffer(GL_ARRAY_BUFFER, rectVBO[0]);
	glBufferData(GL_ARRAY_BUFFER, sizeof(rectVertices), rectVertices, GL_STATIC_DRAW);

	float rectTexCoord[8] = { 0, 1, 1, 1, 1, 0, 0, 0 };
	glGenBuffers(1, &rectVBO[1]);
	glBindBuffer(GL_ARRAY_BUFFER, rectVBO[1]);
	glBufferData(GL_ARRAY_BUFFER, sizeof(rectTexCoord), rectTexCoord, GL_STATIC_DRAW);

	unsigned int rectIndices[6] = { 0, 1, 2, 0, 2, 3 };
	glGenBuffers(1, &rectVBO[2]);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, rectVBO[2]);
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(rectIndices), rectIndices, GL_STATIC_DRAW);

	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
	glBindBuffer(GL_ARRAY_BUFFER, 0);
	
	// Initialize hit value
	float hit = 0.02f;
	// Initialize a boolean that will be used to stop the application’s loop and another one to pause/unpause rendering
	bool end = false;
	bool refresh = true;
	// SDL variable that will be used to store input events
	SDL_Event events;
	// Initialize time variables. They will be used to limit the number of frames rendered per second.
	// Frame counter
	unsigned int riftc = 0, zedc = 1;
	// Chronometer
	unsigned int rifttime = 0, zedtime = 0, zedFPS = 0;
	int time1 = 0, timePerFrame = 0;
	int frameRate = (int)(1000 / MAX_FPS);

	// This boolean is used to test if the application is focused
	bool isVisible = true;

	// Enable the shader
	glUseProgram(shader.getProgramId());
	// Bind the Vertex Buffer Objects of the rectangle that displays ZED images
	// vertices
	glEnableVertexAttribArray(Shader::ATTRIB_VERTICES_POS);
	glBindBuffer(GL_ARRAY_BUFFER, rectVBO[0]);
	glVertexAttribPointer(Shader::ATTRIB_VERTICES_POS, 3, GL_FLOAT, GL_FALSE, 0, 0);
	// indices
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, rectVBO[2]);
	// texture coordinates
	glEnableVertexAttribArray(Shader::ATTRIB_TEXTURE2D_POS);
	glBindBuffer(GL_ARRAY_BUFFER, rectVBO[1]);
	glVertexAttribPointer(Shader::ATTRIB_TEXTURE2D_POS, 2, GL_FLOAT, GL_FALSE, 0, 0);

	// Main loop
	while (!end)
	{
		// Compute the time used to render the previous frame
		timePerFrame = SDL_GetTicks() - time1;
		// If the previous frame has been rendered too fast
		if (timePerFrame < frameRate)
		{
			// Pause the loop to have a max FPS equal to MAX_FPS
			SDL_Delay(frameRate - timePerFrame);
			timePerFrame = frameRate;
		}
		// Increment the ZED chronometer
		zedtime += timePerFrame;
		// If ZED chronometer reached 1 second
		if (zedtime > 1000)
		{
			zedFPS = zedc;
			zedc = 0;
			zedtime = 0;
		}
		// Increment the Rift chronometer and the Rift frame counter
		rifttime += timePerFrame;
		riftc++;
		// If Rift chronometer reached 200 milliseconds
		if (rifttime > 200)
		{
			// Display FPS
			std::cout << "\rRIFT FPS: " << 1000 / (rifttime / riftc) << " | ZED FPS: " << zedFPS;
			// Reset Rift chronometer
			rifttime = 0;
			// Reset Rift frame counter
			riftc = 0;			
		}
		// Start frame chronometer
		time1 = SDL_GetTicks();
		
		// While there is an event catched and not tested
		while (SDL_PollEvent(&events))
		{
			// If a key is released
			if (events.type == SDL_KEYUP)
			{
				// If Q quit the application
				if (events.key.keysym.scancode == SDL_SCANCODE_Q)
					end = true;
				// If R reset the hit value
				else if (events.key.keysym.scancode == SDL_SCANCODE_R)
					hit = 0.0f;
				// If C pause/unpause rendering
				else if (events.key.keysym.scancode == SDL_SCANCODE_C)
					refresh = !refresh;
			}
			// If the mouse wheel is used
			if (events.type == SDL_MOUSEWHEEL)
			{
				// Increase or decrease hit value
				float s;
				events.wheel.y > 0 ? s = 1.0f : s = -1.0f;
				hit += 0.005f * s;
			}
		}

		// Get texture swap index where we must draw our frame
		GLuint curTexId;
		int curIndex;
		ovr_GetTextureSwapChainCurrentIndex(session, textureChain, &curIndex);
		ovr_GetTextureSwapChainBufferGL(session, textureChain, curIndex, &curTexId);

		// Call ovr_GetRenderDesc each frame to get the ovrEyeRenderDesc, as the returned values (e.g. HmdToEyeOffset) may change at runtime.
		eyeRenderDesc[0] = ovr_GetRenderDesc(session, ovrEye_Left, hmdDesc.DefaultEyeFov[0]);
		eyeRenderDesc[1] = ovr_GetRenderDesc(session, ovrEye_Right, hmdDesc.DefaultEyeFov[1]);
		hmdToEyeOffset[0] = eyeRenderDesc[0].HmdToEyeOffset;
		hmdToEyeOffset[1] = eyeRenderDesc[1].HmdToEyeOffset;
		// Get eye poses, feeding in correct IPD offset
		ovr_GetEyePoses(session, frameIndex, ovrTrue, hmdToEyeOffset, eyeRenderPose, &sensorSampleTime);

		// If the application is focused
		if (isVisible)
		{
			// If successful grab a new ZED image
			if (!zed->grab(sl::zed::SENSING_MODE::RAW, false, false))
			{
				// Update the ZED frame counter
				zedc++;
				if (refresh)
				{
#if OPENGL_GPU_INTEROP
					sl::zed::Mat m = zed->retrieveImage_gpu(sl::zed::SIDE::LEFT);
					cudaArray_t arrIm;
					cudaGraphicsMapResources(1, &cimg_L, 0);
					cudaGraphicsSubResourceGetMappedArray(&arrIm, cimg_L, 0, 0);
					cudaMemcpy2DToArray(arrIm, 0, 0, m.data, m.step, zedWidth * 4, zedHeight, cudaMemcpyDeviceToDevice);
					cudaGraphicsUnmapResources(1, &cimg_L, 0);

					m = zed->retrieveImage_gpu(sl::zed::SIDE::RIGHT);
					cudaGraphicsMapResources(1, &cimg_R, 0);
					cudaGraphicsSubResourceGetMappedArray(&arrIm, cimg_R, 0, 0);
					cudaMemcpy2DToArray(arrIm, 0, 0, m.data, m.step, zedWidth * 4, zedHeight, cudaMemcpyDeviceToDevice); // *4 = 4 channels * 1 bytes (uint)
					cudaGraphicsUnmapResources(1, &cimg_R, 0);
#endif

					// Bind the frame buffer
					glBindFramebuffer(GL_FRAMEBUFFER, fboID);
					// Set its color layer 0 as the current swap texture
					glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, curTexId, 0);
					// Set its depth layer as our depth buffer
					glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depthBuffID, 0);
					// Clear the frame buffer
					glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
					glClearColor(0, 0, 0, 1);

					// Render for each Oculus eye the equivalent ZED image
					for (int eye = 0; eye < 2; eye++)
					{
						// Set the left or right vertical half of the buffer as the viewport
						glViewport(eye == ovrEye_Left ? 0 : bufferSize.w / 2, 0, bufferSize.w / 2, bufferSize.h);
						// Bind the left or right ZED image
						glBindTexture(GL_TEXTURE_2D, eye == ovrEye_Left ? zedTextureID_L : zedTextureID_R);
#if !OPENGL_GPU_INTEROP
						glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, zedWidth, zedHeight, 0, GL_BGRA, GL_UNSIGNED_BYTE, zed->retrieveImage(eye == ovrEye_Left ? sl::zed::SIDE::LEFT : sl::zed::SIDE::RIGHT).data);
#endif
						// Bind the hit value
						glUniform1f(glGetUniformLocation(shader.getProgramId(), "hit"), eye == ovrEye_Left ? hit : -hit);
						// Bind the isLeft value
						glUniform1ui(glGetUniformLocation(shader.getProgramId(), "isLeft"), eye == ovrEye_Left ? 1U : 0U);
						// Draw the ZED image
						glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
					}

					// Avoids an error when calling SetAndClearRenderSurface during next iteration.
					// Without this, during the next while loop iteration SetAndClearRenderSurface
					// would bind a framebuffer with an invalid COLOR_ATTACHMENT0 because the texture ID
					// associated with COLOR_ATTACHMENT0 had been unlocked by calling wglDXUnlockObjectsNV.
					glBindFramebuffer(GL_FRAMEBUFFER, fboID);
					glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
					glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, 0, 0);
					// Commit changes to the textures so they get picked up frame
					ovr_CommitTextureSwapChain(session, textureChain);
				}

				// Do not forget to increment the frameIndex!
				frameIndex++;
			}
		}
		/*
		Note: Even if we don't ask to refresh the framebuffer or if the Camera::grab() 
		      doesn't catch a new frame, we have to submit an image to the Rift; it 
			  needs 75Hz refresh. Else there will be jumbs, black frames and/or glitches 
			  in the headset.
		*/

		ovrLayerEyeFov ld;
		ld.Header.Type = ovrLayerType_EyeFov;
		// Tell to the Oculus compositor that our texture origin is at the bottom left
		ld.Header.Flags = ovrLayerFlag_TextureOriginAtBottomLeft;   // Because OpenGL | Disable head tracking
		// Set the Oculus layer eye field of view for each view
		for (int eye = 0; eye < 2; ++eye)
		{
			// Set the color texture as the current swap texture
			ld.ColorTexture[eye] = textureChain;
			// Set the viewport as the right or left vertical half part of the color texture
			ld.Viewport[eye] = OVR::Recti(eye == ovrEye_Left ? 0 : bufferSize.w / 2, 0, bufferSize.w / 2, bufferSize.h);
			// Set the field of view
			ld.Fov[eye] = hmdDesc.DefaultEyeFov[eye];
			// Set the pose matrix
			ld.RenderPose[eye] = eyeRenderPose[eye];
		}

		ld.SensorSampleTime = sensorSampleTime;

		ovrLayerHeader* layers = &ld.Header;
		// Submit the frame to the Oculus compositor
		// which will display the frame in the Oculus headset
		result = ovr_SubmitFrame(session, frameIndex, nullptr, &layers, 1);
		
		if (!OVR_SUCCESS(result))
		{
			std::cout << "ERROR: failed to submit frame" << std::endl;
			glDeleteBuffers(3, rectVBO);
			ovr_DestroyTextureSwapChain(session, textureChain);
			ovr_DestroyMirrorTexture(session, mirrorTexture);
			ovr_Destroy(session);
			ovr_Shutdown();
			SDL_GL_DeleteContext(glContext);
			SDL_DestroyWindow(window);
			SDL_Quit();
			delete zed;
			return -1;
		}
		
		if (result == ovrSuccess && !isVisible)
		{
			std::cout << "The application is now shown in the headset." << std::endl;
		}
		isVisible = (result == ovrSuccess);

		// This is not really needed for this application but it may be usefull for an more advanced application
		ovrSessionStatus sessionStatus;
		ovr_GetSessionStatus(session, &sessionStatus);
		if (sessionStatus.ShouldRecenter)
		{
			std::cout << "Recenter Tracking asked by Session" << std::endl;
			ovr_RecenterTrackingOrigin(session);
		}

		// Copy the frame to the mirror buffer
		// which will be drawn in the SDL2 image
		glBindFramebuffer(GL_READ_FRAMEBUFFER, mirrorFBOID);
		glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
		GLint w = winWidth;
		GLint h = winHeight;
		glBlitFramebuffer(0, h, w, 0,
			0, 0, w, h,
			GL_COLOR_BUFFER_BIT, GL_NEAREST);
		glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
		// Swap the SDL2 window
		SDL_GL_SwapWindow(window);
	}
	
	// Disable all OpenGL buffer
	glDisableVertexAttribArray(Shader::ATTRIB_TEXTURE2D_POS);
	glDisableVertexAttribArray(Shader::ATTRIB_VERTICES_POS);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
	glBindBuffer(GL_ARRAY_BUFFER, 0);
	glBindTexture(GL_TEXTURE_2D, 0);
	glUseProgram(0);
	glBindVertexArray(0);
	// Delete the Vertex Buffer Objects of the rectangle
	glDeleteBuffers(3, rectVBO);
	// Delete SDL, OpenGL, Oculus and ZED context
	ovr_DestroyTextureSwapChain(session, textureChain);
	ovr_DestroyMirrorTexture(session, mirrorTexture);
	ovr_Destroy(session);
	ovr_Shutdown();
	SDL_GL_DeleteContext(glContext);
	SDL_DestroyWindow(window);
	SDL_Quit();
	delete zed;
	// quit
	return 0;
}
Ejemplo n.º 12
0
// return true to retry later (e.g. after display lost)
static bool MainLoop(bool retryCreate)
{
    // Initialize these to nullptr here to handle device lost failures cleanly
    ovrMirrorTexture            mirrorTexture = nullptr;
    OculusEyeTexture*           pEyeRenderTexture[2] = { nullptr, nullptr };
    Scene*                      roomScene = nullptr; 
    Camera*                     mainCam = nullptr;
    ovrMirrorTextureDesc        mirrorDesc = {};

    ovrSession session;
    ovrGraphicsLuid luid;
    ovrResult result = ovr_Create(&session, &luid);
    if (!OVR_SUCCESS(result))
        return retryCreate;

    ovrHmdDesc hmdDesc = ovr_GetHmdDesc(session);

    // Setup Device and Graphics
    // Note: the mirror window can be any size, for this sample we use 1/2 the HMD resolution
    if (!DIRECTX.InitDevice(hmdDesc.Resolution.w / 2, hmdDesc.Resolution.h / 2, reinterpret_cast<LUID*>(&luid)))
        goto Done;

