Ejemplo n.º 1
0
/* Subroutine */ int zhpev_(char *jobz, char *uplo, integer *n, doublecomplex 
	*ap, doublereal *w, doublecomplex *z__, integer *ldz, doublecomplex *
	work, doublereal *rwork, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    ZHPEV computes all the eigenvalues and, optionally, eigenvectors of a   
    complex Hermitian matrix in packed storage.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the Hermitian matrix   
            A, packed columnwise in a linear array.  The j-th column of A   
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.   

            On exit, AP is overwritten by values generated during the   
            reduction to tridiagonal form.  If UPLO = 'U', the diagonal   
            and first superdiagonal of the tridiagonal matrix T overwrite   
            the corresponding elements of A, and if UPLO = 'L', the   
            diagonal and first subdiagonal of T overwrite the   
            corresponding elements of A.   

    W       (output) DOUBLE PRECISION array, dimension (N)   
            If INFO = 0, the eigenvalues in ascending order.   

    Z       (output) COMPLEX*16 array, dimension (LDZ, N)   
            If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal   
            eigenvectors of the matrix A, with the i-th column of Z   
            holding the eigenvector associated with W(i).   
            If JOBZ = 'N', then Z is not referenced.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace) COMPLEX*16 array, dimension (max(1, 2*N-1))   

    RWORK   (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = i, the algorithm failed to converge; i   
                  off-diagonal elements of an intermediate tridiagonal   
                  form did not converge to zero.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    doublereal d__1;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    static integer inde;
    static doublereal anrm;
    static integer imax;
    static doublereal rmin, rmax;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    static doublereal sigma;
    extern logical lsame_(char *, char *);
    static integer iinfo;
    static logical wantz;
    extern doublereal dlamch_(char *);
    static integer iscale;
    static doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
	    integer *, doublereal *, doublecomplex *, integer *);
    static doublereal bignum;
    static integer indtau;
    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
	     integer *);
    extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *);
    static integer indrwk, indwrk;
    static doublereal smlnum;
    extern /* Subroutine */ int zhptrd_(char *, integer *, doublecomplex *, 
	    doublereal *, doublereal *, doublecomplex *, integer *), 
	    zsteqr_(char *, integer *, doublereal *, doublereal *, 
	    doublecomplex *, integer *, doublereal *, integer *), 
	    zupgtr_(char *, integer *, doublecomplex *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);
    static doublereal eps;
#define z___subscr(a_1,a_2) (a_2)*z_dim1 + a_1
#define z___ref(a_1,a_2) z__[z___subscr(a_1,a_2)]


    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;
    --rwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
	    "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -7;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZHPEV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	w[1] = ap[1].r;
	rwork[1] = 1.;
	if (wantz) {
	    i__1 = z___subscr(1, 1);
	    z__[i__1].r = 1., z__[i__1].i = 0.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	zdscal_(&i__1, &sigma, &ap[1], &c__1);
    }

/*     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */

    inde = 1;
    indtau = 1;
    zhptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo);

/*     For eigenvalues only, call DSTERF.  For eigenvectors, first call   
       ZUPGTR to generate the orthogonal matrix, then call ZSTEQR. */

    if (! wantz) {
	dsterf_(n, &w[1], &rwork[inde], info);
    } else {
	indwrk = indtau + *n;
	zupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[
		indwrk], &iinfo);
	indrwk = inde + *n;
	zsteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[
		indrwk], info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

    return 0;

/*     End of ZHPEV */

} /* zhpev_ */
Ejemplo n.º 2
0
int zhpev_(char *jobz, char *uplo, int *n, doublecomplex
           *ap, double *w, doublecomplex *z__, int *ldz, doublecomplex *
           work, double *rwork, int *info)
{
    /* System generated locals */
    int z_dim1, z_offset, i__1;
    double d__1;

    /* Builtin functions */
    double sqrt(double);

    /* Local variables */
    double eps;
    int inde;
    double anrm;
    int imax;
    double rmin, rmax;
    extern  int dscal_(int *, double *, double *,
                       int *);
    double sigma;
    extern int lsame_(char *, char *);
    int iinfo;
    int wantz;
    extern double dlamch_(char *);
    int iscale;
    double safmin;
    extern  int xerbla_(char *, int *), zdscal_(
        int *, double *, doublecomplex *, int *);
    double bignum;
    int indtau;
    extern  int dsterf_(int *, double *, double *,
                        int *);
    extern double zlanhp_(char *, char *, int *, doublecomplex *,
                          double *);
    int indrwk, indwrk;
    double smlnum;
    extern  int zhptrd_(char *, int *, doublecomplex *,
                        double *, double *, doublecomplex *, int *),
                               zsteqr_(char *, int *, double *, double *,
                                       doublecomplex *, int *, double *, int *),
                               zupgtr_(char *, int *, doublecomplex *, doublecomplex *,
                                       doublecomplex *, int *, doublecomplex *, int *);


