Ejemplo n.º 1
0
/*
 * Return a pointer to a correctly filled memzone descriptor. If the
 * allocation cannot be done, return NULL.
 */
const struct rte_memzone *
rte_memzone_reserve(const char *name, size_t len, int socket_id,
		      unsigned flags)
{
	return rte_memzone_reserve_aligned(name,
			len, socket_id, flags, RTE_CACHE_LINE_SIZE);
}
static int
rte_event_eth_rx_adapter_init(void)
{
	const char *name = "rte_event_eth_rx_adapter_array";
	const struct rte_memzone *mz;
	unsigned int sz;

	sz = sizeof(*event_eth_rx_adapter) *
	    RTE_EVENT_ETH_RX_ADAPTER_MAX_INSTANCE;
	sz = RTE_ALIGN(sz, RTE_CACHE_LINE_SIZE);

	mz = rte_memzone_lookup(name);
	if (mz == NULL) {
		mz = rte_memzone_reserve_aligned(name, sz, rte_socket_id(), 0,
						 RTE_CACHE_LINE_SIZE);
		if (mz == NULL) {
			RTE_EDEV_LOG_ERR("failed to reserve memzone err = %"
					PRId32, rte_errno);
			return -rte_errno;
		}
	}

	event_eth_rx_adapter = mz->addr;
	return 0;
}
Ejemplo n.º 3
0
static const struct rte_memzone *
queue_dma_zone_reserve(const char *queue_name, uint32_t queue_size,
			int socket_id)
{
	const struct rte_memzone *mz;
	unsigned memzone_flags = 0;
	const struct rte_memseg *ms;

	PMD_INIT_FUNC_TRACE();
	mz = rte_memzone_lookup(queue_name);
	if (mz != 0) {
		if (((size_t)queue_size <= mz->len) &&
				((socket_id == SOCKET_ID_ANY) ||
					(socket_id == mz->socket_id))) {
			PMD_DRV_LOG(DEBUG, "re-use memzone already "
					"allocated for %s", queue_name);
			return mz;
		}

		PMD_DRV_LOG(ERR, "Incompatible memzone already "
				"allocated %s, size %u, socket %d. "
				"Requested size %u, socket %u",
				queue_name, (uint32_t)mz->len,
				mz->socket_id, queue_size, socket_id);
		return NULL;
	}

	PMD_DRV_LOG(DEBUG, "Allocate memzone for %s, size %u on socket %u",
					queue_name, queue_size, socket_id);
	ms = rte_eal_get_physmem_layout();
	switch (ms[0].hugepage_sz) {
	case(RTE_PGSIZE_2M):
		memzone_flags = RTE_MEMZONE_2MB;
	break;
	case(RTE_PGSIZE_1G):
		memzone_flags = RTE_MEMZONE_1GB;
	break;
	case(RTE_PGSIZE_16M):
		memzone_flags = RTE_MEMZONE_16MB;
	break;
	case(RTE_PGSIZE_16G):
		memzone_flags = RTE_MEMZONE_16GB;
	break;
	default:
		memzone_flags = RTE_MEMZONE_SIZE_HINT_ONLY;
}
#ifdef RTE_LIBRTE_XEN_DOM0
	return rte_memzone_reserve_bounded(queue_name, queue_size,
		socket_id, 0, RTE_CACHE_LINE_SIZE, RTE_PGSIZE_2M);
#else
	return rte_memzone_reserve_aligned(queue_name, queue_size, socket_id,
		memzone_flags, queue_size);
#endif
}
Ejemplo n.º 4
0
void *
alloc_hugepages(size_t size)
{
    struct rte_memzone *memzone = rte_memzone_reserve_aligned(
        "hugepages",
        size,
        SOCKET_ID_ANY,
        RTE_MEMZONE_SIZE_HINT_ONLY,
        64);
    assert(memzone);

    return memzone->addr;

    /* return rte_malloc(NULL, size, 64); */
}
Ejemplo n.º 5
0
static const struct rte_memzone *
ring_dma_zone_reserve(struct rte_eth_dev *dev, const char *ring_name,
		      uint16_t queue_id, uint32_t ring_size, int socket_id)
{
	char z_name[RTE_MEMZONE_NAMESIZE];
	const struct rte_memzone *mz;

	snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
			dev->driver->pci_drv.name, ring_name, dev->data->port_id, queue_id);

	mz = rte_memzone_lookup(z_name);
	if (mz)
		return mz;

