Ejemplo n.º 1
0
////////////////////////////////////////////////////////////////////////////////
// Create a 1-bit clip mask in the stencil buffer. 'devClipBounds' are in device
// (as opposed to canvas) coordinates
bool GrClipMaskManager::createStencilClipMask(const GrClipData& clipDataIn,
                                              const GrIRect& devClipBounds) {

    GrAssert(kNone_ClipMaskType == fCurrClipMaskType);

    GrDrawState* drawState = fGpu->drawState();
    GrAssert(drawState->isClipState());

    GrRenderTarget* rt = drawState->getRenderTarget();
    GrAssert(NULL != rt);

    // TODO: dynamically attach a SB when needed.
    GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
    if (NULL == stencilBuffer) {
        return false;
    }

    if (stencilBuffer->mustRenderClip(clipDataIn, rt->width(), rt->height())) {

        stencilBuffer->setLastClip(clipDataIn, rt->width(), rt->height());

        // we set the current clip to the bounds so that our recursive
        // draws are scissored to them. We use the copy of the complex clip
        // we just stashed on the SB to render from. We set it back after
        // we finish drawing it into the stencil.
        const GrClipData* oldClipData = fGpu->getClip();

        // The origin of 'newClipData' is (0, 0) so it is okay to place
        // a device-coordinate bound in 'newClipStack'
        SkClipStack newClipStack(devClipBounds);
        GrClipData newClipData;
        newClipData.fClipStack = &newClipStack;

        fGpu->setClip(&newClipData);

        GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit);
        drawState = fGpu->drawState();
        drawState->setRenderTarget(rt);
        GrDrawTarget::AutoGeometryPush agp(fGpu);

        if (0 != clipDataIn.fOrigin.fX || 0 != clipDataIn.fOrigin.fY) {
            // Add the saveLayer's offset to the view matrix rather than
            // offset each individual draw
            drawState->viewMatrix()->setTranslate(
                           SkIntToScalar(-clipDataIn.fOrigin.fX),
                           SkIntToScalar(-clipDataIn.fOrigin.fY));
        }

#if !VISUALIZE_COMPLEX_CLIP
        drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#endif

        int clipBit = stencilBuffer->bits();
        SkASSERT((clipBit <= 16) &&
                    "Ganesh only handles 16b or smaller stencil buffers");
        clipBit = (1 << (clipBit-1));

        GrIRect devRTRect = GrIRect::MakeWH(rt->width(), rt->height());

        bool clearToInside;
        SkRegion::Op firstOp = SkRegion::kReplace_Op; // suppress warning

        SkClipStack::Iter iter(*oldClipData->fClipStack,
                               SkClipStack::Iter::kBottom_IterStart);
        const SkClipStack::Iter::Clip* clip = process_initial_clip_elements(&iter,
                                                  devRTRect,
                                                  &clearToInside,
                                                  &firstOp,
                                                  clipDataIn);

        fGpu->clearStencilClip(devClipBounds, clearToInside);
        bool first = true;

        // walk through each clip element and perform its set op
        // with the existing clip.
        for ( ; NULL != clip; clip = iter.next()) {
            GrPathFill fill;
            bool fillInverted = false;
            // enabled at bottom of loop
            drawState->disableState(GrGpu::kModifyStencilClip_StateBit);
            // if the target is MSAA then we want MSAA enabled when the clip is soft
            if (rt->isMultisampled()) {
                if (clip->fDoAA) {
                    drawState->enableState(GrDrawState::kHWAntialias_StateBit);
                } else {
                    drawState->disableState(GrDrawState::kHWAntialias_StateBit);
                }
            }

            // Can the clip element be drawn directly to the stencil buffer
            // with a non-inverted fill rule without extra passes to
            // resolve in/out status?
            bool canRenderDirectToStencil = false;

            SkRegion::Op op = clip->fOp;
            if (first) {
                first = false;
                op = firstOp;
            }

            GrPathRenderer* pr = NULL;
            const SkPath* clipPath = NULL;
            if (NULL != clip->fRect) {
                canRenderDirectToStencil = true;
                fill = kEvenOdd_GrPathFill;
                fillInverted = false;
                // there is no point in intersecting a screen filling
                // rectangle.
                if (SkRegion::kIntersect_Op == op &&
                    contains(*clip->fRect, devRTRect, oldClipData->fOrigin)) {
                    continue;
                }
            } else {
                GrAssert(NULL != clip->fPath);
                fill = get_path_fill(*clip->fPath);
                fillInverted = GrIsFillInverted(fill);
                fill = GrNonInvertedFill(fill);
                clipPath = clip->fPath;
                pr = this->getContext()->getPathRenderer(*clipPath, fill, fGpu, false, true);
                if (NULL == pr) {
                    fGpu->setClip(oldClipData);
                    return false;
                }
                canRenderDirectToStencil =
                    !pr->requiresStencilPass(*clipPath, fill, fGpu);
            }

            int passes;
            GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];

            bool canDrawDirectToClip; // Given the renderer, the element,
                                        // fill rule, and set operation can
                                        // we render the element directly to
                                        // stencil bit used for clipping.
            canDrawDirectToClip =
                GrStencilSettings::GetClipPasses(op,
                                                 canRenderDirectToStencil,
                                                 clipBit,
                                                 fillInverted,
                                                 &passes,
                                                 stencilSettings);

            // draw the element to the client stencil bits if necessary
            if (!canDrawDirectToClip) {
                GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil,
                    kIncClamp_StencilOp,
                    kIncClamp_StencilOp,
                    kAlways_StencilFunc,
                    0xffff,
                    0x0000,
                    0xffff);
                SET_RANDOM_COLOR
                if (NULL != clip->fRect) {
                    *drawState->stencil() = gDrawToStencil;
                    fGpu->drawSimpleRect(*clip->fRect, NULL);
                } else {
                    if (canRenderDirectToStencil) {
                        *drawState->stencil() = gDrawToStencil;
                        pr->drawPath(*clipPath, fill, NULL, fGpu, false);
                    } else {
                        pr->drawPathToStencil(*clipPath, fill, fGpu);
                    }
                }
            }

            // now we modify the clip bit by rendering either the clip
            // element directly or a bounding rect of the entire clip.
            drawState->enableState(GrGpu::kModifyStencilClip_StateBit);
            for (int p = 0; p < passes; ++p) {
                *drawState->stencil() = stencilSettings[p];
                if (canDrawDirectToClip) {
                    if (NULL != clip->fRect) {
                        SET_RANDOM_COLOR
                        fGpu->drawSimpleRect(*clip->fRect, NULL);
                    } else {
                        SET_RANDOM_COLOR
                        pr->drawPath(*clipPath, fill, NULL, fGpu, false);
                    }
                } else {
                    SET_RANDOM_COLOR
                    // 'devClipBounds' is already in device coordinates so the
                    // translation in the view matrix is inappropriate.
                    // Convert it to canvas space so the drawn rect will
                    // be in the correct location
                    GrRect canvClipBounds;
                    canvClipBounds.set(devClipBounds);
                    device_to_canvas(&canvClipBounds, clipDataIn.fOrigin);
                    fGpu->drawSimpleRect(canvClipBounds, NULL);
                }
            }
        }
Ejemplo n.º 2
0
void GrGLPathRendering::drawPaths(const GrPathRange* pathRange, const uint32_t indices[], int count,
                                  const float transforms[], PathTransformType transformsType,
                                  SkPath::FillType fill) {
    SkASSERT(fGpu->caps()->pathRenderingSupport());
    SkASSERT(NULL != fGpu->drawState()->getRenderTarget());
    SkASSERT(NULL != fGpu->drawState()->getRenderTarget()->getStencilBuffer());

    GrGLuint baseID = static_cast<const GrGLPathRange*>(pathRange)->basePathID();

    this->flushPathStencilSettings(fill);
    SkASSERT(!fHWPathStencilSettings.isTwoSided());

    const SkStrokeRec& stroke = pathRange->getStroke();

    SkPath::FillType nonInvertedFill =
        SkPath::ConvertToNonInverseFillType(fill);

    GrGLenum fillMode =
        gr_stencil_op_to_gl_path_rendering_fill_mode(
            fHWPathStencilSettings.passOp(GrStencilSettings::kFront_Face));
    GrGLint writeMask =
        fHWPathStencilSettings.writeMask(GrStencilSettings::kFront_Face);

    if (nonInvertedFill == fill) {
        if (stroke.needToApply()) {
            if (SkStrokeRec::kStrokeAndFill_Style == stroke.getStyle()) {
                GL_CALL(StencilFillPathInstanced(
                                count, GR_GL_UNSIGNED_INT, indices, baseID, fillMode,
                                writeMask, gXformType2GLType[transformsType],
                                transforms));
            }
            this->stencilThenCoverStrokePathInstanced(
                                count, GR_GL_UNSIGNED_INT, indices, baseID, 0xffff, writeMask,
                                GR_GL_BOUNDING_BOX_OF_BOUNDING_BOXES,
                                gXformType2GLType[transformsType], transforms);
        } else {
            this->stencilThenCoverFillPathInstanced(
                                count, GR_GL_UNSIGNED_INT, indices, baseID, fillMode, writeMask,
                                GR_GL_BOUNDING_BOX_OF_BOUNDING_BOXES,
                                gXformType2GLType[transformsType], transforms);
        }
    } else {
        if (stroke.isFillStyle() || SkStrokeRec::kStrokeAndFill_Style == stroke.getStyle()) {
            GL_CALL(StencilFillPathInstanced(
                                count, GR_GL_UNSIGNED_INT, indices, baseID, fillMode,
                                writeMask, gXformType2GLType[transformsType],
                                transforms));
        }
        if (stroke.needToApply()) {
            GL_CALL(StencilStrokePathInstanced(
                                count, GR_GL_UNSIGNED_INT, indices, baseID, 0xffff,
                                writeMask, gXformType2GLType[transformsType],
                                transforms));
        }