    /*  -- LAPACK driver routine (version 3.2) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */
    /*     .. Array Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  ZHPEV computes all the eigenvalues and, optionally, eigenvectors of a */
    /*  complex Hermitian matrix in packed storage. */

    /*  Arguments */
    /*  ========= */

    /*  JOBZ    (input) CHARACTER*1 */
    /*          = 'N':  Compute eigenvalues only; */
    /*          = 'V':  Compute eigenvalues and eigenvectors. */

    /*  UPLO    (input) CHARACTER*1 */
    /*          = 'U':  Upper triangle of A is stored; */
    /*          = 'L':  Lower triangle of A is stored. */

    /*  N       (input) INTEGER */
    /*          The order of the matrix A.  N >= 0. */

    /*  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
    /*          On entry, the upper or lower triangle of the Hermitian matrix */
    /*          A, packed columnwise in a linear array.  The j-th column of A */
    /*          is stored in the array AP as follows: */
    /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
    /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

    /*          On exit, AP is overwritten by values generated during the */
    /*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
    /*          and first superdiagonal of the tridiagonal matrix T overwrite */
    /*          the corresponding elements of A, and if UPLO = 'L', the */
    /*          diagonal and first subdiagonal of T overwrite the */
    /*          corresponding elements of A. */

    /*  W       (output) DOUBLE PRECISION array, dimension (N) */
    /*          If INFO = 0, the eigenvalues in ascending order. */

    /*  Z       (output) COMPLEX*16 array, dimension (LDZ, N) */
    /*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
    /*          eigenvectors of the matrix A, with the i-th column of Z */
    /*          holding the eigenvector associated with W(i). */
    /*          If JOBZ = 'N', then Z is not referenced. */

    /*  LDZ     (input) INTEGER */
    /*          The leading dimension of the array Z.  LDZ >= 1, and if */
    /*          JOBZ = 'V', LDZ >= MAX(1,N). */

    /*  WORK    (workspace) COMPLEX*16 array, dimension (MAX(1, 2*N-1)) */

    /*  RWORK   (workspace) DOUBLE PRECISION array, dimension (MAX(1, 3*N-2)) */

    /*  INFO    (output) INTEGER */
    /*          = 0:  successful exit. */
    /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
    /*          > 0:  if INFO = i, the algorithm failed to converge; i */
    /*                off-diagonal elements of an intermediate tridiagonal */
    /*                form did not converge to zero. */

    /*  ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Executable Statements .. */

    /*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;

    /* Function Body */
    wantz = lsame_(jobz, "V");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
        *info = -1;
    } else if (! (lsame_(uplo, "L") || lsame_(uplo,
                  "U"))) {
        *info = -2;
    } else if (*n < 0) {
        *info = -3;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
        *info = -7;
    }

    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("ZHPEV ", &i__1);
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        return 0;
    }

    if (*n == 1) {
        w[1] = ap[1].r;
        rwork[1] = 1.;
        if (wantz) {
            i__1 = z_dim1 + 1;
            z__[i__1].r = 1., z__[i__1].i = 0.;
        }
        return 0;
    }

    /*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);

    /*     Scale matrix to allowable range, if necessary. */

    anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
        iscale = 1;
        sigma = rmin / anrm;
    } else if (anrm > rmax) {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1) {
        i__1 = *n * (*n + 1) / 2;
        zdscal_(&i__1, &sigma, &ap[1], &c__1);
    }

    /*     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */

    inde = 1;
    indtau = 1;
    zhptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo);

    /*     For eigenvalues only, call DSTERF.  For eigenvectors, first call */
    /*     ZUPGTR to generate the orthogonal matrix, then call ZSTEQR. */

    if (! wantz) {
        dsterf_(n, &w[1], &rwork[inde], info);
    } else {
        indwrk = indtau + *n;
        zupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[
                    indwrk], &iinfo);
        indrwk = inde + *n;
        zsteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[
                    indrwk], info);
    }

    /*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
        if (*info == 0) {
            imax = *n;
        } else {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        dscal_(&imax, &d__1, &w[1], &c__1);
    }

    return 0;