	return rte_memzone_reserve_aligned(z_name, ring_size, socket_id, 0, BNX2X_PAGE_SIZE);
}
Ejemplo n.º 6
0
static const struct rte_memzone *
gpa_zone_reserve(struct rte_eth_dev *dev, uint32_t size,
		const char *post_string, int socket_id, uint16_t align)
{
	char z_name[RTE_MEMZONE_NAMESIZE];
	const struct rte_memzone *mz;

	rte_snprintf(z_name, sizeof(z_name), "%s_%d_%s",
					dev->driver->pci_drv.name, dev->data->port_id, post_string);

	mz = rte_memzone_lookup(z_name);
	if (mz)
		return mz;

	return rte_memzone_reserve_aligned(z_name, size,
			socket_id, 0, align);
}
Ejemplo n.º 7
0
static int
test_memzone_invalid_alignment(void)
{
	const struct rte_memzone * mz;

	mz = rte_memzone_lookup("invalid_alignment");
	if (mz != NULL) {
		printf("Zone with invalid alignment has been reserved\n");
		return -1;
	}

	mz = rte_memzone_reserve_aligned("invalid_alignment", 100,
			SOCKET_ID_ANY, 0, 100);
	if (mz != NULL) {
		printf("Zone with invalid alignment has been reserved\n");
		return -1;
	}
	return 0;
}
Ejemplo n.º 8
0
static void *
enic_alloc_consistent(__rte_unused void *priv, size_t size,
	dma_addr_t *dma_handle, u8 *name)
{
	void *vaddr;
	const struct rte_memzone *rz;
	*dma_handle = 0;

	rz = rte_memzone_reserve_aligned((const char *)name,
		size, 0, 0, ENIC_ALIGN);
	if (!rz) {
		pr_err("%s : Failed to allocate memory requested for %s",
			__func__, name);
		return NULL;
	}

	vaddr = rz->addr;
	*dma_handle = (dma_addr_t)rz->phys_addr;

	return vaddr;
}
Ejemplo n.º 9
0
int
otx_cpt_get_resource(void *dev, uint8_t group, struct cpt_instance **instance)
{
	int ret = -ENOENT, len, qlen, i;
	int chunk_len, chunks, chunk_size;
	struct cpt_vf *cptvf = (struct cpt_vf *)dev;
	struct cpt_instance *cpt_instance;
	struct command_chunk *chunk_head = NULL, *chunk_prev = NULL;
	struct command_chunk *chunk = NULL;
	uint8_t *mem;
	const struct rte_memzone *rz;
	uint64_t dma_addr = 0, alloc_len, used_len;
	uint64_t *next_ptr;
	uint64_t pg_sz = sysconf(_SC_PAGESIZE);

	CPT_LOG_DP_DEBUG("Initializing cpt resource %s", cptvf->dev_name);

	cpt_instance = &cptvf->instance;

	memset(&cptvf->cqueue, 0, sizeof(cptvf->cqueue));
	memset(&cptvf->pqueue, 0, sizeof(cptvf->pqueue));

	/* Chunks are of fixed size buffers */
	chunks = DEFAULT_CMD_QCHUNKS;
	chunk_len = DEFAULT_CMD_QCHUNK_SIZE;

	qlen = chunks * chunk_len;
	/* Chunk size includes 8 bytes of next chunk ptr */
	chunk_size = chunk_len * CPT_INST_SIZE + CPT_NEXT_CHUNK_PTR_SIZE;

	/* For command chunk structures */
	len = chunks * RTE_ALIGN(sizeof(struct command_chunk), 8);

	/* For pending queue */
	len += qlen * RTE_ALIGN(sizeof(struct rid), 8);

	/* So that instruction queues start as pg size aligned */
	len = RTE_ALIGN(len, pg_sz);

	/* For Instruction queues */
	len += chunks * RTE_ALIGN(chunk_size, 128);

	/* Wastage after instruction queues */
	len = RTE_ALIGN(len, pg_sz);

	rz = rte_memzone_reserve_aligned(cptvf->dev_name, len, cptvf->node,
					 RTE_MEMZONE_SIZE_HINT_ONLY |
					 RTE_MEMZONE_256MB,
					 RTE_CACHE_LINE_SIZE);
	if (!rz) {
		ret = rte_errno;
		goto cleanup;
	}

	mem = rz->addr;
	dma_addr = rz->phys_addr;
	alloc_len = len;

	memset(mem, 0, len);

	cpt_instance->rsvd = (uintptr_t)rz;

	/* Pending queue setup */
	cptvf->pqueue.rid_queue = (struct rid *)mem;
	cptvf->pqueue.enq_tail = 0;
	cptvf->pqueue.deq_head = 0;
	cptvf->pqueue.pending_count = 0;

	mem +=  qlen * RTE_ALIGN(sizeof(struct rid), 8);
	len -=  qlen * RTE_ALIGN(sizeof(struct rid), 8);
	dma_addr += qlen * RTE_ALIGN(sizeof(struct rid), 8);