        GrDrawState* drawState = fGpu->drawState();
        GrDrawState::AutoViewMatrixRestore avmr;
        SkRect bounds = SkRect::MakeLTRB(0, 0,
                                         SkIntToScalar(drawState->getRenderTarget()->width()),
                                         SkIntToScalar(drawState->getRenderTarget()->height()));
        SkMatrix vmi;
        // mapRect through persp matrix may not be correct
        if (!drawState->getViewMatrix().hasPerspective() && drawState->getViewInverse(&vmi)) {
            vmi.mapRect(&bounds);
            // theoretically could set bloat = 0, instead leave it because of matrix inversion
            // precision.
            SkScalar bloat = drawState->getViewMatrix().getMaxScale() * SK_ScalarHalf;
            bounds.outset(bloat, bloat);
        } else {
            avmr.setIdentity(drawState);
        }

        fGpu->drawSimpleRect(bounds);
    }
}
Ejemplo n.º 3
0
bool GrGLProgramDesc::Build(const GrDrawState& drawState,
                            GrGpu::DrawType drawType,
                            GrDrawState::BlendOptFlags blendOpts,
                            GrBlendCoeff srcCoeff,
                            GrBlendCoeff dstCoeff,
                            const GrGpuGL* gpu,
                            const GrDeviceCoordTexture* dstCopy,
                            const GrEffectStage** geometryProcessor,
                            SkTArray<const GrEffectStage*, true>* colorStages,
                            SkTArray<const GrEffectStage*, true>* coverageStages,
                            GrGLProgramDesc* desc) {
    colorStages->reset();
    coverageStages->reset();

    // This should already have been caught
    SkASSERT(!(GrDrawState::kSkipDraw_BlendOptFlag & blendOpts));

    bool skipCoverage = SkToBool(blendOpts & GrDrawState::kEmitTransBlack_BlendOptFlag);

    bool skipColor = SkToBool(blendOpts & (GrDrawState::kEmitTransBlack_BlendOptFlag |
                                           GrDrawState::kEmitCoverage_BlendOptFlag));

    int firstEffectiveColorStage = 0;
    bool inputColorIsUsed = true;

    if (!skipColor) {
        firstEffectiveColorStage = drawState.numColorStages();
        while (firstEffectiveColorStage > 0 && inputColorIsUsed) {
            --firstEffectiveColorStage;
            const GrEffect* effect = drawState.getColorStage(firstEffectiveColorStage).getEffect();
            inputColorIsUsed = effect->willUseInputColor();
        }
    }

    int firstEffectiveCoverageStage = 0;
    bool inputCoverageIsUsed = true;
    if (!skipCoverage) {
        firstEffectiveCoverageStage = drawState.numCoverageStages();
        while (firstEffectiveCoverageStage > 0 && inputCoverageIsUsed) {
            --firstEffectiveCoverageStage;
            const GrEffect* effect = drawState.getCoverageStage(firstEffectiveCoverageStage).getEffect();
            inputCoverageIsUsed = effect->willUseInputColor();
        }
    }

    // The descriptor is used as a cache key. Thus when a field of the
    // descriptor will not affect program generation (because of the attribute
    // bindings in use or other descriptor field settings) it should be set
    // to a canonical value to avoid duplicate programs with different keys.

    bool requiresColorAttrib = !skipColor && drawState.hasColorVertexAttribute();
    bool requiresCoverageAttrib = !skipCoverage && drawState.hasCoverageVertexAttribute();
    // we only need the local coords if we're actually going to generate effect code
    bool requiresLocalCoordAttrib = !(skipCoverage  && skipColor) &&
                                    drawState.hasLocalCoordAttribute();

    bool readsDst = false;
    bool readFragPosition = false;

    // Provide option for shader programs without vertex shader only when drawing paths.
    bool requiresVertexShader = !GrGpu::IsPathRenderingDrawType(drawType);

    int numStages = 0;
    if (drawState.hasGeometryProcessor()) {
        numStages++;
    }
    if (!skipColor) {
        numStages += drawState.numColorStages() - firstEffectiveColorStage;
    }
    if (!skipCoverage) {
        numStages += drawState.numCoverageStages() - firstEffectiveCoverageStage;
    }
    GR_STATIC_ASSERT(0 == kEffectKeyOffsetsAndLengthOffset % sizeof(uint32_t));
    // Make room for everything up to and including the array of offsets to effect keys.
    desc->fKey.reset();
    desc->fKey.push_back_n(kEffectKeyOffsetsAndLengthOffset + 2 * sizeof(uint16_t) * numStages);

    int offsetAndSizeIndex = 0;
    bool effectKeySuccess = true;

    KeyHeader* header = desc->header();
    // make sure any padding in the header is zeroed.
    memset(desc->header(), 0, kHeaderSize);

    // We can only have one effect which touches the vertex shader
    if (drawState.hasGeometryProcessor()) {
        uint16_t* offsetAndSize =
                reinterpret_cast<uint16_t*>(desc->fKey.begin() + kEffectKeyOffsetsAndLengthOffset +
                                            offsetAndSizeIndex * 2 * sizeof(uint16_t));

            GrEffectKeyBuilder b(&desc->fKey);
            uint16_t effectKeySize;
            uint32_t effectOffset = desc->fKey.count();
            effectKeySuccess |= GetEffectKeyAndUpdateStats(
                                    *drawState.getGeometryProcessor(), gpu->glCaps(),
                                    requiresLocalCoordAttrib, &b,
                                    &effectKeySize, &readsDst,
                                    &readFragPosition, &requiresVertexShader);
            effectKeySuccess |= (effectOffset <= SK_MaxU16);

            offsetAndSize[0] = SkToU16(effectOffset);
            offsetAndSize[1] = effectKeySize;
            ++offsetAndSizeIndex;
            *geometryProcessor = drawState.getGeometryProcessor();
            SkASSERT(requiresVertexShader);
            header->fHasGeometryProcessor = true;
    }

    if (!skipColor) {
        for (int s = firstEffectiveColorStage; s < drawState.numColorStages(); ++s) {
            uint16_t* offsetAndSize =
                reinterpret_cast<uint16_t*>(desc->fKey.begin() + kEffectKeyOffsetsAndLengthOffset +
                                            offsetAndSizeIndex * 2 * sizeof(uint16_t));

            bool effectRequiresVertexShader = false;
            GrEffectKeyBuilder b(&desc->fKey);
            uint16_t effectKeySize;
            uint32_t effectOffset = desc->fKey.count();
            effectKeySuccess |= GetEffectKeyAndUpdateStats(
                                    drawState.getColorStage(s), gpu->glCaps(),
                                    requiresLocalCoordAttrib, &b,
                                    &effectKeySize, &readsDst,
                                    &readFragPosition, &effectRequiresVertexShader);
            effectKeySuccess |= (effectOffset <= SK_MaxU16);

            offsetAndSize[0] = SkToU16(effectOffset);
            offsetAndSize[1] = effectKeySize;
            ++offsetAndSizeIndex;
            SkASSERT(!effectRequiresVertexShader);
        }
    }
    if (!skipCoverage) {
        for (int s = firstEffectiveCoverageStage; s < drawState.numCoverageStages(); ++s) {
            uint16_t* offsetAndSize =
                reinterpret_cast<uint16_t*>(desc->fKey.begin() + kEffectKeyOffsetsAndLengthOffset +
                                            offsetAndSizeIndex * 2 * sizeof(uint16_t));

            bool effectRequiresVertexShader = false;
            GrEffectKeyBuilder b(&desc->fKey);
            uint16_t effectKeySize;
            uint32_t effectOffset = desc->fKey.count();
            effectKeySuccess |= GetEffectKeyAndUpdateStats(
                                    drawState.getCoverageStage(s), gpu->glCaps(),
                                    requiresLocalCoordAttrib, &b,
                                    &effectKeySize, &readsDst,
                                    &readFragPosition, &effectRequiresVertexShader);
            effectKeySuccess |= (effectOffset <= SK_MaxU16);

            offsetAndSize[0] = SkToU16(effectOffset);
            offsetAndSize[1] = effectKeySize;
            ++offsetAndSizeIndex;
            SkASSERT(!effectRequiresVertexShader);
        }
    }
    if (!effectKeySuccess) {
        desc->fKey.reset();
        return false;
    }