    /*     End of ZHPEV */

} /* zhpev_ */
Ejemplo n.º 3
0
/* Subroutine */ int zhpevx_(char *jobz, char *range, char *uplo, integer *n, 
	doublecomplex *ap, doublereal *vl, doublereal *vu, integer *il, 
	integer *iu, doublereal *abstol, integer *m, doublereal *w, 
	doublecomplex *z__, integer *ldz, doublecomplex *work, doublereal *
	rwork, integer *iwork, integer *ifail, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, jj;
    doublereal eps, vll, vuu, tmp1;
    integer indd, inde;
    doublereal anrm;
    integer imax;
    doublereal rmin, rmax;
    logical test;
    integer itmp1, indee;
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    doublereal sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    char order[1];
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    logical wantz;
    extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    extern doublereal dlamch_(char *);
    logical alleig, indeig;
    integer iscale, indibl;
    logical valeig;
    doublereal safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
	    integer *, doublereal *, doublecomplex *, integer *);
    doublereal abstll, bignum;
    integer indiwk, indisp, indtau;
    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 
	     integer *), dstebz_(char *, char *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, integer *);
    extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, 
	    doublereal *);
    integer indrwk, indwrk, nsplit;
    doublereal smlnum;
    extern /* Subroutine */ int zhptrd_(char *, integer *, doublecomplex *, 
	    doublereal *, doublereal *, doublecomplex *, integer *), 
	    zstein_(integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, integer *, doublecomplex *, integer *, 
	    doublereal *, integer *, integer *, integer *), zsteqr_(char *, 
	    integer *, doublereal *, doublereal *, doublecomplex *, integer *, 
	     doublereal *, integer *), zupgtr_(char *, integer *, 
	    doublecomplex *, doublecomplex *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zupmtr_(char *, char *, char 
	    *, integer *, integer *, doublecomplex *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZHPEVX computes selected eigenvalues and, optionally, eigenvectors */
/*  of a complex Hermitian matrix A in packed storage. */
/*  Eigenvalues/vectors can be selected by specifying either a range of */
/*  values or a range of indices for the desired eigenvalues. */

/*  Arguments */
/*  ========= */

/*  JOBZ    (input) CHARACTER*1 */
/*          = 'N':  Compute eigenvalues only; */
/*          = 'V':  Compute eigenvalues and eigenvectors. */

/*  RANGE   (input) CHARACTER*1 */
/*          = 'A': all eigenvalues will be found; */
/*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
/*                 will be found; */
/*          = 'I': the IL-th through IU-th eigenvalues will be found. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */

/*          On exit, AP is overwritten by values generated during the */
/*          reduction to tridiagonal form.  If UPLO = 'U', the diagonal */
/*          and first superdiagonal of the tridiagonal matrix T overwrite */
/*          the corresponding elements of A, and if UPLO = 'L', the */
/*          diagonal and first subdiagonal of T overwrite the */
/*          corresponding elements of A. */

/*  VL      (input) DOUBLE PRECISION */
/*  VU      (input) DOUBLE PRECISION */
/*          If RANGE='V', the lower and upper bounds of the interval to */
/*          be searched for eigenvalues. VL < VU. */
/*          Not referenced if RANGE = 'A' or 'I'. */

/*  IL      (input) INTEGER */
/*  IU      (input) INTEGER */
/*          If RANGE='I', the indices (in ascending order) of the */
/*          smallest and largest eigenvalues to be returned. */
/*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/*          Not referenced if RANGE = 'A' or 'V'. */

/*  ABSTOL  (input) DOUBLE PRECISION */
/*          The absolute error tolerance for the eigenvalues. */
/*          An approximate eigenvalue is accepted as converged */
/*          when it is determined to lie in an interval [a,b] */
/*          of width less than or equal to */

/*                  ABSTOL + EPS *   max( |a|,|b| ) , */

/*          where EPS is the machine precision.  If ABSTOL is less than */
/*          or equal to zero, then  EPS*|T|  will be used in its place, */
/*          where |T| is the 1-norm of the tridiagonal matrix obtained */
/*          by reducing AP to tridiagonal form. */

/*          Eigenvalues will be computed most accurately when ABSTOL is */
/*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/*          If this routine returns with INFO>0, indicating that some */
/*          eigenvectors did not converge, try setting ABSTOL to */
/*          2*DLAMCH('S'). */

/*          See "Computing Small Singular Values of Bidiagonal Matrices */
/*          with Guaranteed High Relative Accuracy," by Demmel and */
/*          Kahan, LAPACK Working Note #3. */