    // Make the eye render buffers (caution if actual size < requested due to HW limits). 
    ovrRecti eyeRenderViewport[2];

    for (int eye = 0; eye < 2; ++eye)
    {
        ovrSizei idealSize = ovr_GetFovTextureSize(session, (ovrEyeType)eye, hmdDesc.DefaultEyeFov[eye], 1.0f);
        pEyeRenderTexture[eye] = new OculusEyeTexture();
        if (!pEyeRenderTexture[eye]->Init(session, idealSize.w, idealSize.h, true))
        {
            if (retryCreate) goto Done;
            FATALERROR("Failed to create eye texture.");
        }

        eyeRenderViewport[eye].Pos.x = 0;
        eyeRenderViewport[eye].Pos.y = 0;
        eyeRenderViewport[eye].Size = idealSize;
        if (!pEyeRenderTexture[eye]->TextureChain)
        {
            if (retryCreate) goto Done;
            FATALERROR("Failed to create texture.");
        }
    }

    // Create a mirror to see on the monitor.
    mirrorDesc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
    mirrorDesc.Width = DIRECTX.WinSizeW;
    mirrorDesc.Height = DIRECTX.WinSizeH;
    result = ovr_CreateMirrorTextureDX(session, DIRECTX.CommandQueue, &mirrorDesc, &mirrorTexture);
    if (!OVR_SUCCESS(result))
    {
        if (retryCreate) goto Done;
        FATALERROR("Failed to create mirror texture.");
    }

    // Create the room model
    roomScene = new Scene(false);

    // Create camera
    mainCam = new Camera(XMVectorSet(0.0f, 1.6f, 5.0f, 0), XMQuaternionIdentity());

    // Setup VR components, filling out description
    ovrEyeRenderDesc eyeRenderDesc[2];
    eyeRenderDesc[0] = ovr_GetRenderDesc(session, ovrEye_Left, hmdDesc.DefaultEyeFov[0]);
    eyeRenderDesc[1] = ovr_GetRenderDesc(session, ovrEye_Right, hmdDesc.DefaultEyeFov[1]);

    long long frameIndex = 0;

    bool drawMirror = true;

    DIRECTX.InitFrame(drawMirror);

    // Main loop
    while (DIRECTX.HandleMessages())
    {
        ovrSessionStatus sessionStatus;
        ovr_GetSessionStatus(session, &sessionStatus);
        if (sessionStatus.ShouldQuit)
        {
            // Because the application is requested to quit, should not request retry
            retryCreate = false;
            break;
        }
        if (sessionStatus.ShouldRecenter)
            ovr_RecenterTrackingOrigin(session);

        if (sessionStatus.IsVisible)
        {
            XMVECTOR forward = XMVector3Rotate(XMVectorSet(0, 0, -0.05f, 0), mainCam->GetRotVec());
            XMVECTOR right   = XMVector3Rotate(XMVectorSet(0.05f, 0, 0, 0),  mainCam->GetRotVec());
            XMVECTOR mainCamPos = mainCam->GetPosVec();
            XMVECTOR mainCamRot = mainCam->GetRotVec();
            if (DIRECTX.Key['W'] || DIRECTX.Key[VK_UP])      mainCamPos = XMVectorAdd(     mainCamPos, forward);
            if (DIRECTX.Key['S'] || DIRECTX.Key[VK_DOWN])    mainCamPos = XMVectorSubtract(mainCamPos, forward);
            if (DIRECTX.Key['D'])                            mainCamPos = XMVectorAdd(     mainCamPos, right);
            if (DIRECTX.Key['A'])                            mainCamPos = XMVectorSubtract(mainCamPos, right);
            static float Yaw = 0;
            if (DIRECTX.Key[VK_LEFT])  mainCamRot = XMQuaternionRotationRollPitchYaw(0, Yaw += 0.02f, 0);
            if (DIRECTX.Key[VK_RIGHT]) mainCamRot = XMQuaternionRotationRollPitchYaw(0, Yaw -= 0.02f, 0);

            mainCam->SetPosVec(mainCamPos);
            mainCam->SetRotVec(mainCamRot);

            // Animate the cube
            static float cubeClock = 0;
            roomScene->Models[0]->Pos = XMFLOAT3(9 * sin(cubeClock), 3, 9 * cos(cubeClock += 0.015f));

            // Get both eye poses simultaneously, with IPD offset already included. 
            ovrPosef    EyeRenderPose[2];
            ovrVector3f HmdToEyeOffset[2] = { eyeRenderDesc[0].HmdToEyeOffset,
                                              eyeRenderDesc[1].HmdToEyeOffset };

            double sensorSampleTime;    // sensorSampleTime is fed into the layer later
            ovr_GetEyePoses(session, frameIndex, ovrTrue, HmdToEyeOffset, EyeRenderPose, &sensorSampleTime);

            // Render Scene to Eye Buffers
            for (int eye = 0; eye < 2; ++eye)
            {
                DIRECTX.SetActiveContext(eye == 0 ? DrawContext_EyeRenderLeft : DrawContext_EyeRenderRight);

                DIRECTX.SetActiveEye(eye);

                CD3DX12_RESOURCE_BARRIER resBar = CD3DX12_RESOURCE_BARRIER::Transition(pEyeRenderTexture[eye]->GetD3DResource(),
                                                                                       D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE,
                                                                                       D3D12_RESOURCE_STATE_RENDER_TARGET);
                DIRECTX.CurrentFrameResources().CommandLists[DIRECTX.ActiveContext]->ResourceBarrier(1, &resBar);

                DIRECTX.SetAndClearRenderTarget(pEyeRenderTexture[eye]->GetRtv(), pEyeRenderTexture[eye]->GetDsv());
                DIRECTX.SetViewport((float)eyeRenderViewport[eye].Pos.x, (float)eyeRenderViewport[eye].Pos.y,
                                    (float)eyeRenderViewport[eye].Size.w, (float)eyeRenderViewport[eye].Size.h);
                                
                //Get the pose information in XM format
                XMVECTOR eyeQuat = XMVectorSet(EyeRenderPose[eye].Orientation.x, EyeRenderPose[eye].Orientation.y,
                                               EyeRenderPose[eye].Orientation.z, EyeRenderPose[eye].Orientation.w);
                XMVECTOR eyePos = XMVectorSet(EyeRenderPose[eye].Position.x, EyeRenderPose[eye].Position.y, EyeRenderPose[eye].Position.z, 0);

                // Get view and projection matrices for the Rift camera
                Camera finalCam(XMVectorAdd(mainCamPos, XMVector3Rotate(eyePos, mainCamRot)), XMQuaternionMultiply(eyeQuat, mainCamRot));
                XMMATRIX view = finalCam.GetViewMatrix();
                ovrMatrix4f p = ovrMatrix4f_Projection(eyeRenderDesc[eye].Fov, 0.2f, 1000.0f, ovrProjection_None);
                XMMATRIX proj = XMMatrixSet(p.M[0][0], p.M[1][0], p.M[2][0], p.M[3][0],
                                            p.M[0][1], p.M[1][1], p.M[2][1], p.M[3][1],
                                            p.M[0][2], p.M[1][2], p.M[2][2], p.M[3][2],
                                            p.M[0][3], p.M[1][3], p.M[2][3], p.M[3][3]);
                XMMATRIX prod = XMMatrixMultiply(view, proj);

                roomScene->Render(&prod, 1, 1, 1, 1, true);

                resBar = CD3DX12_RESOURCE_BARRIER::Transition(pEyeRenderTexture[eye]->GetD3DResource(),
                                                              D3D12_RESOURCE_STATE_RENDER_TARGET,
                                                              D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE);
                DIRECTX.CurrentFrameResources().CommandLists[DIRECTX.ActiveContext]->ResourceBarrier(1, &resBar);

                // Commit rendering to the swap chain
                pEyeRenderTexture[eye]->Commit();

                // kick off eye render command lists before ovr_SubmitFrame()
                DIRECTX.SubmitCommandList(DIRECTX.ActiveContext);
            }

            // Initialize our single full screen Fov layer.
            ovrLayerEyeFov ld = {};
            ld.Header.Type = ovrLayerType_EyeFov;
            ld.Header.Flags = 0;

            for (int eye = 0; eye < 2; ++eye)
            {
                ld.ColorTexture[eye] = pEyeRenderTexture[eye]->TextureChain;
                ld.Viewport[eye] = eyeRenderViewport[eye];
                ld.Fov[eye] = hmdDesc.DefaultEyeFov[eye];
                ld.RenderPose[eye] = EyeRenderPose[eye];
                ld.SensorSampleTime = sensorSampleTime;
            }

            ovrLayerHeader* layers = &ld.Header;
            result = ovr_SubmitFrame(session, frameIndex, nullptr, &layers, 1);
            // exit the rendering loop if submit returns an error, will retry on ovrError_DisplayLost
            if (!OVR_SUCCESS(result))
                goto Done;
            
            frameIndex++;
        }
        
        if (drawMirror)
        {
            DIRECTX.SetActiveContext(DrawContext_Final);

            DIRECTX.SetViewport(0.0f, 0.0f, (float)hmdDesc.Resolution.w / 2, (float)hmdDesc.Resolution.h / 2);

            // Render mirror
            ID3D12Resource* mirrorTexRes = nullptr;
            ovr_GetMirrorTextureBufferDX(session, mirrorTexture, IID_PPV_ARGS(&mirrorTexRes));

            //DIRECTX.SetAndClearRenderTarget(DIRECTX.CurrentFrameResources().SwapChainRtvHandle, nullptr, 1.0f, 0.5f, 0.0f, 1.0f);

            CD3DX12_RESOURCE_BARRIER preMirrorBlitBar[] =
            {
                CD3DX12_RESOURCE_BARRIER::Transition(DIRECTX.CurrentFrameResources().SwapChainBuffer, D3D12_RESOURCE_STATE_RENDER_TARGET, D3D12_RESOURCE_STATE_COPY_DEST),
                CD3DX12_RESOURCE_BARRIER::Transition(mirrorTexRes, D3D12_RESOURCE_STATE_RENDER_TARGET, D3D12_RESOURCE_STATE_COPY_SOURCE)
            };

            // Indicate that the back buffer will now be copied into
            DIRECTX.CurrentFrameResources().CommandLists[DIRECTX.ActiveContext]->ResourceBarrier(ARRAYSIZE(preMirrorBlitBar), preMirrorBlitBar);

            DIRECTX.CurrentFrameResources().CommandLists[DIRECTX.ActiveContext]->CopyResource(DIRECTX.CurrentFrameResources().SwapChainBuffer, mirrorTexRes);

            CD3DX12_RESOURCE_BARRIER resBar = CD3DX12_RESOURCE_BARRIER::Transition(mirrorTexRes,
                                                                                   D3D12_RESOURCE_STATE_COPY_SOURCE,
                                                                                   D3D12_RESOURCE_STATE_RENDER_TARGET);
            DIRECTX.CurrentFrameResources().CommandLists[DIRECTX.ActiveContext]->ResourceBarrier(1, &resBar);
        }

        DIRECTX.SubmitCommandListAndPresent(drawMirror);
    }

    // Release resources
Done:
    delete mainCam;
    delete roomScene;
    if (mirrorTexture)
        ovr_DestroyMirrorTexture(session, mirrorTexture);

    for (int eye = 0; eye < 2; ++eye)
    {
        delete pEyeRenderTexture[eye];
    }
    DIRECTX.ReleaseDevice();
    ovr_Destroy(session);

    // Retry on ovrError_DisplayLost
    return retryCreate || (result == ovrError_DisplayLost);
}
Ejemplo n.º 13
0
int OgreOculus::go(void)
{
	// Create Root object
	root = new Ogre::Root("plugin.cfg", "ogre.cfg");

	// OpenGL
    root->loadPlugin("RenderSystem_GL_d");
    root->setRenderSystem(root->getRenderSystemByName("OpenGL Rendering Subsystem"));

	// Initialize Root
	root->initialise(false);

	// Initialize Oculus
	ovrHmd hmd;
	ovrHmdDesc hmdDesc;
	ovrGraphicsLuid luid;
	ovr_Initialize(nullptr);
	if(ovr_Create(&hmd, &luid) != ovrSuccess)
		exit(-1);
	hmdDesc = ovr_GetHmdDesc(hmd);
	if(ovr_ConfigureTracking(hmd,
		ovrTrackingCap_Orientation |ovrTrackingCap_MagYawCorrection |ovrTrackingCap_Position,
		0) != ovrSuccess)
		exit(-2);

	// Turn off HUD
	ovr_SetInt(hmd, "PerfHudMode", ovrPerfHud_Off);

	// Create a window
	window = root->createRenderWindow("Ogre + Oculus = <3", hmdDesc.Resolution.w/2, hmdDesc.Resolution.h/2, false);

	// Create scene manager and cameras
	smgr = root->createSceneManager(Ogre::ST_GENERIC);

	// Load Ogre resource paths from config file
    Ogre::ConfigFile cf;
    cf.load("resources_d.cfg");

    // Go through all sections & settings in the file and add resources
    Ogre::ConfigFile::SectionIterator seci = cf.getSectionIterator();

    Ogre::String secName, typeName, archName;
    while (seci.hasMoreElements())
    {
        secName = seci.peekNextKey();
        Ogre::ConfigFile::SettingsMultiMap *settings = seci.getNext();
        Ogre::ConfigFile::SettingsMultiMap::iterator i;
        for (i = settings->begin(); i != settings->end(); ++i)
        {
            typeName = i->first;
            archName = i->second;

            Ogre::ResourceGroupManager::getSingleton().addResourceLocation(
                archName, typeName, secName);
        }
    }

	// Set resources
	Ogre::TextureManager::getSingleton().setDefaultNumMipmaps(5);
	Ogre::ResourceGroupManager::getSingleton().initialiseAllResourceGroups();

	// Create the model itself via OgreModel.cpp
	createOgreModel(smgr);

	// Create camera
	createCamera();

	// Set viewport and background color
	Ogre::Viewport* vp = window->addViewport(mCamera);
	vp->setBackgroundColour(Ogre::ColourValue(34, 89, 0)); // Yellow

	// Set aspect ratio
	mCamera->setAspectRatio(
    Ogre::Real(vp->getActualWidth()) /
    Ogre::Real(vp->getActualHeight()));

	// Initialize glew
	if(glewInit() != GLEW_OK)
		exit(-3);

	// Get texture sizes
	ovrSizei texSizeL, texSizeR;
	texSizeL = ovr_GetFovTextureSize(hmd, ovrEye_Left, hmdDesc.DefaultEyeFov[left], 1);
	texSizeR = ovr_GetFovTextureSize(hmd, ovrEye_Right, hmdDesc.DefaultEyeFov[right], 1);

	// Calculate render buffer size
	ovrSizei bufferSize;
	bufferSize.w = texSizeL.w + texSizeR.w;
	bufferSize.h = max(texSizeL.h, texSizeR.h);