    // Because header is a pointer into the dynamic array, we can't push any new data into the key
    // below here.

    header->fRequiresVertexShader = requiresVertexShader || requiresLocalCoordAttrib;
    header->fEmitsPointSize = GrGpu::kDrawPoints_DrawType == drawType;

    // Currently the experimental GS will only work with triangle prims (and it doesn't do anything
    // other than pass through values from the VS to the FS anyway).
#if GR_GL_EXPERIMENTAL_GS
#if 0
    header->fExperimentalGS = gpu->caps().geometryShaderSupport();
#else
    header->fExperimentalGS = false;
#endif
#endif
    bool defaultToUniformInputs = GR_GL_NO_CONSTANT_ATTRIBUTES || gpu->caps()->pathRenderingSupport();

    if (!inputColorIsUsed && !skipColor) {
        header->fColorInput = kAllOnes_ColorInput;
    } else if (defaultToUniformInputs && !requiresColorAttrib && inputColorIsUsed) {
        header->fColorInput = kUniform_ColorInput;
    } else {
        header->fColorInput = kAttribute_ColorInput;
        header->fRequiresVertexShader = true;
    }

    bool covIsSolidWhite = !requiresCoverageAttrib && 0xffffffff == drawState.getCoverageColor();

    if ((covIsSolidWhite || !inputCoverageIsUsed) && !skipCoverage) {
        header->fCoverageInput = kAllOnes_ColorInput;
    } else if (defaultToUniformInputs && !requiresCoverageAttrib && inputCoverageIsUsed) {
        header->fCoverageInput = kUniform_ColorInput;
    } else {
        header->fCoverageInput = kAttribute_ColorInput;
        header->fRequiresVertexShader = true;
    }

    if (readsDst) {
        SkASSERT(NULL != dstCopy || gpu->caps()->dstReadInShaderSupport());
        const GrTexture* dstCopyTexture = NULL;
        if (NULL != dstCopy) {
            dstCopyTexture = dstCopy->texture();
        }
        header->fDstReadKey = GrGLFragmentShaderBuilder::KeyForDstRead(dstCopyTexture,
                gpu->glCaps());
        SkASSERT(0 != header->fDstReadKey);
    } else {
        header->fDstReadKey = 0;
    }

    if (readFragPosition) {
        header->fFragPosKey = GrGLFragmentShaderBuilder::KeyForFragmentPosition(
                drawState.getRenderTarget(), gpu->glCaps());
    } else {
        header->fFragPosKey = 0;
    }

    // Record attribute indices
    header->fPositionAttributeIndex = drawState.positionAttributeIndex();
    header->fLocalCoordAttributeIndex = drawState.localCoordAttributeIndex();

    // For constant color and coverage we need an attribute with an index beyond those already set
    int availableAttributeIndex = drawState.getVertexAttribCount();
    if (requiresColorAttrib) {
        header->fColorAttributeIndex = drawState.colorVertexAttributeIndex();
    } else if (GrGLProgramDesc::kAttribute_ColorInput == header->fColorInput) {
        SkASSERT(availableAttributeIndex < GrDrawState::kMaxVertexAttribCnt);
        header->fColorAttributeIndex = availableAttributeIndex;
        availableAttributeIndex++;
    } else {
        header->fColorAttributeIndex = -1;
    }

    if (requiresCoverageAttrib) {
        header->fCoverageAttributeIndex = drawState.coverageVertexAttributeIndex();
    } else if (GrGLProgramDesc::kAttribute_ColorInput == header->fCoverageInput) {
        SkASSERT(availableAttributeIndex < GrDrawState::kMaxVertexAttribCnt);
        header->fCoverageAttributeIndex = availableAttributeIndex;
    } else {
        header->fCoverageAttributeIndex = -1;
    }

    // Here we deal with whether/how we handle color and coverage separately.

    // Set this default and then possibly change our mind if there is coverage.
    header->fCoverageOutput = kModulate_CoverageOutput;

    // If we do have coverage determine whether it matters.
    bool separateCoverageFromColor = drawState.hasGeometryProcessor();
    if (!drawState.isCoverageDrawing() && !skipCoverage &&
        (drawState.numCoverageStages() > 0 ||
         drawState.hasGeometryProcessor() ||
         requiresCoverageAttrib)) {

        if (gpu->caps()->dualSourceBlendingSupport() &&
            !(blendOpts & (GrDrawState::kEmitCoverage_BlendOptFlag |
                           GrDrawState::kCoverageAsAlpha_BlendOptFlag))) {
            if (kZero_GrBlendCoeff == dstCoeff) {
                // write the coverage value to second color
                header->fCoverageOutput =  kSecondaryCoverage_CoverageOutput;
                separateCoverageFromColor = true;
            } else if (kSA_GrBlendCoeff == dstCoeff) {
                // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
                header->fCoverageOutput = kSecondaryCoverageISA_CoverageOutput;
                separateCoverageFromColor = true;
            } else if (kSC_GrBlendCoeff == dstCoeff) {
                // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
                header->fCoverageOutput = kSecondaryCoverageISC_CoverageOutput;
                separateCoverageFromColor = true;
            }
        } else if (readsDst &&
                   kOne_GrBlendCoeff == srcCoeff &&
                   kZero_GrBlendCoeff == dstCoeff) {
            header->fCoverageOutput = kCombineWithDst_CoverageOutput;
            separateCoverageFromColor = true;
        }
    }

    if (!skipColor) {
        for (int s = firstEffectiveColorStage; s < drawState.numColorStages(); ++s) {
            colorStages->push_back(&drawState.getColorStage(s));
        }
    }
    if (!skipCoverage) {
        SkTArray<const GrEffectStage*, true>* array;
        if (separateCoverageFromColor) {
            array = coverageStages;
        } else {
            array = colorStages;
        }
        for (int s = firstEffectiveCoverageStage; s < drawState.numCoverageStages(); ++s) {
            array->push_back(&drawState.getCoverageStage(s));
        }
    }
    header->fColorEffectCnt = colorStages->count();
    header->fCoverageEffectCnt = coverageStages->count();

    desc->finalize();
    return true;
}
Ejemplo n.º 4
0
////////////////////////////////////////////////////////////////////////////////
// sort out what kind of clip mask needs to be created: alpha, stencil,
// scissor, or entirely software
bool GrClipMaskManager::setupClipping(const GrClipData* clipDataIn) {
    fCurrClipMaskType = kNone_ClipMaskType;

    GrDrawState* drawState = fGpu->drawState();
    if (!drawState->isClipState() || clipDataIn->fClipStack->isWideOpen()) {
        fGpu->disableScissor();
        this->setGpuStencil();
        return true;
    }

    GrRenderTarget* rt = drawState->getRenderTarget();
    // GrDrawTarget should have filtered this for us
    GrAssert(NULL != rt);

    GrIRect devClipBounds;
    bool isIntersectionOfRects = false;

    clipDataIn->getConservativeBounds(rt, &devClipBounds,
                                      &isIntersectionOfRects);
    if (devClipBounds.isEmpty()) {
        return false;
    }

    bool requiresAA = requires_AA(*clipDataIn->fClipStack);

#if GR_SW_CLIP
    // If MSAA is enabled we can do everything in the stencil buffer.
    // Otherwise check if we should just create the entire clip mask
    // in software (this will only happen if the clip mask is anti-aliased
    // and too complex for the gpu to handle in its entirety)
    if (0 == rt->numSamples() &&
        requiresAA &&
        this->useSWOnlyPath(*clipDataIn->fClipStack)) {
        // The clip geometry is complex enough that it will be more
        // efficient to create it entirely in software
        GrTexture* result = NULL;
        GrIRect devBound;
        if (this->createSoftwareClipMask(*clipDataIn, &result, &devBound)) {
            setup_drawstate_aaclip(fGpu, result, devBound);
            fGpu->disableScissor();
            this->setGpuStencil();
            return true;
        }

        // if SW clip mask creation fails fall through to the other
        // two possible methods (bottoming out at stencil clipping)
    }
#endif // GR_SW_CLIP

#if GR_AA_CLIP
    // If MSAA is enabled use the (faster) stencil path for AA clipping
    // otherwise the alpha clip mask is our only option
    if (0 == rt->numSamples() && requiresAA) {
        // Since we are going to create a destination texture of the correct
        // size for the mask (rather than being bound by the size of the
        // render target) we aren't going to use scissoring like the stencil
        // path does (see scissorSettings below)
        GrTexture* result = NULL;
        GrIRect devBound;
        if (this->createAlphaClipMask(*clipDataIn, &result, &devBound)) {
            setup_drawstate_aaclip(fGpu, result, devBound);
            fGpu->disableScissor();
            this->setGpuStencil();
            return true;
        }

        // if alpha clip mask creation fails fall through to the stencil
        // buffer method
    }
#endif // GR_AA_CLIP