	/* Alignment wastage */
	used_len = alloc_len - len;
	mem += RTE_ALIGN(used_len, pg_sz) - used_len;
	len -= RTE_ALIGN(used_len, pg_sz) - used_len;
	dma_addr += RTE_ALIGN(used_len, pg_sz) - used_len;

	/* Init instruction queues */
	chunk_head = &cptvf->cqueue.chead[0];
	i = qlen;

	chunk_prev = NULL;
	for (i = 0; i < DEFAULT_CMD_QCHUNKS; i++) {
		int csize;

		chunk = &cptvf->cqueue.chead[i];
		chunk->head = mem;
		chunk->dma_addr = dma_addr;

		csize = RTE_ALIGN(chunk_size, 128);
		mem += csize;
		dma_addr += csize;
		len -= csize;

		if (chunk_prev) {
			next_ptr = (uint64_t *)(chunk_prev->head +
						chunk_size - 8);
			*next_ptr = (uint64_t)chunk->dma_addr;
		}
		chunk_prev = chunk;
	}
	/* Circular loop */
	next_ptr = (uint64_t *)(chunk_prev->head + chunk_size - 8);
	*next_ptr = (uint64_t)chunk_head->dma_addr;

	assert(!len);

	/* This is used for CPT(0)_PF_Q(0..15)_CTL.size config */
	cptvf->qsize = chunk_size / 8;
	cptvf->cqueue.qhead = chunk_head->head;
	cptvf->cqueue.idx = 0;
	cptvf->cqueue.cchunk = 0;

	if (cpt_vq_init(cptvf, group)) {
		CPT_LOG_ERR("Failed to initialize CPT VQ of device %s",
			    cptvf->dev_name);
		ret = -EBUSY;
		goto cleanup;
	}

	*instance = cpt_instance;

	CPT_LOG_DP_DEBUG("Crypto device (%s) initialized", cptvf->dev_name);

	return 0;
cleanup:
	rte_memzone_free(rz);
	*instance = NULL;
	return ret;
}
void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring)
{
	memset(ring->descs, 0, ring->size);
}

int vnic_dev_alloc_desc_ring(__attribute__((unused)) struct vnic_dev *vdev,
	struct vnic_dev_ring *ring,
	unsigned int desc_count, unsigned int desc_size, unsigned int socket_id,
	char *z_name)
{
	const struct rte_memzone *rz;

	vnic_dev_desc_ring_size(ring, desc_count, desc_size);

	rz = rte_memzone_reserve_aligned(z_name,
		ring->size_unaligned, socket_id,
		0, ENIC_ALIGN);
	if (!rz) {
		pr_err("Failed to allocate ring (size=%d), aborting\n",
			(int)ring->size);
		return -ENOMEM;
	}

	ring->descs_unaligned = rz->addr;
	if (!ring->descs_unaligned) {
		pr_err("Failed to map allocated ring (size=%d), aborting\n",
			(int)ring->size);
		return -ENOMEM;
	}

	ring->base_addr_unaligned = (dma_addr_t)rz->phys_addr;
Ejemplo n.º 11
0
static int
test_memzone_reserve_remainder(void)
{
	const struct rte_memzone *mz1, *mz2;
	const struct rte_memseg *ms, *min_ms = NULL;
	size_t min_len;
	const struct rte_config *config;
	int i, align;

	min_len = 0;
	align = RTE_CACHE_LINE_SIZE;

	config = rte_eal_get_configuration();

	/* find minimum free contiguous length */
	for (i = 0; i < RTE_MAX_MEMSEG; i++) {
		ms = &config->mem_config->free_memseg[i];

		if (ms->addr == NULL)
			break;
		if (ms->len == 0)
			continue;

		if (min_len == 0 || ms->len < min_len) {
			min_len = ms->len;
			min_ms = ms;

			/* find maximum alignment this segment is able to hold */
			align = RTE_CACHE_LINE_SIZE;
			while ((ms->addr_64 & (align-1)) == 0) {
				align <<= 1;
			}
		}
	}

	if (min_ms == NULL) {
		printf("Minimal sized segment not found!\n");
		return -1;
	}

	/* try reserving min_len bytes with alignment - this should not affect our
	 * memseg, the memory will be taken from a different one.
	 */
	mz1 = rte_memzone_reserve_aligned("reserve_remainder_1", min_len,
			SOCKET_ID_ANY, 0, align);
	if (mz1 == NULL) {
		printf("Failed to reserve %zu bytes aligned on %i bytes\n", min_len,
				align);
		return -1;
	}
	if (min_ms->len != min_len) {
		printf("Memseg memory should not have been reserved!\n");
		return -1;
	}