	// Create render texture set
	ovrSwapTextureSet* textureSet;
	if(ovr_CreateSwapTextureSetGL(hmd, GL_RGB, bufferSize.w, bufferSize.h, &textureSet) != ovrSuccess)
		exit(-4);

	// Create Ogre render texture
	Ogre::GLTextureManager* textureManager = static_cast<Ogre::GLTextureManager*>(Ogre::GLTextureManager::getSingletonPtr());
	Ogre::TexturePtr rtt_texture(textureManager->createManual("RttTex", Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
		Ogre::TEX_TYPE_2D, bufferSize.w, bufferSize.h, 0, Ogre::PF_R8G8B8, Ogre::TU_RENDERTARGET));
	Ogre::RenderTexture* rttEyes = rtt_texture->getBuffer(0, 0)->getRenderTarget();
	Ogre::GLTexture* gltex = static_cast<Ogre::GLTexture*>(Ogre::GLTextureManager::getSingleton().getByName("RttTex").getPointer());
	GLuint renderTextureID = gltex->getGLID();

	// Put camera viewport on the ogre render texture
	Ogre::Viewport* vpts[nbEyes];
	vpts[left]=rttEyes->addViewport(cams[left], 0, 0, 0, 0.5f);
	vpts[right]=rttEyes->addViewport(cams[right], 1, 0.5f, 0, 0.5f);
	vpts[left]->setBackgroundColour(Ogre::ColourValue(34, 89, 0)); // Black background
	vpts[right]->setBackgroundColour(Ogre::ColourValue(34, 89, 0));

	ovrTexture* mirrorTexture;
	if(ovr_CreateMirrorTextureGL(hmd, GL_RGB, hmdDesc.Resolution.w, hmdDesc.Resolution.h, &mirrorTexture) != ovrSuccess)
		exit(-5);
	Ogre::TexturePtr mirror_texture(textureManager->createManual("MirrorTex", Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
		Ogre::TEX_TYPE_2D, hmdDesc.Resolution.w, hmdDesc.Resolution.h, 0, Ogre::PF_R8G8B8, Ogre::TU_RENDERTARGET));

	// Get GLIDs
	GLuint ogreMirrorTextureID = static_cast<Ogre::GLTexture*>(Ogre::GLTextureManager::getSingleton().getByName("MirrorTex").getPointer())->getGLID();
	GLuint oculusMirrorTextureID = ((ovrGLTexture*)mirrorTexture)->OGL.TexId;

	// Create EyeRenderDesc
	ovrEyeRenderDesc EyeRenderDesc[nbEyes];
	EyeRenderDesc[left] = ovr_GetRenderDesc(hmd, ovrEye_Left, hmdDesc.DefaultEyeFov[left]);
	EyeRenderDesc[right] = ovr_GetRenderDesc(hmd, ovrEye_Right, hmdDesc.DefaultEyeFov[right]);

	// Get offsets
	ovrVector3f offset[nbEyes];
	offset[left]=EyeRenderDesc[left].HmdToEyeViewOffset;
	offset[right]=EyeRenderDesc[right].HmdToEyeViewOffset;

	// Compositor layer
	ovrLayerEyeFov layer;
	layer.Header.Type = ovrLayerType_EyeFov;
	layer.Header.Flags = 0;
	layer.ColorTexture[left] = textureSet;
	layer.ColorTexture[right] = textureSet;
	layer.Fov[left] = EyeRenderDesc[left].Fov;
	layer.Fov[right] = EyeRenderDesc[right].Fov;
	layer.Viewport[left] = OVR::Recti(0, 0, bufferSize.w/2, bufferSize.h);
	layer.Viewport[right] = OVR::Recti(bufferSize.w/2, 0, bufferSize.w/2, bufferSize.h);

	// Get projection matrices
	for(size_t eyeIndex(0); eyeIndex < ovrEye_Count; eyeIndex++)
	{
		// Get the projection matrix
		OVR::Matrix4f proj = ovrMatrix4f_Projection(EyeRenderDesc[eyeIndex].Fov,
			static_cast<float>(0.01f),
			4000,
			true);

		// Convert it to Ogre matrix
		Ogre::Matrix4 OgreProj;
		for(size_t x(0); x < 4; x++)
			for(size_t y(0); y < 4; y++)
				OgreProj[x][y] = proj.M[x][y];

		// Set the matrix
		cams[eyeIndex]->setCustomProjectionMatrix(true, OgreProj);
	}

	// Variables for render loop
	bool render(true);
	ovrFrameTiming hmdFrameTiming;
	ovrTrackingState ts;
	OVR::Posef pose;
	ovrLayerHeader* layers;

	// Create event listener for handling user input
	createEventListener();

	//Run physics loop in a new thread
	std::map<Ogre::Entity*, Ogre::Vector3> positionRequests;
	std::map<Ogre::Entity*, std::string> animationRequests;
	std::map<Ogre::Entity*, std::vector<int>> rotationRequests;
	std::map<std::string, std::string> message;
	std::thread physicsThread(physicsLoop, smgr, &message, &positionRequests, &animationRequests, &rotationRequests);

	// Render loop
	while(render)
	{
		// Suspend physics loop and perform requested movement/rotations/animations
		if(positionRequests.size() > 0 || animationRequests.size() > 0 || rotationRequests.size() > 0){
			message.insert(std::pair<std::string, std::string>("", ""));
		
			for(auto const &request : positionRequests) {
				Ogre::Vector3 pos = request.second;
				Ogre::SceneNode* sceneNode = request.first->getParentSceneNode();
				sceneNode->setPosition(pos);
			}

			for(auto const &request : animationRequests) {
				request.first->getAnimationState(request.second)->addTime(0.1);
			}

			for(auto const &request : rotationRequests) {
				Ogre::SceneNode* sceneNode = request.first->getParentSceneNode();
				sceneNode->roll(Ogre::Degree(request.second[0]));
				sceneNode->pitch(Ogre::Degree(request.second[1]));
				sceneNode->yaw(Ogre::Degree(request.second[2]));
			}

			positionRequests.clear();
			animationRequests.clear();
			rotationRequests.clear();

			// Resume physics loop
			message.clear();
		}

		// Update Ogre window
		Ogre::WindowEventUtilities::messagePump();

		// Advance textureset index
		textureSet->CurrentIndex = (textureSet->CurrentIndex + 1) % textureSet->TextureCount;
		
		// Capture user input
		mKeyboard->capture();
		mMouse->capture();

		// Movement calculations
		mPlayerNode->translate(mDirection, Ogre::Node::TS_LOCAL);
		hmdFrameTiming = ovr_GetFrameTiming(hmd, 0);
		ts = ovr_GetTrackingState(hmd, hmdFrameTiming.DisplayMidpointSeconds);
		pose = ts.HeadPose.ThePose;
		ovr_CalcEyePoses(pose, offset, layer.RenderPose);
		oculusOrient = pose.Rotation;
		oculusPos = pose.Translation;
		mHeadNode->setOrientation(Ogre::Quaternion(oculusOrient.w, oculusOrient.x, oculusOrient.y, oculusOrient.z) * initialOculusOrientation.Inverse());
		
		// Apply head tracking
		mHeadNode->setPosition(headPositionTrackingSensitivity * Ogre::Vector3(oculusPos.x, oculusPos.y,oculusPos.z));
		
		// Update Ogre viewports
		root->_fireFrameRenderingQueued();
		vpts[left]->update();
		vpts[right]->update();

		// Copy the rendered image to the Oculus Swap Texture
		glCopyImageSubData(renderTextureID, GL_TEXTURE_2D, 0, 0, 0, 0,
		((ovrGLTexture*)(&textureSet->Textures[textureSet->CurrentIndex]))->OGL.TexId, GL_TEXTURE_2D, 0, 0, 0, 0,
		bufferSize.w,bufferSize.h, 1);
		layers = &layer.Header;

		// Submit new frame to the Oculus and update window
		ovr_SubmitFrame(hmd, 0, nullptr, &layers, 1);
		window->update();

		// Exit loop when window is closed
		if(window->isClosed()) render = false;
	}

	// Shud down Oculus
	ovr_Destroy(hmd);
	ovr_Shutdown();

	// Delete Ogre root and return
	delete root;
	return EXIT_SUCCESS;
}
Ejemplo n.º 14
0
// return true to retry later (e.g. after display lost)
static bool MainLoop(bool retryCreate)
{
    // Initialize these to nullptr here to handle device lost failures cleanly
    ovrMirrorTexture mirrorTexture = nullptr;
    OculusTexture  * pEyeRenderTexture = nullptr;
    DepthBuffer    * pEyeDepthBuffer = nullptr;
    Scene          * roomScene = nullptr; 
    Camera         * mainCam = nullptr;
    ovrMirrorTextureDesc desc = {};

    bool isVisible          = true;
    long long frameIndex    = 0;
    bool useInstancing      = false;
    const int repeatDrawing = 1;

    ovrSession session;
    ovrGraphicsLuid luid;
    ovrResult result = ovr_Create(&session, &luid);
    if (!OVR_SUCCESS(result))
        return retryCreate;

    ovrHmdDesc hmdDesc = ovr_GetHmdDesc(session);

    // Setup Device and Graphics
    // Note: the mirror window can be any size, for this sample we use 1/2 the HMD resolution
    if (!DIRECTX.InitDevice(hmdDesc.Resolution.w / 2, hmdDesc.Resolution.h / 2, reinterpret_cast<LUID*>(&luid)))
        goto Done;

    ovrRecti eyeRenderViewport[2];

    // Make a single eye texture
    {
        ovrSizei eyeTexSizeL = ovr_GetFovTextureSize(session, ovrEye_Left, hmdDesc.DefaultEyeFov[0], 1.0f);
        ovrSizei eyeTexSizeR = ovr_GetFovTextureSize(session, ovrEye_Right, hmdDesc.DefaultEyeFov[1], 1.0f);
        ovrSizei textureSize;
        textureSize.w = eyeTexSizeL.w + eyeTexSizeR.w;
        textureSize.h = max(eyeTexSizeL.h, eyeTexSizeR.h);

        pEyeRenderTexture = new OculusTexture();
        if (!pEyeRenderTexture->Init(session, textureSize.w, textureSize.h))
        {
            if (retryCreate) goto Done;
            VALIDATE(OVR_SUCCESS(result), "Failed to create eye texture.");
        }

        pEyeDepthBuffer = new DepthBuffer(DIRECTX.Device, textureSize.w, textureSize.h);

        // set viewports
        eyeRenderViewport[0].Pos.x = 0;
        eyeRenderViewport[0].Pos.y = 0;
        eyeRenderViewport[0].Size = eyeTexSizeL;

        eyeRenderViewport[1].Pos.x = eyeTexSizeL.w;
        eyeRenderViewport[1].Pos.y = 0;
        eyeRenderViewport[1].Size = eyeTexSizeR;
    }

    if (!pEyeRenderTexture->TextureChain)
    {
        if (retryCreate) goto Done;
        VALIDATE(false, "Failed to create texture.");
    }

    // Create a mirror to see on the monitor.
    desc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB;
    desc.Width = DIRECTX.WinSizeW;
    desc.Height = DIRECTX.WinSizeH;
    result = ovr_CreateMirrorTextureDX(session, DIRECTX.Device, &desc, &mirrorTexture);
    if (!OVR_SUCCESS(result))
    {
        if (retryCreate) goto Done;
        VALIDATE(false, "Failed to create mirror texture.");
    }

    // Create the room model
    roomScene = new Scene(false);

    // Create camera
    mainCam = new Camera(&XMVectorSet(0.0f, 1.6f, 5.0f, 0), &XMQuaternionIdentity());

    // Setup VR components, filling out description
    ovrEyeRenderDesc eyeRenderDesc[2];
    eyeRenderDesc[0] = ovr_GetRenderDesc(session, ovrEye_Left, hmdDesc.DefaultEyeFov[0]);
    eyeRenderDesc[1] = ovr_GetRenderDesc(session, ovrEye_Right, hmdDesc.DefaultEyeFov[1]);

    // Main loop
    while (DIRECTX.HandleMessages())
    {
        XMVECTOR forward = XMVector3Rotate(XMVectorSet(0, 0, -0.05f, 0), mainCam->Rot);
        XMVECTOR right   = XMVector3Rotate(XMVectorSet(0.05f, 0, 0, 0),  mainCam->Rot);
        XMVECTOR up      = XMVector3Rotate(XMVectorSet(0, 0.05f, 0, 0), mainCam->Rot);
        if (DIRECTX.Key['W'] || DIRECTX.Key[VK_UP])	  mainCam->Pos = XMVectorAdd(mainCam->Pos, forward);
        if (DIRECTX.Key['S'] || DIRECTX.Key[VK_DOWN]) mainCam->Pos = XMVectorSubtract(mainCam->Pos, forward);
        if (DIRECTX.Key['D'])                         mainCam->Pos = XMVectorAdd(mainCam->Pos, right);
        if (DIRECTX.Key['A'])                         mainCam->Pos = XMVectorSubtract(mainCam->Pos, right);
        if (DIRECTX.Key['Q'])                         mainCam->Pos = XMVectorAdd(mainCam->Pos, up);
        if (DIRECTX.Key['E'])                         mainCam->Pos = XMVectorSubtract(mainCam->Pos, up);

        static float Yaw = 0;
        if (DIRECTX.Key[VK_LEFT])  mainCam->Rot = XMQuaternionRotationRollPitchYaw(0, Yaw += 0.02f, 0);
        if (DIRECTX.Key[VK_RIGHT]) mainCam->Rot = XMQuaternionRotationRollPitchYaw(0, Yaw -= 0.02f, 0);

        if (DIRECTX.Key['P'])
            ovr_SetInt(session, OVR_PERF_HUD_MODE, int(ovrPerfHud_AppRenderTiming));
        else
            ovr_SetInt(session, OVR_PERF_HUD_MODE, int(ovrPerfHud_Off));

        useInstancing = DIRECTX.Key['I'];

        // Animate the cube
        static float cubeClock = 0;
        roomScene->Models[0]->Pos = XMFLOAT3(9 * sin(cubeClock), 3, 9 * cos(cubeClock += 0.015f));