    // Either a hard (stencil buffer) clip was explicitly requested or
    // an antialiased clip couldn't be created. In either case, free up
    // the texture in the antialiased mask cache.
    // TODO: this may require more investigation. Ganesh performs a lot of
    // utility draws (e.g., clears, InOrderDrawBuffer playbacks) that hit
    // the stencil buffer path. These may be "incorrectly" clearing the
    // AA cache.
    fAACache.reset();

    // If the clip is a rectangle then just set the scissor. Otherwise, create
    // a stencil mask.
    if (isIntersectionOfRects) {
        fGpu->enableScissor(devClipBounds);
        this->setGpuStencil();
        return true;
    }

    // use the stencil clip if we can't represent the clip as a rectangle.
    bool useStencil = !clipDataIn->fClipStack->isWideOpen() &&
                      !devClipBounds.isEmpty();

    if (useStencil) {
        this->createStencilClipMask(*clipDataIn, devClipBounds);
    }
    // This must occur after createStencilClipMask. That function may change
    // the scissor. Also, it only guarantees that the stencil mask is correct
    // within the bounds it was passed, so we must use both stencil and scissor
    // test to the bounds for the final draw.
    fGpu->enableScissor(devClipBounds);
    this->setGpuStencil();
    return true;
}
void GrGLProgramDesc::Build(const GrDrawState& drawState,
                            bool isPoints,
                            GrDrawState::BlendOptFlags blendOpts,
                            GrBlendCoeff srcCoeff,
                            GrBlendCoeff dstCoeff,
                            const GrGpuGL* gpu,
                            const GrDeviceCoordTexture* dstCopy,
                            SkTArray<const GrEffectStage*, true>* colorStages,
                            SkTArray<const GrEffectStage*, true>* coverageStages,
                            GrGLProgramDesc* desc) {
    colorStages->reset();
    coverageStages->reset();

    // This should already have been caught
    SkASSERT(!(GrDrawState::kSkipDraw_BlendOptFlag & blendOpts));

    bool skipCoverage = SkToBool(blendOpts & GrDrawState::kEmitTransBlack_BlendOptFlag);

    bool skipColor = SkToBool(blendOpts & (GrDrawState::kEmitTransBlack_BlendOptFlag |
                                           GrDrawState::kEmitCoverage_BlendOptFlag));
    int firstEffectiveColorStage = 0;
    bool inputColorIsUsed = true;
    if (!skipColor) {
        firstEffectiveColorStage = drawState.numColorStages();
        while (firstEffectiveColorStage > 0 && inputColorIsUsed) {
            --firstEffectiveColorStage;
            const GrEffect* effect = drawState.getColorStage(firstEffectiveColorStage).getEffect()->get();
            inputColorIsUsed = effect->willUseInputColor();
        }
    }

    int firstEffectiveCoverageStage = 0;
    bool inputCoverageIsUsed = true;
    if (!skipCoverage) {
        firstEffectiveCoverageStage = drawState.numCoverageStages();
        while (firstEffectiveCoverageStage > 0 && inputCoverageIsUsed) {
            --firstEffectiveCoverageStage;
            const GrEffect* effect = drawState.getCoverageStage(firstEffectiveCoverageStage).getEffect()->get();
            inputCoverageIsUsed = effect->willUseInputColor();
        }
    }

    // The descriptor is used as a cache key. Thus when a field of the
    // descriptor will not affect program generation (because of the attribute
    // bindings in use or other descriptor field settings) it should be set
    // to a canonical value to avoid duplicate programs with different keys.

    bool requiresColorAttrib = !skipColor && drawState.hasColorVertexAttribute();
    bool requiresCoverageAttrib = !skipCoverage && drawState.hasCoverageVertexAttribute();
    // we only need the local coords if we're actually going to generate effect code
    bool requiresLocalCoordAttrib = !(skipCoverage  && skipColor) &&
                                    drawState.hasLocalCoordAttribute();

    bool colorIsTransBlack = SkToBool(blendOpts & GrDrawState::kEmitTransBlack_BlendOptFlag);
    bool colorIsSolidWhite = (blendOpts & GrDrawState::kEmitCoverage_BlendOptFlag) ||
                             (!requiresColorAttrib && 0xffffffff == drawState.getColor()) ||
                             (!inputColorIsUsed);

    int numEffects = (skipColor ? 0 : (drawState.numColorStages() - firstEffectiveColorStage)) +
                     (skipCoverage ? 0 : (drawState.numCoverageStages() - firstEffectiveCoverageStage));

    size_t newKeyLength = KeyLength(numEffects);
    bool allocChanged;
    desc->fKey.reset(newKeyLength, SkAutoMalloc::kAlloc_OnShrink, &allocChanged);
    if (allocChanged || !desc->fInitialized) {
        // make sure any padding in the header is zero if we we haven't used this allocation before.
        memset(desc->header(), 0, kHeaderSize);
    }
    // write the key length
    *desc->atOffset<uint32_t, kLengthOffset>() = SkToU32(newKeyLength);

    KeyHeader* header = desc->header();
    EffectKey* effectKeys = desc->effectKeys();

    int currEffectKey = 0;
    bool readsDst = false;
    bool readFragPosition = false;
    bool hasVertexCode = false;
    if (!skipColor) {
        for (int s = firstEffectiveColorStage; s < drawState.numColorStages(); ++s) {
            effectKeys[currEffectKey++] =
                get_key_and_update_stats(drawState.getColorStage(s), gpu->glCaps(),
                                         requiresLocalCoordAttrib, &readsDst, &readFragPosition,
                                         &hasVertexCode);
        }
    }
    if (!skipCoverage) {
        for (int s = firstEffectiveCoverageStage; s < drawState.numCoverageStages(); ++s) {
            effectKeys[currEffectKey++] =
                get_key_and_update_stats(drawState.getCoverageStage(s), gpu->glCaps(),
                                         requiresLocalCoordAttrib, &readsDst, &readFragPosition,
                                         &hasVertexCode);
        }
    }

    header->fHasVertexCode = hasVertexCode || requiresLocalCoordAttrib;
    header->fEmitsPointSize = isPoints;

    // Currently the experimental GS will only work with triangle prims (and it doesn't do anything
    // other than pass through values from the VS to the FS anyway).
#if GR_GL_EXPERIMENTAL_GS
#if 0
    header->fExperimentalGS = gpu->caps().geometryShaderSupport();
#else
    header->fExperimentalGS = false;
#endif
#endif
    bool defaultToUniformInputs = GR_GL_NO_CONSTANT_ATTRIBUTES || gpu->caps()->pathRenderingSupport();

    if (colorIsTransBlack) {
        header->fColorInput = kTransBlack_ColorInput;
    } else if (colorIsSolidWhite) {
        header->fColorInput = kSolidWhite_ColorInput;
    } else if (defaultToUniformInputs && !requiresColorAttrib) {
        header->fColorInput = kUniform_ColorInput;
    } else {
        header->fColorInput = kAttribute_ColorInput;
        header->fHasVertexCode = true;
    }

    bool covIsSolidWhite = !requiresCoverageAttrib && 0xffffffff == drawState.getCoverageColor();

    if (skipCoverage) {
        header->fCoverageInput = kTransBlack_ColorInput;
    } else if (covIsSolidWhite || !inputCoverageIsUsed) {
        header->fCoverageInput = kSolidWhite_ColorInput;
    } else if (defaultToUniformInputs && !requiresCoverageAttrib) {
        header->fCoverageInput = kUniform_ColorInput;
    } else {
        header->fCoverageInput = kAttribute_ColorInput;
        header->fHasVertexCode = true;
    }

    if (readsDst) {
        SkASSERT(NULL != dstCopy || gpu->caps()->dstReadInShaderSupport());
        const GrTexture* dstCopyTexture = NULL;
        if (NULL != dstCopy) {
            dstCopyTexture = dstCopy->texture();
        }
        header->fDstReadKey = GrGLShaderBuilder::KeyForDstRead(dstCopyTexture, gpu->glCaps());
        SkASSERT(0 != header->fDstReadKey);
    } else {
        header->fDstReadKey = 0;
    }

    if (readFragPosition) {
        header->fFragPosKey = GrGLShaderBuilder::KeyForFragmentPosition(drawState.getRenderTarget(),
                                                                      gpu->glCaps());
    } else {
        header->fFragPosKey = 0;
    }

    // Record attribute indices
    header->fPositionAttributeIndex = drawState.positionAttributeIndex();
    header->fLocalCoordAttributeIndex = drawState.localCoordAttributeIndex();

    // For constant color and coverage we need an attribute with an index beyond those already set
    int availableAttributeIndex = drawState.getVertexAttribCount();
    if (requiresColorAttrib) {
        header->fColorAttributeIndex = drawState.colorVertexAttributeIndex();
    } else if (GrGLProgramDesc::kAttribute_ColorInput == header->fColorInput) {
        SkASSERT(availableAttributeIndex < GrDrawState::kMaxVertexAttribCnt);
        header->fColorAttributeIndex = availableAttributeIndex;
        availableAttributeIndex++;
    } else {
        header->fColorAttributeIndex = -1;
    }

    if (requiresCoverageAttrib) {
        header->fCoverageAttributeIndex = drawState.coverageVertexAttributeIndex();
    } else if (GrGLProgramDesc::kAttribute_ColorInput == header->fCoverageInput) {
        SkASSERT(availableAttributeIndex < GrDrawState::kMaxVertexAttribCnt);
        header->fCoverageAttributeIndex = availableAttributeIndex;
    } else {
        header->fCoverageAttributeIndex = -1;
    }

    // Here we deal with whether/how we handle color and coverage separately.

