Ejemplo n.º 1
0
/*!
 *  pixTranslate()
 *
 *      Input:  pixd (<optional> destination: this can be null,
 *                    equal to pixs, or different from pixs)
 *              pixs
 *              hshift (horizontal shift; hshift > 0 is to right)
 *              vshift (vertical shift; vshift > 0 is down)
 *              incolor (L_BRING_IN_WHITE, L_BRING_IN_BLACK)
 *      Return: pixd, or null on error.
 *
 *  Notes:
 *      (1) The general pattern is:
 *            pixd = pixTranslate(pixd, pixs, ...);
 *          For clarity, when you know the case, use one of these:
 *            pixd = pixTranslate(NULL, pixs, ...);  // new
 *            pixTranslate(pixs, pixs, ...);         // in-place
 *            pixTranslate(pixd, pixs, ...);         // to existing pixd
 *      (2) If an existing pixd is not the same size as pixs, the
 *          image data will be reallocated.
 */
PIX *
pixTranslate(PIX     *pixd,
             PIX     *pixs,
             l_int32  hshift,
             l_int32  vshift,
             l_int32  incolor)
{
    PROCNAME("pixTranslate");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);

        /* Prepare pixd for in-place operation */
    if ((pixd = pixCopy(pixd, pixs)) == NULL)
        return (PIX *)ERROR_PTR("pixd not made", procName, NULL);

    pixRasteropIP(pixd, hshift, vshift, incolor);
    return pixd;
}
Ejemplo n.º 2
0
/*!
 *  pixRotateOrth()
 *
 *      Input:  pixs (all depths)
 *              quads (0-3; number of 90 degree cw rotations)
 *      Return: pixd, or null on error
 */
PIX *
pixRotateOrth(PIX     *pixs,
              l_int32  quads)
{
    PROCNAME("pixRotateOrth");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (quads < 0 || quads > 4)
        return (PIX *)ERROR_PTR("quads not in {0,1,2,3,4}", procName, NULL);

    if (quads == 0 || quads == 4)
        return pixCopy(NULL, pixs);
    else if (quads == 1)
        return pixRotate90(pixs, 1);
    else if (quads == 2)
        return pixRotate180(NULL, pixs);
    else /* quads == 3 */
        return pixRotate90(pixs, -1);
}
Ejemplo n.º 3
0
main(int    argc,
char **argv)
{
l_int32       i, j;
PIX          *pixs, *pixt, *pixd;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
        return 1;

    pixs = pixRead("test8.jpg");
    pixt = pixCopy(NULL, pixs);

        /* Copy, in-place and one COLUMN at a time, from the right
           side to the left side. */
    for (j = 0; j < 200; j++)
        pixRasterop(pixs, 20 + j, 20, 1, 250, PIX_SRC, pixs, 250 + j, 20);
    pixDisplayWithTitle(pixs, 50, 50, "in-place copy", rp->display);

        /* Copy, in-place and one ROW at a time, from the right
           side to the left side. */
    for (i = 0; i < 250; i++)
        pixRasterop(pixt, 20, 20 + i, 200, 1, PIX_SRC, pixt, 250, 20 + i);

        /* Test */
    regTestComparePix(rp, pixs, pixt);   /* 0 */
    pixDestroy(&pixs);
    pixDestroy(&pixt);

        /* Show the mirrored border, which uses the general
           pixRasterop() on an image in-place.  */
    pixs = pixRead("test8.jpg");
    pixt = pixRemoveBorder(pixs, 40);
    pixd = pixAddMirroredBorder(pixt, 40, 40, 40, 40);
    regTestWritePixAndCheck(rp, pixd, IFF_PNG);  /* 1 */
    pixDisplayWithTitle(pixd, 650, 50, "mirrored border", rp->display);
    pixDestroy(&pixs);
    pixDestroy(&pixt);
    pixDestroy(&pixd);
    return regTestCleanup(rp);
}
Ejemplo n.º 4
0
static void
CopyPtras(L_PTRA   *papixs,
          L_PTRA   *paboxs,
          L_PTRA  **ppapixd,
          L_PTRA  **ppaboxd)
{
l_int32  i, imax;
BOX     *box;
PIX     *pix;

    ptraGetMaxIndex(papixs, &imax);
    *ppapixd = ptraCreate(imax + 1);
    *ppaboxd = ptraCreate(imax + 1);
    for (i = 0; i <= imax; i++) {
        pix = pixCopy(NULL, (PIX *)ptraGetPtrToItem(papixs, i));
        box = boxCopy((BOX *)ptraGetPtrToItem(paboxs, i));
        ptraAdd(*ppapixd, pix);
        ptraAdd(*ppaboxd, box);
    }
    return;
}
Ejemplo n.º 5
0
/*!
 * \brief   pixSetStrokeWidth()
 *
 * \param[in]   pixs  1 bpp pix
 * \param[in]   width  set stroke width to this value, in [1 ... 100].
 * \param[in]   thinfirst  1 to thin all pix to a skeleton first; 0 to skip
 * \param[in]   connectivity  4 or 8, to be used if %thinfirst == 1
 * \return  pixd  with stroke width set to %width, or NULL on error
 *
 * <pre>
 * Notes:
 *      (1) See notes in pixaSetStrokeWidth().
 *      (2) A white border of sufficient width to avoid boundary
 *          artifacts in the thickening step is added before thinning.
 *      (3) %connectivity == 8 usually gives a slightly smoother result.
 * </pre>
 */
PIX *
pixSetStrokeWidth(PIX     *pixs,
                  l_int32  width,
                  l_int32  thinfirst,
                  l_int32  connectivity)
{
char     buf[16];
l_int32  border;
PIX     *pix1, *pix2, *pixd;

    PROCNAME("pixSetStrokeWidth");

    if (!pixs || (pixGetDepth(pixs) != 1))
        return (PIX *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL);
    if (width < 1 || width > 100)
        return (PIX *)ERROR_PTR("width not in [1 ... 100]", procName, NULL);
    if (connectivity != 4 && connectivity != 8)
        return (PIX *)ERROR_PTR("connectivity not 4 or 8", procName, NULL);

    if (!thinfirst && width == 1)  /* nothing to do */
        return pixCopy(NULL, pixs);

        /* Add a white border */
    border = width / 2;
    pix1 = pixAddBorder(pixs, border, 0);

        /* Thin to a skeleton */
    if (thinfirst)
        pix2 = pixThinConnected(pix1, L_THIN_FG, connectivity, 0);
    else
        pix2 = pixClone(pix1);
    pixDestroy(&pix1);

        /* Dilate */
    snprintf(buf, sizeof(buf), "D%d.%d", width, width);
    pixd = pixMorphSequence(pix2, buf, 0);
    pixCopyText(pixd, pixs);
    pixDestroy(&pix2);
    return pixd;
}
Ejemplo n.º 6
0
/*!
 *  pixThresholdToValue()
 *
 *      Input:  pixd (<optional>; if not null, must be equal to pixs)
 *              pixs (8, 16, 32 bpp)
 *              threshval
 *              setval
 *      Return: pixd always
 *
 *  Notes:
 *    - operation can be in-place (pixs == pixd) or to a new pixd
 *    - if setval > threshval, sets pixels with a value >= threshval to setval
 *    - if setval < threshval, sets pixels with a value <= threshval to setval
 *    - if setval == threshval, no-op
 */
PIX *
pixThresholdToValue(PIX      *pixd,
                    PIX      *pixs,
                    l_int32   threshval,
                    l_int32   setval)
{
l_int32    w, h, d, wpld;
l_uint32  *datad;

    PROCNAME("pixThresholdToValue");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, pixd);
    d = pixGetDepth(pixs);
    if (d != 8 && d != 16 && d != 32)
        return (PIX *)ERROR_PTR("pixs not 8, 16 or 32 bpp", procName, pixd);
    if (pixd && (pixs != pixd))
        return (PIX *)ERROR_PTR("pixd exists and is not pixs", procName, pixd);
    if (threshval < 0 || setval < 0)
        return (PIX *)ERROR_PTR("threshval & setval not < 0", procName, pixd);
    if (d == 8 && setval > 255)
        return (PIX *)ERROR_PTR("setval > 255 for 8 bpp", procName, pixd);
    if (d == 16 && setval > 0xffff)
        return (PIX *)ERROR_PTR("setval > 0xffff for 16 bpp", procName, pixd);

    if (!pixd)
        pixd = pixCopy(NULL, pixs);
    if (setval == threshval) {
        L_WARNING("setval == threshval; no operation", procName);
        return pixd;
    }

    datad = pixGetData(pixd);
    pixGetDimensions(pixd, &w, &h, NULL);
    wpld = pixGetWpl(pixd);

    thresholdToValueLow(datad, w, h, d, wpld, threshval, setval);
    return pixd;
}
Ejemplo n.º 7
0
/*!
 *  pixDilateGray3()
 *
 *      Input:  pixs (8 bpp, not cmapped)
 *              hsize  (1 or 3)
 *              vsize  (1 or 3)
 *      Return: pixd, or null on error
 *
 *  Notes:
 *      (1) Special case for 1x3, 3x1 or 3x3 brick sel (all hits)
 *      (2) If hsize = vsize = 1, just returns a copy.
 */
PIX *
pixDilateGray3(PIX     *pixs,
               l_int32  hsize,
               l_int32  vsize)
{
PIX  *pixt, *pixb, *pixbd, *pixd;

    PROCNAME("pixDilateGray3");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (pixGetDepth(pixs) != 8)
        return (PIX *)ERROR_PTR("pixs not 8 bpp", procName, NULL);
    if (pixGetColormap(pixs))
        return (PIX *)ERROR_PTR("pix has colormap", procName, NULL);
    if ((hsize != 1 && hsize != 3) ||
        (vsize != 1 && vsize != 3))
        return (PIX *)ERROR_PTR("invalid size: must be 1 or 3", procName, NULL);

    if (hsize == 1 && vsize == 1)
        return pixCopy(NULL, pixs);

    pixb = pixAddBorderGeneral(pixs, 4, 8, 2, 8, 0);

    if (vsize == 1)
        pixbd = pixDilateGray3h(pixb);
    else if (hsize == 1)
        pixbd = pixDilateGray3v(pixb);
    else {  /* vize == hsize == 3 */
        pixt = pixDilateGray3h(pixb);
        pixbd = pixDilateGray3v(pixt);
        pixDestroy(&pixt);
    }

    pixd = pixRemoveBorderGeneral(pixbd, 4, 8, 2, 8);
    pixDestroy(&pixb);
    pixDestroy(&pixbd);
    return pixd;
}
Ejemplo n.º 8
0
/*
 * Clean dark background action handling
 */
void MainWindow::on_actionCleanDarkBackground_triggered() {
  PIX *pixt;
  CDBDialog cdb_dialog(this);
  cdb_dialog.setValues(blackval, whiteval, thresh);
  connect(&cdb_dialog, SIGNAL(cdbParamsChanged(int, int, int)),
          this, SLOT(slotCleanDarkBackground(int, int , int)));

  if (cdb_dialog.exec() == QDialog::Accepted) {
    blackval = cdb_dialog.blackVal->value();
    whiteval = cdb_dialog.whiteVal->value();
    thresh = cdb_dialog.treshold->value();
    pixt = cleanDarkBackground(blackval, whiteval, thresh);
    pixs = pixCopy(NULL, pixt);
    pixDestroy(&pixt);
    setPixToScene();
    modified = true;
    updateTitle();
    this->statusBar()->showMessage(tr("Finished..."), 2000);
  } else {
    setPixToScene();
  }
}
Ejemplo n.º 9
0
/*!
 *  pixRankFilterRGB()
 *
 *      Input:  pixs (32 bpp)
 *              wf, hf  (width and height of filter; each is >= 1)
 *              rank (in [0.0 ... 1.0])
 *      Return: pixd (of rank values), or null on error
 *
 *  Notes:
 *      (1) This defines, for each pixel in pixs, a neighborhood of
 *          pixels given by a rectangle "centered" on the pixel.
 *          This set of wf*hf pixels has a distribution of values.
 *          For each component, if the values are sorted in increasing
 *          order, we choose the component such that rank*(wf*hf-1)
 *          pixels have a lower or equal value and
 *          (1-rank)*(wf*hf-1) pixels have an equal or greater value.
 *      (2) Apply gray rank filtering to each component independently.
 *      (3) See notes in pixRankFilterGray() for further details.
 */
PIX  *
pixRankFilterRGB(PIX       *pixs,
                 l_int32    wf,
                 l_int32    hf,
                 l_float32  rank)
{
PIX  *pixr, *pixg, *pixb, *pixrf, *pixgf, *pixbf, *pixd;

    PROCNAME("pixRankFilterRGB");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (pixGetDepth(pixs) != 32)
        return (PIX *)ERROR_PTR("pixs not 32 bpp", procName, NULL);
    if (wf < 1 || hf < 1)
        return (PIX *)ERROR_PTR("wf < 1 || hf < 1", procName, NULL);
    if (rank < 0.0 || rank > 1.0)
        return (PIX *)ERROR_PTR("rank must be in [0.0, 1.0]", procName, NULL);
    if (wf == 1 && hf == 1)   /* no-op */
        return pixCopy(NULL, pixs);

    pixr = pixGetRGBComponent(pixs, COLOR_RED);
    pixg = pixGetRGBComponent(pixs, COLOR_GREEN);
    pixb = pixGetRGBComponent(pixs, COLOR_BLUE);

    pixrf = pixRankFilterGray(pixr, wf, hf, rank);
    pixgf = pixRankFilterGray(pixg, wf, hf, rank);
    pixbf = pixRankFilterGray(pixb, wf, hf, rank);

    pixd = pixCreateRGBImage(pixrf, pixgf, pixbf);
    pixDestroy(&pixr);
    pixDestroy(&pixg);
    pixDestroy(&pixb);
    pixDestroy(&pixrf);
    pixDestroy(&pixgf);
    pixDestroy(&pixbf);
    return pixd;
}
Ejemplo n.º 10
0
/*!
 *  pixRotate180()
 *
 *      Input:  pixd  (<optional>; can be null, equal to pixs,
 *                     or different from pixs)
 *              pixs (all depths)
 *      Return: pixd, or null on error
 *
 *  Notes:
 *      (1) This does a 180 rotation of the image about the center,
 *          which is equivalent to a left-right flip about a vertical
 *          line through the image center, followed by a top-bottom
 *          flip about a horizontal line through the image center.
 *      (2) There are 3 cases for input:
 *          (a) pixd == null (creates a new pixd)
 *          (b) pixd == pixs (in-place operation)
 *          (c) pixd != pixs (existing pixd)
 *      (3) For clarity, use these three patterns, respectively:
 *          (a) pixd = pixRotate180(NULL, pixs);
 *          (b) pixRotate180(pixs, pixs);
 *          (c) pixRotate180(pixd, pixs);
 */
PIX *
pixRotate180(PIX  *pixd,
             PIX  *pixs)
{
l_int32  d;

    PROCNAME("pixRotate180");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    d = pixGetDepth(pixs);
    if (d != 1 && d != 2 && d != 4 && d != 8 && d != 16 && d != 32)
        return (PIX *)ERROR_PTR("pixs not in {1,2,4,8,16,32} bpp",
                                procName, NULL);

        /* Prepare pixd for in-place operation */
    if ((pixd = pixCopy(pixd, pixs)) == NULL)
	return (PIX *)ERROR_PTR("pixd not made", procName, NULL);

    pixFlipLR(pixd, pixd);
    pixFlipTB(pixd, pixd);
    return pixd;
}
Ejemplo n.º 11
0
// Creates and returns a Pix distorted by various means according to the bool
// flags. If boxes is not nullptr, the boxes are resized/positioned according to
// any spatial distortion and also by the integer reduction factor box_scale
// so they will match what the network will output.
// Returns nullptr on error. The returned Pix must be pixDestroyed.
Pix* PrepareDistortedPix(const Pix* pix, bool perspective, bool invert,
                         bool white_noise, bool smooth_noise, bool blur,
                         int box_reduction, TRand* randomizer,
                         GenericVector<TBOX>* boxes) {
  Pix* distorted = pixCopy(nullptr, const_cast<Pix*>(pix));
  // Things to do to synthetic training data.
  if (invert && randomizer->SignedRand(1.0) < 0)
    pixInvert(distorted, distorted);
  if ((white_noise || smooth_noise) && randomizer->SignedRand(1.0) > 0.0) {
    // TODO(rays) Cook noise in a more thread-safe manner than rand().
    // Attempt to make the sequences reproducible.
    srand(randomizer->IntRand());
    Pix* pixn = pixAddGaussianNoise(distorted, 8.0);
    pixDestroy(&distorted);
    if (smooth_noise) {
      distorted = pixBlockconv(pixn, 1, 1);
      pixDestroy(&pixn);
    } else {
      distorted = pixn;
    }
  }
  if (blur && randomizer->SignedRand(1.0) > 0.0) {
    Pix* blurred = pixBlockconv(distorted, 1, 1);
    pixDestroy(&distorted);
    distorted = blurred;
  }
  if (perspective)
    GeneratePerspectiveDistortion(0, 0, randomizer, &distorted, boxes);
  if (boxes != nullptr) {
    for (int b = 0; b < boxes->size(); ++b) {
      (*boxes)[b].scale(1.0f / box_reduction);
      if ((*boxes)[b].width() <= 0)
        (*boxes)[b].set_right((*boxes)[b].left() + 1);
    }
  }
  return distorted;
}
Ejemplo n.º 12
0
main(int    argc,
     char **argv)
{
l_int32      error;
l_uint32    *data;
PIX         *pix1, *pix2, *pix3, *pix1c, *pix2c, *pix1t, *pix2t, *pixd;
PIXA        *pixa;
static char  mainName[] = "pixmem_reg";

    error = 0;
    pixa = pixaCreate(0);