        // Get both eye poses simultaneously, with IPD offset already included. 
        ovrPosef         EyeRenderPose[2];
        ovrVector3f      HmdToEyeOffset[2] = { eyeRenderDesc[0].HmdToEyeOffset,
                                               eyeRenderDesc[1].HmdToEyeOffset };

        double sensorSampleTime;    // sensorSampleTime is fed into the layer later
        ovr_GetEyePoses(session, frameIndex, ovrTrue, HmdToEyeOffset, EyeRenderPose, &sensorSampleTime);

        // Render scene to eye texture
        if (isVisible)
        {
            DIRECTX.SetAndClearRenderTarget(pEyeRenderTexture->GetRTV(), pEyeDepthBuffer);

            // calculate eye transforms
            XMMATRIX viewProjMatrix[2];
            for (int eye = 0; eye < 2; ++eye)
            {
                //Get the pose information in XM format
                XMVECTOR eyeQuat = XMLoadFloat4((XMFLOAT4 *)&EyeRenderPose[eye].Orientation.x);
                XMVECTOR eyePos = XMVectorSet(EyeRenderPose[eye].Position.x, EyeRenderPose[eye].Position.y, EyeRenderPose[eye].Position.z, 0);

                // Get view and projection matrices for the Rift camera
                XMVECTOR CombinedPos = XMVectorAdd(mainCam->Pos, XMVector3Rotate(eyePos, mainCam->Rot));
                Camera finalCam(&CombinedPos, &(XMQuaternionMultiply(eyeQuat, mainCam->Rot)));
                XMMATRIX view = finalCam.GetViewMatrix();
                ovrMatrix4f p = ovrMatrix4f_Projection(eyeRenderDesc[eye].Fov, 0.1f, 100.0f, ovrProjection_None);
                XMMATRIX proj = XMMatrixSet(p.M[0][0], p.M[1][0], p.M[2][0], p.M[3][0],
                    p.M[0][1], p.M[1][1], p.M[2][1], p.M[3][1],
                    p.M[0][2], p.M[1][2], p.M[2][2], p.M[3][2],
                    p.M[0][3], p.M[1][3], p.M[2][3], p.M[3][3]);

                if (useInstancing)
                {
                    // scale and offset projection matrix to shift image to correct part of texture for each eye
                    XMMATRIX scale = XMMatrixScaling(0.5f, 1.0f, 1.0f);
                    XMMATRIX translate = XMMatrixTranslation((eye==0) ? -0.5f : 0.5f, 0.0f, 0.0f);
                    proj = XMMatrixMultiply(proj, scale);
                    proj = XMMatrixMultiply(proj, translate);
                }

                viewProjMatrix[eye] = XMMatrixMultiply(view, proj);
            }

            if (useInstancing)
            {
                // use instancing for stereo
                DIRECTX.SetViewport(0.0f, 0.0f, (float)eyeRenderViewport[0].Size.w + eyeRenderViewport[1].Size.w, (float)eyeRenderViewport[0].Size.h);

                // render scene
                for (int i = 0; i < repeatDrawing; i++)
                    roomScene->RenderInstanced(&viewProjMatrix[0], 1, 1, 1, 1, true);
            }
            else
            {
                // non-instanced path
                for (int eye = 0; eye < 2; ++eye)
                {
                    // set viewport
                    DIRECTX.SetViewport((float)eyeRenderViewport[eye].Pos.x, (float)eyeRenderViewport[eye].Pos.y,
                        (float)eyeRenderViewport[eye].Size.w, (float)eyeRenderViewport[eye].Size.h);

                    // render scene
                    for (int i = 0; i < repeatDrawing; i++)
                        roomScene->Render(&viewProjMatrix[eye], 1, 1, 1, 1, true);
                }
            }

            // Commit rendering to the swap chain
            pEyeRenderTexture->Commit();
        }

        // Initialize our single full screen Fov layer.
        ovrLayerEyeFov ld = {};
        ld.Header.Type = ovrLayerType_EyeFov;
        ld.Header.Flags = 0;
        ld.SensorSampleTime = sensorSampleTime;

        for (int eye = 0; eye < 2; ++eye)
        {
            ld.ColorTexture[eye] = pEyeRenderTexture->TextureChain;
            ld.Viewport[eye] = eyeRenderViewport[eye];
            ld.Fov[eye] = hmdDesc.DefaultEyeFov[eye];
            ld.RenderPose[eye] = EyeRenderPose[eye];
        }

        ovrLayerHeader* layers = &ld.Header;
        result = ovr_SubmitFrame(session, frameIndex, nullptr, &layers, 1);
        // exit the rendering loop if submit returns an error, will retry on ovrError_DisplayLost
        if (!OVR_SUCCESS(result))
            goto Done;

        isVisible = (result == ovrSuccess);

        // Render mirror
        ID3D11Texture2D* tex = nullptr;
        ovr_GetMirrorTextureBufferDX(session, mirrorTexture, IID_PPV_ARGS(&tex));
        DIRECTX.Context->CopyResource(DIRECTX.BackBuffer, tex);
        tex->Release();
        DIRECTX.SwapChain->Present(0, 0);

        frameIndex++;
    }

    // Release resources
Done:
    delete mainCam;
    delete roomScene;
    if (mirrorTexture) ovr_DestroyMirrorTexture(session, mirrorTexture);
    delete pEyeRenderTexture;
    delete pEyeDepthBuffer;

    DIRECTX.ReleaseDevice();
    ovr_Destroy(session);

    // Retry on ovrError_DisplayLost
    return retryCreate || OVR_SUCCESS(result) || (result == ovrError_DisplayLost);
}
Ejemplo n.º 15
0
int main(int argc, char **argv)
{
	// Initialize SDL2's context
	SDL_Init(SDL_INIT_VIDEO);
	// Initialize Oculus' context
	ovrResult result = ovr_Initialize(nullptr);
	if (OVR_FAILURE(result))
	{
		std::cout << "ERROR: Failed to initialize libOVR" << std::endl;
		SDL_Quit();
		return -1;
	}
	
	ovrSession  hmd;
	ovrGraphicsLuid luid;
	// Connect to the Oculus headset
	result = ovr_Create(&hmd, &luid);
	if (OVR_FAILURE(result))
	{
		std::cout << "ERROR: Oculus Rift not detected" << std::endl;
		ovr_Shutdown();
		SDL_Quit();
		return -1;
	}
	
	int x = SDL_WINDOWPOS_CENTERED, y = SDL_WINDOWPOS_CENTERED;
	int winWidth = 1280;
	int winHeight = 720;
	Uint32 flags = SDL_WINDOW_OPENGL | SDL_WINDOW_SHOWN;
	// Create SDL2 Window
	SDL_Window* window = SDL_CreateWindow("OVR ZED App", x, y, winWidth, winHeight, flags);
	// Create OpenGL context
	SDL_GLContext glContext = SDL_GL_CreateContext(window);
	// Initialize GLEW
	glewInit();
	// Turn off vsync to let the compositor do its magic
	SDL_GL_SetSwapInterval(0);

	// Initialize the ZED Camera
	sl::zed::Camera* zed = 0;
	zed = new sl::zed::Camera(sl::zed::HD720);
	sl::zed::ERRCODE zederr = zed->init(sl::zed::MODE::PERFORMANCE, 0);
	int zedWidth = zed->getImageSize().width;
	int zedHeight = zed->getImageSize().height;
	if (zederr != sl::zed::SUCCESS)
	{
		std::cout << "ERROR: " << sl::zed::errcode2str(zederr) << std::endl;
		ovr_Destroy(hmd);
		ovr_Shutdown();
		SDL_GL_DeleteContext(glContext);
		SDL_DestroyWindow(window);
		SDL_Quit();
		delete zed;
		return -1;
	}

	GLuint zedTextureID_L, zedTextureID_R;
	// Generate OpenGL texture for left images of the ZED camera
	glGenTextures(1, &zedTextureID_L);
	glBindTexture(GL_TEXTURE_2D, zedTextureID_L);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, zedWidth, zedHeight, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	// Generate OpenGL texture for right images of the ZED camera
	glGenTextures(1, &zedTextureID_R);
	glBindTexture(GL_TEXTURE_2D, zedTextureID_R);
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, zedWidth, zedHeight, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	glBindTexture(GL_TEXTURE_2D, 0);

#if OPENGL_GPU_INTEROP
	cudaGraphicsResource* cimg_L;
	cudaGraphicsResource* cimg_R;
	cudaError_t errL, errR;
	errL = cudaGraphicsGLRegisterImage(&cimg_L, zedTextureID_L, GL_TEXTURE_2D, cudaGraphicsMapFlagsNone);
	errR = cudaGraphicsGLRegisterImage(&cimg_R, zedTextureID_R, GL_TEXTURE_2D, cudaGraphicsMapFlagsNone);
	if (errL != cudaSuccess || errR != cudaSuccess)
	{
		std::cout << "ERROR: cannot create CUDA texture : " << errL << "|" << errR << std::endl;
	}
#endif

	ovrHmdDesc hmdDesc = ovr_GetHmdDesc(hmd);
	// Get the texture sizes of Oculus eyes
	ovrSizei textureSize0 = ovr_GetFovTextureSize(hmd, ovrEye_Left, hmdDesc.DefaultEyeFov[0], 1.0f);
	ovrSizei textureSize1 = ovr_GetFovTextureSize(hmd, ovrEye_Right, hmdDesc.DefaultEyeFov[1], 1.0f);
	// Compute the final size of the render buffer
	ovrSizei bufferSize;
	bufferSize.w = textureSize0.w + textureSize1.w;
	bufferSize.h = std::max(textureSize0.h, textureSize1.h);
	// Initialize OpenGL swap textures to render
	ovrSwapTextureSet* ptextureSet = 0;
	
	if (OVR_SUCCESS(ovr_CreateSwapTextureSetGL(hmd, GL_SRGB8_ALPHA8, bufferSize.w, bufferSize.h, &ptextureSet)))
	{
		for (int i = 0; i < ptextureSet->TextureCount; ++i)
		{
			ovrGLTexture* tex = (ovrGLTexture*)&ptextureSet->Textures[i];
			glBindTexture(GL_TEXTURE_2D, tex->OGL.TexId);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
		}
	}
	else
	{
		std::cout << "ERROR: failed creating swap texture" << std::endl;
		ovr_Destroy(hmd);
		ovr_Shutdown();
		SDL_GL_DeleteContext(glContext);
		SDL_DestroyWindow(window);
		SDL_Quit();
		delete zed;
		return -1;
	}
	// Generate frame buffer to render
	GLuint fboID;
	glGenFramebuffers(1, &fboID);
	// Generate depth buffer of the frame buffer
	GLuint depthBuffID;
	glGenTextures(1, &depthBuffID);
	glBindTexture(GL_TEXTURE_2D, depthBuffID);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
	GLenum internalFormat = GL_DEPTH_COMPONENT24;
	GLenum type = GL_UNSIGNED_INT;
	glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, bufferSize.w, bufferSize.h, 0, GL_DEPTH_COMPONENT, type, NULL);

	// Create a mirror texture to display the render result in the SDL2 window
	ovrGLTexture* mirrorTexture = nullptr;
	result = ovr_CreateMirrorTextureGL(hmd, GL_SRGB8_ALPHA8, winWidth, winHeight, reinterpret_cast<ovrTexture**>(&mirrorTexture));
	if (!OVR_SUCCESS(result))
	{
		std::cout << "ERROR: Failed to create mirror texture" << std::endl;
	}
	GLuint mirrorFBOID;
	glGenFramebuffers(1, &mirrorFBOID);
	glBindFramebuffer(GL_READ_FRAMEBUFFER, mirrorFBOID);
	glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, mirrorTexture->OGL.TexId, 0);
	glFramebufferRenderbuffer(GL_READ_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, 0);
	glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);

	// Initialize a default Pose
	ovrPosef eyeRenderPose;
	// Set Identity quaternion
	eyeRenderPose.Orientation.x = 0;
	eyeRenderPose.Orientation.y = 0;
	eyeRenderPose.Orientation.z = 0;
	eyeRenderPose.Orientation.w = 1;
	// Set World's origin position
	eyeRenderPose.Position.x = 0.f;
	eyeRenderPose.Position.y = 0.f;
	eyeRenderPose.Position.z = 0;

	ovrLayerEyeFov ld;
	ld.Header.Type = ovrLayerType_EyeFov;
	// Tell to the Oculus compositor that our texture origin is at the bottom left
	ld.Header.Flags = ovrLayerFlag_TextureOriginAtBottomLeft | ovrLayerFlag_HeadLocked;   // Because OpenGL | Disable head tracking
	// Set the Oculus layer eye field of view for each view
	for (int eye = 0; eye < 2; ++eye)
	{
		// Set the color texture as the current swap texture
		ld.ColorTexture[eye] = ptextureSet;
		// Set the viewport as the right or left vertical half part of the color texture
		ld.Viewport[eye] = OVR::Recti(eye == ovrEye_Left ? 0 : bufferSize.w / 2, 0, bufferSize.w / 2, bufferSize.h);
		// Set the field of view
		ld.Fov[eye] = hmdDesc.DefaultEyeFov[eye];
		// Set the pose matrix
		ld.RenderPose[eye] = eyeRenderPose;
	}
	double sensorSampleTime = ovr_GetTimeInSeconds();
	ld.SensorSampleTime = sensorSampleTime;

	// Get the render description of the left and right "eyes" of the Oculus headset
	ovrEyeRenderDesc eyeRenderDesc[2];
	eyeRenderDesc[0] = ovr_GetRenderDesc(hmd, ovrEye_Left, hmdDesc.DefaultEyeFov[0]);
	eyeRenderDesc[1] = ovr_GetRenderDesc(hmd, ovrEye_Right, hmdDesc.DefaultEyeFov[1]);
	// Get the Oculus view scale description
	ovrVector3f viewOffset[2] = { eyeRenderDesc[0].HmdToEyeViewOffset, eyeRenderDesc[1].HmdToEyeViewOffset };
	ovrViewScaleDesc viewScaleDesc;
	viewScaleDesc.HmdSpaceToWorldScaleInMeters = 1.0f;
	viewScaleDesc.HmdToEyeViewOffset[0] = viewOffset[0];
	viewScaleDesc.HmdToEyeViewOffset[1] = viewOffset[1];

	// Create and compile the shader's sources
	Shader shader(OVR_ZED_VS, OVR_ZED_FS);