    // Set these defaults and then possibly change our mind if there is coverage.
    header->fDiscardIfZeroCoverage = false;
    header->fCoverageOutput = kModulate_CoverageOutput;

    // If we do have coverage determine whether it matters.
    bool separateCoverageFromColor = false;
    if (!drawState.isCoverageDrawing() && !skipCoverage &&
        (drawState.numCoverageStages() > 0 || requiresCoverageAttrib)) {

        // If we're stenciling then we want to discard samples that have zero coverage
        if (drawState.getStencil().doesWrite()) {
            header->fDiscardIfZeroCoverage = true;
            separateCoverageFromColor = true;
        }

        if (gpu->caps()->dualSourceBlendingSupport() &&
            !(blendOpts & (GrDrawState::kEmitCoverage_BlendOptFlag |
                           GrDrawState::kCoverageAsAlpha_BlendOptFlag))) {
            if (kZero_GrBlendCoeff == dstCoeff) {
                // write the coverage value to second color
                header->fCoverageOutput =  kSecondaryCoverage_CoverageOutput;
                separateCoverageFromColor = true;
            } else if (kSA_GrBlendCoeff == dstCoeff) {
                // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
                header->fCoverageOutput = kSecondaryCoverageISA_CoverageOutput;
                separateCoverageFromColor = true;
            } else if (kSC_GrBlendCoeff == dstCoeff) {
                // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially covered.
                header->fCoverageOutput = kSecondaryCoverageISC_CoverageOutput;
                separateCoverageFromColor = true;
            }
        } else if (readsDst &&
                   kOne_GrBlendCoeff == srcCoeff &&
                   kZero_GrBlendCoeff == dstCoeff) {
            header->fCoverageOutput = kCombineWithDst_CoverageOutput;
            separateCoverageFromColor = true;
        }
    }
    if (!skipColor) {
        for (int s = firstEffectiveColorStage; s < drawState.numColorStages(); ++s) {
            colorStages->push_back(&drawState.getColorStage(s));
        }
    }
    if (!skipCoverage) {
        SkTArray<const GrEffectStage*, true>* array;
        if (separateCoverageFromColor) {
            array = coverageStages;
        } else {
            array = colorStages;
        }
        for (int s = firstEffectiveCoverageStage; s < drawState.numCoverageStages(); ++s) {
            array->push_back(&drawState.getCoverageStage(s));
        }
    }
    header->fColorEffectCnt = colorStages->count();
    header->fCoverageEffectCnt = coverageStages->count();

    *desc->checksum() = 0;
    *desc->checksum() = SkChecksum::Compute(reinterpret_cast<uint32_t*>(desc->fKey.get()),
                                            newKeyLength);
    desc->fInitialized = true;
}
Ejemplo n.º 6
0
bool GrStencilAndCoverPathRenderer::onDrawPath(const SkPath& path,
                                               const SkStroke& stroke,
                                               GrDrawTarget* target,
                                               bool antiAlias) {
    GrAssert(!antiAlias);
    GrAssert(0 != stroke.getWidthIfStroked());

    GrDrawState* drawState = target->drawState();
    GrAssert(drawState->getStencil().isDisabled());

    SkAutoTUnref<GrPath> p(fGpu->createPath(path));

    SkPath::FillType nonInvertedFill = SkPath::NonInverseFill(path.getFillType());
    target->stencilPath(p, stroke, nonInvertedFill);

    // TODO: Use built in cover operation rather than a rect draw. This will require making our
    // fragment shaders be able to eat varyings generated by a matrix.

    // fill the path, zero out the stencil
    GrRect bounds = p->getBounds();
    SkScalar bloat = drawState->getViewMatrix().getMaxStretch() * SK_ScalarHalf;
    GrDrawState::AutoDeviceCoordDraw adcd;

    if (nonInvertedFill == path.getFillType()) {
        GR_STATIC_CONST_SAME_STENCIL(kStencilPass,
            kZero_StencilOp,
            kZero_StencilOp,
            kNotEqual_StencilFunc,
            0xffff,
            0x0000,
            0xffff);
        *drawState->stencil() = kStencilPass;
    } else {
        GR_STATIC_CONST_SAME_STENCIL(kInvertedStencilPass,
            kZero_StencilOp,
            kZero_StencilOp,
            // We know our rect will hit pixels outside the clip and the user bits will be 0
            // outside the clip. So we can't just fill where the user bits are 0. We also need to
            // check that the clip bit is set.
            kEqualIfInClip_StencilFunc,
            0xffff,
            0x0000,
            0xffff);
        SkMatrix vmi;
        bounds.setLTRB(0, 0,
                       SkIntToScalar(drawState->getRenderTarget()->width()),
                       SkIntToScalar(drawState->getRenderTarget()->height()));
        // mapRect through persp matrix may not be correct
        if (!drawState->getViewMatrix().hasPerspective() && drawState->getViewInverse(&vmi)) {
            vmi.mapRect(&bounds);
            // theoretically could set bloat = 0, instead leave it because of matrix inversion
            // precision.
        } else {
            adcd.set(drawState);
            bloat = 0;
        }
        *drawState->stencil() = kInvertedStencilPass;
    }
    bounds.outset(bloat, bloat);
    target->drawSimpleRect(bounds, NULL);
    target->drawState()->stencil()->setDisabled();
    return true;
}
Ejemplo n.º 7
0
bool GrDefaultPathRenderer::internalDrawPath(const SkPath& path,
                                             GrPathFill fill,
                                             GrDrawTarget* target,
                                             bool stencilOnly) {

    GrMatrix viewM = target->getDrawState().getViewMatrix();
    GrScalar tol = GR_Scalar1;
    tol = GrPathUtils::scaleToleranceToSrc(tol, viewM, path.getBounds());

    int vertexCnt;
    int indexCnt;
    GrPrimitiveType primType;
    GrDrawTarget::AutoReleaseGeometry arg;
    if (!this->createGeom(path,
                          fill,
                          tol,
                          target,
                          &primType,
                          &vertexCnt,
                          &indexCnt,
                          &arg)) {
        return false;
    }

    GrAssert(NULL != target);
    GrDrawTarget::AutoStateRestore asr(target, GrDrawTarget::kPreserve_ASRInit);
    GrDrawState* drawState = target->drawState();
    bool colorWritesWereDisabled = drawState->isColorWriteDisabled();
    // face culling doesn't make sense here
    GrAssert(GrDrawState::kBoth_DrawFace == drawState->getDrawFace());

    int                         passCount = 0;
    const GrStencilSettings*    passes[3];
    GrDrawState::DrawFace       drawFace[3];
    bool                        reverse = false;
    bool                        lastPassIsBounds;

    if (kHairLine_GrPathFill == fill) {
        passCount = 1;
        if (stencilOnly) {
            passes[0] = &gDirectToStencil;
        } else {
            passes[0] = NULL;
        }
        lastPassIsBounds = false;
        drawFace[0] = GrDrawState::kBoth_DrawFace;
    } else {
        if (single_pass_path(path, fill)) {
            passCount = 1;
            if (stencilOnly) {
                passes[0] = &gDirectToStencil;
            } else {
                passes[0] = NULL;
            }
            drawFace[0] = GrDrawState::kBoth_DrawFace;
            lastPassIsBounds = false;
        } else {
            switch (fill) {
                case kInverseEvenOdd_GrPathFill:
                    reverse = true;
                    // fallthrough
                case kEvenOdd_GrPathFill:
                    passes[0] = &gEOStencilPass;
                    if (stencilOnly) {
                        passCount = 1;
                        lastPassIsBounds = false;
                    } else {
                        passCount = 2;
                        lastPassIsBounds = true;
                        if (reverse) {
                            passes[1] = &gInvEOColorPass;
                        } else {
                            passes[1] = &gEOColorPass;
                        }
                    }
                    drawFace[0] = drawFace[1] = GrDrawState::kBoth_DrawFace;
                    break;

                case kInverseWinding_GrPathFill:
                    reverse = true;
                    // fallthrough
                case kWinding_GrPathFill:
                    if (fSeparateStencil) {
                        if (fStencilWrapOps) {
                            passes[0] = &gWindStencilSeparateWithWrap;
                        } else {
                            passes[0] = &gWindStencilSeparateNoWrap;
                        }
                        passCount = 2;
                        drawFace[0] = GrDrawState::kBoth_DrawFace;
                    } else {
                        if (fStencilWrapOps) {
                            passes[0] = &gWindSingleStencilWithWrapInc;
                            passes[1] = &gWindSingleStencilWithWrapDec;
                        } else {
                            passes[0] = &gWindSingleStencilNoWrapInc;
                            passes[1] = &gWindSingleStencilNoWrapDec;
                        }
                        // which is cw and which is ccw is arbitrary.
                        drawFace[0] = GrDrawState::kCW_DrawFace;
                        drawFace[1] = GrDrawState::kCCW_DrawFace;
                        passCount = 3;
                    }
                    if (stencilOnly) {
                        lastPassIsBounds = false;
                        --passCount;
                    } else {
                        lastPassIsBounds = true;
                        drawFace[passCount-1] = GrDrawState::kBoth_DrawFace;
                        if (reverse) {
                            passes[passCount-1] = &gInvWindColorPass;
                        } else {
                            passes[passCount-1] = &gWindColorPass;
                        }
                    }
                    break;
                default:
                    GrAssert(!"Unknown path fFill!");
                    return false;
            }
        }
    }