	/* try reserving min_len bytes with less alignment - this should fill up
	 * the segment.
	 */
	mz2 = rte_memzone_reserve("reserve_remainder_2", min_len,
			SOCKET_ID_ANY, 0);
	if (mz2 == NULL) {
		printf("Failed to reserve %zu bytes\n", min_len);
		return -1;
	}
	if (min_ms->len != 0) {
		printf("Memseg memory should have been reserved!\n");
		return -1;
	}

	return 0;
}
Ejemplo n.º 12
0
/* this test is a bit  tricky, and thus warrants explanation.
 *
 * first, we find two smallest memsegs to conduct our experiments on.
 *
 * then, we bring them within alignment from each other: if second segment is
 * twice+ as big as the first, reserve memory from that segment; if second
 * segment is comparable in length to the first, then cut the first segment
 * down until it becomes less than half of second segment, and then cut down
 * the second segment to be within alignment of the first.
 *
 * then, we have to pass the following test: if segments are within alignment
 * of each other (that is, the difference is less than 256 bytes, which is what
 * our alignment will be), segment with smallest offset should be picked.
 *
 * we know that min_ms will be our smallest segment, so we need to make sure
 * that we adjust the alignments so that the bigger segment has smallest
 * alignment (in our case, smallest segment will have 64-byte alignment, while
 * bigger segment will have 128-byte alignment).
 */
static int
test_memzone_reserve_memory_with_smallest_offset(void)
{
	const struct rte_memseg *ms, *min_ms, *prev_min_ms;
	size_t len, min_len, prev_min_len;
	const struct rte_config *config;
	int i, align;

	config = rte_eal_get_configuration();

	min_ms = NULL;  /*< smallest segment */
	prev_min_ms = NULL; /*< second smallest segment */
	align = RTE_CACHE_LINE_SIZE * 4;

	/* find two smallest segments */
	for (i = 0; i < RTE_MAX_MEMSEG; i++) {
		ms = &config->mem_config->free_memseg[i];

		if (ms->addr == NULL)
			break;
		if (ms->len == 0)
			continue;

		if (min_ms == NULL)
			min_ms = ms;
		else if (min_ms->len > ms->len) {
			/* set last smallest to second last */
			prev_min_ms = min_ms;

			/* set new smallest */
			min_ms = ms;
		} else if ((prev_min_ms == NULL)
			|| (prev_min_ms->len > ms->len)) {
			prev_min_ms = ms;
		}
	}

	if (min_ms == NULL || prev_min_ms == NULL) {
		printf("Smallest segments not found!\n");
		return -1;
	}

	prev_min_len = prev_min_ms->len;
	min_len = min_ms->len;

	/* if smallest segment is bigger than half of bigger segment */
	if (prev_min_ms->len - min_ms->len <= min_ms->len) {

		len = (min_ms->len * 2) - prev_min_ms->len;

		/* make sure final length is *not* aligned */
		while (((min_ms->addr_64 + len) & (align-1)) == 0)
			len += RTE_CACHE_LINE_SIZE;

		if (rte_memzone_reserve("dummy_mz1", len, SOCKET_ID_ANY, 0) == NULL) {
			printf("Cannot reserve memory!\n");
			return -1;
		}

		/* check if we got memory from correct segment */
		if (min_ms->len != min_len - len) {
			printf("Reserved memory from wrong segment!\n");
			return -1;
		}
	}
    /* if we don't need to touch smallest segment but it's aligned */
    else if ((min_ms->addr_64 & (align-1)) == 0) {
            if (rte_memzone_reserve("align_mz1", RTE_CACHE_LINE_SIZE,
                    SOCKET_ID_ANY, 0) == NULL) {
                            printf("Cannot reserve memory!\n");
                            return -1;
            }
            if (min_ms->len != min_len - RTE_CACHE_LINE_SIZE) {
                    printf("Reserved memory from wrong segment!\n");
                    return -1;
            }
    }

	/* if smallest segment is less than half of bigger segment */
	if (prev_min_ms->len - min_ms->len > min_ms->len) {
		len = prev_min_ms->len - min_ms->len - align;

		/* make sure final length is aligned */
		while (((prev_min_ms->addr_64 + len) & (align-1)) != 0)
			len += RTE_CACHE_LINE_SIZE;

		if (rte_memzone_reserve("dummy_mz2", len, SOCKET_ID_ANY, 0) == NULL) {
			printf("Cannot reserve memory!\n");
			return -1;
		}