	// Compute the ZED image field of view with the ZED parameters
	float zedFovH = atanf(zed->getImageSize().width / (zed->getParameters()->LeftCam.fx *2.f)) * 2.f;
	// Compute the Oculus' field of view with its parameters
	float ovrFovH = (atanf(hmdDesc.DefaultEyeFov[0].LeftTan) + atanf(hmdDesc.DefaultEyeFov[0].RightTan));
	// Compute the useful part of the ZED image
	unsigned int usefulWidth = zed->getImageSize().width * ovrFovH / zedFovH;
	// Compute the size of the final image displayed in the headset with the ZED image's aspect-ratio kept
	unsigned int widthFinal = bufferSize.w / 2;
	unsigned int heightFinal = zed->getImageSize().height * widthFinal / usefulWidth;
	// Convert this size to OpenGL viewport's frame's coordinates
	float heightGL = (heightFinal) / (float)(bufferSize.h);
	float widthGL = ((zed->getImageSize().width * (heightFinal / (float)zed->getImageSize().height)) / (float)widthFinal);

	// Create a rectangle with the coordonates computed and push it in GPU memory.
	float rectVertices[12] = { -widthGL, -heightGL, 0, widthGL, -heightGL, 0, widthGL, heightGL, 0, -widthGL, heightGL, 0 };
	GLuint rectVBO[3];
	glGenBuffers(1, &rectVBO[0]);
	glBindBuffer(GL_ARRAY_BUFFER, rectVBO[0]);
	glBufferData(GL_ARRAY_BUFFER, sizeof(rectVertices), rectVertices, GL_STATIC_DRAW);

	float rectTexCoord[8] = { 0, 1, 1, 1, 1, 0, 0, 0 };
	glGenBuffers(1, &rectVBO[1]);
	glBindBuffer(GL_ARRAY_BUFFER, rectVBO[1]);
	glBufferData(GL_ARRAY_BUFFER, sizeof(rectTexCoord), rectTexCoord, GL_STATIC_DRAW);

	unsigned int rectIndices[6] = { 0, 1, 2, 0, 2, 3 };
	glGenBuffers(1, &rectVBO[2]);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, rectVBO[2]);
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(rectIndices), rectIndices, GL_STATIC_DRAW);

	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
	glBindBuffer(GL_ARRAY_BUFFER, 0);
	
	// Initialize hit value
	float hit = 0.02f;
	// Initialize a boolean that will be used to stop the application’s loop and another one to pause/unpause rendering
	bool end = false;
	bool refresh = true;
	// SDL variable that will be used to store input events
	SDL_Event events;
	// Initialize time variables. They will be used to limit the number of frames rendered per second.
	// Frame counter
	unsigned int riftc = 0, zedc = 1;
	// Chronometer
	unsigned int rifttime = 0, zedtime = 0, zedFPS = 0;
	int time1 = 0, timePerFrame = 0;
	int frameRate = (int)(1000 / MAX_FPS);

	// Enable the shader
	glUseProgram(shader.getProgramId());
	// Bind the Vertex Buffer Objects of the rectangle that displays ZED images
	// vertices
	glEnableVertexAttribArray(Shader::ATTRIB_VERTICES_POS);
	glBindBuffer(GL_ARRAY_BUFFER, rectVBO[0]);
	glVertexAttribPointer(Shader::ATTRIB_VERTICES_POS, 3, GL_FLOAT, GL_FALSE, 0, 0);
	// indices
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, rectVBO[2]);
	// texture coordinates
	glEnableVertexAttribArray(Shader::ATTRIB_TEXTURE2D_POS);
	glBindBuffer(GL_ARRAY_BUFFER, rectVBO[1]);
	glVertexAttribPointer(Shader::ATTRIB_TEXTURE2D_POS, 2, GL_FLOAT, GL_FALSE, 0, 0);

	// Main loop
	while (!end)
	{
		// Compute the time used to render the previous frame
		timePerFrame = SDL_GetTicks() - time1;
		// If the previous frame has been rendered too fast
		if (timePerFrame < frameRate)
		{
			// Pause the loop to have a max FPS equal to MAX_FPS
			SDL_Delay(frameRate - timePerFrame);
			timePerFrame = frameRate;
		}
		// Increment the ZED chronometer
		zedtime += timePerFrame;
		// If ZED chronometer reached 1 second
		if (zedtime > 1000)
		{
			zedFPS = zedc;
			zedc = 0;
			zedtime = 0;
		}
		// Increment the Rift chronometer and the Rift frame counter
		rifttime += timePerFrame;
		riftc++;
		// If Rift chronometer reached 200 milliseconds
		if (rifttime > 200)
		{
			// Display FPS
			std::cout << "\rRIFT FPS: " << 1000 / (rifttime / riftc) << " | ZED FPS: " << zedFPS;
			// Reset Rift chronometer
			rifttime = 0;
			// Reset Rift frame counter
			riftc = 0;			
		}
		// Start frame chronometer
		time1 = SDL_GetTicks();
		
		// While there is an event catched and not tested
		while (SDL_PollEvent(&events))
		{
			// If a key is released
			if (events.type == SDL_KEYUP)
			{
				// If Q quit the application
				if (events.key.keysym.scancode == SDL_SCANCODE_Q)
					end = true;
				// If R reset the hit value
				else if (events.key.keysym.scancode == SDL_SCANCODE_R)
					hit = 0.0f;
				// If C pause/unpause rendering
				else if (events.key.keysym.scancode == SDL_SCANCODE_C)
					refresh = !refresh;
			}
			// If the mouse wheel is used
			if (events.type == SDL_MOUSEWHEEL)
			{
				// Increase or decrease hit value
				float s;
				events.wheel.y > 0 ? s = 1.0f : s = -1.0f;
				hit += 0.005f * s;
			}
		}

		// If rendering is unpaused and 
		// successful grab ZED image
		if (!zed->grab(sl::zed::SENSING_MODE::RAW, false, false))
		{
			// Update the ZED frame counter
			zedc++;
			if (refresh)
			{
#if OPENGL_GPU_INTEROP
				sl::zed::Mat m = zed->retrieveImage_gpu(sl::zed::SIDE::LEFT);
				cudaArray_t arrIm;
				cudaGraphicsMapResources(1, &cimg_L, 0);
				cudaGraphicsSubResourceGetMappedArray(&arrIm, cimg_L, 0, 0);
				cudaMemcpy2DToArray(arrIm, 0, 0, m.data, m.step, zedWidth * 4, zedHeight, cudaMemcpyDeviceToDevice);
				cudaGraphicsUnmapResources(1, &cimg_L, 0);

				m = zed->retrieveImage_gpu(sl::zed::SIDE::RIGHT);
				cudaGraphicsMapResources(1, &cimg_R, 0);
				cudaGraphicsSubResourceGetMappedArray(&arrIm, cimg_R, 0, 0);
				cudaMemcpy2DToArray(arrIm, 0, 0, m.data, m.step, zedWidth * 4, zedHeight, cudaMemcpyDeviceToDevice); // *4 = 4 channels * 1 bytes (uint)
				cudaGraphicsUnmapResources(1, &cimg_R, 0);
#endif
				// Increment the CurrentIndex to point to the next texture within the output swap texture set.
				// CurrentIndex must be advanced round-robin fashion every time we draw a new frame
				ptextureSet->CurrentIndex = (ptextureSet->CurrentIndex + 1) % ptextureSet->TextureCount;
				// Get the current swap texture pointer
				auto tex = reinterpret_cast<ovrGLTexture*>(&ptextureSet->Textures[ptextureSet->CurrentIndex]);
				// Bind the frame buffer
				glBindFramebuffer(GL_FRAMEBUFFER, fboID);
				// Set its color layer 0 as the current swap texture
				glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tex->OGL.TexId, 0);
				// Set its depth layer as our depth buffer
				glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depthBuffID, 0);
				// Clear the frame buffer
				glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
				glClearColor(0, 0, 0, 1);

				// Render for each Oculus eye the equivalent ZED image
				for (int eye = 0; eye < 2; eye++)
				{
					// Set the left or right vertical half of the buffer as the viewport
					glViewport(ld.Viewport[eye].Pos.x, ld.Viewport[eye].Pos.y, ld.Viewport[eye].Size.w, ld.Viewport[eye].Size.h);
					// Bind the left or right ZED image
					glBindTexture(GL_TEXTURE_2D, eye == ovrEye_Left ? zedTextureID_L : zedTextureID_R);
#if !OPENGL_GPU_INTEROP
					glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, zedWidth, zedHeight, 0, GL_BGRA, GL_UNSIGNED_BYTE, zed->retrieveImage(eye == ovrEye_Left ? sl::zed::SIDE::LEFT : sl::zed::SIDE::RIGHT).data);
#endif
					// Bind the hit value
					glUniform1f(glGetUniformLocation(shader.getProgramId(), "hit"), eye == ovrEye_Left ? hit : -hit);
					// Draw the ZED image
					glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
				}
			}
		}
		/*
		Note: Even if we don't ask to refresh the framebuffer or if the Camera::grab() 
		      doesn't catch a new frame, we have to submit an image to the Rift; it 
			  needs 75Hz refresh. Else there will be jumbs, black frames and/or glitches 
			  in the headset.
		*/
		ovrLayerHeader* layers = &ld.Header;
		// Submit the frame to the Oculus compositor
		// which will display the frame in the Oculus headset
		result = ovr_SubmitFrame(hmd, 0, &viewScaleDesc, &layers, 1);

		if (!OVR_SUCCESS(result))
		{
			std::cout << "ERROR: failed to submit frame" << std::endl;
			glDeleteBuffers(3, rectVBO);
			ovr_DestroySwapTextureSet(hmd, ptextureSet);
			ovr_DestroyMirrorTexture(hmd, &mirrorTexture->Texture);
			ovr_Destroy(hmd);
			ovr_Shutdown();
			SDL_GL_DeleteContext(glContext);
			SDL_DestroyWindow(window);
			SDL_Quit();
			delete zed;
			return -1;
		}

		// Copy the frame to the mirror buffer
		// which will be drawn in the SDL2 image
		glBindFramebuffer(GL_READ_FRAMEBUFFER, mirrorFBOID);
		glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
		GLint w = mirrorTexture->OGL.Header.TextureSize.w;
		GLint h = mirrorTexture->OGL.Header.TextureSize.h;
		glBlitFramebuffer(0, h, w, 0,
			0, 0, w, h,
			GL_COLOR_BUFFER_BIT, GL_NEAREST);
		glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
		// Swap the SDL2 window
		SDL_GL_SwapWindow(window);
	}
	
	// Disable all OpenGL buffer
	glDisableVertexAttribArray(Shader::ATTRIB_TEXTURE2D_POS);
	glDisableVertexAttribArray(Shader::ATTRIB_VERTICES_POS);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
	glBindBuffer(GL_ARRAY_BUFFER, 0);
	glBindTexture(GL_TEXTURE_2D, 0);
	glUseProgram(0);
	glBindVertexArray(0);
	// Delete the Vertex Buffer Objects of the rectangle
	glDeleteBuffers(3, rectVBO);
	// Delete SDL, OpenGL, Oculus and ZED context
	ovr_DestroySwapTextureSet(hmd, ptextureSet);
	ovr_DestroyMirrorTexture(hmd, &mirrorTexture->Texture);
	ovr_Destroy(hmd);
	ovr_Shutdown();
	SDL_GL_DeleteContext(glContext);
	SDL_DestroyWindow(window);
	SDL_Quit();
	delete zed;
	// quit
	return 0;
}
Ejemplo n.º 16
0
void OculusWindow::initialize_hmd_environment()
{
    try {

        auto result = ovr_Initialize(nullptr);

        if (!OVR_SUCCESS(result)) {
            Logger::LOG_WARNING << "Failed to initialize oculus environment!" << "Errorcode:" << (int)result << std::endl;
        }

        ovrGraphicsLuid luid;
        result = ovr_Create(&hmd_session_, &luid);

        if (!OVR_SUCCESS(result)) {

            throw std::runtime_error("Unable to create HMD.");
        }

        hmd_desc_ = ovr_GetHmdDesc(hmd_session_);

        // get optimal texture size for rendering
        ovrSizei ideal_texture_size_left = ovr_GetFovTextureSize(hmd_session_, ovrEyeType(0), hmd_desc_.DefaultEyeFov[0], 1);
        ovrSizei ideal_texture_size_right = ovr_GetFovTextureSize(hmd_session_, ovrEyeType(1), hmd_desc_.DefaultEyeFov[1], 1);

        math::vec2ui window_size(ideal_texture_size_left.w + ideal_texture_size_right.w, std::max(ideal_texture_size_left.h, ideal_texture_size_right.h));

        // initialize window => resolution is independent of rendering resolution!
        config.set_size(window_size);

        config.set_left_resolution(math::vec2ui(ideal_texture_size_left.w, ideal_texture_size_left.h));
        config.set_left_position(math::vec2ui(0, 0));
        config.set_right_resolution(math::vec2ui(ideal_texture_size_right.w, ideal_texture_size_right.h));
        config.set_right_position(math::vec2ui(ideal_texture_size_left.w, 0));

        // Initialize VR structures, filling out description.
        ovrEyeRenderDesc eyeRenderDesc[2];
        ovrVector3f      hmdToEyeViewOffset[2];

        eyeRenderDesc[0] = ovr_GetRenderDesc(hmd_session_, ovrEye_Left, hmd_desc_.DefaultEyeFov[0]);
        eyeRenderDesc[1] = ovr_GetRenderDesc(hmd_session_, ovrEye_Right, hmd_desc_.DefaultEyeFov[1]);

        hmdToEyeViewOffset[0] = eyeRenderDesc[0].HmdToEyeOffset;
        hmdToEyeViewOffset[1] = eyeRenderDesc[1].HmdToEyeOffset;

        // Initialize our single full screen Fov layer.
        color_layer_.Header.Type = ovrLayerType_EyeFov;
        color_layer_.Header.Flags = 0;
        color_layer_.Fov[0] = eyeRenderDesc[0].Fov;
        color_layer_.Fov[1] = eyeRenderDesc[1].Fov;

        ovrRecti left_viewport;
        left_viewport.Size = { int(config.left_resolution().x), int(config.left_resolution().y) };
        left_viewport.Pos = { int(config.left_position().x), int(config.left_position().y) };

        ovrRecti right_viewport;
        right_viewport.Size = { int(config.right_resolution().x), int(config.right_resolution().y) };
        right_viewport.Pos = { int(config.right_position().x), int(config.right_position().y) };

        color_layer_.Viewport[0] = left_viewport;
        color_layer_.Viewport[1] = right_viewport;