    {
    for (int p = 0; p < passCount; ++p) {
        drawState->setDrawFace(drawFace[p]);
        if (NULL != passes[p]) {
            *drawState->stencil() = *passes[p];
        }

        if (lastPassIsBounds && (p == passCount-1)) {
            if (!colorWritesWereDisabled) {
                drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
            }
            GrRect bounds;
            GrDrawState::AutoDeviceCoordDraw adcd;
            if (reverse) {
                GrAssert(NULL != drawState->getRenderTarget());
                // draw over the whole world.
                bounds.setLTRB(0, 0,
                               GrIntToScalar(drawState->getRenderTarget()->width()),
                               GrIntToScalar(drawState->getRenderTarget()->height()));
                GrMatrix vmi;
                // mapRect through persp matrix may not be correct
                if (!drawState->getViewMatrix().hasPerspective() &&
                    drawState->getViewInverse(&vmi)) {
                    vmi.mapRect(&bounds);
                } else {
                    adcd.set(drawState);
                }
            } else {
                bounds = path.getBounds();
            }
            GrDrawTarget::AutoGeometryPush agp(target);
            target->drawSimpleRect(bounds, NULL);
        } else {
            if (passCount > 1) {
                drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
            }
            if (indexCnt) {
                target->drawIndexed(primType, 0, 0,
                                    vertexCnt, indexCnt);
            } else {
                target->drawNonIndexed(primType, 0, vertexCnt);
            }
        }
    }
    }
    return true;
}
Ejemplo n.º 8
0
bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
    const GrIRect* r = NULL;
    GrIRect clipRect;

    GrDrawState* drawState = this->drawState();
    const GrRenderTarget* rt = drawState->getRenderTarget();

    // GrDrawTarget should have filtered this for us
    GrAssert(NULL != rt);

    if (drawState->isClipState()) {

        GrRect bounds;
        GrRect rtRect;
        rtRect.setLTRB(0, 0,
                       GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
        if (fClip.hasConservativeBounds()) {
            bounds = fClip.getConservativeBounds();
            if (!bounds.intersect(rtRect)) {
                bounds.setEmpty();
            }
        } else {
            bounds = rtRect;
        }

        bounds.roundOut(&clipRect);
        if  (clipRect.isEmpty()) {
            clipRect.setLTRB(0,0,0,0);
        }
        r = &clipRect;

        // use the stencil clip if we can't represent the clip as a rectangle.
        fClipInStencil = !fClip.isRect() && !fClip.isEmpty() && 
                         !bounds.isEmpty();

        // TODO: dynamically attach a SB when needed.
        GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
        if (fClipInStencil && NULL == stencilBuffer) {
            return false;
        }

        if (fClipInStencil &&
            stencilBuffer->mustRenderClip(fClip, rt->width(), rt->height())) {

            stencilBuffer->setLastClip(fClip, rt->width(), rt->height());

            // we set the current clip to the bounds so that our recursive
            // draws are scissored to them. We use the copy of the complex clip
            // we just stashed on the SB to render from. We set it back after
            // we finish drawing it into the stencil.
            const GrClip& clip = stencilBuffer->getLastClip();
            fClip.setFromRect(bounds);

            AutoStateRestore asr(this);
            AutoGeometryPush agp(this);

            drawState->setViewMatrix(GrMatrix::I());
            this->flushScissor(NULL);
#if !VISUALIZE_COMPLEX_CLIP
            drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#else
            drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
#endif
            int count = clip.getElementCount();
            int clipBit = stencilBuffer->bits();
            SkASSERT((clipBit <= 16) &&
                     "Ganesh only handles 16b or smaller stencil buffers");
            clipBit = (1 << (clipBit-1));
            
            bool clearToInside;
            GrSetOp startOp = kReplace_SetOp; // suppress warning
            int start = process_initial_clip_elements(clip,
                                                      rtRect,
                                                      &clearToInside,
                                                      &startOp);

            this->clearStencilClip(clipRect, clearToInside);

            // walk through each clip element and perform its set op
            // with the existing clip.
            for (int c = start; c < count; ++c) {
                GrPathFill fill;
                bool fillInverted;
                // enabled at bottom of loop
                drawState->disableState(kModifyStencilClip_StateBit);

                bool canRenderDirectToStencil; // can the clip element be drawn
                                               // directly to the stencil buffer
                                               // with a non-inverted fill rule
                                               // without extra passes to
                                               // resolve in/out status.

                GrPathRenderer* pr = NULL;
                const GrPath* clipPath = NULL;
                GrPathRenderer::AutoClearPath arp;
                if (kRect_ClipType == clip.getElementType(c)) {
                    canRenderDirectToStencil = true;
                    fill = kEvenOdd_PathFill;
                    fillInverted = false;
                    // there is no point in intersecting a screen filling
                    // rectangle.
                    if (kIntersect_SetOp == clip.getOp(c) &&
                        clip.getRect(c).contains(rtRect)) {
                        continue;
                    }
                } else {
                    fill = clip.getPathFill(c);
                    fillInverted = GrIsFillInverted(fill);
                    fill = GrNonInvertedFill(fill);
                    clipPath = &clip.getPath(c);
                    pr = this->getClipPathRenderer(*clipPath, fill);
                    if (NULL == pr) {
                        fClipInStencil = false;
                        fClip = clip;
                        return false;
                    }
                    canRenderDirectToStencil =
                        !pr->requiresStencilPass(this, *clipPath, fill);
                    arp.set(pr, this, clipPath, fill, false, NULL);
                }

                GrSetOp op = (c == start) ? startOp : clip.getOp(c);
                int passes;
                GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];

                bool canDrawDirectToClip; // Given the renderer, the element,
                                          // fill rule, and set operation can
                                          // we render the element directly to
                                          // stencil bit used for clipping.
                canDrawDirectToClip =
                    GrStencilSettings::GetClipPasses(op,
                                                     canRenderDirectToStencil,
                                                     clipBit,
                                                     fillInverted,
                                                     &passes, stencilSettings);

                // draw the element to the client stencil bits if necessary
                if (!canDrawDirectToClip) {
                    GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil,
                        kIncClamp_StencilOp,
                        kIncClamp_StencilOp,
                        kAlways_StencilFunc,
                        0xffff,
                        0x0000,
                        0xffff);
                    SET_RANDOM_COLOR
                    if (kRect_ClipType == clip.getElementType(c)) {
                        *drawState->stencil() = gDrawToStencil;
                        this->drawSimpleRect(clip.getRect(c), NULL, 0);
                    } else {
                        if (canRenderDirectToStencil) {
                            *drawState->stencil() = gDrawToStencil;
                            pr->drawPath(0);
                        } else {
                            pr->drawPathToStencil();
                        }
                    }
                }

                // now we modify the clip bit by rendering either the clip
                // element directly or a bounding rect of the entire clip.
                drawState->enableState(kModifyStencilClip_StateBit);
                for (int p = 0; p < passes; ++p) {
                    *drawState->stencil() = stencilSettings[p];
                    if (canDrawDirectToClip) {
                        if (kRect_ClipType == clip.getElementType(c)) {
                            SET_RANDOM_COLOR
                            this->drawSimpleRect(clip.getRect(c), NULL, 0);
                        } else {
                            SET_RANDOM_COLOR
                            pr->drawPath(0);
                        }
                    } else {
                        SET_RANDOM_COLOR
                        this->drawSimpleRect(bounds, NULL, 0);
                    }
                }
            }
Ejemplo n.º 9
0
bool GrStencilAndCoverPathRenderer::onDrawPath(const SkPath& path,
                                               const SkStrokeRec& stroke,
                                               GrDrawTarget* target,
                                               bool antiAlias) {
    SkASSERT(!antiAlias);
    SkASSERT(!stroke.isHairlineStyle());

    GrDrawState* drawState = target->drawState();
    SkASSERT(drawState->getStencil().isDisabled());