/*  M       (output) INTEGER */
/*          The total number of eigenvalues found.  0 <= M <= N. */
/*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */

/*  W       (output) DOUBLE PRECISION array, dimension (N) */
/*          If INFO = 0, the selected eigenvalues in ascending order. */

/*  Z       (output) COMPLEX*16 array, dimension (LDZ, max(1,M)) */
/*          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/*          contain the orthonormal eigenvectors of the matrix A */
/*          corresponding to the selected eigenvalues, with the i-th */
/*          column of Z holding the eigenvector associated with W(i). */
/*          If an eigenvector fails to converge, then that column of Z */
/*          contains the latest approximation to the eigenvector, and */
/*          the index of the eigenvector is returned in IFAIL. */
/*          If JOBZ = 'N', then Z is not referenced. */
/*          Note: the user must ensure that at least max(1,M) columns are */
/*          supplied in the array Z; if RANGE = 'V', the exact value of M */
/*          is not known in advance and an upper bound must be used. */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDZ >= 1, and if */
/*          JOBZ = 'V', LDZ >= max(1,N). */

/*  WORK    (workspace) COMPLEX*16 array, dimension (2*N) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (7*N) */

/*  IWORK   (workspace) INTEGER array, dimension (5*N) */

/*  IFAIL   (output) INTEGER array, dimension (N) */
/*          If JOBZ = 'V', then if INFO = 0, the first M elements of */
/*          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
/*          indices of the eigenvectors that failed to converge. */
/*          If JOBZ = 'N', then IFAIL is not referenced. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, then i eigenvectors failed to converge. */
/*                Their indices are stored in array IFAIL. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    --iwork;
    --ifail;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    alleig = lsame_(range, "A");
    valeig = lsame_(range, "V");
    indeig = lsame_(range, "I");

    *info = 0;
    if (! (wantz || lsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lsame_(uplo, "L") || lsame_(uplo, 
	    "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -7;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -8;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -9;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -14;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZHPEVX", &i__1);
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = ap[1].r;
	} else {
	    if (*vl < ap[1].r && *vu >= ap[1].r) {
		*m = 1;
		w[1] = ap[1].r;
	    }
	}
	if (wantz) {
	    i__1 = z_dim1 + 1;
	    z__[i__1].r = 1., z__[i__1].i = 0.;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
    rmax = min(d__1,d__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    } else {
	vll = 0.;
	vuu = 0.;
    }
    anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]);
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	i__1 = *n * (*n + 1) / 2;
	zdscal_(&i__1, &sigma, &ap[1], &c__1);
	if (*abstol > 0.) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }

/*     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */

    indd = 1;
    inde = indd + *n;
    indrwk = inde + *n;
    indtau = 1;
    indwrk = indtau + *n;
    zhptrd_(uplo, n, &ap[1], &rwork[indd], &rwork[inde], &work[indtau], &
	    iinfo);

/*     If all eigenvalues are desired and ABSTOL is less than or equal */
/*     to zero, then call DSTERF or ZUPGTR and ZSTEQR.  If this fails */
/*     for some eigenvalue, then try DSTEBZ. */

    test = FALSE_;
    if (indeig) {
	if (*il == 1 && *iu == *n) {
	    test = TRUE_;
	}
    }
    if ((alleig || test) && *abstol <= 0.) {
	dcopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
	indee = indrwk + (*n << 1);
	if (! wantz) {
	    i__1 = *n - 1;
	    dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    dsterf_(n, &w[1], &rwork[indee], info);
	} else {
	    zupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &
		    work[indwrk], &iinfo);
	    i__1 = *n - 1;
	    dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
	    zsteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
		    rwork[indrwk], info);
	    if (*info == 0) {
		i__1 = *n;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    ifail[i__] = 0;
/* L10: */
		}
	    }
	}
	if (*info == 0) {
	    *m = *n;
	    goto L20;
	}
	*info = 0;
    }

/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    indibl = 1;
    indisp = indibl + *n;
    indiwk = indisp + *n;
    dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
	    rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
	    rwork[indrwk], &iwork[indiwk], info);

    if (wantz) {
	zstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
		indiwk], &ifail[1], info);

/*        Apply unitary matrix used in reduction to tridiagonal */
/*        form to eigenvectors returned by ZSTEIN. */

	indwrk = indtau + *n;
	zupmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset], 
		ldz, &work[indwrk], &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