    }
    catch (std::exception& e) {
        gua::Logger::LOG_WARNING << "Failed to initialize oculus rift.\n" << e.what() << std::endl;
    }
}
Ejemplo n.º 17
0
	void VRImplOVR::connect(VRDesc* _desc)
	{
		ovrGraphicsLuid luid;
		ovrResult result = ovr_Create(&m_session, &luid);
		if (!OVR_SUCCESS(result))
		{
			BX_TRACE("Failed to create OVR device.");
			return;
		}

		BX_STATIC_ASSERT(sizeof(_desc->m_adapterLuid) >= sizeof(luid));
		memcpy(&_desc->m_adapterLuid, &luid, sizeof(luid));

		ovrHmdDesc hmdDesc = ovr_GetHmdDesc(m_session);
		_desc->m_deviceType = hmdDesc.Type;
		_desc->m_refreshRate = hmdDesc.DisplayRefreshRate;
		_desc->m_deviceSize.m_w = hmdDesc.Resolution.w;
		_desc->m_deviceSize.m_h = hmdDesc.Resolution.h;

		BX_TRACE("OVR HMD: %s, %s, firmware: %d.%d"
			, hmdDesc.ProductName
			, hmdDesc.Manufacturer
			, hmdDesc.FirmwareMajor
			, hmdDesc.FirmwareMinor
			);

		ovrSizei eyeSize[2] =
		{
			ovr_GetFovTextureSize(m_session, ovrEye_Left, hmdDesc.DefaultEyeFov[0], 1.0f),
			ovr_GetFovTextureSize(m_session, ovrEye_Right, hmdDesc.DefaultEyeFov[0], 1.0f),
		};

		for (int eye = 0; eye < 2; ++eye)
		{
			BX_STATIC_ASSERT(sizeof(_desc->m_eyeFov[eye]) == sizeof(hmdDesc.DefaultEyeFov[eye]));
			memcpy(&_desc->m_eyeFov[eye], &hmdDesc.DefaultEyeFov[eye], sizeof(_desc->m_eyeFov[eye]));
			_desc->m_eyeSize[eye].m_w = eyeSize[eye].w;
			_desc->m_eyeSize[eye].m_h = eyeSize[eye].h;
		}

		float neckOffset[2] = {OVR_DEFAULT_NECK_TO_EYE_HORIZONTAL, OVR_DEFAULT_NECK_TO_EYE_VERTICAL};
		ovr_GetFloatArray(m_session, OVR_KEY_NECK_TO_EYE_DISTANCE, neckOffset, 2);
		_desc->m_neckOffset[0] = neckOffset[0];
		_desc->m_neckOffset[1] = neckOffset[1];

		// build constant layer settings
		m_renderLayer.Header.Type = ovrLayerType_EyeFov;
		m_renderLayer.Header.Flags = 0;
		for (int eye = 0; eye < 2; ++eye)
		{
			m_renderLayer.Fov[eye] = hmdDesc.DefaultEyeFov[eye];
			m_renderLayer.Viewport[eye].Pos.x = 0;
			m_renderLayer.Viewport[eye].Pos.y = 0;
			m_renderLayer.Viewport[eye].Size = eyeSize[eye];
		}

		m_viewScale.HmdSpaceToWorldScaleInMeters = 1.0f;
		for (int eye = 0; eye < 2; ++eye)
		{
			ovrEyeRenderDesc erd = ovr_GetRenderDesc(m_session, static_cast<ovrEyeType>(eye), hmdDesc.DefaultEyeFov[eye]);
			m_viewScale.HmdToEyeOffset[eye] = erd.HmdToEyeOffset;
			m_eyeFov[eye] = erd.Fov;
			m_pixelsPerTanAngleAtCenter[eye] = erd.PixelsPerTanAngleAtCenter;
		}
	}
Ejemplo n.º 18
0
// return true to retry later (e.g. after display lost)
static bool MainLoop(bool retryCreate)
{
    // Initialize these to nullptr here to handle device lost failures cleanly
	ovrTexture     * mirrorTexture = nullptr;
	OculusTexture  * pEyeRenderTexture[2] = { nullptr, nullptr };
	DepthBuffer    * pEyeDepthBuffer[2] = { nullptr, nullptr };
    Scene          * roomScene = nullptr; 
    Camera         * mainCam = nullptr;
	D3D11_TEXTURE2D_DESC td = {};

	ovrHmd HMD;
	ovrGraphicsLuid luid;
	ovrResult result = ovr_Create(&HMD, &luid);
    if (!OVR_SUCCESS(result))
        return retryCreate;

    ovrHmdDesc hmdDesc = ovr_GetHmdDesc(HMD);

	// -------------------------------------------------------------------
	// Add: Make Instance that CL Eye Camera Capture Class
	CLEyeCameraCapture* cam[2] = { NULL };

	// Query for number of connected camera
	int numCams = CLEyeGetCameraCount();
	if (numCams == 0)
	{
		printf_s("No PS3Eye Camera detected\n");
		goto Done;
	}
	printf_s("Found %d cameras\n", numCams);

	for (int iCam = 0; iCam < numCams; iCam++)
	{
		char windowName[64];

		// Query unique camera uuid
		GUID guid = CLEyeGetCameraUUID(iCam);
		printf("Camera %d GUID: [%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x]\n",
			iCam + 1, guid.Data1, guid.Data2, guid.Data3,
			guid.Data4[0], guid.Data4[1], guid.Data4[2],
			guid.Data4[3], guid.Data4[4], guid.Data4[5],
			guid.Data4[6], guid.Data4[7]);
		sprintf_s(windowName, "Camera Window %d", iCam + 1);

		// Create camera capture object
		cam[iCam] = new CLEyeCameraCapture(windowName, guid, CLEYE_COLOR_RAW, CLEYE_VGA, 30);
		cam[iCam]->StartCapture();
	}
	// -------------------------------------------------------------------

	// Setup Device and Graphics
	// Note: the mirror window can be any size, for this sample we use 1/2 the HMD resolution
    if (!DIRECTX.InitDevice(hmdDesc.Resolution.w / 2, hmdDesc.Resolution.h / 2, reinterpret_cast<LUID*>(&luid)))
        goto Done;

	// Make the eye render buffers (caution if actual size < requested due to HW limits). 
	ovrRecti         eyeRenderViewport[2];

	for (int eye = 0; eye < 2; ++eye)
	{
		ovrSizei idealSize = ovr_GetFovTextureSize(HMD, (ovrEyeType)eye, hmdDesc.DefaultEyeFov[eye], 1.0f);
		pEyeRenderTexture[eye] = new OculusTexture();
        if (!pEyeRenderTexture[eye]->Init(HMD, idealSize.w, idealSize.h))
        {
            if (retryCreate) goto Done;
	        VALIDATE(OVR_SUCCESS(result), "Failed to create eye texture.");
        }
		pEyeDepthBuffer[eye] = new DepthBuffer(DIRECTX.Device, idealSize.w, idealSize.h);
		eyeRenderViewport[eye].Pos.x = 0;
		eyeRenderViewport[eye].Pos.y = 0;
		eyeRenderViewport[eye].Size = idealSize;
        if (!pEyeRenderTexture[eye]->TextureSet)
        {
            if (retryCreate) goto Done;
            VALIDATE(false, "Failed to create texture.");
        }
	}

	// Create a mirror to see on the monitor.
	td.ArraySize = 1;
    td.Format = DXGI_FORMAT_R8G8B8A8_UNORM_SRGB;
	td.Width = DIRECTX.WinSizeW;
	td.Height = DIRECTX.WinSizeH;
	td.Usage = D3D11_USAGE_DEFAULT;
	td.SampleDesc.Count = 1;
	td.MipLevels = 1;
    result = ovr_CreateMirrorTextureD3D11(HMD, DIRECTX.Device, &td, 0, &mirrorTexture);
    if (!OVR_SUCCESS(result))
    {
        if (retryCreate) goto Done;
        VALIDATE(false, "Failed to create mirror texture.");
    }

	// Create the room model
    roomScene = new Scene(false);

	// Create camera
    mainCam = new Camera(&XMVectorSet(0.0f, 1.6f, 5.0f, 0), &XMQuaternionIdentity());

	// Setup VR components, filling out description
	ovrEyeRenderDesc eyeRenderDesc[2];
	eyeRenderDesc[0] = ovr_GetRenderDesc(HMD, ovrEye_Left, hmdDesc.DefaultEyeFov[0]);
	eyeRenderDesc[1] = ovr_GetRenderDesc(HMD, ovrEye_Right, hmdDesc.DefaultEyeFov[1]);

    bool isVisible = true;

	DCB portConfig;
	portConfig.BaudRate = 115200;
	portConfig.Parity = EVENPARITY;

	g_seriPort.Start("\\\\.\\COM3", &portConfig);


	// Main loop
	while (DIRECTX.HandleMessages())
	{
		XMVECTOR forward = XMVector3Rotate(XMVectorSet(0, 0, -0.05f, 0), mainCam->Rot);
		XMVECTOR right   = XMVector3Rotate(XMVectorSet(0.05f, 0, 0, 0),  mainCam->Rot);
		if (DIRECTX.Key['W'] || DIRECTX.Key[VK_UP])	  mainCam->Pos = XMVectorAdd(mainCam->Pos, forward);
		if (DIRECTX.Key['S'] || DIRECTX.Key[VK_DOWN]) mainCam->Pos = XMVectorSubtract(mainCam->Pos, forward);
		if (DIRECTX.Key['D'])                         mainCam->Pos = XMVectorAdd(mainCam->Pos, right);
		if (DIRECTX.Key['A'])                         mainCam->Pos = XMVectorSubtract(mainCam->Pos, right);
		static float Yaw = 0;
		if (DIRECTX.Key[VK_LEFT])  mainCam->Rot = XMQuaternionRotationRollPitchYaw(0, Yaw += 0.02f, 0);
		if (DIRECTX.Key[VK_RIGHT]) mainCam->Rot = XMQuaternionRotationRollPitchYaw(0, Yaw -= 0.02f, 0);

		// Animate the cube
		static float cubeClock = 0;
		roomScene->Models[0]->Pos = XMFLOAT3(9 * sin(cubeClock), 3, 9 * cos(cubeClock += 0.015f));

		// Get both eye poses simultaneously, with IPD offset already included. 
		ovrPosef         EyeRenderPose[2];
		ovrVector3f      HmdToEyeViewOffset[2] = { eyeRenderDesc[0].HmdToEyeViewOffset,
			                                       eyeRenderDesc[1].HmdToEyeViewOffset };
        double frameTime = ovr_GetPredictedDisplayTime(HMD, 0);
        // Keeping sensorSampleTime as close to ovr_GetTrackingState as possible - fed into the layer
        double           sensorSampleTime = ovr_GetTimeInSeconds();
		ovrTrackingState hmdState = ovr_GetTrackingState(HMD, frameTime, ovrTrue);
		ovr_CalcEyePoses(hmdState.HeadPose.ThePose, HmdToEyeViewOffset, EyeRenderPose);

		// --------------------------------------------------------------------------
		// Add: Get Head Yaw Roll Pitch
		float hmdPitch = 0.0f;
		float hmdRoll = 0.0f;
		float hmdYaw = 0.0f;

		OVR::Posef HeadPose = hmdState.HeadPose.ThePose;
		HeadPose.Rotation.GetEulerAngles<OVR::Axis_Y, OVR::Axis_X, OVR::Axis_Z>(&hmdYaw, &hmdPitch, &hmdRoll);

		SetPos(2, ServoRoll(hmdYaw));
		SetPos(3, ServoRoll(hmdPitch));

		// --------------------------------------------------------------------------


		// Render Scene to Eye Buffers
        if (isVisible)
        {
            for (int eye = 0; eye < 2; ++eye)
		    {
			    // Increment to use next texture, just before writing
			    pEyeRenderTexture[eye]->AdvanceToNextTexture();

			    // Clear and set up rendertarget
			    int texIndex = pEyeRenderTexture[eye]->TextureSet->CurrentIndex;
			    DIRECTX.SetAndClearRenderTarget(pEyeRenderTexture[eye]->TexRtv[texIndex], pEyeDepthBuffer[eye]);
			    DIRECTX.SetViewport((float)eyeRenderViewport[eye].Pos.x, (float)eyeRenderViewport[eye].Pos.y,
				    (float)eyeRenderViewport[eye].Size.w, (float)eyeRenderViewport[eye].Size.h);

			    //Get the pose information in XM format
			    XMVECTOR eyeQuat = XMVectorSet(EyeRenderPose[eye].Orientation.x, EyeRenderPose[eye].Orientation.y,
				                               EyeRenderPose[eye].Orientation.z, EyeRenderPose[eye].Orientation.w);
			    XMVECTOR eyePos = XMVectorSet(EyeRenderPose[eye].Position.x, EyeRenderPose[eye].Position.y, EyeRenderPose[eye].Position.z, 0);

			    // Get view and projection matrices for the Rift camera
			    XMVECTOR CombinedPos = XMVectorAdd(mainCam->Pos, XMVector3Rotate(eyePos, mainCam->Rot));
			    Camera finalCam(&CombinedPos, &(XMQuaternionMultiply(eyeQuat,mainCam->Rot)));
			    XMMATRIX view = finalCam.GetViewMatrix();
			    ovrMatrix4f p = ovrMatrix4f_Projection(eyeRenderDesc[eye].Fov, 0.2f, 1000.0f, ovrProjection_RightHanded);
			    XMMATRIX proj = XMMatrixSet(p.M[0][0], p.M[1][0], p.M[2][0], p.M[3][0],
				                            p.M[0][1], p.M[1][1], p.M[2][1], p.M[3][1],
				                            p.M[0][2], p.M[1][2], p.M[2][2], p.M[3][2],
				                            p.M[0][3], p.M[1][3], p.M[2][3], p.M[3][3]);
			    XMMATRIX prod = XMMatrixMultiply(view, proj);
			    roomScene->Render(&prod, 1, 1, 1, 1, true);
		    }
        }

		// Initialize our single full screen Fov layer.
        ovrLayerEyeFov ld = {};
		ld.Header.Type = ovrLayerType_EyeFov;
		ld.Header.Flags = 0;

		for (int eye = 0; eye < 2; ++eye)
		{
			ld.ColorTexture[eye] = pEyeRenderTexture[eye]->TextureSet;
			ld.Viewport[eye] = eyeRenderViewport[eye];
			ld.Fov[eye] = hmdDesc.DefaultEyeFov[eye];
			ld.RenderPose[eye] = EyeRenderPose[eye];
            ld.SensorSampleTime = sensorSampleTime;
		}

        ovrLayerHeader* layers = &ld.Header;
        result = ovr_SubmitFrame(HMD, 0, nullptr, &layers, 1);
        // exit the rendering loop if submit returns an error, will retry on ovrError_DisplayLost
        if (!OVR_SUCCESS(result))
            goto Done;

        isVisible = (result == ovrSuccess);