        /* Copy with internal resizing: onto a cmapped image */
    pix1 = pixRead("weasel4.16c.png");
    pix2 = pixRead("feyn-fract.tif");
    pix3 = pixRead("lucasta.150.jpg");
    fprintf(stderr, "before copy 2 --> 3\n");
    pixCopy(pix3, pix2);
    Compare(pix2, pix3, &error);
    pixSaveTiled(pix3, pixa, 4, 1, 30, 32);
    fprintf(stderr, "before copy 3 --> 1\n");
    pixCopy(pix1, pix3);
    Compare(pix2, pix1, &error);
    pixSaveTiled(pix1, pixa, 4, 0, 30, 32);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);

        /* Copy with internal resizing: from a cmapped image */
    pix1 = pixRead("weasel4.16c.png");
    pix2 = pixRead("feyn-fract.tif");
    pix3 = pixRead("lucasta.150.jpg");
    fprintf(stderr, "before copy 1 --> 2\n");
    pixCopy(pix2, pix1);
    Compare(pix2, pix1, &error);
    pixSaveTiled(pix2, pixa, 1, 1, 30, 32);
    fprintf(stderr, "before copy 2 --> 3\n");
    pixCopy(pix3, pix2);
    Compare(pix3, pix2, &error);
    pixSaveTiled(pix3, pixa, 1, 0, 30, 32);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);

        /* Transfer of data pixs --> pixd, when pixs is not cloned.
         * pixs is destroyed.  */
    pix1 = pixRead("weasel4.16c.png");
    pix2 = pixRead("feyn-fract.tif");
    pix3 = pixRead("lucasta.150.jpg");
    pix1c = pixCopy(NULL, pix1);
    fprintf(stderr, "before transfer 1 --> 2\n");
    pixTransferAllData(pix2, &pix1, 0, 0);
    Compare(pix2, pix1c, &error);
    pixSaveTiled(pix2, pixa, 1, 1, 30, 32);
    fprintf(stderr, "before transfer 2 --> 3\n");
    pixTransferAllData(pix3, &pix2, 0, 0);
    Compare(pix3, pix1c, &error);
    pixSaveTiled(pix3, pixa, 1, 0, 30, 32);
    pixDestroy(&pix1c);
    pixDestroy(&pix3);

        /* Another transfer of data pixs --> pixd, when pixs is not cloned.
         * pixs is destroyed. */
    pix1 = pixRead("weasel4.16c.png");
    pix2 = pixRead("feyn-fract.tif");
    pix3 = pixRead("lucasta.150.jpg");
    pix1c = pixCopy(NULL, pix1);
    pix2c = pixCopy(NULL, pix2);
    fprintf(stderr, "before copy transfer 1 --> 2\n");
    pixTransferAllData(pix2, &pix1c, 0, 0);
    Compare(pix2, pix1, &error);
    pixSaveTiled(pix2, pixa, 1, 0, 30, 32);
    fprintf(stderr, "before copy transfer 2 --> 3\n");
    pixTransferAllData(pix3, &pix2, 0, 0);
    Compare(pix3, pix1, &error);
    pixSaveTiled(pix3, pixa, 1, 0, 30, 32);
    pixDestroy(&pix1);
    pixDestroy(&pix2c);
    pixDestroy(&pix3);

        /* Transfer of data pixs --> pixd, when pixs is cloned.
         * pixs has its refcount reduced by 1. */
    pix1 = pixRead("weasel4.16c.png");
    pix2 = pixRead("feyn-fract.tif");
    pix3 = pixRead("lucasta.150.jpg");
    pix1c = pixClone(pix1);
    pix2c = pixClone(pix2);
    fprintf(stderr, "before clone transfer 1 --> 2\n");
    pixTransferAllData(pix2, &pix1c, 0, 0);
    Compare(pix2, pix1, &error);
    pixSaveTiled(pix2, pixa, 1, 0, 30, 32);
    fprintf(stderr, "before clone transfer 2 --> 3\n");
    pixTransferAllData(pix3, &pix2c, 0, 0);
    Compare(pix3, pix1, &error);
    pixSaveTiled(pix3, pixa, 1, 0, 30, 32);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);

        /* Extraction of data when pixs is not cloned, putting
         * the data into a new template of pixs. */
    pix2 = pixRead("feyn-fract.tif");
    fprintf(stderr, "no clone: before extraction and reinsertion of 2\n");
    pix2c = pixCopy(NULL, pix2);  /* for later reference */
    data = pixExtractData(pix2);
    pix2t = pixCreateTemplateNoInit(pix2);
    pixFreeData(pix2t);
    pixSetData(pix2t, data);
    Compare(pix2c, pix2t, &error);
    pixSaveTiled(pix2t, pixa, 4, 1, 30, 32);
    pixDestroy(&pix2);
    pixDestroy(&pix2c);
    pixDestroy(&pix2t);

        /* Extraction of data when pixs is cloned, putting
         * a copy of the data into a new template of pixs. */
    pix1 = pixRead("weasel4.16c.png");
    fprintf(stderr, "clone: before extraction and reinsertion of 1\n");
    pix1c = pixClone(pix1);  /* bump refcount of pix1 to 2 */
    data = pixExtractData(pix1);  /* should make a copy of data */
    pix1t = pixCreateTemplateNoInit(pix1);
    pixFreeData(pix1t);
    pixSetData(pix1t, data);
    Compare(pix1c, pix1t, &error);
    pixSaveTiled(pix1t, pixa, 1, 0, 30, 32);
    pixDestroy(&pix1);
    pixDestroy(&pix1c);
    pixDestroy(&pix1t);

    pixd = pixaDisplay(pixa, 0, 0);
    pixDisplay(pixd, 100, 100);
    pixWrite("/tmp/junkpixmem.png", pixd, IFF_PNG);
    pixaDestroy(&pixa);
    pixDestroy(&pixd);

    if (error)
        fprintf(stderr, "Fail: an error occurred\n");
    else
        fprintf(stderr, "Success: no errors\n");
    return 0;
}
Ejemplo n.º 13
0
l_int32 main(int    argc,
             char **argv)
{
l_int32       irval, igval, ibval;
l_float32     rval, gval, bval, fract, fgfract;
L_BMF        *bmf;
BOX          *box;
BOXA         *boxa;
FPIX         *fpix;
PIX          *pixs, *pix1, *pix2, *pix3, *pix4, *pix5, *pix6, *pix7;
PIX          *pix8, *pix9, *pix10, *pix11, *pix12, *pix13, *pix14, *pix15;
PIXA         *pixa;
L_REGPARAMS  *rp;

    if (regTestSetup(argc, argv, &rp))
              return 1;

    pixa = pixaCreate(0);
    pixs = pixRead("breviar38.150.jpg");
/*    pixs = pixRead("breviar32.150.jpg"); */
    pixaAddPix(pixa, pixs, L_CLONE);
    regTestWritePixAndCheck(rp, pixs, IFF_JFIF_JPEG);  /* 0 */
    pixDisplayWithTitle(pixs, 0, 0, "Input image", rp->display);

        /* Extract the blue component, which is small in all the text
         * regions, including in the highlight color region */
    pix1 = pixGetRGBComponent(pixs, COLOR_BLUE);
    pixaAddPix(pixa, pix1, L_CLONE);
    regTestWritePixAndCheck(rp, pix1, IFF_JFIF_JPEG);  /* 1 */
    pixDisplayWithTitle(pix1, 200, 0, "Blue component", rp->display);

        /* Do a background normalization, with the background set to
         * approximately 200 */
    pix2 = pixBackgroundNormSimple(pix1, NULL, NULL);
    pixaAddPix(pixa, pix2, L_COPY);
    regTestWritePixAndCheck(rp, pix2, IFF_JFIF_JPEG);  /* 2 */
    pixDisplayWithTitle(pix2, 400, 0, "BG normalized to 200", rp->display);

        /* Do a linear transform on the gray pixels, with 50 going to
         * black and 160 going to white.  50 is sufficiently low to
         * make both the red and black print quite dark.  Quantize
         * to a few equally spaced gray levels.  This is the image
         * to which highlight color will be applied. */
    pixGammaTRC(pix2, pix2, 1.0, 50, 160);
    pix3 = pixThresholdOn8bpp(pix2, 7, 1);
    pixaAddPix(pixa, pix3, L_CLONE);
    regTestWritePixAndCheck(rp, pix3, IFF_JFIF_JPEG);  /* 3 */
    pixDisplayWithTitle(pix3, 600, 0, "Basic quantized with white bg",
                        rp->display);

        /* Identify the regions of red text.  First, make a mask
         * consisting of all pixels such that (R-B)/B is larger
         * than 2.0.  This will have all the red, plus a lot of
         * the dark pixels. */
    fpix = pixComponentFunction(pixs, 1.0, 0.0, -1.0, 0.0, 0.0, 1.0);
    pix4 = fpixThresholdToPix(fpix, 2.0);
    pixInvert(pix4, pix4);  /* red plus some dark text */
    pixaAddPix(pixa, pix4, L_CLONE);
    regTestWritePixAndCheck(rp, pix4, IFF_PNG);  /* 4 */
    pixDisplayWithTitle(pix4, 800, 0, "Red plus dark pixels", rp->display);

        /* Make a mask consisting of all the red and background pixels */
    pix5 = pixGetRGBComponent(pixs, COLOR_RED);
    pix6 = pixThresholdToBinary(pix5, 128);
    pixInvert(pix6, pix6);  /* red plus background (white) */

        /* Intersect the two masks to get a mask consisting of pixels
         * that are almost certainly red.  This is the seed. */
    pix7 = pixAnd(NULL, pix4, pix6);  /* red only (seed) */
    pixaAddPix(pixa, pix7, L_COPY);
    regTestWritePixAndCheck(rp, pix7, IFF_PNG);  /* 5 */
    pixDisplayWithTitle(pix7, 0, 600, "Seed for red color", rp->display);

        /* Make the clipping mask by thresholding the image with
         * the background cleaned to white. */
    pix8 =  pixThresholdToBinary(pix2, 230);  /* mask */
    pixaAddPix(pixa, pix8, L_CLONE);
    regTestWritePixAndCheck(rp, pix8, IFF_PNG);  /* 6 */
    pixDisplayWithTitle(pix8, 200, 600, "Clipping mask for red components",
                        rp->display);

        /* Fill into the mask from the seed */
    pixSeedfillBinary(pix7, pix7, pix8, 8);  /* filled: red plus touching */
    regTestWritePixAndCheck(rp, pix7, IFF_PNG);  /* 7 */
    pixDisplayWithTitle(pix7, 400, 600, "Red component mask filled",
                        rp->display);

        /* Remove long horizontal and vertical lines from the filled result */
    pix9 = pixMorphSequence(pix7, "o40.1", 0);
    pixSubtract(pix7, pix7, pix9);  /* remove long horizontal lines */
    pixDestroy(&pix9);
    pix9 = pixMorphSequence(pix7, "o1.40", 0);
    pixSubtract(pix7, pix7, pix9);  /* remove long vertical lines */

        /* Close the regions to be colored  */
    pix10 = pixMorphSequence(pix7, "c5.1", 0);
    pixaAddPix(pixa, pix10, L_CLONE);
    regTestWritePixAndCheck(rp, pix10, IFF_PNG);  /* 8 */
    pixDisplayWithTitle(pix10, 600, 600,
                        "Components defining regions allowing coloring",
                        rp->display);

        /* Sanity check on amount to be colored.  Only accept images
         * with less than 10% of all the pixels with highlight color */
    pixForegroundFraction(pix10, &fgfract);
    if (fgfract >= 0.10) {
        L_INFO("too much highlighting: fract = %6.3f; removing it\n",
               rp->testname, fgfract);
        pixClearAll(pix10);
        pixSetPixel(pix10, 0, 0, 1);
    }

        /* Get the bounding boxes of the regions to be colored */
    boxa = pixConnCompBB(pix10, 8);

        /* Get a color to paint that is representative of the
         * actual highlight color in the image.  Scale each
         * color component up from the average by an amount necessary
         * to saturate the red.  Then divide the green and
         * blue components by 2.0.  */
    pixGetAverageMaskedRGB(pixs, pix7, 0, 0, 1, L_MEAN_ABSVAL,
                           &rval, &gval, &bval);
    fract = 255.0 / rval;
    irval = lept_roundftoi(fract * rval);
    igval = lept_roundftoi(fract * gval / 2.0);
    ibval = lept_roundftoi(fract * bval / 2.0);
    fprintf(stderr, "(r,g,b) = (%d,%d,%d)\n", irval, igval, ibval);

        /* Color the quantized gray version in the selected regions */
    pix11 = pixColorGrayRegions(pix3, boxa, L_PAINT_DARK, 220, irval,
                                igval, ibval);
    pixaAddPix(pixa, pix11, L_CLONE);
    regTestWritePixAndCheck(rp, pix11, IFF_PNG);  /* 9 */
    pixDisplayWithTitle(pix11, 800, 600, "Final colored result", rp->display);
    pixaAddPix(pixa, pixs, L_CLONE);

        /* Test colorization on gray and cmapped gray */
    pix12 = pixColorGrayRegions(pix2, boxa, L_PAINT_DARK, 220, 0, 255, 0);
    pixaAddPix(pixa, pix12, L_CLONE);
    regTestWritePixAndCheck(rp, pix12, IFF_PNG);  /* 10 */
    pixDisplayWithTitle(pix12, 900, 600, "Colorizing boxa gray", rp->display);

    box = boxCreate(200, 200, 250, 350);
    pix13 = pixCopy(NULL, pix2);
    pixColorGray(pix13, box, L_PAINT_DARK, 220, 0, 0, 255);
    pixaAddPix(pixa, pix13, L_CLONE);
    regTestWritePixAndCheck(rp, pix13, IFF_PNG);  /* 11 */
    pixDisplayWithTitle(pix13, 1000, 600, "Colorizing box gray", rp->display);

    pix14 = pixThresholdTo4bpp(pix2, 6, 1);
    pix15 = pixColorGrayRegions(pix14, boxa, L_PAINT_DARK, 220, 0, 0, 255);
    pixaAddPix(pixa, pix15, L_CLONE);
    regTestWritePixAndCheck(rp, pix15, IFF_PNG);  /* 12 */
    pixDisplayWithTitle(pix15, 1100, 600, "Colorizing boxa cmap", rp->display);

    pixColorGrayCmap(pix14, box, L_PAINT_DARK, 0, 255, 255);
    pixaAddPix(pixa, pix14, L_CLONE);
    regTestWritePixAndCheck(rp, pix14, IFF_PNG);  /* 13 */
    pixDisplayWithTitle(pix14, 1200, 600, "Colorizing box cmap", rp->display);
    boxDestroy(&box);

        /* Generate a pdf of the intermediate results */
    lept_mkdir("lept");
    L_INFO("Writing to /tmp/lept/colorize.pdf\n", rp->testname);
    pixaConvertToPdf(pixa, 90, 1.0, 0, 0, "Colorizing highlighted text",
                     "/tmp/lept/colorize.pdf");


    pixaDestroy(&pixa);
    fpixDestroy(&fpix);
    boxDestroy(&box);
    boxaDestroy(&boxa);
    pixDestroy(&pixs);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
    pixDestroy(&pix5);
    pixDestroy(&pix6);
    pixDestroy(&pix7);
    pixDestroy(&pix8);
    pixDestroy(&pix9);
    pixDestroy(&pix10);
    pixDestroy(&pix11);
    pixDestroy(&pix12);
    pixDestroy(&pix13);
    pixDestroy(&pix14);
    pixDestroy(&pix15);