    SkAutoTUnref<GrPath> p(get_gr_path(fGpu, path, stroke));

    if (path.isInverseFillType()) {
        GR_STATIC_CONST_SAME_STENCIL(kInvertedStencilPass,
            kZero_StencilOp,
            kZero_StencilOp,
            // We know our rect will hit pixels outside the clip and the user bits will be 0
            // outside the clip. So we can't just fill where the user bits are 0. We also need to
            // check that the clip bit is set.
            kEqualIfInClip_StencilFunc,
            0xffff,
            0x0000,
            0xffff);

        drawState->setStencil(kInvertedStencilPass);

        // fake inverse with a stencil and cover
        target->stencilPath(p, convert_skpath_filltype(path.getFillType()));

        GrDrawState::AutoViewMatrixRestore avmr;
        SkRect bounds = SkRect::MakeLTRB(0, 0,
                                         SkIntToScalar(drawState->getRenderTarget()->width()),
                                         SkIntToScalar(drawState->getRenderTarget()->height()));
        SkMatrix vmi;
        // mapRect through persp matrix may not be correct
        if (!drawState->getViewMatrix().hasPerspective() && drawState->getViewInverse(&vmi)) {
            vmi.mapRect(&bounds);
            // theoretically could set bloat = 0, instead leave it because of matrix inversion
            // precision.
            SkScalar bloat = drawState->getViewMatrix().getMaxScale() * SK_ScalarHalf;
            bounds.outset(bloat, bloat);
        } else {
            avmr.setIdentity(drawState);
        }
        target->drawSimpleRect(bounds);
    } else {
        GR_STATIC_CONST_SAME_STENCIL(kStencilPass,
            kZero_StencilOp,
            kZero_StencilOp,
            kNotEqual_StencilFunc,
            0xffff,
            0x0000,
            0xffff);

        drawState->setStencil(kStencilPass);
        target->drawPath(p, convert_skpath_filltype(path.getFillType()));
    }

    target->drawState()->stencil()->setDisabled();
    return true;
}
Ejemplo n.º 10
0
void GrInOrderDrawBuffer::drawRect(const GrRect& rect,
                                   const SkMatrix* matrix,
                                   const GrRect* srcRects[],
                                   const SkMatrix* srcMatrices[]) {

    GrAssert(!(NULL == fQuadIndexBuffer && fCurrQuad));
    GrAssert(!(fDraws.empty() && fCurrQuad));
    GrAssert(!(0 != fMaxQuads && NULL == fQuadIndexBuffer));

    GrDrawState* drawState = this->drawState();

    // if we have a quad IB then either append to the previous run of
    // rects or start a new run
    if (fMaxQuads) {

        bool appendToPreviousDraw = false;
        GrVertexLayout layout = GetRectVertexLayout(srcRects);

        // Batching across colors means we move the draw color into the
        // rect's vertex colors to allow greater batching (a lot of rects
        // in a row differing only in color is a common occurence in tables).
        bool batchAcrossColors = true;
        if (!this->getCaps().dualSourceBlendingSupport()) {
            for (int s = 0; s < GrDrawState::kNumStages; ++s) {
                if (this->getDrawState().isStageEnabled(s)) {
                    // We disable batching across colors when there is a texture
                    // present because (by pushing the the color to the vertices)
                    // Ganesh loses track of the rect's opacity. This, in turn, can
                    // cause some of the blending optimizations to be disabled. This
                    // becomes a huge problem on some of the smaller devices where
                    // shader derivatives and dual source blending aren't supported.
                    // In those cases paths are often drawn to a texture and then
                    // drawn as a texture (using this method). Because dual source
                    // blending is disabled (and the blend optimizations are short
                    // circuited) some of the more esoteric blend modes can no longer
                    // be supported.
                    // TODO: add tracking of batchAcrossColors's opacity
                    batchAcrossColors = false;
                    break;
                }
            }
        }

        if (batchAcrossColors) {
            layout |= GrDrawState::kColor_VertexLayoutBit;
        }

        AutoReleaseGeometry geo(this, layout, 4, 0);
        if (!geo.succeeded()) {
            GrPrintf("Failed to get space for vertices!\n");
            return;
        }
        SkMatrix combinedMatrix = drawState->getViewMatrix();
        // We go to device space so that matrix changes allow us to concat
        // rect draws. When the caller has provided explicit source rects
        // then we don't want to modify the stages' matrices. Otherwise
        // we have to account for the view matrix change in the stage
        // matrices.
        uint32_t explicitCoordMask = 0;
        if (srcRects) {
            for (int s = 0; s < GrDrawState::kNumStages; ++s) {
                if (srcRects[s]) {
                    explicitCoordMask |= (1 << s);
                }
            }
        }
        GrDrawState::AutoDeviceCoordDraw adcd(this->drawState(), explicitCoordMask);
        if (!adcd.succeeded()) {
            return;
        }
        if (NULL != matrix) {
            combinedMatrix.preConcat(*matrix);
        }

        SetRectVertices(rect, &combinedMatrix, srcRects, srcMatrices,
                        this->getDrawState().getColor(), layout, geo.vertices());

        // Now that the paint's color is stored in the vertices set it to
        // white so that the following code can batch all the rects regardless
        // of paint color
        GrDrawState::AutoColorRestore acr(this->drawState(),
                                          batchAcrossColors ? SK_ColorWHITE
                                                            : this->getDrawState().getColor());

        // we don't want to miss an opportunity to batch rects together
        // simply because the clip has changed if the clip doesn't affect
        // the rect.
        bool disabledClip = false;

        if (drawState->isClipState()) {

            GrRect devClipRect;
            bool isIntersectionOfRects = false;
            const GrClipData* clip = this->getClip();
            clip->fClipStack->getConservativeBounds(-clip->fOrigin.fX,
                                                    -clip->fOrigin.fY,
                                                    drawState->getRenderTarget()->width(),
                                                    drawState->getRenderTarget()->height(),
                                                    &devClipRect,
                                                    &isIntersectionOfRects);

            if (isIntersectionOfRects) {
                // If the clip rect touches the edge of the viewport, extended it
                // out (close) to infinity to avoid bogus intersections.
                // We might consider a more exact clip to viewport if this
                // conservative test fails.
                const GrRenderTarget* target = drawState->getRenderTarget();
                if (0 >= devClipRect.fLeft) {
                    devClipRect.fLeft = SK_ScalarMin;
                }
                if (target->width() <= devClipRect.fRight) {
                    devClipRect.fRight = SK_ScalarMax;
                }
                if (0 >= devClipRect.top()) {
                    devClipRect.fTop = SK_ScalarMin;
                }
                if (target->height() <= devClipRect.fBottom) {
                    devClipRect.fBottom = SK_ScalarMax;
                }
                int stride = GrDrawState::VertexSize(layout);
                bool insideClip = true;
                for (int v = 0; v < 4; ++v) {
                    const GrPoint& p = *GrDrawState::GetVertexPoint(geo.vertices(), v, stride);
                    if (!devClipRect.contains(p)) {
                        insideClip = false;
                        break;
                    }
                }
                if (insideClip) {
                    drawState->disableState(GrDrawState::kClip_StateBit);
                    disabledClip = true;
                }
            }
        }

        if (!this->needsNewClip() &&
            !this->needsNewState() &&
            fCurrQuad > 0 &&
            fCurrQuad < fMaxQuads &&
            layout == fLastRectVertexLayout) {

            int vsize = GrDrawState::VertexSize(layout);

            Draw& lastDraw = fDraws.back();

            GrAssert(lastDraw.fIndexBuffer == fQuadIndexBuffer);
            GrAssert(kTriangles_GrPrimitiveType == lastDraw.fPrimitiveType);
            GrAssert(0 == lastDraw.fVertexCount % 4);
            GrAssert(0 == lastDraw.fIndexCount % 6);
            GrAssert(0 == lastDraw.fStartIndex);

            GeometryPoolState& poolState = fGeoPoolStateStack.back();

            appendToPreviousDraw =
                kDraw_Cmd == fCmds.back() &&
                lastDraw.fVertexBuffer == poolState.fPoolVertexBuffer &&
                (fCurrQuad * 4 + lastDraw.fStartVertex) == poolState.fPoolStartVertex;

            if (appendToPreviousDraw) {
                lastDraw.fVertexCount += 4;
                lastDraw.fIndexCount += 6;
                fCurrQuad += 1;
                // we reserved above, so we should be the first
                // use of this vertex reservation.
                GrAssert(0 == poolState.fUsedPoolVertexBytes);
                poolState.fUsedPoolVertexBytes = 4 * vsize;
            }
        }
        if (!appendToPreviousDraw) {
            this->setIndexSourceToBuffer(fQuadIndexBuffer);
            this->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 4, 6);
            fCurrQuad = 1;
            fLastRectVertexLayout = layout;
        }
        if (disabledClip) {
            drawState->enableState(GrDrawState::kClip_StateBit);
        }
        fInstancedDrawTracker.reset();
    } else {
        INHERITED::drawRect(rect, matrix, srcRects, srcMatrices);
    }
}
void GrDefaultPathRenderer::onDrawPath(GrDrawState::StageMask stageMask,
                                       bool stencilOnly) {

