Ejemplo n.º 1
0
GFn_el_t & GFn_el_t::operator *= (int _a) {
    unsigned int a = gf_int(prime, _a);

    poly_mul(prime, degree, comp, degree, comp, 0, &a);

    return *this;
}
Ejemplo n.º 2
0
void main()
{
	char opt;
	clrscr();
	printf("\nCreate the first list\n");
	do
	{
		creat(&x1);
		printf("\nPress 'y' to continue");
		flushall();
		scanf("%c",&opt);
	}while(opt=='y');

	printf("\nCreate the second list\n");
	do
	{
		creat(&x2);
		printf("\nPress 'y' to continue");
		flushall();
		scanf("%c",&opt);
	}while(opt=='y');
	getch();
	clrscr();
	printf("\n\nElements in list1\n\n");
	traverse(&x1);
	printf("\n\nElements in list2\n\n");
	traverse(&x2);
	printf("\n\n\n After addition\n\n");
	x3=poly_add(x1,x2);
	traverse(&x3);
	printf("\n\n\n After multiplication\n\n");
	x4=poly_mul(x1,x2);
	traverse(&x4);
	getch();
}
Ejemplo n.º 3
0
GFn_el_t & GFn_el_t::operator *= (const GFn_el_t &_h) {

    assert( &GFn == &_h.GFn );

    unsigned int M[2*degree + 1];

    poly_mul(prime, 2*degree, M, degree, comp, degree, _h.comp);

    poly_divmod(prime, -1, NULL, degree, comp, 2*degree, M, GFn.degree, GFn.mod);

    return *this;
}
Ejemplo n.º 4
0
void main()
{
	int n,num1,num2,i;
	node *head1=NULL,*head2=NULL,*head3=NULL;
	clrscr();

	printf("FIRST POLYNOMIAL EXPRESSION ::");
	printf("\n---------------------------\n\n");
	printf("ENTER HOW MANY NO.OF TERM YOU WANT TO GIVE :");
	scanf("%d",&n);
	for(i=0;i<n;i++)
	{
		printf("\nENTER COEFFICIENT AND EXPONENT OF A TERM :");
		scanf("%d",&num1);
		scanf("%d",&num2);
		poly_insert(num1,num2,&head1);
	}
	poly_reverse(&head1);
	poly_display(&head1);

	printf("\n\nSECOND POLYNOMIAL EXPRESSION ::");
	printf("\n----------------------------\n\n");
	printf("ENTER HOW MANY NO.OF TERM YOU WANT TO GIVE :");
	scanf("%d",&n);
	for(i=0;i<n;i++)
	{
		printf("\nENTER COEFFICIENT AND EXPONENT OF A TERM :");
		scanf("%d",&num1);
		scanf("%d",&num2);
		poly_insert(num1,num2,&head2);
	}
	poly_reverse(&head2);
	poly_display(&head2);

	poly_mul(&head1,&head2,&head3);

	printf("\n\nAFTER MULTIPLICATION POLYNOMIAL EXPRESSION ::");
	printf("\n------------------------------------------");
	poly_display(&head3);

	getch();

}
Ejemplo n.º 5
0
int main(int argc, char* argv[])
{
   int n;
   int i;
   int next_power_of_2;
   int timed_test;
   int shift_val;
   int coeff;
   int ret_val;
   complex* a;
   complex* b;
   
#ifdef TIMED_FFT
      timed_test = 1;
#else 
      timed_test = 0;
#endif

   if (timed_test)
   {
      srand(time(NULL));
      
      n = 1;
      shift_val = 0;
      while ((n = (n<<1)) <= MAX_N)
      {
         shift_val++;
         clock_t start = clock();
         
         a = (complex*)malloc(2 * n * sizeof(complex));
         b = (complex*)malloc(2 * n * sizeof(complex));
         
         /* Randomize polynomials to multiply */
         for (i = 0; i < (2*n); i++)
         {
            if (i < n)
            {  
               a[i].r = rand()%MAX_COEFF; a[i].i = 0.0;
               b[i].r = rand()%MAX_COEFF; b[i].i = 0.0;
            }
            else /* pad with zeros */
            {
               a[i].r = 0.0; a[i].i = 0.0;
               b[i].r = 0.0; b[i].i = 0.0;
            }
         }
         
         /* Perform polynomial multiplication and place results in a */
         poly_mul(a, b, 2*n);
         
         free(a);
         free(b);
         
         printf("[N = 2^%-2d = %-7d] Time elapsed: %.9f sec\n", 
            shift_val, n, ((double)clock() - start) / CLOCKS_PER_SEC);
      }
   }
   else
   {
      /* Read size of coefficient array from stdin */
      ret_val = scanf("%d",&n);
      
      /* Determine the next biggest power of two */
      next_power_of_2 = 1;
      while (next_power_of_2 < n)
         next_power_of_2 <<= 1;
      
      /* Allocate space for polynomials */
      a = (complex*)malloc(2 * next_power_of_2 * sizeof(complex));
      b = (complex*)malloc(2 * next_power_of_2 * sizeof(complex));
      
      /* Read coefficients from stdin */
      for (i = 0; i < n; i++)
      {
         ret_val = scanf("%d",&coeff);
         a[i].r = (double)coeff;
         a[i].i = 0.0;
      }
      