        /* Test the color detector */
    pixa = pixaCreate(7);
    bmf = bmfCreate("./fonts", 4);
    pix1 = TestForRedColor(rp, "brev06.75.jpg", 1, bmf);  /* 14 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev10.75.jpg", 0, bmf);  /* 15 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev14.75.jpg", 1, bmf);  /* 16 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev20.75.jpg", 1, bmf);  /* 17 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev36.75.jpg", 0, bmf);  /* 18 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev53.75.jpg", 1, bmf);  /* 19 */
    pixaAddPix(pixa, pix1, L_INSERT);
    pix1 = TestForRedColor(rp, "brev56.75.jpg", 1, bmf);  /* 20 */
    pixaAddPix(pixa, pix1, L_INSERT);

        /* Generate a pdf of the color detector results */
    L_INFO("Writing to /tmp/lept/colordetect.pdf\n", rp->testname);
    pixaConvertToPdf(pixa, 45, 1.0, 0, 0, "Color detection",
                     "/tmp/lept/colordetect.pdf");
    pixaDestroy(&pixa);
    bmfDestroy(&bmf);

    return regTestCleanup(rp);
}
Ejemplo n.º 14
0
/*!
 *  pixGrayMorphSequence()
 *
 *      Input:  pixs
 *              sequence (string specifying sequence)
 *              dispsep (horizontal separation in pixels between
 *                       successive displays; use zero to suppress display)
 *              dispy (if dispsep != 0, this gives the y-value of the
 *                     UL corner for display; otherwise it is ignored)
 *      Return: pixd, or null on error
 *
 *  Notes:
 *      (1) This works on 8 bpp grayscale images.
 *      (2) This runs a pipeline of operations; no branching is allowed.
 *      (3) This only uses brick SELs.
 *      (4) A new image is always produced; the input image is not changed.
 *      (5) This contains an interpreter, allowing sequences to be
 *          generated and run.
 *      (6) The format of the sequence string is defined below.
 *      (7) In addition to morphological operations, the composite
 *          morph/subtract tophat can be performed.
 *      (8) Sel sizes (width, height) must each be odd numbers.
 *      (9) Intermediate results can optionally be displayed
 *      (10) The sequence string is formatted as follows:
 *            - An arbitrary number of operations,  each separated
 *              by a '+' character.  White space is ignored.
 *            - Each operation begins with a case-independent character
 *              specifying the operation:
 *                 d or D  (dilation)
 *                 e or E  (erosion)
 *                 o or O  (opening)
 *                 c or C  (closing)
 *                 t or T  (tophat)
 *            - The args to the morphological operations are bricks of hits,
 *              and are formatted as a.b, where a and b are horizontal and
 *              vertical dimensions, rsp. (each must be an odd number)
 *            - The args to the tophat are w or W (for white tophat)
 *              or b or B (for black tophat), followed by a.b as for
 *              the dilation, erosion, opening and closing.
 *           Example valid sequences are:
 *             "c5.3 + o7.5"
 *             "c9.9 + tw9.9"
 */
PIX *
pixGrayMorphSequence(PIX         *pixs,
                     const char  *sequence,
                     l_int32      dispsep,
                     l_int32      dispy)
{
char    *rawop, *op;
l_int32  nops, i, valid, w, h, x;
PIX     *pixt1, *pixt2;
SARRAY  *sa;

    PROCNAME("pixGrayMorphSequence");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (!sequence)
        return (PIX *)ERROR_PTR("sequence not defined", procName, NULL);

        /* Split sequence into individual operations */
    sa = sarrayCreate(0);
    sarraySplitString(sa, sequence, "+");
    nops = sarrayGetCount(sa);

        /* Verify that the operation sequence is valid */
    valid = TRUE;
    for (i = 0; i < nops; i++) {
        rawop = sarrayGetString(sa, i, 0);
        op = stringRemoveChars(rawop, " \n\t");
        switch (op[0])
        {
        case 'd':
        case 'D':
        case 'e':
        case 'E':
        case 'o':
        case 'O':
        case 'c':
        case 'C':
            if (sscanf(&op[1], "%d.%d", &w, &h) != 2) {
                fprintf(stderr, "*** op: %s invalid\n", op);
                valid = FALSE;
                break;
            }
            if (w < 1 || (w & 1) == 0 || h < 1 || (h & 1) == 0 ) {
                fprintf(stderr,
                        "*** op: %s; w = %d, h = %d; must both be odd\n",
                        op, w, h);
                valid = FALSE;
                break;
            }
/*            fprintf(stderr, "op = %s; w = %d, h = %d\n", op, w, h); */
            break;
        case 't':
        case 'T':
            if (op[1] != 'w' && op[1] != 'W' &&
                op[1] != 'b' && op[1] != 'B') {
                fprintf(stderr,
                        "*** op = %s; arg %c must be 'w' or 'b'\n", op, op[1]);
                valid = FALSE;
                break;
            }
            sscanf(&op[2], "%d.%d", &w, &h);
            if (w < 1 || (w & 1) == 0 || h < 1 || (h & 1) == 0 ) {
                fprintf(stderr,
                        "*** op: %s; w = %d, h = %d; must both be odd\n",
                        op, w, h);
                valid = FALSE;
                break;
            }
/*            fprintf(stderr, "op = %s", op); */
            break;
        default:
            fprintf(stderr, "*** nonexistent op = %s\n", op);
            valid = FALSE;
        }
        FREE(op);
    }
    if (!valid) {
        sarrayDestroy(&sa);
        return (PIX *)ERROR_PTR("sequence invalid", procName, NULL);
    }

        /* Parse and operate */
    pixt1 = pixCopy(NULL, pixs);
    pixt2 = NULL;
    x = 0;
    for (i = 0; i < nops; i++) {
        rawop = sarrayGetString(sa, i, 0);
        op = stringRemoveChars(rawop, " \n\t");
        switch (op[0])
        {
        case 'd':
        case 'D':
            sscanf(&op[1], "%d.%d", &w, &h);
            pixt2 = pixDilateGray(pixt1, w, h);
            pixDestroy(&pixt1);
            pixt1 = pixClone(pixt2);
            pixDestroy(&pixt2);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, dispy);
                x += dispsep;
            }
            break;
        case 'e':
        case 'E':
            sscanf(&op[1], "%d.%d", &w, &h);
            pixt2 = pixErodeGray(pixt1, w, h);
            pixDestroy(&pixt1);
            pixt1 = pixClone(pixt2);
            pixDestroy(&pixt2);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, dispy);
                x += dispsep;
            }
            break;
        case 'o':
        case 'O':
            sscanf(&op[1], "%d.%d", &w, &h);
            pixt2 = pixOpenGray(pixt1, w, h);
            pixDestroy(&pixt1);
            pixt1 = pixClone(pixt2);
            pixDestroy(&pixt2);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, dispy);
                x += dispsep;
            }
            break;
        case 'c':
        case 'C':
            sscanf(&op[1], "%d.%d", &w, &h);
            pixt2 = pixCloseGray(pixt1, w, h);
            pixDestroy(&pixt1);
            pixt1 = pixClone(pixt2);
            pixDestroy(&pixt2);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, dispy);
                x += dispsep;
            }
            break;
        case 't':
        case 'T':
            sscanf(&op[2], "%d.%d", &w, &h);
            if (op[1] == 'w' || op[1] == 'W')
                pixt2 = pixTophat(pixt1, w, h, L_TOPHAT_WHITE);
            else   /* 'b' or 'B' */
                pixt2 = pixTophat(pixt1, w, h, L_TOPHAT_BLACK);
            pixDestroy(&pixt1);
            pixt1 = pixClone(pixt2);
            pixDestroy(&pixt2);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, dispy);
                x += dispsep;
            }
            break;
        default:
            /* All invalid ops are caught in the first pass */
            break;
        }
        FREE(op);
    }

    sarrayDestroy(&sa);
    return pixt1;
}
Ejemplo n.º 15
0
int main(int    argc,
         char **argv)
{
char        *filein, *fileout;
l_int32      i, w, h, liney, linex, same;
l_float32    angle, deg2rad;
PIX         *pixt1, *pixt2, *pixs, *pixd;
static char  mainName[] = "sheartest";

    if (argc != 4)
        return ERROR_INT(" Syntax:  sheartest filein angle fileout",
                         mainName, 1);

        /* Compare in-place H shear with H shear to a new pix */
    pixt1 = pixRead("marge.jpg");
    pixGetDimensions(pixt1, &w, &h, NULL);
    pixt2 = pixHShear(NULL, pixt1, (l_int32)(0.3 * h), 0.17, L_BRING_IN_WHITE);
    pixHShearIP(pixt1, (l_int32)(0.3 * h), 0.17, L_BRING_IN_WHITE);
    pixEqual(pixt1, pixt2, &same);
    if (same)
        fprintf(stderr, "Correct for H shear\n");
    else
        fprintf(stderr, "Error for H shear\n");
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);

        /* Compare in-place V shear with V shear to a new pix */
    pixt1 = pixRead("marge.jpg");
    pixGetDimensions(pixt1, &w, &h, NULL);
    pixt2 = pixVShear(NULL, pixt1, (l_int32)(0.3 * w), 0.17, L_BRING_IN_WHITE);
    pixVShearIP(pixt1, (l_int32)(0.3 * w), 0.17, L_BRING_IN_WHITE);
    pixEqual(pixt1, pixt2, &same);
    if (same)
        fprintf(stderr, "Correct for V shear\n");
    else
        fprintf(stderr, "Error for V shear\n");
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);

    filein = argv[1];
    angle = atof(argv[2]);
    fileout = argv[3];
    deg2rad = 3.1415926535 / 180.;

    if ((pixs = pixRead(filein)) == NULL)
        return ERROR_INT("pix not made", mainName, 1);

    pixGetDimensions(pixs, &w, &h, NULL);

#if 0
        /* Select an operation from this list ...
         * ------------------------------------------
    pixd = pixHShear(NULL, pixs, liney, deg2rad * angle, L_BRING_IN_WHITE);
    pixd = pixVShear(NULL, pixs, linex, deg2rad * angle, L_BRING_IN_WHITE);
    pixd = pixHShearCorner(NULL, pixs, deg2rad * angle, L_BRING_IN_WHITE);
    pixd = pixVShearCorner(NULL, pixs, deg2rad * angle, L_BRING_IN_WHITE);
    pixd = pixHShearCenter(NULL, pixs, deg2rad * angle, L_BRING_IN_WHITE);
    pixd = pixVShearCenter(NULL, pixs, deg2rad * angle, L_BRING_IN_WHITE);
    pixHShearIP(pixs, liney, deg2rad * angle, L_BRING_IN_WHITE); pixd = pixs;
    pixVShearIP(pixs, linex, deg2rad * angle, L_BRING_IN_WHITE); pixd = pixs;
    pixRasteropHip(pixs, 0, h/3, -50, L_BRING_IN_WHITE); pixd = pixs;
    pixRasteropVip(pixs, 0, w/3, -50, L_BRING_IN_WHITE); pixd = pixs;
         * ------------------------------------------
         *  ... and use it in the following:         */
    pixd = pixHShear(NULL, pixs, liney, deg2rad * angle, L_BRING_IN_WHITE);
    pixWrite(fileout, pixd, IFF_PNG);
    pixDisplay(pixd, 50, 50);
    pixDestroy(&pixd);
#endif

#if 0
        /* Do a horizontal shear about a line */
    for (i = 0; i < NTIMES; i++) {
        liney = i * h / (NTIMES - 1);
        if (liney >= h)
            liney = h - 1;
        pixd = pixHShear(NULL, pixs, liney, deg2rad * angle, L_BRING_IN_WHITE);
        pixDisplay(pixd, 50 + 10 * i, 50 + 10 * i);
        pixDestroy(&pixd);
    }
#endif

#if 0
        /* Do a vertical shear about a line */
    for (i = 0; i < NTIMES; i++) {
        linex = i * w / (NTIMES - 1);
        if (linex >= w)
            linex = w - 1;
        pixd = pixVShear(NULL, pixs, linex, deg2rad * angle, L_BRING_IN_WHITE);
        pixDisplay(pixd, 50 + 10 * i, 50 + 10 * i);
        pixDestroy(&pixd);
    }
#endif

#if 0
        /* Do a horizontal in-place shear about a line */
    pixSetPadBits(pixs, 0);
    for (i = 0; i < NTIMES; i++) {
        pixd = pixCopy(NULL, pixs);
        liney = i * h / (NTIMES - 1);
        if (liney >= h)
            liney = h - 1;
        pixHShearIP(pixd, liney, deg2rad * angle, L_BRING_IN_WHITE);
        pixDisplay(pixd, 50 + 10 * i, 50 + 10 * i);
        pixDestroy(&pixd);
    }
#endif

#if 0
        /* Do a vertical in-place shear about a line */
    for (i = 0; i < NTIMES; i++) {
        pixd = pixCopy(NULL, pixs);
        linex = i * w / (NTIMES - 1);
        if (linex >= w)
            linex = w - 1;
        pixVShearIP(pixd, linex, deg2rad * angle, L_BRING_IN_WHITE);
        pixDisplay(pixd, 50 + 10 * i, 50 + 10 * i);
        pixDestroy(&pixd);
    }
#endif

    pixDestroy(&pixs);
    return 0;
}
Ejemplo n.º 16
0
/*!
 *  pixThinGeneral()
 *
 *      Input:  pixs (1 bpp)
 *              type (L_THIN_FG, L_THIN_BG)
 *              sela (of Sels for parallel composite HMTs)
 *              maxiters (max number of iters allowed; use 0 to iterate
 *                        until completion)
 *      Return: pixd, or null on error
 *
 *  Notes:
 *      (1) See notes in pixThin().  That function chooses among
 *          the best of the Sels for thinning.
 *      (2) This is a general function that takes a Sela of HMTs
 *          that are used in parallel for thinning from each
 *          of four directions.  One iteration consists of four
 *          such parallel thins.
 */
PIX *
pixThinGeneral(PIX     *pixs,
               l_int32  type,
               SELA    *sela,
               l_int32  maxiters)
{
l_int32  i, j, r, nsels, same;
PIXA    *pixahmt;
PIX    **pixhmt;  /* array owned by pixahmt; do not destroy! */
PIX     *pixd, *pixt;
SEL     *sel, *selr;

    PROCNAME("pixThinGeneral");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (pixGetDepth(pixs) != 1)
        return (PIX *)ERROR_PTR("pixs not 1 bpp", procName, NULL);
    if (type != L_THIN_FG && type != L_THIN_BG)
        return (PIX *)ERROR_PTR("invalid fg/bg type", procName, NULL);
    if (!sela)
        return (PIX *)ERROR_PTR("sela not defined", procName, NULL);
    if (maxiters == 0) maxiters = 10000;

        /* Set up array of temp pix to hold hmts */
    nsels = selaGetCount(sela);
    pixahmt = pixaCreate(nsels);
    for (i = 0; i < nsels; i++) {
        pixt = pixCreateTemplate(pixs);
        pixaAddPix(pixahmt, pixt, L_INSERT);
    }
    pixhmt = pixaGetPixArray(pixahmt);
    if (!pixhmt)
        return (PIX *)ERROR_PTR("pixhmt array not made", procName, NULL);

#if  DEBUG_SELS
    pixt = selaDisplayInPix(sela, 35, 3, 15, 4);
    pixDisplayWithTitle(pixt, 100, 100, "allsels", 1);
    pixDestroy(&pixt);
#endif  /* DEBUG_SELS */

        /* Set up initial image for fg thinning */
    if (type == L_THIN_FG)
        pixd = pixCopy(NULL, pixs);
    else  /* bg thinning */
        pixd = pixInvert(NULL, pixs);

        /* Thin the fg, with up to maxiters iterations */
    for (i = 0; i < maxiters; i++) {
        pixt = pixCopy(NULL, pixd);  /* test for completion */
        for (r = 0; r < 4; r++) {  /* over 90 degree rotations of Sels */
            for (j = 0; j < nsels; j++) {  /* over individual sels in sela */
                sel = selaGetSel(sela, j);  /* not a copy */
                selr = selRotateOrth(sel, r);
                pixHMT(pixhmt[j], pixd, selr);
                selDestroy(&selr);
                if (j > 0)
                    pixOr(pixhmt[0], pixhmt[0], pixhmt[j]);  /* accum result */
            }
            pixSubtract(pixd, pixd, pixhmt[0]);  /* remove result */
        }
        pixEqual(pixd, pixt, &same);
        pixDestroy(&pixt);
        if (same) {
            L_INFO("%d iterations to completion\n", procName, i);
            break;
        }
    }

    if (type == L_THIN_BG)
        pixInvert(pixd, pixd);

    pixaDestroy(&pixahmt);
    return pixd;
}
Ejemplo n.º 17
0
/*!
 *  pixMorphCompSequenceDwa()
 *
 *      Input:  pixs
 *              sequence (string specifying sequence)
 *              dispsep (horizontal separation in pixels between
 *                       successive displays; use zero to suppress display)
 *      Return: pixd, or null on error
 *
 *  Notes:
 *      (1) This does dwa morphology on binary images, using brick Sels.
 *      (2) This runs a pipeline of operations; no branching is allowed.
 *      (3) It implements all brick Sels that have dimensions up to 63
 *          on each side, using a composite (linear + comb) when useful.
 *      (4) A new image is always produced; the input image is not changed.
 *      (5) This contains an interpreter, allowing sequences to be
 *          generated and run.
 *      (6) See pixMorphSequence() for further information about usage.
 */
PIX *
pixMorphCompSequenceDwa(PIX         *pixs,
                        const char  *sequence,
                        l_int32      dispsep)
{
char    *rawop, *op;
l_int32  nops, i, j, nred, fact, w, h, x, y, border;
l_int32  level[4];
PIX     *pixt1, *pixt2;
SARRAY  *sa;