		/* check if we got memory from correct segment */
		if (prev_min_ms->len != prev_min_len - len) {
			printf("Reserved memory from wrong segment!\n");
			return -1;
		}
	}
	len = RTE_CACHE_LINE_SIZE;



	prev_min_len = prev_min_ms->len;
	min_len = min_ms->len;

	if (min_len >= prev_min_len || prev_min_len - min_len > (unsigned) align) {
		printf("Segments are of wrong lengths!\n");
		return -1;
	}

	/* try reserving from a bigger segment */
	if (rte_memzone_reserve_aligned("smallest_offset", len, SOCKET_ID_ANY, 0, align) ==
			NULL) {
		printf("Cannot reserve memory!\n");
		return -1;
	}

	/* check if we got memory from correct segment */
	if (min_ms->len != min_len && prev_min_ms->len != (prev_min_len - len)) {
		printf("Reserved memory from segment with smaller offset!\n");
		return -1;
	}

	return 0;
}
Ejemplo n.º 13
0
static int
test_memzone_aligned(void)
{
	const struct rte_memzone *memzone_aligned_32;
	const struct rte_memzone *memzone_aligned_128;
	const struct rte_memzone *memzone_aligned_256;
	const struct rte_memzone *memzone_aligned_512;
	const struct rte_memzone *memzone_aligned_1024;

	/* memzone that should automatically be adjusted to align on 64 bytes */
	memzone_aligned_32 = rte_memzone_reserve_aligned("aligned_32", 100,
				SOCKET_ID_ANY, 0, 32);

	/* memzone that is supposed to be aligned on a 128 byte boundary */
	memzone_aligned_128 = rte_memzone_reserve_aligned("aligned_128", 100,
				SOCKET_ID_ANY, 0, 128);

	/* memzone that is supposed to be aligned on a 256 byte boundary */
	memzone_aligned_256 = rte_memzone_reserve_aligned("aligned_256", 100,
				SOCKET_ID_ANY, 0, 256);

	/* memzone that is supposed to be aligned on a 512 byte boundary */
	memzone_aligned_512 = rte_memzone_reserve_aligned("aligned_512", 100,
				SOCKET_ID_ANY, 0, 512);

	/* memzone that is supposed to be aligned on a 1024 byte boundary */
	memzone_aligned_1024 = rte_memzone_reserve_aligned("aligned_1024", 100,
				SOCKET_ID_ANY, 0, 1024);

	printf("check alignments and lengths\n");
	if (memzone_aligned_32 == NULL) {
		printf("Unable to reserve 64-byte aligned memzone!\n");
		return -1;
	}
	if ((memzone_aligned_32->phys_addr & RTE_CACHE_LINE_MASK) != 0)
		return -1;
	if (((uintptr_t) memzone_aligned_32->addr & RTE_CACHE_LINE_MASK) != 0)
		return -1;
	if ((memzone_aligned_32->len & RTE_CACHE_LINE_MASK) != 0)
		return -1;

	if (memzone_aligned_128 == NULL) {
		printf("Unable to reserve 128-byte aligned memzone!\n");
		return -1;
	}
	if ((memzone_aligned_128->phys_addr & 127) != 0)
		return -1;
	if (((uintptr_t) memzone_aligned_128->addr & 127) != 0)
		return -1;
	if ((memzone_aligned_128->len & RTE_CACHE_LINE_MASK) != 0)
		return -1;

	if (memzone_aligned_256 == NULL) {
		printf("Unable to reserve 256-byte aligned memzone!\n");
		return -1;
	}
	if ((memzone_aligned_256->phys_addr & 255) != 0)
		return -1;
	if (((uintptr_t) memzone_aligned_256->addr & 255) != 0)
		return -1;
	if ((memzone_aligned_256->len & RTE_CACHE_LINE_MASK) != 0)
		return -1;

	if (memzone_aligned_512 == NULL) {
		printf("Unable to reserve 512-byte aligned memzone!\n");
		return -1;
	}
	if ((memzone_aligned_512->phys_addr & 511) != 0)
		return -1;
	if (((uintptr_t) memzone_aligned_512->addr & 511) != 0)
		return -1;
	if ((memzone_aligned_512->len & RTE_CACHE_LINE_MASK) != 0)
		return -1;

	if (memzone_aligned_1024 == NULL) {
		printf("Unable to reserve 1024-byte aligned memzone!\n");
		return -1;
	}
	if ((memzone_aligned_1024->phys_addr & 1023) != 0)
		return -1;
	if (((uintptr_t) memzone_aligned_1024->addr & 1023) != 0)
		return -1;
	if ((memzone_aligned_1024->len & RTE_CACHE_LINE_MASK) != 0)
		return -1;