        // Render mirror
        ovrD3D11Texture* tex = (ovrD3D11Texture*)mirrorTexture;
        DIRECTX.Context->CopyResource(DIRECTX.BackBuffer, tex->D3D11.pTexture);
        DIRECTX.SwapChain->Present(0, 0);
	}

	// Release resources
Done:
    delete mainCam;
    delete roomScene;
	if (mirrorTexture) ovr_DestroyMirrorTexture(HMD, mirrorTexture);
    for (int eye = 0; eye < 2; ++eye)
    {
	    delete pEyeRenderTexture[eye];
        delete pEyeDepthBuffer[eye];
    }
	DIRECTX.ReleaseDevice();
	ovr_Destroy(HMD);

	g_seriPort.End();

	for (int iCam = 0; iCam < numCams; iCam++)
	{
		cam[iCam]->StopCapture();
		delete cam[iCam];
	}

    // Retry on ovrError_DisplayLost
    return retryCreate || OVR_SUCCESS(result) || (result == ovrError_DisplayLost);
}
Ejemplo n.º 19
0
void OculusBaseDisplayPlugin::activate() {
    if (!OVR_SUCCESS(ovr_Initialize(nullptr))) {
        qFatal("Could not init OVR");
    }

    if (!OVR_SUCCESS(ovr_Create(&_session, &_luid))) {
        qFatal("Failed to acquire HMD");
    }

    WindowOpenGLDisplayPlugin::activate();

    _hmdDesc = ovr_GetHmdDesc(_session);

    _ipd = ovr_GetFloat(_session, OVR_KEY_IPD, _ipd);

    glm::uvec2 eyeSizes[2];
    ovr_for_each_eye([&](ovrEyeType eye) {
        _eyeFovs[eye] = _hmdDesc.DefaultEyeFov[eye];
        ovrEyeRenderDesc& erd = _eyeRenderDescs[eye] = ovr_GetRenderDesc(_session, eye, _eyeFovs[eye]);
        ovrMatrix4f ovrPerspectiveProjection =
            ovrMatrix4f_Projection(erd.Fov, DEFAULT_NEAR_CLIP, DEFAULT_FAR_CLIP, ovrProjection_RightHanded);
        _eyeProjections[eye] = toGlm(ovrPerspectiveProjection);

        ovrPerspectiveProjection =
            ovrMatrix4f_Projection(erd.Fov, 0.001f, 10.0f, ovrProjection_RightHanded);
        _compositeEyeProjections[eye] = toGlm(ovrPerspectiveProjection);

        _eyeOffsets[eye] = erd.HmdToEyeViewOffset;
        eyeSizes[eye] = toGlm(ovr_GetFovTextureSize(_session, eye, erd.Fov, 1.0f));
    });
    ovrFovPort combined = _eyeFovs[Left];
    combined.LeftTan = std::max(_eyeFovs[Left].LeftTan, _eyeFovs[Right].LeftTan);
    combined.RightTan = std::max(_eyeFovs[Left].RightTan, _eyeFovs[Right].RightTan);
    ovrMatrix4f ovrPerspectiveProjection =
        ovrMatrix4f_Projection(combined, DEFAULT_NEAR_CLIP, DEFAULT_FAR_CLIP, ovrProjection_RightHanded);
    _eyeProjections[Mono] = toGlm(ovrPerspectiveProjection);



    _desiredFramebufferSize = uvec2(
        eyeSizes[0].x + eyeSizes[1].x,
        std::max(eyeSizes[0].y, eyeSizes[1].y));

    if (!OVR_SUCCESS(ovr_ConfigureTracking(_session,
        ovrTrackingCap_Orientation | ovrTrackingCap_Position | ovrTrackingCap_MagYawCorrection, 0))) {
        qFatal("Could not attach to sensor device");
    }

    // Parent class relies on our _session intialization, so it must come after that.
    memset(&_sceneLayer, 0, sizeof(ovrLayerEyeFov));
    _sceneLayer.Header.Type = ovrLayerType_EyeFov;
    _sceneLayer.Header.Flags = ovrLayerFlag_TextureOriginAtBottomLeft;
    ovr_for_each_eye([&](ovrEyeType eye) {
        ovrFovPort & fov = _sceneLayer.Fov[eye] = _eyeRenderDescs[eye].Fov;
        ovrSizei & size = _sceneLayer.Viewport[eye].Size = ovr_GetFovTextureSize(_session, eye, fov, 1.0f);
        _sceneLayer.Viewport[eye].Pos = { eye == ovrEye_Left ? 0 : size.w, 0 };
    });

    if (!OVR_SUCCESS(ovr_ConfigureTracking(_session,
        ovrTrackingCap_Orientation | ovrTrackingCap_Position | ovrTrackingCap_MagYawCorrection, 0))) {
        qFatal("Could not attach to sensor device");
    }
}
Ejemplo n.º 20
0
/**
* Render the Virtual Cinema Theatre.
***/
void* OculusTracker::Provoke(void* pThis, int eD3D, int eD3DInterface, int eD3DMethod, DWORD dwNumberConnected, int& nProvokerIndex)
{
	// update game timer
	m_cGameTimer.Tick();

	static UINT unFrameSkip = 200;
	if (unFrameSkip > 0)
	{
		unFrameSkip--;
		return nullptr;
	}

	// #define _DEBUG_OTR
#ifdef _DEBUG_OTR
	{ wchar_t buf[128]; wsprintf(buf, L"[OTR] ifc %u mtd %u", eD3DInterface, eD3DMethod); OutputDebugString(buf); }
#endif

	// save ini file ?
	if (m_nIniFrameCount)
	{
		if (m_nIniFrameCount == 1)
			SaveIniSettings();
		m_nIniFrameCount--;
	}

	// main menu update ?
	if (m_sMenu.bOnChanged)
	{
		// set back event bool, set ini file frame count
		m_sMenu.bOnChanged = false;
		m_nIniFrameCount = 300;

		// loop through entries
		for (size_t nIx = 0; nIx < m_sMenu.asEntries.size(); nIx++)
		{
			// entry index changed ?
			if (m_sMenu.asEntries[nIx].bOnChanged)
			{
				m_sMenu.asEntries[nIx].bOnChanged = false;

				// touch entries ?
				if (nIx < 25)
				{
					// set new vk code by string
					m_aaunKeys[1][nIx] = GetVkCodeByString(m_sMenu.asEntries[nIx].astrValueEnumeration[m_sMenu.asEntries[nIx].unValue]);
				}
			}
		}
	}

	if (m_hSession)
	{
#pragma region controller
		// controller indices
		static const uint32_t s_unIndexRemote = 0;
		static const uint32_t s_unIndexTouch = 1;
		static const uint32_t s_unIndexXBox = 2;

		// get all connected input states
		ovrInputState sInputState[3] = {};
		unsigned int unControllersConnected = ovr_GetConnectedControllerTypes(m_hSession);
#pragma region Remote
		if (unControllersConnected & ovrControllerType_Remote)
		{
			ovr_GetInputState(m_hSession, ovrControllerType_Remote, &sInputState[s_unIndexRemote]);

			// handle all remote buttons except Oculus private ones
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Up)
				m_sMenu.bOnUp = true;
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Down)
				m_sMenu.bOnDown = true;
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Left)
				m_sMenu.bOnLeft = true;
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Right)
				m_sMenu.bOnRight = true;
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Enter)
				m_sMenu.bOnAccept = true;
			if (sInputState[s_unIndexRemote].Buttons & ovrButton_Back)
				m_sMenu.bOnBack = true;
		}
#pragma endregion
#pragma region touch
		if (unControllersConnected & ovrControllerType_Touch)
		{
			// get input state
			ovr_GetInputState(m_hSession, ovrControllerType_Touch, &sInputState[s_unIndexTouch]);

			// loop through controller buttons
			for (UINT unButtonIx = 0; unButtonIx < unButtonNo; unButtonIx++)
			{
				// cast keyboard event
				if (sInputState[s_unIndexTouch].Buttons & aunButtonIds[unButtonIx])
				{
					if (!m_aabKeys[s_unIndexTouch][unButtonIx])
						MapButtonDown(s_unIndexTouch, unButtonIx);
				}
				else
				if (m_aabKeys[s_unIndexTouch][unButtonIx])
					MapButtonUp(s_unIndexTouch, unButtonIx);
			}
		}
#pragma endregion
		if (unControllersConnected & ovrControllerType_XBox)
			ovr_GetInputState(m_hSession, ovrControllerType_XBox, &sInputState[s_unIndexXBox]);



#pragma endregion
#pragma region hmd
		/*// Start the sensor which informs of the Rift's pose and motion   .... obsolete for SDK 1.3.x ??
		ovr_ConfigureTracking(m_hSession, ovrTrackingCap_Orientation | ovrTrackingCap_MagYawCorrection |
		ovrTrackingCap_Position, 0);*/

		// get the current tracking state
		ovrTrackingState sTrackingState = ovr_GetTrackingState(m_hSession, ovr_GetTimeInSeconds(), false);

		if (TRUE)//(sTrackingState.StatusFlags & (ovrStatus_OrientationTracked | ovrStatus_PositionTracked))
		{
			// get pose
			ovrPoseStatef sPoseState = sTrackingState.HeadPose;
			m_sPose = sPoseState.ThePose;
			m_sOrientation.x = m_sPose.Orientation.x;
			m_sOrientation.y = m_sPose.Orientation.y;
			m_sOrientation.z = m_sPose.Orientation.z;
			m_sOrientation.w = m_sPose.Orientation.w;

			// backup old euler angles and velocity
			float fEulerOld[3];
			float fEulerVelocityOld[3];
			memcpy(&fEulerOld[0], &m_fEuler[0], sizeof(float)* 3);
			memcpy(&fEulerVelocityOld[0], &m_fEulerVelocity[0], sizeof(float)* 3);

			// predicted euler angles ? for Oculus, due to ATW, we do not predict the euler angles
			if (FALSE)
			{
				// get angles
				m_sOrientation.GetEulerAngles<Axis::Axis_Y, Axis::Axis_X, Axis::Axis_Z, RotateDirection::Rotate_CW, HandedSystem::Handed_R >(&m_fEuler[1], &m_fEuler[0], &m_fEuler[2]);

				// quick fix here...
				m_fEuler[1] *= -1.0f;
				m_fEuler[0] *= -1.0f;
				m_fEuler[2] *= -1.0f;

				// get euler velocity + acceleration
				float fEulerAcceleration[3];
				for (UINT unI = 0; unI < 3; unI++)
				{
					// get the velocity
					m_fEulerVelocity[unI] = (m_fEuler[unI] - fEulerOld[unI]) / (float)m_cGameTimer.DeltaTime();

					// get the acceleration
					fEulerAcceleration[unI] = (m_fEulerVelocity[unI] - fEulerVelocityOld[unI]) / (float)m_cGameTimer.DeltaTime();
				}

				// get predicted euler
				for (UINT unI = 0; unI < 3; unI++)
				{
					// compute predicted euler
					m_fEulerPredicted[unI] = (0.5f * fEulerAcceleration[unI] * ((float)m_cGameTimer.DeltaTime() * (float)m_cGameTimer.DeltaTime())) + (m_fEulerVelocity[unI] * (float)m_cGameTimer.DeltaTime()) + m_fEuler[unI];
				}
			}
			else
			{
				// get angles
				m_sOrientation.GetEulerAngles<Axis::Axis_Y, Axis::Axis_X, Axis::Axis_Z, RotateDirection::Rotate_CW, HandedSystem::Handed_R >(&m_fEulerPredicted[1], &m_fEulerPredicted[0], &m_fEulerPredicted[2]);

				// quick fix here...
				m_fEulerPredicted[1] *= -1.0f;
				m_fEulerPredicted[0] *= -1.0f;
				m_fEulerPredicted[2] *= -1.0f;
			}

			// set the drawing update to true
			m_bControlUpdate = true;

			// set position
			m_afPosition[0] = (float)-m_sPose.Position.x - m_afPositionOrigin[0];
			m_afPosition[1] = (float)-m_sPose.Position.y - m_afPositionOrigin[1];
			m_afPosition[2] = (float)m_sPose.Position.z + m_afPositionOrigin[2];

			// get eye render pose and other fields
			ovrEyeRenderDesc asEyeRenderDesc[2];
			asEyeRenderDesc[0] = ovr_GetRenderDesc(m_hSession, ovrEye_Left, m_sHMDDesc.DefaultEyeFov[0]);
			asEyeRenderDesc[1] = ovr_GetRenderDesc(m_hSession, ovrEye_Right, m_sHMDDesc.DefaultEyeFov[1]);
			ovrPosef asHmdToEyePose[2] = { asEyeRenderDesc[0].HmdToEyePose,asEyeRenderDesc[1].HmdToEyePose };
			//ovrVector3f      asHmdToEyeViewOffset[2] = { asEyeRenderDesc[0].HmdToEyePose, asEyeRenderDesc[1].HmdToEyePose };
			ovrPosef         asEyeRenderPose[2];
			static long long s_frameIndex = 0;
			static double s_sensorSampleTime = 0.0;    // sensorSampleTime is fed into the layer later
			ovr_GetEyePoses(m_hSession, s_frameIndex, ovrTrue, asHmdToEyePose, asEyeRenderPose, &s_sensorSampleTime);
			// ovr_CalcEyePoses(sTrackingState.HeadPose.ThePose, asHmdToEyePose, asEyeRenderPose);

			// create rotation matrix from euler angles
			D3DXMATRIX sRotation;
			D3DXMATRIX sPitch, sYaw, sRoll;
			D3DXMatrixRotationX(&sPitch, m_fEulerPredicted[0]);
			D3DXMatrixRotationY(&sYaw, m_fEulerPredicted[1]);
			D3DXMatrixRotationZ(&sRoll, -m_fEulerPredicted[2]);
			sRotation = sYaw * sPitch * sRoll;