    PROCNAME("pixMorphCompSequenceDwa");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (!sequence)
        return (PIX *)ERROR_PTR("sequence not defined", procName, NULL);

        /* Split sequence into individual operations */
    sa = sarrayCreate(0);
    sarraySplitString(sa, sequence, "+");
    nops = sarrayGetCount(sa);

    if (!morphSequenceVerify(sa)) {
        sarrayDestroy(&sa);
        return (PIX *)ERROR_PTR("sequence not valid", procName, NULL);
    }

        /* Parse and operate */
    border = 0;
    pixt1 = pixCopy(NULL, pixs);
    pixt2 = NULL;
    x = y = 0;
    for (i = 0; i < nops; i++) {
        rawop = sarrayGetString(sa, i, 0);
        op = stringRemoveChars(rawop, " \n\t");
        switch (op[0])
        {
        case 'd':
        case 'D':
            sscanf(&op[1], "%d.%d", &w, &h);
            pixt2 = pixDilateCompBrickDwa(NULL, pixt1, w, h);
            pixDestroy(&pixt1);
            pixt1 = pixClone(pixt2);
            pixDestroy(&pixt2);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, y);
                x += dispsep;
            }
            break;
        case 'e':
        case 'E':
            sscanf(&op[1], "%d.%d", &w, &h);
            pixt2 = pixErodeCompBrickDwa(NULL, pixt1, w, h);
            pixDestroy(&pixt1);
            pixt1 = pixClone(pixt2);
            pixDestroy(&pixt2);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, y);
                x += dispsep;
            }
            break;
        case 'o':
        case 'O':
            sscanf(&op[1], "%d.%d", &w, &h);
            pixOpenCompBrickDwa(pixt1, pixt1, w, h);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, y);
                x += dispsep;
            }
            break;
        case 'c':
        case 'C':
            sscanf(&op[1], "%d.%d", &w, &h);
            pixCloseCompBrickDwa(pixt1, pixt1, w, h);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, y);
                x += dispsep;
            }
            break;
        case 'r':
        case 'R':
            nred = strlen(op) - 1;
            for (j = 0; j < nred; j++)
                level[j] = op[j + 1] - '0';
            for (j = nred; j < 4; j++)
                level[j] = 0;
            pixt2 = pixReduceRankBinaryCascade(pixt1, level[0], level[1],
                                               level[2], level[3]);
            pixDestroy(&pixt1);
            pixt1 = pixClone(pixt2);
            pixDestroy(&pixt2);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, y);
                x += dispsep;
            }
            break;
        case 'x':
        case 'X':
            sscanf(&op[1], "%d", &fact);
            pixt2 = pixExpandReplicate(pixt1, fact);
            pixDestroy(&pixt1);
            pixt1 = pixClone(pixt2);
            pixDestroy(&pixt2);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, y);
                x += dispsep;
            }
            break;
        case 'b':
        case 'B':
            sscanf(&op[1], "%d", &border);
            pixt2 = pixAddBorder(pixt1, border, 0);
            pixDestroy(&pixt1);
            pixt1 = pixClone(pixt2);
            pixDestroy(&pixt2);
            if (dispsep > 0) {
                pixDisplay(pixt1, x, y);
                x += dispsep;
            }
            break;
        default:
            /* All invalid ops are caught in the first pass */
            break;
        }
        FREE(op);
    }
    if (border > 0) {
        pixt2 = pixRemoveBorder(pixt1, border);
        pixDestroy(&pixt1);
        pixt1 = pixClone(pixt2);
        pixDestroy(&pixt2);
    }

    sarrayDestroy(&sa);
    return pixt1;
}
Ejemplo n.º 18
0
/*!
 * \brief   pixConnCompPixa()
 *
 * \param[in]    pixs 1 bpp
 * \param[out]   ppixa pixa of each c.c.
 * \param[in]    connectivity 4 or 8
 * \return  boxa, or NULL on error
 *
 * <pre>
 * Notes:
 *      (1) This finds bounding boxes of 4- or 8-connected components
 *          in a binary image, and saves images of each c.c
 *          in a pixa array.
 *      (2) It sets up 2 temporary pix, and for each c.c. that is
 *          located in raster order, it erases the c.c. from one pix,
 *          then uses the b.b. to extract the c.c. from the two pix using
 *          an XOR, and finally erases the c.c. from the second pix.
 *      (3) A clone of the returned boxa (where all boxes in the array
 *          are clones) is inserted into the pixa.
 *      (4) If the input is valid, this always returns a boxa and a pixa.
 *          If pixs is empty, the boxa and pixa will be empty.
 * </pre>
 */
BOXA *
pixConnCompPixa(PIX     *pixs,
                PIXA   **ppixa,
                l_int32  connectivity)
{
    l_int32   h, iszero;
    l_int32   x, y, xstart, ystart;
    PIX      *pix1, *pix2, *pix3, *pix4;
    PIXA     *pixa;
    BOX      *box;
    BOXA     *boxa;
    L_STACK  *stack, *auxstack;

    PROCNAME("pixConnCompPixa");

    if (!ppixa)
        return (BOXA *)ERROR_PTR("&pixa not defined", procName, NULL);
    *ppixa = NULL;
    if (!pixs || pixGetDepth(pixs) != 1)
        return (BOXA *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL);
    if (connectivity != 4 && connectivity != 8)
        return (BOXA *)ERROR_PTR("connectivity not 4 or 8", procName, NULL);

    boxa = NULL;
    pix1 = pix2 = pix3 = pix4 = NULL;
    stack = NULL;

    pixZero(pixs, &iszero);
    if (iszero)
        return boxaCreate(1);  /* return empty boxa */

    pix1 = pixCopy(NULL, pixs);
    pix2 = pixCopy(NULL, pixs);
    if (!pix1 || !pix2) {
        L_ERROR("pix1 or pix2 not made\n", procName);
        goto cleanup;
    }

    h = pixGetHeight(pixs);
    if ((stack = lstackCreate(h)) == NULL) {
        L_ERROR("stack not made\n", procName);
        goto cleanup;
    }
    auxstack = lstackCreate(0);
    stack->auxstack = auxstack;
    pixa = pixaCreate(0);
    boxa = boxaCreate(0);

    xstart = 0;
    ystart = 0;
    while (1) {
        if (!nextOnPixelInRaster(pix1, xstart, ystart, &x, &y))
            break;

        if ((box = pixSeedfillBB(pix1, stack, x, y, connectivity)) == NULL) {
            L_ERROR("box not made\n", procName);
            pixaDestroy(&pixa);
            boxaDestroy(&boxa);
            goto cleanup;
        }
        boxaAddBox(boxa, box, L_INSERT);

        /* Save the c.c. and remove from pix2 as well */
        pix3 = pixClipRectangle(pix1, box, NULL);
        pix4 = pixClipRectangle(pix2, box, NULL);
        pixXor(pix3, pix3, pix4);
        pixRasterop(pix2, box->x, box->y, box->w, box->h, PIX_SRC ^ PIX_DST,
                    pix3, 0, 0);
        pixaAddPix(pixa, pix3, L_INSERT);
        pixDestroy(&pix4);

        xstart = x;
        ystart = y;
    }

#if  DEBUG
    pixCountPixels(pix1, &iszero, NULL);
    fprintf(stderr, "Number of remaining pixels = %d\n", iszero);
    pixWrite("junkremain", pix1, IFF_PNG);
#endif  /* DEBUG */

    /* Remove old boxa of pixa and replace with a clone copy */
    boxaDestroy(&pixa->boxa);
    pixa->boxa = boxaCopy(boxa, L_CLONE);
    *ppixa = pixa;

    /* Cleanup, freeing the fillsegs on each stack */
cleanup:
    lstackDestroy(&stack, TRUE);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    return boxa;
}
// Top-level method to perform splitting based on current settings.
// Returns true if a split was actually performed.
// split_for_pageseg should be true if the splitting is being done prior to
// page segmentation. This mode uses the flag
// pageseg_devanagari_split_strategy to determine the splitting strategy.
bool ShiroRekhaSplitter::Split(bool split_for_pageseg) {
  SplitStrategy split_strategy = split_for_pageseg ? pageseg_split_strategy_ :
      ocr_split_strategy_;
  if (split_strategy == NO_SPLIT) {
    return false;  // Nothing to do.
  }
  ASSERT_HOST(split_strategy == MINIMAL_SPLIT ||
              split_strategy == MAXIMAL_SPLIT);
  ASSERT_HOST(orig_pix_);
  if (devanagari_split_debuglevel > 0) {
    tprintf("Splitting shiro-rekha ...\n");
    tprintf("Split strategy = %s\n",
            split_strategy == MINIMAL_SPLIT ? "Minimal" : "Maximal");
    tprintf("Initial pageseg available = %s\n",
            segmentation_block_list_ ? "yes" : "no");
  }
  // Create a copy of original image to store the splitting output.
  pixDestroy(&splitted_image_);
  splitted_image_ = pixCopy(NULL, orig_pix_);

  // Initialize debug image if required.
  if (devanagari_split_debugimage) {
    pixDestroy(&debug_image_);
    debug_image_ = pixConvertTo32(orig_pix_);
  }

  // Determine all connected components in the input image. A close operation
  // may be required prior to this, depending on the current settings.
  Pix* pix_for_ccs = pixClone(orig_pix_);
  if (perform_close_ && global_xheight_ != kUnspecifiedXheight &&
      !segmentation_block_list_) {
    if (devanagari_split_debuglevel > 0) {
      tprintf("Performing a global close operation..\n");
    }
    // A global measure is available for xheight, but no local information
    // exists.
    pixDestroy(&pix_for_ccs);
    pix_for_ccs = pixCopy(NULL, orig_pix_);
    PerformClose(pix_for_ccs, global_xheight_);
  }
  Pixa* ccs;
  Boxa* tmp_boxa = pixConnComp(pix_for_ccs, &ccs, 8);
  boxaDestroy(&tmp_boxa);
  pixDestroy(&pix_for_ccs);

  // Iterate over all connected components. Get their bounding boxes and clip
  // out the image regions corresponding to these boxes from the original image.
  // Conditionally run splitting on each of them.
  Boxa* regions_to_clear = boxaCreate(0);
  for (int i = 0; i < pixaGetCount(ccs); ++i) {
    Box* box = ccs->boxa->box[i];
    Pix* word_pix = pixClipRectangle(orig_pix_, box, NULL);
    ASSERT_HOST(word_pix);
    int xheight = GetXheightForCC(box);
    if (xheight == kUnspecifiedXheight && segmentation_block_list_ &&
        devanagari_split_debugimage) {
      pixRenderBoxArb(debug_image_, box, 1, 255, 0, 0);
    }
    // If some xheight measure is available, attempt to pre-eliminate small
    // blobs from the shiro-rekha process. This is primarily to save the CCs
    // corresponding to punctuation marks/small dots etc which are part of
    // larger graphemes.
    if (xheight == kUnspecifiedXheight ||
        (box->w > xheight / 3 && box->h > xheight / 2)) {
      SplitWordShiroRekha(split_strategy, word_pix, xheight,
                          box->x, box->y, regions_to_clear);
    } else if (devanagari_split_debuglevel > 0) {
      tprintf("CC dropped from splitting: %d,%d (%d, %d)\n",
              box->x, box->y, box->w, box->h);
    }
    pixDestroy(&word_pix);
  }
  // Actually clear the boxes now.
  for (int i = 0; i < boxaGetCount(regions_to_clear); ++i) {
    Box* box = boxaGetBox(regions_to_clear, i, L_CLONE);
    pixClearInRect(splitted_image_, box);
    boxDestroy(&box);
  }
  boxaDestroy(&regions_to_clear);
  pixaDestroy(&ccs);
  if (devanagari_split_debugimage) {
    DumpDebugImage(split_for_pageseg ? "pageseg_split_debug.png" :
                   "ocr_split_debug.png");
  }
  return true;
}
Ejemplo n.º 20
0
/*!
 * \brief   pixWriteMemBmp()
 *
 * \param[out]   pfdata   data of bmp formatted image
 * \param[out]   pfsize    size of returned data
 * \param[in]    pixs      1, 2, 4, 8, 16, 32 bpp
 * \return  0 if OK, 1 on error
 *
 * <pre>
 * Notes:
 *      (1) 2 bpp bmp files are not valid in the spec, and are
 *          written as 8 bpp.
 *      (2) pix with depth <= 8 bpp are written with a colormap.
 *          16 bpp gray and 32 bpp rgb pix are written without a colormap.
 *      (3) The transparency component in an rgb pix is ignored.
 *          All 32 bpp pix have the bmp alpha component set to 255 (opaque).
 *      (4) The bmp colormap entries, RGBA_QUAD, are the same as
 *          the ones used for colormaps in leptonica.  This allows
 *          a simple memcpy for bmp output.
 * </pre>
 */
l_int32
pixWriteMemBmp(l_uint8  **pfdata,
               size_t    *pfsize,
               PIX       *pixs)
{
l_uint8     pel[4];
l_uint8    *cta = NULL;     /* address of the bmp color table array */
l_uint8    *fdata, *data, *fmdata;
l_int32     cmaplen;      /* number of bytes in the bmp colormap */
l_int32     ncolors, val, stepsize;
l_int32     w, h, d, fdepth, xres, yres;
l_int32     pixWpl, pixBpl, extrabytes, fBpl, fWpl, i, j, k;
l_int32     heapcm;  /* extra copy of cta on the heap ? 1 : 0 */
l_uint32    offbytes, fimagebytes;
l_uint32   *line, *pword;
size_t      fsize;
BMP_FH     *bmpfh;
BMP_IH     *bmpih;
PIX        *pix;
PIXCMAP    *cmap;
RGBA_QUAD  *pquad;

    PROCNAME("pixWriteMemBmp");

    if (pfdata) *pfdata = NULL;
    if (pfsize) *pfsize = 0;
    if (!pfdata)
        return ERROR_INT("&fdata not defined", procName, 1 );
    if (!pfsize)
        return ERROR_INT("&fsize not defined", procName, 1 );
    if (!pixs)
        return ERROR_INT("pixs not defined", procName, 1);

    pixGetDimensions(pixs, &w, &h, &d);
    if (d == 2) {
        L_WARNING("2 bpp files can't be read; converting to 8 bpp\n", procName);
        pix = pixConvert2To8(pixs, 0, 85, 170, 255, 1);
        d = 8;
    } else {
        pix = pixCopy(NULL, pixs);
    }
    fdepth = (d == 32) ? 24 : d;

        /* Resolution is given in pixels/meter */
    xres = (l_int32)(39.37 * (l_float32)pixGetXRes(pix) + 0.5);
    yres = (l_int32)(39.37 * (l_float32)pixGetYRes(pix) + 0.5);

    pixWpl = pixGetWpl(pix);
    pixBpl = 4 * pixWpl;
    fWpl = (w * fdepth + 31) / 32;
    fBpl = 4 * fWpl;
    fimagebytes = h * fBpl;
    if (fimagebytes > 4LL * L_MAX_ALLOWED_PIXELS) {
        pixDestroy(&pix);
        return ERROR_INT("image data is too large", procName, 1);
    }

        /* If not rgb or 16 bpp, the bmp data is required to have a colormap */
    heapcm = 0;
    if (d == 32 || d == 16) {   /* 24 bpp rgb or 16 bpp: no colormap */
        ncolors = 0;
        cmaplen = 0;
    } else if ((cmap = pixGetColormap(pix))) {   /* existing colormap */
        ncolors = pixcmapGetCount(cmap);
        cmaplen = ncolors * sizeof(RGBA_QUAD);
        cta = (l_uint8 *)cmap->array;
    } else {   /* no existing colormap; d <= 8; make a binary or gray one */
        if (d == 1) {
            cmaplen  = sizeof(bwmap);
            ncolors = 2;
            cta = (l_uint8 *)bwmap;
        } else {   /* d = 2,4,8; use a grayscale output colormap */
            ncolors = 1 << fdepth;
            cmaplen = ncolors * sizeof(RGBA_QUAD);
            heapcm = 1;
            cta = (l_uint8 *)LEPT_CALLOC(cmaplen, 1);
            stepsize = 255 / (ncolors - 1);
            for (i = 0, val = 0, pquad = (RGBA_QUAD *)cta;
                 i < ncolors;
                 i++, val += stepsize, pquad++) {
                pquad->blue = pquad->green = pquad->red = val;
                pquad->alpha = 255;  /* opaque */
            }
        }
    }