	/* check that zones don't overlap */
	printf("check overlapping\n");
	if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
					memzone_aligned_128->phys_addr, memzone_aligned_128->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
					memzone_aligned_256->phys_addr, memzone_aligned_256->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
					memzone_aligned_512->phys_addr, memzone_aligned_512->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
					memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
					memzone_aligned_256->phys_addr, memzone_aligned_256->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
					memzone_aligned_512->phys_addr, memzone_aligned_512->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
					memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
					memzone_aligned_512->phys_addr, memzone_aligned_512->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
					memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
		return -1;
	if (is_memory_overlap(memzone_aligned_512->phys_addr, memzone_aligned_512->len,
					memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
		return -1;
	return 0;
}
Ejemplo n.º 14
0
static int
test_memzone_reserve_max_aligned(void)
{
	const struct rte_memzone *mz;
	const struct rte_config *config;
	const struct rte_memseg *ms;
	int memseg_idx = 0;
	int memzone_idx = 0;
	uintptr_t addr_offset;
	size_t len = 0;
	void* last_addr;
	size_t maxlen = 0;

	/* random alignment */
	rte_srand((unsigned)rte_rdtsc());
	const unsigned align = 1 << ((rte_rand() % 8) + 5); /* from 128 up to 4k alignment */

	/* get pointer to global configuration */
	config = rte_eal_get_configuration();

	ms = rte_eal_get_physmem_layout();

	addr_offset = 0;

	for (memseg_idx = 0; memseg_idx < RTE_MAX_MEMSEG; memseg_idx++){

		/* ignore smaller memsegs as they can only get smaller */
		if (ms[memseg_idx].len < maxlen)
			continue;

		/* align everything */
		last_addr = RTE_PTR_ALIGN_CEIL(ms[memseg_idx].addr, RTE_CACHE_LINE_SIZE);
		len = ms[memseg_idx].len - RTE_PTR_DIFF(last_addr, ms[memseg_idx].addr);
		len &= ~((size_t) RTE_CACHE_LINE_MASK);

		/* cycle through all memzones */
		for (memzone_idx = 0; memzone_idx < RTE_MAX_MEMZONE; memzone_idx++) {

			/* stop when reaching last allocated memzone */
			if (config->mem_config->memzone[memzone_idx].addr == NULL)
				break;

			/* check if the memzone is in our memseg and subtract length */
			if ((config->mem_config->memzone[memzone_idx].addr >=
					ms[memseg_idx].addr) &&
					(config->mem_config->memzone[memzone_idx].addr <
					(RTE_PTR_ADD(ms[memseg_idx].addr, ms[memseg_idx].len)))) {
				/* since the zones can now be aligned and occasionally skip
				 * some space, we should calculate the length based on
				 * reported length and start addresses difference.
				 */
				len -= (uintptr_t) RTE_PTR_SUB(
						config->mem_config->memzone[memzone_idx].addr,
						(uintptr_t) last_addr);
				len -= config->mem_config->memzone[memzone_idx].len;
				last_addr =
						RTE_PTR_ADD(config->mem_config->memzone[memzone_idx].addr,
						(size_t) config->mem_config->memzone[memzone_idx].len);
			}
		}

		/* make sure we get the alignment offset */
		if (len > maxlen) {
			addr_offset = RTE_PTR_ALIGN_CEIL((uintptr_t) last_addr, align) - (uintptr_t) last_addr;
			maxlen = len;
		}
	}

	if (maxlen == 0 || maxlen == addr_offset) {
		printf("There is no space left for biggest %u-aligned memzone!\n", align);
		return 0;
	}

	maxlen -= addr_offset;

	mz = rte_memzone_reserve_aligned("max_zone_aligned", 0,
			SOCKET_ID_ANY, 0, align);
	if (mz == NULL){
		printf("Failed to reserve a big chunk of memory\n");
		rte_dump_physmem_layout(stdout);
		rte_memzone_dump(stdout);
		return -1;
	}

	if (mz->len != maxlen) {
		printf("Memzone reserve with 0 size and alignment %u did not return"
				" bigest block\n", align);
		printf("Expected size = %zu, actual size = %zu\n",
				maxlen, mz->len);
		rte_dump_physmem_layout(stdout);
		rte_memzone_dump(stdout);