L20:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	dscal_(&imax, &d__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with */
/*     eigenvectors. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L30: */
	    }

	    if (i__ != 0) {
		itmp1 = iwork[indibl + i__ - 1];
		w[i__] = w[j];
		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
		w[j] = tmp1;
		iwork[indibl + j - 1] = itmp1;
		zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], 
			 &c__1);
		if (*info != 0) {
		    itmp1 = ifail[i__];
		    ifail[i__] = ifail[j];
		    ifail[j] = itmp1;
		}
	    }
/* L40: */
	}
    }

    return 0;

/*     End of ZHPEVX */

} /* zhpevx_ */
Ejemplo n.º 4
0
/* Subroutine */
int zhpev_(char *jobz, char *uplo, integer *n, doublecomplex *ap, doublereal *w, doublecomplex *z__, integer *ldz, doublecomplex * work, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    doublereal d__1;
    /* Builtin functions */
    double sqrt(doublereal);
    /* Local variables */
    doublereal eps;
    integer inde;
    doublereal anrm;
    integer imax;
    doublereal rmin, rmax;
    extern /* Subroutine */
    int dscal_(integer *, doublereal *, doublereal *, integer *);
    doublereal sigma;
    extern logical lsame_(char *, char *);
    integer iinfo;
    logical wantz;
    extern doublereal dlamch_(char *);
    integer iscale;
    doublereal safmin;
    extern /* Subroutine */
    int xerbla_(char *, integer *), zdscal_( integer *, doublereal *, doublecomplex *, integer *);
    doublereal bignum;
    integer indtau;
    extern /* Subroutine */
    int dsterf_(integer *, doublereal *, doublereal *, integer *);
    extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, doublereal *);
    integer indrwk, indwrk;
    doublereal smlnum;
    extern /* Subroutine */
    int zhptrd_(char *, integer *, doublecomplex *, doublereal *, doublereal *, doublecomplex *, integer *), zsteqr_(char *, integer *, doublereal *, doublereal *, doublecomplex *, integer *, doublereal *, integer *), zupgtr_(char *, integer *, doublecomplex *, doublecomplex *, doublecomplex *, integer *, doublecomplex *, integer *);
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input parameters. */
    /* Parameter adjustments */
    --ap;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --rwork;
    /* Function Body */
    wantz = lsame_(jobz, "V");
    *info = 0;
    if (! (wantz || lsame_(jobz, "N")))
    {
        *info = -1;
    }
    else if (! (lsame_(uplo, "L") || lsame_(uplo, "U")))
    {
        *info = -2;
    }
    else if (*n < 0)
    {
        *info = -3;
    }
    else if (*ldz < 1 || wantz && *ldz < *n)
    {
        *info = -7;
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("ZHPEV ", &i__1);
        return 0;
    }
    /* Quick return if possible */
    if (*n == 0)
    {
        return 0;
    }
    if (*n == 1)
    {
        w[1] = ap[1].r;
        rwork[1] = 1.;
        if (wantz)
        {
            i__1 = z_dim1 + 1;
            z__[i__1].r = 1.;
            z__[i__1].i = 0.; // , expr subst
        }
        return 0;
    }
    /* Get machine constants. */
    safmin = dlamch_("Safe minimum");
    eps = dlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
    rmax = sqrt(bignum);
    /* Scale matrix to allowable range, if necessary. */
    anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]);
    iscale = 0;
    if (anrm > 0. && anrm < rmin)
    {
        iscale = 1;
        sigma = rmin / anrm;
    }
    else if (anrm > rmax)
    {
        iscale = 1;
        sigma = rmax / anrm;
    }
    if (iscale == 1)
    {
        i__1 = *n * (*n + 1) / 2;
        zdscal_(&i__1, &sigma, &ap[1], &c__1);
    }
    /* Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */
    inde = 1;
    indtau = 1;
    zhptrd_(uplo, n, &ap[1], &w[1], &rwork[inde], &work[indtau], &iinfo);
    /* For eigenvalues only, call DSTERF. For eigenvectors, first call */
    /* ZUPGTR to generate the orthogonal matrix, then call ZSTEQR. */
    if (! wantz)
    {
        dsterf_(n, &w[1], &rwork[inde], info);
    }
    else
    {
        indwrk = indtau + *n;
        zupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &work[ indwrk], &iinfo);
        indrwk = inde + *n;
        zsteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[ indrwk], info);
    }
    /* If matrix was scaled, then rescale eigenvalues appropriately. */
    if (iscale == 1)
    {
        if (*info == 0)
        {
            imax = *n;
        }
        else
        {
            imax = *info - 1;
        }
        d__1 = 1. / sigma;
        dscal_(&imax, &d__1, &w[1], &c__1);
    }
    return 0;
    /* End of ZHPEV */
}