#if DEBUG
    {l_uint8  *pcmptr;
        pcmptr = (l_uint8 *)pixGetColormap(pix)->array;
        fprintf(stderr, "Pix colormap[0] = %c%c%c%d\n",
            pcmptr[0], pcmptr[1], pcmptr[2], pcmptr[3]);
        fprintf(stderr, "Pix colormap[1] = %c%c%c%d\n",
            pcmptr[4], pcmptr[5], pcmptr[6], pcmptr[7]);
    }
#endif  /* DEBUG */

    offbytes = BMP_FHBYTES + BMP_IHBYTES + cmaplen;
    fsize = offbytes + fimagebytes;
    fdata = (l_uint8 *)LEPT_CALLOC(fsize, 1);
    *pfdata = fdata;
    *pfsize = fsize;

        /* Convert to little-endian and write the file header data */
    bmpfh = (BMP_FH *)fdata;
    bmpfh->bfType = convertOnBigEnd16(BMP_ID);
    bmpfh->bfSize = convertOnBigEnd16(fsize & 0x0000ffff);
    bmpfh->bfFill1 = convertOnBigEnd16((fsize >> 16) & 0x0000ffff);
    bmpfh->bfOffBits = convertOnBigEnd16(offbytes & 0x0000ffff);
    bmpfh->bfFill2 = convertOnBigEnd16((offbytes >> 16) & 0x0000ffff);

        /* Convert to little-endian and write the info header data */
    bmpih = (BMP_IH *)(fdata + BMP_FHBYTES);
    bmpih->biSize = convertOnBigEnd32(BMP_IHBYTES);
    bmpih->biWidth = convertOnBigEnd32(w);
    bmpih->biHeight = convertOnBigEnd32(h);
    bmpih->biPlanes = convertOnBigEnd16(1);
    bmpih->biBitCount = convertOnBigEnd16(fdepth);
    bmpih->biSizeImage = convertOnBigEnd32(fimagebytes);
    bmpih->biXPelsPerMeter = convertOnBigEnd32(xres);
    bmpih->biYPelsPerMeter = convertOnBigEnd32(yres);
    bmpih->biClrUsed = convertOnBigEnd32(ncolors);
    bmpih->biClrImportant = convertOnBigEnd32(ncolors);

        /* Copy the colormap data and free the cta if necessary */
    if (ncolors > 0) {
        memcpy(fdata + BMP_FHBYTES + BMP_IHBYTES, cta, cmaplen);
        if (heapcm) LEPT_FREE(cta);
    }

        /* When you write a binary image with a colormap
         * that sets BLACK to 0, you must invert the data */
    if (fdepth == 1 && cmap && ((l_uint8 *)(cmap->array))[0] == 0x0) {
        pixInvert(pix, pix);
    }

        /* An endian byte swap is also required */
    pixEndianByteSwap(pix);

        /* Transfer the image data.  Image origin for bmp is at lower right. */
    fmdata = fdata + offbytes;
    if (fdepth != 24) {   /* typ 1 or 8 bpp */
        data = (l_uint8 *)pixGetData(pix) + pixBpl * (h - 1);
        for (i = 0; i < h; i++) {
            memcpy(fmdata, data, fBpl);
            data -= pixBpl;
            fmdata += fBpl;
        }
    } else {  /* 32 bpp pix; 24 bpp file
             * See the comments in pixReadStreamBmp() to
             * understand the logic behind the pixel ordering below.
             * Note that we have again done an endian swap on
             * little endian machines before arriving here, so that
             * the bytes are ordered on both platforms as:
                        Red         Green        Blue         --
                    |-----------|------------|-----------|-----------|
             */
        extrabytes = fBpl - 3 * w;
        line = pixGetData(pix) + pixWpl * (h - 1);
        for (i = 0; i < h; i++) {
            for (j = 0; j < w; j++) {
                pword = line + j;
                pel[2] = *((l_uint8 *)pword + COLOR_RED);
                pel[1] = *((l_uint8 *)pword + COLOR_GREEN);
                pel[0] = *((l_uint8 *)pword + COLOR_BLUE);
                memcpy(fmdata, &pel, 3);
                fmdata += 3;
            }
            if (extrabytes) {
                for (k = 0; k < extrabytes; k++) {
                    memcpy(fmdata, &pel, 1);
                    fmdata++;
                }
            }
            line -= pixWpl;
        }
    }

    pixDestroy(&pix);
    return 0;
}
Ejemplo n.º 21
0
/*
 *  pixWriteSegmentedPageToPS()
 *
 *      Input:  pixs (all depths; colormap ok)
 *              pixm (<optional> 1 bpp segmentation mask over image region)
 *              textscale (scale of text output relative to pixs)
 *              imagescale (scale of image output relative to pixs)
 *              threshold (threshold for binarization; typ. 190)
 *              pageno (page number in set; use 1 for new output file)
 *              fileout (output ps file)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) This generates the PS string for a mixed text/image page,
 *          and adds it to an existing file if @pageno > 1.
 *          The PS output is determined by fitting the result to
 *          a letter-size (8.5 x 11 inch) page.
 *      (2) The two images (pixs and pixm) are at the same resolution
 *          (typically 300 ppi).  They are used to generate two compressed
 *          images, pixb and pixc, that are put directly into the output
 *          PS file.
 *      (3) pixb is the text component.  In the PostScript world, we think of
 *          it as a mask through which we paint black.  It is produced by
 *          scaling pixs by @textscale, and thresholding to 1 bpp.
 *      (4) pixc is the image component, which is that part of pixs under
 *          the mask pixm.  It is scaled from pixs by @imagescale.
 *      (5) Typical values are textscale = 2.0 and imagescale = 0.5.
 *      (6) If pixm == NULL, the page has only text.  If it is all black,
 *          the page is all image and has no text.
 *      (7) This can be used to write a multi-page PS file, by using
 *          sequential page numbers with the same output file.  It can
 *          also be used to write separate PS files for each page,
 *          by using different output files with @pageno = 0 or 1.
 */
l_int32
pixWriteSegmentedPageToPS(PIX         *pixs,
                          PIX         *pixm,
                          l_float32    textscale,
                          l_float32    imagescale,
                          l_int32      threshold,
                          l_int32      pageno,
                          const char  *fileout)
{
l_int32    alltext, notext, d, ret;
l_uint32   val;
l_float32  scaleratio;
PIX       *pixmi, *pixmis, *pixt, *pixg, *pixsc, *pixb, *pixc;

    PROCNAME("pixWriteSegmentedPageToPS");

    if (!pixs)
        return ERROR_INT("pixs not defined", procName, 1);
    if (!fileout)
        return ERROR_INT("fileout not defined", procName, 1);
    if (imagescale <= 0.0 || textscale <= 0.0)
        return ERROR_INT("relative scales must be > 0.0", procName, 1);

        /* Analyze the page.  Determine the ratio by which the
         * binary text mask is scaled relative to the image part.
         * If there is no image region (alltext == TRUE), the
         * text mask will be rendered directly to fit the page,
         * and scaleratio = 1.0.  */
    alltext = TRUE;
    notext = FALSE;
    scaleratio = 1.0;
    if (pixm) {
        pixZero(pixm, &alltext);  /* pixm empty: all text */
        if (alltext)
            pixm = NULL;  /* treat it as not existing here */
        else {
            pixmi = pixInvert(NULL, pixm);
            pixZero(pixmi, &notext);  /* pixm full; no text */
            pixDestroy(&pixmi);
            scaleratio = textscale / imagescale;
        }
    }

    if (pixGetDepth(pixs) == 1) {  /* render tiff g4 */
        pixb = pixClone(pixs);
        pixc = NULL;
    }
    else {
        pixt = pixConvertTo8Or32(pixs, 0, 0);  /* this can be a clone of pixs */

            /* Get the binary text mask.  Note that pixg cannot be a
             * clone of pixs, because it may be altered by pixSetMasked(). */
        pixb = NULL;
        if (notext == FALSE) {
            d = pixGetDepth(pixt);
            if (d == 8)
                pixg = pixCopy(NULL, pixt);
            else  /* d == 32 */
                pixg = pixConvertRGBToLuminance(pixt);
            if (pixm)  /* clear out the image parts */
                pixSetMasked(pixg, pixm, 255);
            if (textscale == 1.0)
                pixsc = pixClone(pixg);
            else if (textscale >= 0.7)
                pixsc = pixScaleGrayLI(pixg, textscale, textscale);
            else
                pixsc = pixScaleAreaMap(pixg, textscale, textscale);
            pixb = pixThresholdToBinary(pixsc, threshold);
            pixDestroy(&pixg);
            pixDestroy(&pixsc);
        }

            /* Get the scaled image region */
        pixc = NULL;
        if (pixm) {
            if (imagescale == 1.0)
                pixsc = pixClone(pixt);  /* can possibly be a clone of pixs */
            else
                pixsc = pixScale(pixt, imagescale, imagescale);

                /* If pixm is not full, clear the pixels in pixsc
                 * corresponding to bg in pixm, where there can be text
                 * that is written through the mask pixb.  Note that
                 * we could skip this and use pixsc directly in
                 * pixWriteMixedToPS(); however, clearing these
                 * non-image regions to a white background will reduce
                 * the size of pixc (relative to pixsc), and hence
                 * reduce the size of the PS file that is generated.
                 * Use a copy so that we don't accidentally alter pixs.  */
            if (notext == FALSE) {
                pixmis = pixScale(pixm, imagescale, imagescale);
                pixmi = pixInvert(NULL, pixmis);
                val = (d == 8) ? 0xff : 0xffffff00;
                pixc = pixCopy(NULL, pixsc);
                pixSetMasked(pixc, pixmi, val);  /* clear non-image part */
                pixDestroy(&pixmis);
                pixDestroy(&pixmi);
            }
            else
                pixc = pixClone(pixsc);
            pixDestroy(&pixsc);
        }
        pixDestroy(&pixt);
    }

    ret = pixWriteMixedToPS(pixb, pixc, scaleratio, pageno, fileout);
    pixDestroy(&pixb);
    pixDestroy(&pixc);
    return ret;
}
Ejemplo n.º 22
0
/*!
 *  pixColorMorph()
 *
 *      Input:  pixs
 *              type  (L_MORPH_DILATE, L_MORPH_ERODE, L_MORPH_OPEN,
 *                     or L_MORPH_CLOSE)
 *              hsize  (of Sel; must be odd; origin implicitly in center)
 *              vsize  (ditto)
 *      Return: pixd
 *
 *  Notes:
 *      (1) This does the morph operation on each component separately,
 *          and recombines the result.
 *      (2) Sel is a brick with all elements being hits.
 *      (3) If hsize = vsize = 1, just returns a copy.
 */
PIX *
pixColorMorph(PIX     *pixs,
              l_int32  type,
              l_int32  hsize,
              l_int32  vsize)
{
PIX  *pixr, *pixg, *pixb, *pixrm, *pixgm, *pixbm, *pixd;

    PROCNAME("pixColorMorph");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (pixGetDepth(pixs) != 32)
        return (PIX *)ERROR_PTR("pixs not 32 bpp", procName, NULL);
    if (type != L_MORPH_DILATE && type != L_MORPH_ERODE &&
        type != L_MORPH_OPEN && type != L_MORPH_CLOSE)
        return (PIX *)ERROR_PTR("invalid morph type", procName, NULL);
    if (hsize < 1 || vsize < 1)
        return (PIX *)ERROR_PTR("hsize or vsize < 1", procName, NULL);
    if ((hsize & 1) == 0 ) {
        L_WARNING("horiz sel size must be odd; increasing by 1", procName);
        hsize++;
    }
    if ((vsize & 1) == 0 ) {
        L_WARNING("vert sel size must be odd; increasing by 1", procName);
        vsize++;
    }

    if (hsize == 1 && vsize == 1)
        return pixCopy(NULL, pixs);

    pixr = pixGetRGBComponent(pixs, COLOR_RED);
    pixg = pixGetRGBComponent(pixs, COLOR_GREEN);
    pixb = pixGetRGBComponent(pixs, COLOR_BLUE);
    if (type == L_MORPH_DILATE) {
        pixrm = pixDilateGray(pixr, hsize, vsize);
        pixgm = pixDilateGray(pixg, hsize, vsize);
        pixbm = pixDilateGray(pixb, hsize, vsize);
    }
    else if (type == L_MORPH_ERODE) {
        pixrm = pixErodeGray(pixr, hsize, vsize);
        pixgm = pixErodeGray(pixg, hsize, vsize);
        pixbm = pixErodeGray(pixb, hsize, vsize);
    }
    else if (type == L_MORPH_OPEN) {
        pixrm = pixOpenGray(pixr, hsize, vsize);
        pixgm = pixOpenGray(pixg, hsize, vsize);
        pixbm = pixOpenGray(pixb, hsize, vsize);
    }
    else {   /* type == L_MORPH_CLOSE */
        pixrm = pixCloseGray(pixr, hsize, vsize);
        pixgm = pixCloseGray(pixg, hsize, vsize);
        pixbm = pixCloseGray(pixb, hsize, vsize);
    }
    pixd = pixCreateRGBImage(pixrm, pixgm, pixbm);
    pixDestroy(&pixr);
    pixDestroy(&pixrm);
    pixDestroy(&pixg);
    pixDestroy(&pixgm);
    pixDestroy(&pixb);
    pixDestroy(&pixbm);

    return pixd;
}
Ejemplo n.º 23
0
l_int32 main(int argc,
             char **argv) {
    l_int32 i, n;
    l_float32 a, b, c, d, e;
    NUMA *nax, *nafit;
    PIX *pixs, *pixn, *pixg, *pixb, *pixt1, *pixt2;
    PIXA *pixa;
    PTA *pta, *ptad;
    PTAA *ptaa1, *ptaa2;

    pixs = pixRead("cat-35.jpg");
/*    pixs = pixRead("zanotti-78.jpg"); */

    /* Normalize for varying background and binarize */
    pixn = pixBackgroundNormSimple(pixs, NULL, NULL);
    pixg = pixConvertRGBToGray(pixn, 0.5, 0.3, 0.2);
    pixb = pixThresholdToBinary(pixg, 130);
    pixDestroy(&pixn);
    pixDestroy(&pixg);

    /* Get the textline centers */
    pixa = pixaCreate(6);
    ptaa1 = dewarpGetTextlineCenters(pixb, 0);
    pixt1 = pixCreateTemplate(pixs);
    pixSetAll(pixt1);
    pixt2 = pixDisplayPtaa(pixt1, ptaa1);
    pixWrite("/tmp/textline1.png", pixt2, IFF_PNG);
    pixDisplayWithTitle(pixt2, 0, 100, "textline centers 1", 1);
    pixaAddPix(pixa, pixt2, L_INSERT);
    pixDestroy(&pixt1);

    /* Remove short lines */
    fprintf(stderr, "Num all lines = %d\n", ptaaGetCount(ptaa1));
    ptaa2 = dewarpRemoveShortLines(pixb, ptaa1, 0.8, 0);
    pixt1 = pixCreateTemplate(pixs);
    pixSetAll(pixt1);
    pixt2 = pixDisplayPtaa(pixt1, ptaa2);
    pixWrite("/tmp/textline2.png", pixt2, IFF_PNG);
    pixDisplayWithTitle(pixt2, 300, 100, "textline centers 2", 1);
    pixaAddPix(pixa, pixt2, L_INSERT);
    pixDestroy(&pixt1);
    n = ptaaGetCount(ptaa2);
    fprintf(stderr, "Num long lines = %d\n", n);
    ptaaDestroy(&ptaa1);
    pixDestroy(&pixb);

    /* Long lines over input image */
    pixt1 = pixCopy(NULL, pixs);
    pixt2 = pixDisplayPtaa(pixt1, ptaa2);
    pixWrite("/tmp/textline3.png", pixt2, IFF_PNG);
    pixDisplayWithTitle(pixt2, 600, 100, "textline centers 3", 1);
    pixaAddPix(pixa, pixt2, L_INSERT);
    pixDestroy(&pixt1);