#ifndef REC_FFT
      for (i = 0; i < n; i++)
      {
         ret_val = scanf("%d",&coeff);
         b[i].r = (double)coeff;
         b[i].i = 0.0;
      }
#endif
         
      /* Pad the rest with zeros */
      for (i = n; i < (2 * next_power_of_2); i++)
      {
         a[i].r = 0.0; a[i].i = 0.0;
         b[i].r = 0.0; b[i].i = 0.0;
      }
      
      n = next_power_of_2; 
         
#ifdef REC_FFT
      /* Execute recursive FFT (results placed in b) */
      recursive_fft(a, b, n, 0);
      
      printf("\nPrinting coefficient evaluations at w_n^k = e^(2*PI*i*k/n):\n");
      for (i = 0; i < n; i++)
      {
         if (i > 100)
            break;

         printf("[%d] = %.4f %s %.4fi\n", 
            i,
            b[i].r,
            b[i].i < 0.0 ? "-" : "+",
            b[i].i < 0.0 ? (b[i].i*-1.0) : b[i].i);
      }
#else
      /* Multiply polynomials */
      poly_mul(a, b, 2*n);
      
      printf("\nPrinting coefficients for x^k:\n");
      for (i = 0; i < (2*n - 1); i++)
      {
         if (i > 100)
            break;

         printf("[%d] = %.0f\n", i, a[i].r);
      }
#endif

      free(a);
      free(b);
   }

   return 0;
}
Ejemplo n.º 6
0
const GFn_el_t GFn_el_t::inv() const {
    int i;

    unsigned int u0[degree + 1], r0[degree + 1];
    unsigned int u1[degree + 1], r1[degree + 1];

    unsigned int q[degree + 1], r[degree + 1];

    unsigned int u[2*degree + 1];

    {
        for(i = degree; i >= 0 && 0 == comp[i]; --i)
            r1[i] = 0;

        assert( i >= 0 );

        if( 0 == i )
            return GFn_el_t(GFn, gf_inv(prime, comp[0]));

        for(; i >= 0; --i)
            r1[i] = comp[i];

        for(i = degree; i >= 1; --i)
            u1[i] = 0;

        u1[0] = 1;
    }
    {
        poly_divmod(prime, degree, u0, degree, r0, GFn.degree, GFn.mod, degree, comp);

        poly_sub(prime, degree, u0, -1, NULL, degree, u0);
    }

    while( true ) {

        {
            for(i = degree; i >= 0 && 0 == r0[i] ; --i);

            assert( i >= 0 );

            if( 0 == i ) {
                unsigned int inv = gf_inv(prime, r0[0]);

                poly_mul(prime, degree, u0, degree, u0, 0, &inv);

                return GFn_el_t(GFn, u0);
            }
        }

        poly_divmod(prime, degree, q, degree, r, degree, r1, degree, r0);

        for(i = degree; i >= 0; --i) {
            r1[i] = r0[i];
            r0[i] = r[i];
        }

        poly_mul(prime, 2*degree, u, degree, u0, degree, q);
        poly_sub(prime, 2*degree, u, degree, u1, 2*degree, u);

        for( i = degree; i >= 0; --i)
            u1[i] = u0[i];

        poly_divmod(prime, -1, NULL, degree, u0, 2*degree, u, GFn.degree, GFn.mod);
    }
}
Ejemplo n.º 7
0
int main (int argc, char* argv[]) {
    int min = 0;
    int max = 0;

    biggun cmb		= 1;
    long int constant	= 0;
    int nrolls		= 0;

    int *rolls[argc];

    for (int i = 1; i < argc; i++) {
	if (strchr(argv[i], 'd')) {
	    int *roll;
	    int j = 0;

	    roll = calloc(2, sizeof(int));

	    for (
		char *token = strtok(argv[i], "d");
		token != NULL;
		token = strtok(NULL, "d")
	    ) {
		roll[j] = atoi(token);
		j++;
	    }

	    rolls[nrolls] = roll;
	    nrolls++;
	}
	else {
	    constant += atol(argv[i]);
	}
    }

    for (int i = 0; i < nrolls; i++) {
	int n = rolls[i][0];
	int d = rolls[i][1];

	min += n;
	max += n*d;
	cmb *= power(d, n);
    }

    Poly **polys;
    polys = calloc(min, sizeof(Poly *));

    int k = 0;
    for (int i = 0; i < nrolls; i++) {
	int n = rolls[i][0];
	int d = rolls[i][1];

	Poly **list = mkroll(n,d);

	for (int j = 0; j < n; j++) {
	    polys[k] = list[j];
	    k++;
	}
    }

    Poly *biggie = polys[0];

    for (int i = 1; i < min; i++) {
	biggie = poly_mul(biggie, polys[i]);
    }

    // debug(min, max, cmb, biggie); 

    for (int i = min; i <= biggie->degree; i++) {
	long n = i + constant;
	ldub p = (ldub) biggie->coeffz[i] / (ldub) cmb;
	char *hg = mkpounds(p);

	printf("%ld\t\t%.5Lf\t\t%s\n", n, p, hg);
    }

    return 0;
}