		return -1;
	}
	return 0;
}
Ejemplo n.º 15
0
/*
 * Allocates a completion ring with vmem and stats optionally also allocating
 * a TX and/or RX ring.  Passing NULL as tx_ring_info and/or rx_ring_info
 * to not allocate them.
 *
 * Order in the allocation is:
 * stats - Always non-zero length
 * cp vmem - Always zero-length, supported for the bnxt_ring abstraction
 * tx vmem - Only non-zero length if tx_ring_info is not NULL
 * rx vmem - Only non-zero length if rx_ring_info is not NULL
 * cp bd ring - Always non-zero length
 * tx bd ring - Only non-zero length if tx_ring_info is not NULL
 * rx bd ring - Only non-zero length if rx_ring_info is not NULL
 */
int bnxt_alloc_rings(struct bnxt *bp, uint16_t qidx,
			    struct bnxt_tx_ring_info *tx_ring_info,
			    struct bnxt_rx_ring_info *rx_ring_info,
			    struct bnxt_cp_ring_info *cp_ring_info,
			    const char *suffix)
{
	struct bnxt_ring *cp_ring = cp_ring_info->cp_ring_struct;
	struct bnxt_ring *tx_ring;
	struct bnxt_ring *rx_ring;
	struct rte_pci_device *pdev = bp->pdev;
	const struct rte_memzone *mz = NULL;
	char mz_name[RTE_MEMZONE_NAMESIZE];
	rte_iova_t mz_phys_addr;
	int sz;

	int stats_len = (tx_ring_info || rx_ring_info) ?
	    RTE_CACHE_LINE_ROUNDUP(sizeof(struct ctx_hw_stats64)) : 0;

	int cp_vmem_start = stats_len;
	int cp_vmem_len = RTE_CACHE_LINE_ROUNDUP(cp_ring->vmem_size);

	int tx_vmem_start = cp_vmem_start + cp_vmem_len;
	int tx_vmem_len =
	    tx_ring_info ? RTE_CACHE_LINE_ROUNDUP(tx_ring_info->
						tx_ring_struct->vmem_size) : 0;

	int rx_vmem_start = tx_vmem_start + tx_vmem_len;
	int rx_vmem_len = rx_ring_info ?
		RTE_CACHE_LINE_ROUNDUP(rx_ring_info->
						rx_ring_struct->vmem_size) : 0;
	int ag_vmem_start = 0;
	int ag_vmem_len = 0;
	int cp_ring_start =  0;

	ag_vmem_start = rx_vmem_start + rx_vmem_len;
	ag_vmem_len = rx_ring_info ? RTE_CACHE_LINE_ROUNDUP(
				rx_ring_info->ag_ring_struct->vmem_size) : 0;
	cp_ring_start = ag_vmem_start + ag_vmem_len;

	int cp_ring_len = RTE_CACHE_LINE_ROUNDUP(cp_ring->ring_size *
						 sizeof(struct cmpl_base));

	int tx_ring_start = cp_ring_start + cp_ring_len;
	int tx_ring_len = tx_ring_info ?
	    RTE_CACHE_LINE_ROUNDUP(tx_ring_info->tx_ring_struct->ring_size *
				   sizeof(struct tx_bd_long)) : 0;

	int rx_ring_start = tx_ring_start + tx_ring_len;
	int rx_ring_len =  rx_ring_info ?
		RTE_CACHE_LINE_ROUNDUP(rx_ring_info->rx_ring_struct->ring_size *
		sizeof(struct rx_prod_pkt_bd)) : 0;

	int ag_ring_start = rx_ring_start + rx_ring_len;
	int ag_ring_len = rx_ring_len * AGG_RING_SIZE_FACTOR;

	int ag_bitmap_start = ag_ring_start + ag_ring_len;
	int ag_bitmap_len =  rx_ring_info ?
		RTE_CACHE_LINE_ROUNDUP(rte_bitmap_get_memory_footprint(
			rx_ring_info->rx_ring_struct->ring_size *
			AGG_RING_SIZE_FACTOR)) : 0;

	int tpa_info_start = ag_bitmap_start + ag_bitmap_len;
	int tpa_info_len = rx_ring_info ?
		RTE_CACHE_LINE_ROUNDUP(BNXT_TPA_MAX *
				       sizeof(struct bnxt_tpa_info)) : 0;

	int total_alloc_len = tpa_info_start;
	if (bp->eth_dev->data->dev_conf.rxmode.enable_lro)
		total_alloc_len += tpa_info_len;

	snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
		 "bnxt_%04x:%02x:%02x:%02x-%04x_%s", pdev->addr.domain,
		 pdev->addr.bus, pdev->addr.devid, pdev->addr.function, qidx,
		 suffix);
	mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
	mz = rte_memzone_lookup(mz_name);
	if (!mz) {
		mz = rte_memzone_reserve_aligned(mz_name, total_alloc_len,
					 SOCKET_ID_ANY,
					 RTE_MEMZONE_2MB |
					 RTE_MEMZONE_SIZE_HINT_ONLY,
					 getpagesize());
		if (mz == NULL)
			return -ENOMEM;
	}
	memset(mz->addr, 0, mz->len);
	mz_phys_addr = mz->iova;
	if ((unsigned long)mz->addr == mz_phys_addr) {
		RTE_LOG(WARNING, PMD,
			"Memzone physical address same as virtual.\n");
		RTE_LOG(WARNING, PMD,
			"Using rte_mem_virt2iova()\n");
		for (sz = 0; sz < total_alloc_len; sz += getpagesize())
			rte_mem_lock_page(((char *)mz->addr) + sz);
		mz_phys_addr = rte_mem_virt2iova(mz->addr);
		if (mz_phys_addr == 0) {
			RTE_LOG(ERR, PMD,
			"unable to map ring address to physical memory\n");
			return -ENOMEM;
		}
	}

	if (tx_ring_info) {
		tx_ring = tx_ring_info->tx_ring_struct;

		tx_ring->bd = ((char *)mz->addr + tx_ring_start);
		tx_ring_info->tx_desc_ring = (struct tx_bd_long *)tx_ring->bd;
		tx_ring->bd_dma = mz_phys_addr + tx_ring_start;
		tx_ring_info->tx_desc_mapping = tx_ring->bd_dma;
		tx_ring->mem_zone = (const void *)mz;

		if (!tx_ring->bd)
			return -ENOMEM;
		if (tx_ring->vmem_size) {
			tx_ring->vmem =
			    (void **)((char *)mz->addr + tx_vmem_start);
			tx_ring_info->tx_buf_ring =
			    (struct bnxt_sw_tx_bd *)tx_ring->vmem;
		}
	}

	if (rx_ring_info) {
		rx_ring = rx_ring_info->rx_ring_struct;

		rx_ring->bd = ((char *)mz->addr + rx_ring_start);
		rx_ring_info->rx_desc_ring =
		    (struct rx_prod_pkt_bd *)rx_ring->bd;
		rx_ring->bd_dma = mz_phys_addr + rx_ring_start;
		rx_ring_info->rx_desc_mapping = rx_ring->bd_dma;
		rx_ring->mem_zone = (const void *)mz;

		if (!rx_ring->bd)
			return -ENOMEM;
		if (rx_ring->vmem_size) {
			rx_ring->vmem =
			    (void **)((char *)mz->addr + rx_vmem_start);
			rx_ring_info->rx_buf_ring =
			    (struct bnxt_sw_rx_bd *)rx_ring->vmem;
		}

		rx_ring = rx_ring_info->ag_ring_struct;

		rx_ring->bd = ((char *)mz->addr + ag_ring_start);
		rx_ring_info->ag_desc_ring =
		    (struct rx_prod_pkt_bd *)rx_ring->bd;
		rx_ring->bd_dma = mz->iova + ag_ring_start;
		rx_ring_info->ag_desc_mapping = rx_ring->bd_dma;
		rx_ring->mem_zone = (const void *)mz;

		if (!rx_ring->bd)
			return -ENOMEM;
		if (rx_ring->vmem_size) {
			rx_ring->vmem =
			    (void **)((char *)mz->addr + ag_vmem_start);
			rx_ring_info->ag_buf_ring =
			    (struct bnxt_sw_rx_bd *)rx_ring->vmem;
		}

		rx_ring_info->ag_bitmap =
		    rte_bitmap_init(rx_ring_info->rx_ring_struct->ring_size *
				    AGG_RING_SIZE_FACTOR, (uint8_t *)mz->addr +
				    ag_bitmap_start, ag_bitmap_len);

		/* TPA info */
		if (bp->eth_dev->data->dev_conf.rxmode.enable_lro)
			rx_ring_info->tpa_info =
				((struct bnxt_tpa_info *)((char *)mz->addr +
							  tpa_info_start));
	}

	cp_ring->bd = ((char *)mz->addr + cp_ring_start);
	cp_ring->bd_dma = mz_phys_addr + cp_ring_start;
	cp_ring_info->cp_desc_ring = cp_ring->bd;
	cp_ring_info->cp_desc_mapping = cp_ring->bd_dma;
	cp_ring->mem_zone = (const void *)mz;

	if (!cp_ring->bd)
		return -ENOMEM;
	if (cp_ring->vmem_size)
		*cp_ring->vmem = ((char *)mz->addr + stats_len);
	if (stats_len) {
		cp_ring_info->hw_stats = mz->addr;
		cp_ring_info->hw_stats_map = mz_phys_addr;
	}
	cp_ring_info->hw_stats_ctx_id = HWRM_NA_SIGNATURE;
	return 0;
}