    /* Quadratic fit to curve */
    pixt1 = pixCopy(NULL, pixs);
    for (i = 0; i < n; i++) {
        pta = ptaaGetPta(ptaa2, i, L_CLONE);
        ptaGetArrays(pta, &nax, NULL);
        ptaGetQuadraticLSF(pta, &a, &b, &c, &nafit);
        fprintf(stderr, "Quadratic: a = %10.6f, b = %7.3f, c = %7.3f\n",
                a, b, c);
        ptad = ptaCreateFromNuma(nax, nafit);
        pixDisplayPta(pixt1, pixt1, ptad);
        ptaDestroy(&pta);
        ptaDestroy(&ptad);
        numaDestroy(&nax);
        numaDestroy(&nafit);
    }
    pixWrite("/tmp/textline4.png", pixt1, IFF_PNG);
    pixDisplayWithTitle(pixt1, 900, 100, "textline centers 4", 1);
    pixaAddPix(pixa, pixt1, L_INSERT);

    /* Cubic fit to curve */
    pixt1 = pixCopy(NULL, pixs);
    for (i = 0; i < n; i++) {
        pta = ptaaGetPta(ptaa2, i, L_CLONE);
        ptaGetArrays(pta, &nax, NULL);
        ptaGetCubicLSF(pta, &a, &b, &c, &d, &nafit);
        fprintf(stderr, "Cubic: a = %10.6f, b = %10.6f, c = %7.3f, d = %7.3f\n",
                a, b, c, d);
        ptad = ptaCreateFromNuma(nax, nafit);
        pixDisplayPta(pixt1, pixt1, ptad);
        ptaDestroy(&pta);
        ptaDestroy(&ptad);
        numaDestroy(&nax);
        numaDestroy(&nafit);
    }
    pixWrite("/tmp/textline5.png", pixt1, IFF_PNG);
    pixDisplayWithTitle(pixt1, 1200, 100, "textline centers 5", 1);
    pixaAddPix(pixa, pixt1, L_INSERT);

    /* Quartic fit to curve */
    pixt1 = pixCopy(NULL, pixs);
    for (i = 0; i < n; i++) {
        pta = ptaaGetPta(ptaa2, i, L_CLONE);
        ptaGetArrays(pta, &nax, NULL);
        ptaGetQuarticLSF(pta, &a, &b, &c, &d, &e, &nafit);
        fprintf(stderr,
                "Quartic: a = %7.3f, b = %7.3f, c = %9.5f, d = %7.3f, e = %7.3f\n",
                a, b, c, d, e);
        ptad = ptaCreateFromNuma(nax, nafit);
        pixDisplayPta(pixt1, pixt1, ptad);
        ptaDestroy(&pta);
        ptaDestroy(&ptad);
        numaDestroy(&nax);
        numaDestroy(&nafit);
    }
    pixWrite("/tmp/textline6.png", pixt1, IFF_PNG);
    pixDisplayWithTitle(pixt1, 1500, 100, "textline centers 6", 1);
    pixaAddPix(pixa, pixt1, L_INSERT);

    pixaConvertToPdf(pixa, 300, 0.5, L_JPEG_ENCODE, 75,
                     "LS fittings to textlines", "/tmp/dewarp_fittings.pdf");

    pixaDestroy(&pixa);
    pixDestroy(&pixs);
    ptaaDestroy(&ptaa2);
    return 0;
}
int main(int    argc,
         char **argv)
{
    l_int32      i, j;
    l_int32      w, h, bw, bh, wpls, rval, gval, bval, same;
    l_uint32     pixel;
    l_uint32    *lines, *datas;
    l_float32    sum1, sum2, ave1, ave2, ave3, ave4, diff1, diff2;
    l_float32    var1, var2, var3;
    BOX         *box1, *box2;
    NUMA        *na, *na1, *na2, *na3, *na4;
    PIX         *pix, *pixs, *pix1, *pix2, *pix3, *pix4, *pix5, *pixg, *pixd;
    PIXA        *pixa;
    static char  mainName[] = "numa2_reg";

    if (argc != 1)
        return ERROR_INT(" Syntax:  numa2_reg", mainName, 1);

    lept_mkdir("lept/numa2");

    /* -------------------------------------------------------------------*
     *                         Numa-windowed stats                        *
     * -------------------------------------------------------------------*/
#if  DO_ALL
    na = numaRead("lyra.5.na");
    numaWindowedStats(na, 5, &na1, &na2, &na3, &na4);
    gplotSimple1(na, GPLOT_PNG, "/tmp/lept/numa2/lyra6", "Original");
    gplotSimple1(na1, GPLOT_PNG, "/tmp/lept/numa2/lyra7", "Mean");
    gplotSimple1(na2, GPLOT_PNG, "/tmp/lept/numa2/lyra8", "Mean Square");
    gplotSimple1(na3, GPLOT_PNG, "/tmp/lept/numa2/lyra9", "Variance");
    gplotSimple1(na4, GPLOT_PNG, "/tmp/lept/numa2/lyra10", "RMS Difference");
    pixa = pixaCreate(5);
    pix1 = pixRead("/tmp/lept/numa2/lyra6.png");
    pix2 = pixRead("/tmp/lept/numa2/lyra7.png");
    pix3 = pixRead("/tmp/lept/numa2/lyra8.png");
    pix4 = pixRead("/tmp/lept/numa2/lyra9.png");
    pix5 = pixRead("/tmp/lept/numa2/lyra10.png");
    pixaAddPix(pixa, pix1, L_INSERT);
    pixaAddPix(pixa, pix2, L_INSERT);
    pixaAddPix(pixa, pix3, L_INSERT);
    pixaAddPix(pixa, pix4, L_INSERT);
    pixaAddPix(pixa, pix5, L_INSERT);
    pixd = pixaDisplayTiledInRows(pixa, 32, 1500, 1.0, 0, 20, 2);
    pixDisplay(pixd, 100, 0);
    pixWrite("/tmp/lept/numa2/window.png", pixd, IFF_PNG);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);
    numaDestroy(&na);
    numaDestroy(&na1);
    numaDestroy(&na2);
    numaDestroy(&na3);
    numaDestroy(&na4);
#endif

    /* -------------------------------------------------------------------*
     *                        Extraction on a line                        *
     * -------------------------------------------------------------------*/
#if  DO_ALL
    /* First, make a pretty image */
    w = h = 200;
    pixs = pixCreate(w, h, 32);
    wpls = pixGetWpl(pixs);
    datas = pixGetData(pixs);
    for (i = 0; i < 200; i++) {
        lines = datas + i * wpls;
        for (j = 0; j < 200; j++) {
            rval = (l_int32)((255. * j) / w + (255. * i) / h);
            gval = (l_int32)((255. * 2 * j) / w + (255. * 2 * i) / h) % 255;
            bval = (l_int32)((255. * 4 * j) / w + (255. * 4 * i) / h) % 255;
            composeRGBPixel(rval, gval, bval, &pixel);
            lines[j] = pixel;
        }
    }
    pixg = pixConvertTo8(pixs, 0);  /* and a grayscale version */
    pixWrite("/tmp/lept/numa_pixg.png", pixg, IFF_PNG);
    pixDisplay(pixg, 450, 100);

    na1 = pixExtractOnLine(pixg, 20, 20, 180, 20, 1);
    na2 = pixExtractOnLine(pixg, 40, 30, 40, 170, 1);
    na3 = pixExtractOnLine(pixg, 20, 170, 180, 30, 1);
    na4 = pixExtractOnLine(pixg, 20, 190, 180, 10, 1);
    gplotSimple1(na1, GPLOT_PNG, "/tmp/lept/numa2/ext1", "Horizontal");
    gplotSimple1(na2, GPLOT_PNG, "/tmp/lept/numa2/ext2", "Vertical");
    gplotSimple1(na3, GPLOT_PNG, "/tmp/lept/numa2/ext3",
                 "Slightly more horizontal than vertical");
    gplotSimple1(na4, GPLOT_PNG, "/tmp/lept/numa2/ext4",
                 "Slightly more vertical than horizontal");
    pixa = pixaCreate(4);
    pix1 = pixRead("/tmp/lept/numa2/ext1.png");
    pix2 = pixRead("/tmp/lept/numa2/ext2.png");
    pix3 = pixRead("/tmp/lept/numa2/ext3.png");
    pix4 = pixRead("/tmp/lept/numa2/ext4.png");
    pixaAddPix(pixa, pix1, L_INSERT);
    pixaAddPix(pixa, pix2, L_INSERT);
    pixaAddPix(pixa, pix3, L_INSERT);
    pixaAddPix(pixa, pix4, L_INSERT);
    pixd = pixaDisplayTiledInRows(pixa, 32, 1500, 1.0, 0, 20, 2);
    pixDisplay(pixd, 100, 450);
    pixWrite("/tmp/lept/numa2/extract.png", pixd, IFF_PNG);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);
    pixDestroy(&pixg);
    numaDestroy(&na1);
    numaDestroy(&na2);
    numaDestroy(&na3);
    numaDestroy(&na4);
#endif

    /* -------------------------------------------------------------------*
     *                     Row and column pixel sums                      *
     * -------------------------------------------------------------------*/
#if  DO_ALL
    /* Sum by columns in two halves (left and right) */
    pixs = pixRead("test8.jpg");
    pixGetDimensions(pixs, &w, &h, NULL);
    box1 = boxCreate(0, 0, w / 2, h);
    box2 = boxCreate(w / 2, 0, w - 2 / 2, h);
    na1 = pixAverageByColumn(pixs, box1, L_BLACK_IS_MAX);
    na2 = pixAverageByColumn(pixs, box2, L_BLACK_IS_MAX);
    numaJoin(na1, na2, 0, -1);
    na3 = pixAverageByColumn(pixs, NULL, L_BLACK_IS_MAX);
    numaSimilar(na1, na3, 0.0, &same);
    if (same)
        fprintf(stderr, "Same for columns\n");
    else
        fprintf(stderr, "Error for columns\n");
    pix = pixConvertTo32(pixs);
    pixRenderPlotFromNumaGen(&pix, na3, L_HORIZONTAL_LINE, 3, h / 2, 80, 1,
                             0xff000000);
    pixRenderPlotFromNuma(&pix, na3, L_PLOT_AT_BOT, 3, 80, 0xff000000);
    boxDestroy(&box1);
    boxDestroy(&box2);
    numaDestroy(&na1);
    numaDestroy(&na2);
    numaDestroy(&na3);

    /* Sum by rows in two halves (top and bottom) */
    box1 = boxCreate(0, 0, w, h / 2);
    box2 = boxCreate(0, h / 2, w, h - h / 2);
    na1 = pixAverageByRow(pixs, box1, L_WHITE_IS_MAX);
    na2 = pixAverageByRow(pixs, box2, L_WHITE_IS_MAX);
    numaJoin(na1, na2, 0, -1);
    na3 = pixAverageByRow(pixs, NULL, L_WHITE_IS_MAX);
    numaSimilar(na1, na3, 0.0, &same);
    if (same)
        fprintf(stderr, "Same for rows\n");
    else
        fprintf(stderr, "Error for rows\n");
    pixRenderPlotFromNumaGen(&pix, na3, L_VERTICAL_LINE, 3, w / 2, 80, 1,
                             0x00ff0000);
    pixRenderPlotFromNuma(&pix, na3, L_PLOT_AT_RIGHT, 3, 80, 0x00ff0000);
    pixDisplay(pix, 500, 200);
    boxDestroy(&box1);
    boxDestroy(&box2);
    numaDestroy(&na1);
    numaDestroy(&na2);
    numaDestroy(&na3);
    pixDestroy(&pix);

    /* Average left by rows; right by columns; compare totals */
    box1 = boxCreate(0, 0, w / 2, h);
    box2 = boxCreate(w / 2, 0, w - 2 / 2, h);
    na1 = pixAverageByRow(pixs, box1, L_WHITE_IS_MAX);
    na2 = pixAverageByColumn(pixs, box2, L_WHITE_IS_MAX);
    numaGetSum(na1, &sum1);  /* sum of averages of left box */
    numaGetSum(na2, &sum2);  /* sum of averages of right box */
    ave1 = sum1 / h;
    ave2 = 2.0 * sum2 / w;
    ave3 = 0.5 * (ave1 + ave2);  /* average over both halves */
    fprintf(stderr, "ave1 = %8.4f\n", sum1 / h);
    fprintf(stderr, "ave2 = %8.4f\n", 2.0 * sum2 / w);
    pixAverageInRect(pixs, NULL, &ave4);  /* entire image */
    diff1 = ave4 - ave3;
    diff2 = w * h * ave4 - (0.5 * w * sum1 + h * sum2);
    if (diff1 < 0.001)
        fprintf(stderr, "Average diffs are correct\n");
    else
        fprintf(stderr, "Average diffs are wrong: diff1 = %7.5f\n", diff1);
    if (diff2 < 20)  /* float-to-integer roundoff */
        fprintf(stderr, "Pixel sums are correct\n");
    else
        fprintf(stderr, "Pixel sums are in error: diff = %7.0f\n", diff2);

    /* Variance left and right halves.  Variance doesn't average
     * in a simple way, unlike pixel sums. */
    pixVarianceInRect(pixs, box1, &var1);  /* entire image */
    pixVarianceInRect(pixs, box2, &var2);  /* entire image */
    pixVarianceInRect(pixs, NULL, &var3);  /* entire image */
    fprintf(stderr, "0.5 * (var1 + var2) = %7.3f, var3 = %7.3f\n",
            0.5 * (var1 + var2), var3);
    boxDestroy(&box1);
    boxDestroy(&box2);
    numaDestroy(&na1);
    numaDestroy(&na2);
#endif

    /* -------------------------------------------------------------------*
     *                     Row and column variances                       *
     * -------------------------------------------------------------------*/
#if  DO_ALL

    /* Display variance by rows and columns */
    box1 = boxCreate(415, 0, 130, 425);
    boxGetGeometry(box1, NULL, NULL, &bw, &bh);
    na1 = pixVarianceByRow(pixs, box1);
    na2 = pixVarianceByColumn(pixs, box1);
    pix = pixConvertTo32(pixs);
    pix1 = pixCopy(NULL, pix);
    pixRenderPlotFromNumaGen(&pix, na1, L_VERTICAL_LINE, 3, 415, 100, 1,
                             0xff000000);
    pixRenderPlotFromNumaGen(&pix, na2, L_HORIZONTAL_LINE, 3, bh / 2, 100, 1,
                             0x00ff0000);
    pixRenderPlotFromNuma(&pix1, na1, L_PLOT_AT_LEFT, 3, 60, 0x00ff0000);
    pixRenderPlotFromNuma(&pix1, na1, L_PLOT_AT_MID_VERT, 3, 60, 0x0000ff00);
    pixRenderPlotFromNuma(&pix1, na1, L_PLOT_AT_RIGHT, 3, 60, 0xff000000);
    pixRenderPlotFromNuma(&pix1, na2, L_PLOT_AT_TOP, 3, 60, 0x0000ff00);
    pixRenderPlotFromNuma(&pix1, na2, L_PLOT_AT_MID_HORIZ, 3, 60, 0xff000000);
    pixRenderPlotFromNuma(&pix1, na2, L_PLOT_AT_BOT, 3, 60, 0x00ff0000);
    pixDisplay(pix, 500, 900);
    pixDisplay(pix1, 500, 1000);
    boxDestroy(&box1);
    numaDestroy(&na1);
    numaDestroy(&na2);
    pixDestroy(&pix);
    pixDestroy(&pix1);
    pixDestroy(&pixs);

    /* Again on a different image */
    pix1 = pixRead("boxedpage.jpg");
    pix2 = pixConvertTo8(pix1, 0);
    pixGetDimensions(pix2, &w, &h, NULL);
    na1 = pixVarianceByRow(pix2, NULL);
    pix3 = pixConvertTo32(pix1);
    pixRenderPlotFromNumaGen(&pix3, na1, L_VERTICAL_LINE, 3, 0, 70, 1,
                             0xff000000);
    na2 = pixVarianceByColumn(pix2, NULL);
    pixRenderPlotFromNumaGen(&pix3, na2, L_HORIZONTAL_LINE, 3, bh - 1, 70, 1,
                             0x00ff0000);
    pixDisplay(pix3, 1000, 0);
    numaDestroy(&na1);
    numaDestroy(&na2);
    pixDestroy(&pix3);

    /* Again, with an erosion */
    pix3 = pixErodeGray(pix2, 3, 21);
    pixDisplay(pix3, 1400, 0);
    na1 = pixVarianceByRow(pix3, NULL);
    pix4 = pixConvertTo32(pix1);
    pixRenderPlotFromNumaGen(&pix4, na1, L_VERTICAL_LINE, 3, 30, 70, 1,
                             0xff000000);
    na2 = pixVarianceByColumn(pix3, NULL);
    pixRenderPlotFromNumaGen(&pix4, na2, L_HORIZONTAL_LINE, 3, bh - 1, 70, 1,
                             0x00ff0000);
    pixDisplay(pix4, 1000, 550);
    numaDestroy(&na1);
    numaDestroy(&na2);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    pixDestroy(&pix4);
#endif