			// create per eye view matrix from rotation and position
			D3DXMATRIX sView[2];
			for (UINT unEye = 0; unEye < 2; unEye++)
			{
				D3DXMATRIX sTranslation;
				D3DXMatrixTranslation(&sTranslation, (float)-asEyeRenderPose[unEye].Position.x - m_afPositionOrigin[0], (float)-asEyeRenderPose[unEye].Position.y - m_afPositionOrigin[1], (float)asEyeRenderPose[unEye].Position.z + m_afPositionOrigin[2]);
				sView[unEye] = sTranslation * sRotation;
			}

			// create head pose view matrix
			D3DXMATRIX sTranslation;
			D3DXMatrixTranslation(&sTranslation, (float)-sTrackingState.HeadPose.ThePose.Position.x - m_afPositionOrigin[0], (float)-sTrackingState.HeadPose.ThePose.Position.y - m_afPositionOrigin[1], (float)sTrackingState.HeadPose.ThePose.Position.z + m_afPositionOrigin[2]);
			m_sView = sTranslation * sRotation;

			// create inverse view matrix
			D3DXMATRIX sVInv = {};
			D3DXMatrixInverse(&sVInv, nullptr, &m_sView);

			// get projection matrices left/right
			D3DXMATRIX asToEye[2];
			D3DXMATRIX asProjection[2];
			for (UINT unEye = 0; unEye < 2; unEye++)
			{
				// get ovr projection
				ovrMatrix4f sProj = ovrMatrix4f_Projection(m_sHMDDesc.DefaultEyeFov[unEye], 0.01f, 30.0f, ovrProjection_LeftHanded);

				// create dx projection
				asProjection[unEye] = D3DXMATRIX(&sProj.M[0][0]);
				D3DXMatrixTranspose(&asProjection[unEye], &asProjection[unEye]);

				// create eventual projection using inverse matrix of the head pose view matrix
				m_asProjection[unEye] = sVInv * sView[unEye] * asProjection[unEye];
			}
		}
#pragma endregion
	}
	else
	{
		// Initialize LibOVR, and the Rift... then create hmd handle
		ovrResult result = ovr_Initialize(nullptr);
		if (!OVR_SUCCESS(result))
		{
			OutputDebugString(L"[OVR] Failed to initialize libOVR.");
			return nullptr;
		}

		result = ovr_Create(&m_hSession, &m_sLuid);
		if (!OVR_SUCCESS(result))
		{
			OutputDebugString(L"[OVR] Failed to retreive HMD handle.");
			return nullptr;
		}
		else
			OutputDebugString(L"[OVR] HMD handle initialized !");

		if (m_hSession)
		{
			// get the description and set pointers
			m_sHMDDesc = ovr_GetHmdDesc(m_hSession);

			// Configure Stereo settings.
			ovrSizei sRecommenedTex0Size = ovr_GetFovTextureSize(m_hSession, ovrEye_Left,
				m_sHMDDesc.DefaultEyeFov[0], 1.0f);
			ovrSizei sRecommenedTex1Size = ovr_GetFovTextureSize(m_hSession, ovrEye_Right,
				m_sHMDDesc.DefaultEyeFov[1], 1.0f);

			ovrSizei sTextureSize;
			sTextureSize.w = max(sRecommenedTex0Size.w, sRecommenedTex1Size.w);
			sTextureSize.h = max(sRecommenedTex0Size.h, sRecommenedTex1Size.h);
			m_unRenderTextureWidth = (UINT)sTextureSize.w;
			m_unRenderTextureHeight = (UINT)sTextureSize.h;

			// get view offset
			ovrEyeRenderDesc asEyeRenderDesc[2];
			asEyeRenderDesc[0] = ovr_GetRenderDesc(m_hSession, ovrEye_Left, m_sHMDDesc.DefaultEyeFov[0]);
			asEyeRenderDesc[1] = ovr_GetRenderDesc(m_hSession, ovrEye_Right, m_sHMDDesc.DefaultEyeFov[1]);
			ovrVector3f asViewOffset[2] = { asEyeRenderDesc[0].HmdToEyePose.Position, asEyeRenderDesc[1].HmdToEyePose.Position };

			// get projection matrices left/right
			D3DXMATRIX asToEye[2];
			D3DXMATRIX asProjection[2];
			for (UINT unEye = 0; unEye < 2; unEye++)
			{
				// get ovr projection
				ovrMatrix4f sProj = ovrMatrix4f_Projection(m_sHMDDesc.DefaultEyeFov[unEye], 0.01f, 30.0f, ovrProjection_LeftHanded);

				// create dx projection
				asProjection[unEye] = D3DXMATRIX(&sProj.M[0][0]);
				D3DXMatrixTranspose(&asProjection[unEye], &asProjection[unEye]);

				// create view offset translation matrix
				D3DXMatrixTranslation(&asToEye[unEye], -asViewOffset[unEye].x, -asViewOffset[unEye].y, -asViewOffset[unEye].z);

				// create eventual projection
				m_asProjection[unEye] = asToEye[unEye] * asProjection[unEye];
			}
		}
	}

	return nullptr;
}
Ejemplo n.º 21
0
// Display to an HMD with OVR SDK backend.
void displayHMD()
{
    ovrSessionStatus sessionStatus;
    ovr_GetSessionStatus(g_session, &sessionStatus);

    if (sessionStatus.HmdPresent == false)
    {
        displayMonitor();
        return;
    }

    const ovrHmdDesc& hmdDesc = m_Hmd;
    double sensorSampleTime; // sensorSampleTime is fed into the layer later
    if (g_hmdVisible)
    {
        // Call ovr_GetRenderDesc each frame to get the ovrEyeRenderDesc, as the returned values (e.g. HmdToEyeOffset) may change at runtime.
        ovrEyeRenderDesc eyeRenderDesc[2];
        eyeRenderDesc[0] = ovr_GetRenderDesc(g_session, ovrEye_Left, hmdDesc.DefaultEyeFov[0]);
        eyeRenderDesc[1] = ovr_GetRenderDesc(g_session, ovrEye_Right, hmdDesc.DefaultEyeFov[1]);

        // Get eye poses, feeding in correct IPD offset
        ovrVector3f HmdToEyeOffset[2] = {
            eyeRenderDesc[0].HmdToEyeOffset,
            eyeRenderDesc[1].HmdToEyeOffset };
#if 0
        // Get both eye poses simultaneously, with IPD offset already included.
        double displayMidpointSeconds = ovr_GetPredictedDisplayTime(g_session, 0);
        ovrTrackingState hmdState = ovr_GetTrackingState(g_session, displayMidpointSeconds, ovrTrue);
        ovr_CalcEyePoses(hmdState.HeadPose.ThePose, HmdToEyeOffset, m_eyePoses);
#else
        ovr_GetEyePoses(g_session, g_frameIndex, ovrTrue, HmdToEyeOffset, m_eyePoses, &sensorSampleTime);
#endif
        storeHmdPose(m_eyePoses[0]);

        for (int eye = 0; eye < 2; ++eye)
        {
            const FBO& swapfbo = m_swapFBO[eye];
            const ovrTextureSwapChain& chain = g_textureSwapChain[eye];

            int curIndex;
            ovr_GetTextureSwapChainCurrentIndex(g_session, chain, &curIndex);
            GLuint curTexId;
            ovr_GetTextureSwapChainBufferGL(g_session, chain, curIndex, &curTexId);

            glBindFramebuffer(GL_FRAMEBUFFER, swapfbo.id);
            glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, curTexId, 0);

            glViewport(0, 0, swapfbo.w, swapfbo.h);
            glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
            glEnable(GL_FRAMEBUFFER_SRGB);

            {
                glClearColor(0.3f, 0.3f, 0.3f, 0.f);
                glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

                const ovrSizei& downSize = ovr_GetFovTextureSize(g_session, ovrEyeType(eye), hmdDesc.DefaultEyeFov[eye], m_fboScale);
                ovrRecti vp = { 0, 0, downSize.w, downSize.h };
                const int texh = swapfbo.h;
                vp.Pos.y = (texh - vp.Size.h) / 2;
                glViewport(vp.Pos.x, vp.Pos.y, vp.Size.w, vp.Size.h);

                // Cinemascope - letterbox bars scissoring off pixels above and below vp center
                const float hc = .5f * m_cinemaScope;
                const int scisPx = static_cast<int>(hc * static_cast<float>(vp.Size.h));
                ovrRecti sp = vp;
                sp.Pos.y += scisPx;
                sp.Size.h -= 2 * scisPx;
                glScissor(sp.Pos.x, sp.Pos.y, sp.Size.w, sp.Size.h);
                glEnable(GL_SCISSOR_TEST);
                glEnable(GL_DEPTH_TEST);

                // Render the scene for the current eye
                const ovrPosef& eyePose = m_eyePoses[eye];
                const glm::mat4 mview =
                    makeWorldToChassisMatrix() *
                    makeMatrixFromPose(eyePose, m_headSize);
                const ovrMatrix4f ovrproj = ovrMatrix4f_Projection(hmdDesc.DefaultEyeFov[eye], 0.2f, 1000.0f, ovrProjection_None);
                const glm::mat4 proj = makeGlmMatrixFromOvrMatrix(ovrproj);
                g_pScene->RenderForOneEye(glm::value_ptr(glm::inverse(mview)), glm::value_ptr(proj));

                const ovrTextureSwapChain& chain = g_textureSwapChain[eye];
                const ovrResult commitres = ovr_CommitTextureSwapChain(g_session, chain);
                if (!OVR_SUCCESS(commitres))
                {
                    LOG_ERROR("ovr_CommitTextureSwapChain returned %d", commitres);
                    return;
                }
            }
            glDisable(GL_SCISSOR_TEST);

            // Grab a copy of the left eye's undistorted render output for presentation
            // to the desktop window instead of the barrel distorted mirror texture.
            // This blit, while cheap, could cost some framerate to the HMD.
            // An over-the-shoulder view is another option, at a greater performance cost.
            if (0)
            {
                if (eye == ovrEyeType::ovrEye_Left)
                {
                    BlitLeftEyeRenderToUndistortedMirrorTexture();
                }
            }

            glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
            glBindFramebuffer(GL_FRAMEBUFFER, 0);
        }
    }

    std::vector<const ovrLayerHeader*> layerHeaders;
    {
        // Do distortion rendering, Present and flush/sync
        ovrLayerEyeFov ld;
        ld.Header.Type = ovrLayerType_EyeFov;
        ld.Header.Flags = ovrLayerFlag_TextureOriginAtBottomLeft; // Because OpenGL.

        for (int eye = 0; eye < 2; ++eye)
        {
            const FBO& swapfbo = m_swapFBO[eye];
            const ovrTextureSwapChain& chain = g_textureSwapChain[eye];

            ld.ColorTexture[eye] = chain;

            const ovrSizei& downSize = ovr_GetFovTextureSize(g_session, ovrEyeType(eye), hmdDesc.DefaultEyeFov[eye], m_fboScale);
            ovrRecti vp = { 0, 0, downSize.w, downSize.h };
            const int texh = swapfbo.h;
            vp.Pos.y = (texh - vp.Size.h) / 2;

            ld.Viewport[eye] = vp;
            ld.Fov[eye] = hmdDesc.DefaultEyeFov[eye];
            ld.RenderPose[eye] = m_eyePoses[eye];
            ld.SensorSampleTime = sensorSampleTime;
        }
        layerHeaders.push_back(&ld.Header);

        // Submit layers to HMD for display
        ovrLayerQuad ql;
        if (g_tweakbarQuad.m_showQuadInWorld)
        {
            ql.Header.Type = ovrLayerType_Quad;
            ql.Header.Flags = ovrLayerFlag_TextureOriginAtBottomLeft; // Because OpenGL.

            ql.ColorTexture = g_tweakbarQuad.m_swapChain;
            ovrRecti vp;
            vp.Pos.x = 0;
            vp.Pos.y = 0;
            vp.Size.w = 600; ///@todo
            vp.Size.h = 600; ///@todo
            ql.Viewport = vp;
            ql.QuadPoseCenter = g_tweakbarQuad.m_QuadPoseCenter;
            ql.QuadSize = { 1.f, 1.f }; ///@todo Pass in

            g_tweakbarQuad.SetHmdEyeRay(m_eyePoses[ovrEyeType::ovrEye_Left]); // Writes to m_layerQuad.QuadPoseCenter
            g_tweakbarQuad.DrawToQuad();
            layerHeaders.push_back(&ql.Header);
        }
    }

#if 0
    ovrViewScaleDesc viewScaleDesc;
    viewScaleDesc.HmdToEyeOffset[0] = m_eyeOffsets[0];
    viewScaleDesc.HmdToEyeOffset[1] = m_eyeOffsets[1];
    viewScaleDesc.HmdSpaceToWorldScaleInMeters = 1.f;
#endif

    const ovrResult result = ovr_SubmitFrame(g_session, g_frameIndex, nullptr, &layerHeaders[0], layerHeaders.size());
    if (result == ovrSuccess)
    {
        g_hmdVisible = true;
    }
    else if (result == ovrSuccess_NotVisible)
    {
        g_hmdVisible = false;
        ///@todo Enter a lower-power, polling "no focus/HMD not worn" mode
    }
    else if (result == ovrError_DisplayLost)
    {
        LOG_INFO("ovr_SubmitFrame returned ovrError_DisplayLost");
        g_hmdVisible = false;
        ///@todo Tear down textures and session and re-create
    }
    else
    {
        LOG_INFO("ovr_SubmitFrame returned %d", result);
        //g_hmdVisible = false;
    }

    // Handle OVR session events
    ovr_GetSessionStatus(g_session, &sessionStatus);
    if (sessionStatus.ShouldQuit)
    {
        glfwSetWindowShouldClose(g_pMirrorWindow, 1);
    }
    if (sessionStatus.ShouldRecenter)
    {
        ovr_RecenterTrackingOrigin(g_session);
    }

    // Blit mirror texture to monitor window
    if (g_hmdVisible)
    {
        glViewport(0, 0, g_mirrorWindowSz.x, g_mirrorWindowSz.y);
        const FBO& srcFBO = m_mirrorFBO;
        glBindFramebuffer(GL_READ_FRAMEBUFFER, srcFBO.id);
        glBlitFramebuffer(
            0, srcFBO.h, srcFBO.w, 0,
            0, 0, g_mirrorWindowSz.x, g_mirrorWindowSz.y,
            GL_COLOR_BUFFER_BIT, GL_NEAREST);
        glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
    }
    else
    {
        displayMonitor();
    }
    ++g_frameIndex;

#ifdef USE_ANTTWEAKBAR
    if (g_tweakbarQuad.m_showQuadInWorld)
    {
        TwDraw();
    }
#endif
}