    /* -------------------------------------------------------------------*
     *                    Windowed variance along a line                  *
     * -------------------------------------------------------------------*/
#if  DO_ALL
    pix1 = pixRead("boxedpage.jpg");
    pix2 = pixConvertTo8(pix1, 0);
    pixGetDimensions(pix2, &w, &h, NULL);
    pix3 = pixCopy(NULL, pix1);

    /* Plot along horizontal line */
    pixWindowedVarianceOnLine(pix2, L_HORIZONTAL_LINE, h / 2 - 30, 0,
                              w, 5, &na1);
    pixRenderPlotFromNumaGen(&pix1, na1, L_HORIZONTAL_LINE, 3, h / 2 - 30,
                             80, 1, 0xff000000);
    pixRenderPlotFromNuma(&pix3, na1, L_PLOT_AT_TOP, 3, 60, 0x00ff0000);
    pixRenderPlotFromNuma(&pix3, na1, L_PLOT_AT_BOT, 3, 60, 0x0000ff00);

    /* Plot along vertical line */
    pixWindowedVarianceOnLine(pix2, L_VERTICAL_LINE, 0.78 * w, 0,
                              h, 5, &na2);
    pixRenderPlotFromNumaGen(&pix1, na2, L_VERTICAL_LINE, 3, 0.78 * w, 60,
                             1, 0x00ff0000);
    pixRenderPlotFromNuma(&pix3, na2, L_PLOT_AT_LEFT, 3, 60, 0xff000000);
    pixRenderPlotFromNuma(&pix3, na2, L_PLOT_AT_RIGHT, 3, 60, 0x00ff0000);
    pixDisplay(pix1, 1000, 1000);
    pixDisplay(pix3, 1500, 1000);
    pixDestroy(&pix1);
    pixDestroy(&pix2);
    pixDestroy(&pix3);
    numaDestroy(&na1);
    numaDestroy(&na2);
#endif
    return 0;
}
Ejemplo n.º 25
0
main(int    argc,
     char **argv)
{
char         bufname[256];
l_int32      i, j, w, h, d, x, y, wpls;
l_uint32    *datas, *lines;
l_float32   *vc;
l_float32   *mat1, *mat2, *mat3, *mat1i, *mat2i, *mat3i, *matdinv;
l_float32    matd[9], matdi[9];
BOXA        *boxa, *boxa2;
PIX         *pix, *pixs, *pixb, *pixg, *pixc, *pixcs;
PIX         *pixd, *pixt1, *pixt2, *pixt3;
PIXA        *pixa;
PTA         *ptas, *ptad;
static char  mainName[] = "affine_reg";

    if (argc != 1)
	exit(ERROR_INT(" Syntax:  affine_reg", mainName, 1));

    if ((pixs = pixRead("feyn.tif")) == NULL)
	exit(ERROR_INT("pixs not made", mainName, 1));

#if ALL
        /* Test invertability of sequential. */
    pixa = pixaCreate(0);
    for (i = 0; i < 3; i++) {
        pixb = pixAddBorder(pixs, ADDED_BORDER_PIXELS, 0);
        MakePtas(i, &ptas, &ptad);
        pixt1 = pixAffineSequential(pixb, ptad, ptas, 0, 0);
        pixSaveTiled(pixt1, pixa, 3, 1, 20, 8);
        pixt2 = pixAffineSequential(pixt1, ptas, ptad, 0, 0);
        pixSaveTiled(pixt2, pixa, 3, 0, 20, 0);
        pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS);
        pixXor(pixd, pixd, pixs);
        pixSaveTiled(pixd, pixa, 3, 0, 20, 0);
        sprintf(bufname, "/tmp/junkseq%d.png", i);
        pixWrite(bufname, pixd, IFF_PNG);
        pixDestroy(&pixb);
        pixDestroy(&pixt1);
        pixDestroy(&pixt2);
        pixDestroy(&pixd);
        ptaDestroy(&ptas);
        ptaDestroy(&ptad);
    }

    pixt1 = pixaDisplay(pixa, 0, 0);
    pixWrite("/tmp/junkaffine1.png", pixt1, IFF_PNG);
    pixDisplay(pixt1, 100, 100);
    pixDestroy(&pixt1);
    pixaDestroy(&pixa);
#endif

#if ALL 
        /* Test invertability of sampling */
    pixa = pixaCreate(0);
    for (i = 0; i < 3; i++) {
        pixb = pixAddBorder(pixs, ADDED_BORDER_PIXELS, 0);
        MakePtas(i, &ptas, &ptad);
        pixt1 = pixAffineSampledPta(pixb, ptad, ptas, L_BRING_IN_WHITE);
        pixSaveTiled(pixt1, pixa, 3, 1, 20, 8);
        pixt2 = pixAffineSampledPta(pixt1, ptas, ptad, L_BRING_IN_WHITE);
        pixSaveTiled(pixt2, pixa, 3, 0, 20, 0);
        pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS);
        pixXor(pixd, pixd, pixs);
        pixSaveTiled(pixd, pixa, 3, 0, 20, 0);
        if (i == 0) pixWrite("/tmp/junksamp.png", pixt1, IFF_PNG);
        pixDestroy(&pixb);
        pixDestroy(&pixt1);
        pixDestroy(&pixt2);
        pixDestroy(&pixd);
        ptaDestroy(&ptas);
        ptaDestroy(&ptad);
    }

    pixt1 = pixaDisplay(pixa, 0, 0);
    pixWrite("/tmp/junkaffine2.png", pixt1, IFF_PNG);
    pixDisplay(pixt1, 100, 300);
    pixDestroy(&pixt1);
    pixaDestroy(&pixa);
#endif

#if ALL
        /* Test invertability of interpolation on grayscale */
    pixa = pixaCreate(0);
    pixg = pixScaleToGray3(pixs);
    for (i = 0; i < 3; i++) {
        pixb = pixAddBorder(pixg, ADDED_BORDER_PIXELS / 3, 255);
        MakePtas(i, &ptas, &ptad);
        pixt1 = pixAffinePta(pixb, ptad, ptas, L_BRING_IN_WHITE);
        pixSaveTiled(pixt1, pixa, 1, 1, 20, 8);
        pixt2 = pixAffinePta(pixt1, ptas, ptad, L_BRING_IN_WHITE);
        pixSaveTiled(pixt2, pixa, 1, 0, 20, 0);
        pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS / 3);
        pixXor(pixd, pixd, pixg);
        pixSaveTiled(pixd, pixa, 1, 0, 20, 0);
        if (i == 0) pixWrite("/tmp/junkinterp.png", pixt1, IFF_PNG);
        pixDestroy(&pixb);
        pixDestroy(&pixt1);
        pixDestroy(&pixt2);
        pixDestroy(&pixd);
        ptaDestroy(&ptas);
        ptaDestroy(&ptad);
    }

    pixt1 = pixaDisplay(pixa, 0, 0);
    pixWrite("/tmp/junkaffine3.png", pixt1, IFF_PNG);
    pixDisplay(pixt1, 100, 500);
    pixDestroy(&pixt1);
    pixaDestroy(&pixa);
    pixDestroy(&pixg);
#endif

#if ALL
        /* Test invertability of interpolation on color */
    pixa = pixaCreate(0);
    pixc = pixRead("test24.jpg");
    pixcs = pixScale(pixc, 0.3, 0.3);
    for (i = 0; i < 3; i++) {
        pixb = pixAddBorder(pixcs, ADDED_BORDER_PIXELS / 4, 0xffffff00);
        MakePtas(i, &ptas, &ptad);
        pixt1 = pixAffinePta(pixb, ptad, ptas, L_BRING_IN_WHITE);
        pixSaveTiled(pixt1, pixa, 1, 1, 20, 32);
        pixt2 = pixAffinePta(pixt1, ptas, ptad, L_BRING_IN_WHITE);
        pixSaveTiled(pixt2, pixa, 1, 0, 20, 0);
        pixd = pixRemoveBorder(pixt2, ADDED_BORDER_PIXELS / 4);
        pixXor(pixd, pixd, pixcs);
        pixSaveTiled(pixd, pixa, 1, 0, 20, 0);
        pixDestroy(&pixb);
        pixDestroy(&pixt1);
        pixDestroy(&pixt2);
        pixDestroy(&pixd);
        ptaDestroy(&ptas);
        ptaDestroy(&ptad);
    }

    pixt1 = pixaDisplay(pixa, 0, 0);
    pixWrite("/tmp/junkaffine4.png", pixt1, IFF_PNG);
    pixDisplay(pixt1, 100, 500);
    pixDestroy(&pixt1);
    pixaDestroy(&pixa);
    pixDestroy(&pixc);
    pixDestroy(&pixcs);
#endif

#if ALL 
       /* Comparison between sequential and sampling */
    MakePtas(3, &ptas, &ptad);
    pixa = pixaCreate(0);

	/* Use sequential transforms */
    pixt1 = pixAffineSequential(pixs, ptas, ptad,
                     ADDED_BORDER_PIXELS, ADDED_BORDER_PIXELS);
    pixSaveTiled(pixt1, pixa, 2, 0, 20, 8);

	/* Use sampled transform */
    pixt2 = pixAffineSampledPta(pixs, ptas, ptad, L_BRING_IN_WHITE);
    pixSaveTiled(pixt2, pixa, 2, 0, 20, 8);

        /* Compare the results */
    pixXor(pixt2, pixt2, pixt1);
    pixSaveTiled(pixt2, pixa, 2, 0, 20, 8);

    pixd = pixaDisplay(pixa, 0, 0);
    pixWrite("/tmp/junkaffine5.png", pixd, IFF_PNG);
    pixDisplay(pixd, 100, 700);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixd);
    pixaDestroy(&pixa);
    ptaDestroy(&ptas);
    ptaDestroy(&ptad);
#endif

#if ALL 
       /* Get timings and test with large distortion */
    MakePtas(4, &ptas, &ptad);
    pixa = pixaCreate(0);
    pixg = pixScaleToGray3(pixs);

    startTimer();
    pixt1 = pixAffineSequential(pixg, ptas, ptad, 0, 0);
    fprintf(stderr, " Time for pixAffineSequentialPta(): %6.2f sec\n",
            stopTimer());
    pixSaveTiled(pixt1, pixa, 1, 1, 20, 8);

    startTimer();
    pixt2 = pixAffineSampledPta(pixg, ptas, ptad, L_BRING_IN_WHITE);
    fprintf(stderr, " Time for pixAffineSampledPta(): %6.2f sec\n", stopTimer());
    pixSaveTiled(pixt2, pixa, 1, 0, 20, 8);

    startTimer();
    pixt3 = pixAffinePta(pixg, ptas, ptad, L_BRING_IN_WHITE);
    fprintf(stderr, " Time for pixAffinePta(): %6.2f sec\n", stopTimer());
    pixSaveTiled(pixt3, pixa, 1, 0, 20, 8);

    pixXor(pixt1, pixt1, pixt2);
    pixSaveTiled(pixt1, pixa, 1, 1, 20, 8);
    pixXor(pixt2, pixt2, pixt3);
    pixSaveTiled(pixt2, pixa, 1, 0, 20, 8);
    pixDestroy(&pixt1);
    pixDestroy(&pixt2);
    pixDestroy(&pixt3);

    pixd = pixaDisplay(pixa, 0, 0);
    pixWrite("/tmp/junkaffine6.png", pixd, IFF_PNG);
    pixDisplay(pixd, 100, 900);
    pixDestroy(&pixd);
    pixDestroy(&pixg);
    pixaDestroy(&pixa);
    ptaDestroy(&ptas);
    ptaDestroy(&ptad);
#endif

    pixDestroy(&pixs);

#if 1
        /* Set up pix and boxa */
    pixa = pixaCreate(0);
    pix = pixRead("lucasta.1.300.tif");
    pixTranslate(pix, pix, 70, 0, L_BRING_IN_WHITE);
    pixt1 = pixCloseBrick(NULL, pix, 14, 5);
    pixOpenBrick(pixt1, pixt1, 1, 2);
    boxa = pixConnComp(pixt1, NULL, 8);
    pixs = pixConvertTo32(pix);
    pixGetDimensions(pixs, &w, &h, NULL);
    pixc = pixCopy(NULL, pixs);
    RenderHashedBoxa(pixc, boxa, 113);
    pixSaveTiled(pixc, pixa, 2, 1, 30, 32);
    pixDestroy(&pix);
    pixDestroy(&pixc);
    pixDestroy(&pixt1);

        /* Set up an affine transform in matd, and apply it to boxa */
    mat1 = createMatrix2dTranslate(SHIFTX, SHIFTY);
    mat2 = createMatrix2dScale(SCALEX, SCALEY);
    mat3 = createMatrix2dRotate(w / 2, h / 2, ROTATION);
    l_productMat3(mat3, mat2, mat1, matd, 3);
    boxa2 = boxaAffineTransform(boxa, matd);

        /* Set up the inverse transform in matdi */
    mat1i = createMatrix2dTranslate(-SHIFTX, -SHIFTY);
    mat2i = createMatrix2dScale(1.0/ SCALEX, 1.0 / SCALEY);
    mat3i = createMatrix2dRotate(w / 2, h / 2, -ROTATION);
    l_productMat3(mat1i, mat2i, mat3i, matdi, 3);

        /* Invert the original affine transform in matdinv */
    affineInvertXform(matd, &matdinv);
    fprintf(stderr, "Affine transform, applied to boxa\n");
    for (i = 0; i < 9; i++) {
        if (i && (i % 3 == 0))  fprintf(stderr, "\n");
        fprintf(stderr, " %7.3f ", matd[i]);
    }
    fprintf(stderr, "\nInverse transform, made by composing inverse parts");
    for (i = 0; i < 9; i++) {
        if (i % 3 == 0)  fprintf(stderr, "\n");
        fprintf(stderr, " %7.3f ", matdi[i]);
    }
    fprintf(stderr, "\nInverse transform, made by inverting the affine xform");
    for (i = 0; i < 6; i++) {
        if (i % 3 == 0)  fprintf(stderr, "\n");
        fprintf(stderr, " %7.3f ", matdinv[i]);
    }
    fprintf(stderr, "\n");

        /* Apply the inverted affine transform pixs */
    pixd = pixAffine(pixs, matdinv, L_BRING_IN_WHITE);
    RenderHashedBoxa(pixd, boxa2, 513);
    pixSaveTiled(pixd, pixa, 2, 0, 30, 32);
    pixDestroy(&pixd);

    pixd = pixaDisplay(pixa, 0, 0);
    pixWrite("/tmp/junkaffine7.png", pixd, IFF_PNG);
    pixDisplay(pixd, 100, 900);
    pixDestroy(&pixd);
    pixDestroy(&pixs);
    pixaDestroy(&pixa);
    boxaDestroy(&boxa);
    boxaDestroy(&boxa2);
    FREE(mat1);
    FREE(mat2);
    FREE(mat3);
    FREE(mat1i);
    FREE(mat2i);
    FREE(mat3i);
#endif

    return 0;
}
Ejemplo n.º 26
0
/*!
 * \brief   pixConnCompBB()
 *
 * \param[in]    pixs 1 bpp
 * \param[in]    connectivity 4 or 8
 * \return  boxa, or NULL on error
 *
 * <pre>
 * Notes:
 *     (1) Finds bounding boxes of 4- or 8-connected components
 *         in a binary image.
 *     (2) This works on a copy of the input pix.  The c.c. are located
 *         in raster order and erased one at a time.  In the process,
 *         the b.b. is computed and saved.
 * </pre>
 */
BOXA *
pixConnCompBB(PIX     *pixs,
              l_int32  connectivity)
{
    l_int32   h, iszero;
    l_int32   x, y, xstart, ystart;
    PIX      *pixt;
    BOX      *box;
    BOXA     *boxa;
    L_STACK  *stack, *auxstack;

    PROCNAME("pixConnCompBB");

    if (!pixs || pixGetDepth(pixs) != 1)
        return (BOXA *)ERROR_PTR("pixs undefined or not 1 bpp", procName, NULL);
    if (connectivity != 4 && connectivity != 8)
        return (BOXA *)ERROR_PTR("connectivity not 4 or 8", procName, NULL);

    boxa = NULL;
    pixt = NULL;
    stack = NULL;

    pixZero(pixs, &iszero);
    if (iszero)
        return boxaCreate(1);  /* return empty boxa */

    if ((pixt = pixCopy(NULL, pixs)) == NULL)
        return (BOXA *)ERROR_PTR("pixt not made", procName, NULL);

    h = pixGetHeight(pixs);
    if ((stack = lstackCreate(h)) == NULL) {
        L_ERROR("stack not made\n", procName);
        goto cleanup;
    }
    auxstack = lstackCreate(0);
    stack->auxstack = auxstack;
    boxa = boxaCreate(0);

    xstart = 0;
    ystart = 0;
    while (1) {
        if (!nextOnPixelInRaster(pixt, xstart, ystart, &x, &y))
            break;

        if ((box = pixSeedfillBB(pixt, stack, x, y, connectivity)) == NULL) {
            L_ERROR("box not made\n", procName);
            boxaDestroy(&boxa);
            goto cleanup;
        }
        boxaAddBox(boxa, box, L_INSERT);

        xstart = x;
        ystart = y;
    }

#if  DEBUG
    pixCountPixels(pixt, &iszero, NULL);
    fprintf(stderr, "Number of remaining pixels = %d\n", iszero);
    pixWrite("junkremain", pixt1, IFF_PNG);
#endif  /* DEBUG */

    /* Cleanup, freeing the fillsegs on each stack */
cleanup:
    lstackDestroy(&stack, TRUE);
    pixDestroy(&pixt);
    return boxa;
}
Ejemplo n.º 27
0
/*!
 *  pixSelectBySize()
 *
 *      Input:  pixs (1 bpp)
 *              width, height (threshold dimensions)
 *              connectivity (4 or 8)
 *              type (L_SELECT_WIDTH, L_SELECT_HEIGHT,
 *                    L_SELECT_IF_EITHER, L_SELECT_IF_BOTH)
 *              relation (L_SELECT_IF_LT, L_SELECT_IF_GT,
 *                        L_SELECT_IF_LTE, L_SELECT_IF_GTE)
 *              &changed (<optional return> 1 if changed; 0 otherwise)
 *      Return: filtered pixd, or null on error
 *
 *  Notes:
 *      (1) The args specify constraints on the size of the
 *          components that are kept.
 *      (2) If unchanged, returns a copy of pixs.  Otherwise,
 *          returns a new pix with the filtered components.
 *      (3) If the selection type is L_SELECT_WIDTH, the input
 *          height is ignored, and v.v.
 *      (4) To keep small components, use relation = L_SELECT_IF_LT or
 *          L_SELECT_IF_LTE.
 *          To keep large components, use relation = L_SELECT_IF_GT or
 *          L_SELECT_IF_GTE.
 */
PIX *
pixSelectBySize(PIX      *pixs,
                l_int32   width,
                l_int32   height,
                l_int32   connectivity,
                l_int32   type,
                l_int32   relation,
                l_int32  *pchanged)
{
l_int32  w, h, empty, changed, count;
BOXA    *boxa;
PIX     *pixd;
PIXA    *pixas, *pixad;

    PROCNAME("pixSelectBySize");

    if (!pixs)
        return (PIX *)ERROR_PTR("pixs not defined", procName, NULL);
    if (connectivity != 4 && connectivity != 8)
        return (PIX *)ERROR_PTR("connectivity not 4 or 8", procName, NULL);
    if (type != L_SELECT_WIDTH && type != L_SELECT_HEIGHT &&
        type != L_SELECT_IF_EITHER && type != L_SELECT_IF_BOTH)
        return (PIX *)ERROR_PTR("invalid type", procName, NULL);
    if (relation != L_SELECT_IF_LT && relation != L_SELECT_IF_GT &&
        relation != L_SELECT_IF_LTE && relation != L_SELECT_IF_GTE)
        return (PIX *)ERROR_PTR("invalid relation", procName, NULL);
    if (pchanged) *pchanged = FALSE;
    
        /* Check if any components exist */
    pixZero(pixs, &empty);
    if (empty)
        return pixCopy(NULL, pixs);

        /* Identify and select the components */
    boxa = pixConnComp(pixs, &pixas, connectivity); 
    pixad = pixaSelectBySize(pixas, width, height, type, relation, &changed);
    boxaDestroy(&boxa);
    pixaDestroy(&pixas);

        /* Render the result */
    if (!changed) {
        pixaDestroy(&pixad);
        return pixCopy(NULL, pixs);
    }
    else {
        if (pchanged) *pchanged = TRUE;
        pixGetDimensions(pixs, &w, &h, NULL);
        count = pixaGetCount(pixad);
        if (count == 0)  /* return empty pix */
            pixd = pixCreateTemplate(pixs);
        else {
            pixd = pixaDisplay(pixad, w, h);
            pixCopyResolution(pixd, pixs);
            pixCopyColormap(pixd, pixs);
            pixCopyText(pixd, pixs);
            pixCopyInputFormat(pixd, pixs);
        }
        pixaDestroy(&pixad);
        return pixd;
    }
}
// Returns a list of regions (boxes) which should be cleared in the original
// image so as to perform shiro-rekha splitting. Pix is assumed to carry one
// (or less) word only. Xheight measure could be the global estimate, the row
// estimate, or unspecified. If unspecified, over splitting may occur, since a
// conservative estimate of stroke width along with an associated multiplier
// is used in its place. It is advisable to have a specified xheight when
// splitting for classification/training.
// A vertical projection histogram of all the on-pixels in the input pix is
// computed. The maxima of this histogram is regarded as an approximate location
// of the shiro-rekha. By descending on the maxima's peak on both sides,
// stroke width of shiro-rekha is estimated.
// A horizontal projection histogram is computed for a sub-image of the input
// image, which extends from just below the shiro-rekha down to a certain
// leeway. The leeway depends on the input xheight, if provided, else a
// conservative multiplier on approximate stroke width is used (which may lead
// to over-splitting).
void ShiroRekhaSplitter::SplitWordShiroRekha(SplitStrategy split_strategy,
                                             Pix* pix,
                                             int xheight,
                                             int word_left,
                                             int word_top,
                                             Boxa* regions_to_clear) {
  if (split_strategy == NO_SPLIT) {
    return;
  }
  int width = pixGetWidth(pix);
  int height = pixGetHeight(pix);
  // Statistically determine the yextents of the shiro-rekha.
  int shirorekha_top, shirorekha_bottom, shirorekha_ylevel;
  GetShiroRekhaYExtents(pix, &shirorekha_top, &shirorekha_bottom,
                        &shirorekha_ylevel);
  // Since the shiro rekha is also a stroke, its width is equal to the stroke
  // width.
  int stroke_width = shirorekha_bottom - shirorekha_top + 1;

  // Some safeguards to protect CCs we do not want to be split.
  // These are particularly useful when the word wasn't eliminated earlier
  // because xheight information was unavailable.
  if (shirorekha_ylevel > height / 2) {
    // Shirorekha shouldn't be in the bottom half of the word.
    if (devanagari_split_debuglevel > 0) {
      tprintf("Skipping splitting CC at (%d, %d): shirorekha in lower half..\n",
              word_left, word_top);
    }
    return;
  }
  if (stroke_width > height / 3) {
    // Even the boldest of fonts shouldn't do this.
    if (devanagari_split_debuglevel > 0) {
      tprintf("Skipping splitting CC at (%d, %d): stroke width too huge..\n",
              word_left, word_top);
    }
    return;
  }

  // Clear the ascender and descender regions of the word.
  // Obtain a vertical projection histogram for the resulting image.
  Box* box_to_clear = boxCreate(0, shirorekha_top - stroke_width / 3,
                                width, 5 * stroke_width / 3);
  Pix* word_in_xheight = pixCopy(NULL, pix);
  pixClearInRect(word_in_xheight, box_to_clear);
  // Also clear any pixels which are below shirorekha_bottom + some leeway.
  // The leeway is set to xheight if the information is available, else it is a
  // multiplier applied to the stroke width.
  int leeway_to_keep = stroke_width * 3;
  if (xheight != kUnspecifiedXheight) {
    // This is because the xheight-region typically includes the shiro-rekha
    // inside it, i.e., the top of the xheight range corresponds to the top of
    // shiro-rekha.
    leeway_to_keep = xheight - stroke_width;
  }
  box_to_clear->y = shirorekha_bottom + leeway_to_keep;
  box_to_clear->h = height - box_to_clear->y;
  pixClearInRect(word_in_xheight, box_to_clear);
  boxDestroy(&box_to_clear);

  PixelHistogram vert_hist;
  vert_hist.ConstructVerticalCountHist(word_in_xheight);
  pixDestroy(&word_in_xheight);

  // If the number of black pixel in any column of the image is less than a
  // fraction of the stroke width, treat it as noise / a stray mark. Perform
  // these changes inside the vert_hist data itself, as that is used later on as
  // a bit vector for the final split decision at every column.
  for (int i = 0; i < width; ++i) {
    if (vert_hist.hist()[i] <= stroke_width / 4)
      vert_hist.hist()[i] = 0;
    else
      vert_hist.hist()[i] = 1;
  }
  // In order to split the line at any point, we make sure that the width of the
  // gap is atleast half the stroke width.
  int i = 0;
  int cur_component_width = 0;
  while (i < width) {
    if (!vert_hist.hist()[i]) {
      int j = 0;
      while (i + j < width && !vert_hist.hist()[i+j])
        ++j;
      if (j >= stroke_width / 2 && cur_component_width >= stroke_width / 2) {
        // Perform a shiro-rekha split. The intervening region lies from i to
        // i+j-1.
        // A minimal single-pixel split makes the estimation of intra- and
        // inter-word spacing easier during page layout analysis,
        // whereas a maximal split may be needed for OCR, depending on
        // how the engine was trained.
        bool minimal_split = (split_strategy == MINIMAL_SPLIT);
        int split_width = minimal_split ? 1 : j;
        int split_left = minimal_split ? i + (j / 2) - (split_width / 2) : i;
        if (!minimal_split || (i != 0 && i + j != width)) {
          Box* box_to_clear =
              boxCreate(word_left + split_left,
                        word_top + shirorekha_top - stroke_width / 3,
                        split_width,
                        5 * stroke_width / 3);
          if (box_to_clear) {
            boxaAddBox(regions_to_clear, box_to_clear, L_CLONE);
            // Mark this in the debug image if needed.
            if (devanagari_split_debugimage) {
              pixRenderBoxArb(debug_image_, box_to_clear, 1, 128, 255, 128);
            }
            boxDestroy(&box_to_clear);
            cur_component_width = 0;
          }
        }
      }
      i += j;
    } else {
      ++i;
      ++cur_component_width;
    }
  }
}
Ejemplo n.º 29
0
/*!
 *  pixWriteMemWebP()
 *
 *      Input:  &encdata (<return> webp encoded data of pixs)
 *              &encsize (<return> size of webp encoded data)
 *              pixs (any depth, cmapped OK)
 *              quality (0 - 100; default ~80)
 *              lossless (use 1 for lossless; 0 for lossy)
 *      Return: 0 if OK, 1 on error
 *
 *  Notes:
 *      (1) Lossless and lossy encoding are entirely different in webp.
 *          @quality applies to lossy, and is ignored for lossless.
 *      (2) The input image is converted to RGB if necessary.  If spp == 3,
 *          we set the alpha channel to fully opaque (255), and
 *          WebPEncodeRGBA() then removes the alpha chunk when encoding,
 *          setting the internal header field has_alpha to 0.
 */
l_int32
pixWriteMemWebP(l_uint8  **pencdata,
                size_t    *pencsize,
                PIX       *pixs,
                l_int32    quality,
                l_int32    lossless)
{
l_int32    w, h, d, wpl, stride;
l_uint32  *data;
PIX       *pix1, *pix2;

    PROCNAME("pixWriteMemWebP");

    if (!pencdata)
        return ERROR_INT("&encdata not defined", procName, 1);
    *pencdata = NULL;
    if (!pencsize)
        return ERROR_INT("&encsize not defined", procName, 1);
    *pencsize = 0;
    if (!pixs)
        return ERROR_INT("&pixs not defined", procName, 1);
    if (lossless == 0 && (quality < 0 || quality > 100))
        return ERROR_INT("quality not in [0 ... 100]", procName, 1);

    if ((pix1 = pixRemoveColormap(pixs, REMOVE_CMAP_TO_FULL_COLOR)) == NULL)
        return ERROR_INT("failure to remove color map", procName, 1);

        /* Convert to rgb if not 32 bpp; pix2 must not be a clone of pixs. */
    if (pixGetDepth(pix1) != 32)
        pix2 = pixConvertTo32(pix1);
    else
        pix2 = pixCopy(NULL, pix1);
    pixDestroy(&pix1);
    pixGetDimensions(pix2, &w, &h, &d);
    if (w <= 0 || h <= 0 || d != 32) {
        pixDestroy(&pix2);
        return ERROR_INT("pix2 not 32 bpp or of 0 size", procName, 1);
    }

        /* If spp == 3, need to set alpha layer to opaque (all 1s). */
    if (pixGetSpp(pix2) == 3)
        pixSetComponentArbitrary(pix2, L_ALPHA_CHANNEL, 255);

        /* Webp encoder assumes big-endian byte order for RGBA components */
    pixEndianByteSwap(pix2);
    wpl = pixGetWpl(pix2);
    data = pixGetData(pix2);
    stride = wpl * 4;
    if (lossless) {
        *pencsize = WebPEncodeLosslessRGBA((uint8_t *)data, w, h,
                                           stride, pencdata);
    } else {
        *pencsize = WebPEncodeRGBA((uint8_t *)data, w, h, stride,
                                   quality, pencdata);
    }
    pixDestroy(&pix2);

    if (*pencsize == 0) {
        free(pencdata);
        *pencdata = NULL;
        return ERROR_INT("webp encoding failed", procName, 1);
    }

    return 0;
}
Ejemplo n.º 30
0
main(int    argc,
     char **argv)
{
char        *filein;
l_int32      i, orient;
l_float32    upconf1, upconf2, leftconf1, leftconf2, conf1, conf2;
PIX         *pixs, *pixt1, *pixt2;
static char  mainName[] = "flipdetect_reg";

    if (argc != 2)
	exit(ERROR_INT(" Syntax: flipdetect_reg filein", mainName, 1));

    filein = argv[1];

    if ((pixt1 = pixRead(filein)) == NULL)
	exit(ERROR_INT("pixt1 not made", mainName, 1));
    pixs = pixConvertTo1(pixt1, 130);
    pixDestroy(&pixt1);
	    
    fprintf(stderr, "\nTest orientation detection\n");
    startTimer();
    pixOrientDetect(pixs, &upconf1, &leftconf1, 0, 0);
    fprintf(stderr, "Time for rop orient test: %7.3f sec\n", stopTimer());

    makeOrientDecision(upconf1, leftconf1, 0, 0, &orient, 1);

    startTimer();
    pixOrientDetectDwa(pixs, &upconf2, &leftconf2, 0, 0);
    fprintf(stderr, "Time for dwa orient test: %7.3f sec\n", stopTimer());

    if (upconf1 == upconf2 && leftconf1 == leftconf2) {
        printStarredMessage("Orient results identical");
        fprintf(stderr, "upconf = %7.3f, leftconf = %7.3f\n",
                upconf1, leftconf1);
    }
    else {
        printStarredMessage("Orient results differ");
        fprintf(stderr, "upconf1 = %7.3f, upconf2 = %7.3f\n", upconf1, upconf2);
        fprintf(stderr, "leftconf1 = %7.3f, leftconf2 = %7.3f\n",
                leftconf1, leftconf2);
    }

    pixt1 = pixCopy(NULL, pixs);
    fprintf(stderr, "\nTest orient detection for 4 orientations\n");
    for (i = 0; i < 4; i++) {
        pixOrientDetectDwa(pixt1, &upconf2, &leftconf2, 0, 0);
        makeOrientDecision(upconf2, leftconf2, 0, 0, &orient, 1);
        if (i == 3) break;
        pixt2 = pixRotate90(pixt1, 1);
        pixDestroy(&pixt1);
        pixt1 = pixt2;
    }
    pixDestroy(&pixt1);

    fprintf(stderr, "\nTest mirror reverse detection\n");
    startTimer();
    pixMirrorDetect(pixs, &conf1, 0, 1);
    fprintf(stderr, "Time for rop mirror flip test: %7.3f sec\n", stopTimer());

    startTimer();
    pixMirrorDetectDwa(pixs, &conf2, 0, 0);
    fprintf(stderr, "Time for dwa mirror flip test: %7.3f sec\n", stopTimer());

    if (conf1 == conf2) {
        printStarredMessage("Mirror results identical");
        fprintf(stderr, "conf = %7.3f\n", conf1);
    }
    else {
        printStarredMessage("Mirror results differ");
        fprintf(stderr, "conf1 = %7.3f, conf2 = %7.3f\n", conf1, conf2);
    }

    fprintf(stderr, "\nSafer version of up-down tests\n");
    pixUpDownDetectGeneral(pixs, &conf1, 0, 10, 1);
    pixUpDownDetectGeneralDwa(pixs, &conf2, 0, 10, 1);
    if (conf1 == conf2)
        fprintf(stderr, "Confidence results are identical\n");
    else
        fprintf(stderr, "Confidence results differ\n");

    pixDestroy(&pixs);
    exit(0);
}