    GrMatrix viewM = fTarget->getDrawState().getViewMatrix();
    GrScalar tol = GR_Scalar1;
    tol = GrPathUtils::scaleToleranceToSrc(tol, viewM, fPath->getBounds());
    GrDrawState* drawState = fTarget->drawState();

    // FIXME: It's really dumb that we recreate the verts for a new vertex
    // layout. We only do that because the GrDrawTarget API doesn't allow
    // us to change the vertex layout after reserveVertexSpace(). We won't
    // actually change the vertex data when the layout changes since all the
    // stages reference the positions (rather than having separate tex coords)
    // and we don't ever have per-vert colors. In practice our call sites
    // won't change the stages in use inside a setPath / removePath pair. But
    // it is a silly limitation of the GrDrawTarget design that should be fixed.
    if (tol != fPreviousSrcTol ||
        stageMask != fPreviousStages) {
        if (!this->createGeom(tol, stageMask)) {
            return;
        }
    }

    GrAssert(NULL != fTarget);
    GrDrawTarget::AutoStateRestore asr(fTarget);
    bool colorWritesWereDisabled = drawState->isColorWriteDisabled();
    // face culling doesn't make sense here
    GrAssert(GrDrawState::kBoth_DrawFace == drawState->getDrawFace());

    int                         passCount = 0;
    const GrStencilSettings*    passes[3];
    GrDrawState::DrawFace       drawFace[3];
    bool                        reverse = false;
    bool                        lastPassIsBounds;

    if (kHairLine_PathFill == fFill) {
        passCount = 1;
        if (stencilOnly) {
            passes[0] = &gDirectToStencil;
        } else {
            passes[0] = NULL;
        }
        lastPassIsBounds = false;
        drawFace[0] = GrDrawState::kBoth_DrawFace;
    } else {
        if (single_pass_path(*fTarget, *fPath, fFill)) {
            passCount = 1;
            if (stencilOnly) {
                passes[0] = &gDirectToStencil;
            } else {
                passes[0] = NULL;
            }
            drawFace[0] = GrDrawState::kBoth_DrawFace;
            lastPassIsBounds = false;
        } else {
            switch (fFill) {
                case kInverseEvenOdd_PathFill:
                    reverse = true;
                    // fallthrough
                case kEvenOdd_PathFill:
                    passes[0] = &gEOStencilPass;
                    if (stencilOnly) {
                        passCount = 1;
                        lastPassIsBounds = false;
                    } else {
                        passCount = 2;
                        lastPassIsBounds = true;
                        if (reverse) {
                            passes[1] = &gInvEOColorPass;
                        } else {
                            passes[1] = &gEOColorPass;
                        }
                    }
                    drawFace[0] = drawFace[1] = GrDrawState::kBoth_DrawFace;
                    break;

                case kInverseWinding_PathFill:
                    reverse = true;
                    // fallthrough
                case kWinding_PathFill:
                    if (fSeparateStencil) {
                        if (fStencilWrapOps) {
                            passes[0] = &gWindStencilSeparateWithWrap;
                        } else {
                            passes[0] = &gWindStencilSeparateNoWrap;
                        }
                        passCount = 2;
                        drawFace[0] = GrDrawState::kBoth_DrawFace;
                    } else {
                        if (fStencilWrapOps) {
                            passes[0] = &gWindSingleStencilWithWrapInc;
                            passes[1] = &gWindSingleStencilWithWrapDec;
                        } else {
                            passes[0] = &gWindSingleStencilNoWrapInc;
                            passes[1] = &gWindSingleStencilNoWrapDec;
                        }
                        // which is cw and which is ccw is arbitrary.
                        drawFace[0] = GrDrawState::kCW_DrawFace;
                        drawFace[1] = GrDrawState::kCCW_DrawFace;
                        passCount = 3;
                    }
                    if (stencilOnly) {
                        lastPassIsBounds = false;
                        --passCount;
                    } else {
                        lastPassIsBounds = true;
                        drawFace[passCount-1] = GrDrawState::kBoth_DrawFace;
                        if (reverse) {
                            passes[passCount-1] = &gInvWindColorPass;
                        } else {
                            passes[passCount-1] = &gWindColorPass;
                        }
                    }
                    break;
                default:
                    GrAssert(!"Unknown path fFill!");
                    return;
            }
        }
    }

    {
    for (int p = 0; p < passCount; ++p) {
        drawState->setDrawFace(drawFace[p]);
        if (NULL != passes[p]) {
            *drawState->stencil() = *passes[p];
        }

        if (lastPassIsBounds && (p == passCount-1)) {
            if (!colorWritesWereDisabled) {
                drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
            }
            GrRect bounds;
            if (reverse) {
                GrAssert(NULL != drawState->getRenderTarget());
                // draw over the whole world.
                bounds.setLTRB(0, 0,
                               GrIntToScalar(drawState->getRenderTarget()->width()),
                               GrIntToScalar(drawState->getRenderTarget()->height()));
                GrMatrix vmi;
                // mapRect through persp matrix may not be correct
                if (!drawState->getViewMatrix().hasPerspective() &&
                    drawState->getViewInverse(&vmi)) {
                    vmi.mapRect(&bounds);
                } else {
                    if (stageMask) {
                        if (!drawState->getViewInverse(&vmi)) {
                            GrPrintf("Could not invert matrix.");
                            return;
                        }
                        drawState->preConcatSamplerMatrices(stageMask, vmi);
                    }
                    drawState->setViewMatrix(GrMatrix::I());
                }
            } else {
                bounds = fPath->getBounds();
                bounds.offset(fTranslate);
            }
            GrDrawTarget::AutoGeometryPush agp(fTarget);
            fTarget->drawSimpleRect(bounds, NULL, stageMask);
        } else {
            if (passCount > 1) {
                drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
            }
            if (fUseIndexedDraw) {
                fTarget->drawIndexed(fPrimitiveType, 0, 0, 
                                     fVertexCnt, fIndexCnt);
            } else {
                int baseVertex = 0;
                for (int sp = 0; sp < fSubpathCount; ++sp) {
                    fTarget->drawNonIndexed(fPrimitiveType, baseVertex,
                                            fSubpathVertCount[sp]);
                    baseVertex += fSubpathVertCount[sp];
                }
            }
        }
    }
    }
}
Ejemplo n.º 12
0
////////////////////////////////////////////////////////////////////////////////
// Create a 1-bit clip mask in the stencil buffer
bool GrClipMaskManager::createStencilClipMask(GrGpu* gpu, 
                                              const GrClip& clipIn,
                                              const GrRect& bounds,
                                              ScissoringSettings* scissorSettings) {

    GrAssert(fClipMaskInStencil);

    GrDrawState* drawState = gpu->drawState();
    GrAssert(drawState->isClipState());

    GrRenderTarget* rt = drawState->getRenderTarget();
    GrAssert(NULL != rt);

    // TODO: dynamically attach a SB when needed.
    GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
    if (NULL == stencilBuffer) {
        return false;
    }

    if (stencilBuffer->mustRenderClip(clipIn, rt->width(), rt->height())) {

        stencilBuffer->setLastClip(clipIn, rt->width(), rt->height());

        // we set the current clip to the bounds so that our recursive
        // draws are scissored to them. We use the copy of the complex clip
        // we just stashed on the SB to render from. We set it back after
        // we finish drawing it into the stencil.
        const GrClip& clipCopy = stencilBuffer->getLastClip();
        gpu->setClip(GrClip(bounds));

        GrDrawTarget::AutoStateRestore asr(gpu, GrDrawTarget::kReset_ASRInit);
        drawState = gpu->drawState();
        drawState->setRenderTarget(rt);
        GrDrawTarget::AutoGeometryPush agp(gpu);

        gpu->disableScissor();
#if !VISUALIZE_COMPLEX_CLIP
        drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#endif

        int count = clipCopy.getElementCount();
        int clipBit = stencilBuffer->bits();
        SkASSERT((clipBit <= 16) &&
                    "Ganesh only handles 16b or smaller stencil buffers");
        clipBit = (1 << (clipBit-1));

        GrIRect rtRect = GrIRect::MakeWH(rt->width(), rt->height());

        bool clearToInside;
        SkRegion::Op startOp = SkRegion::kReplace_Op; // suppress warning
        int start = process_initial_clip_elements(clipCopy,
                                                    rtRect,
                                                    &clearToInside,
                                                    &startOp);

        gpu->clearStencilClip(scissorSettings->fScissorRect, clearToInside);

        // walk through each clip element and perform its set op
        // with the existing clip.
        for (int c = start; c < count; ++c) {
            GrPathFill fill;
            bool fillInverted;
            // enabled at bottom of loop
            drawState->disableState(GrGpu::kModifyStencilClip_StateBit);

            bool canRenderDirectToStencil; // can the clip element be drawn
                                           // directly to the stencil buffer
                                           // with a non-inverted fill rule
                                           // without extra passes to
                                           // resolve in/out status.

            SkRegion::Op op = (c == start) ? startOp : clipCopy.getOp(c);

            GrPathRenderer* pr = NULL;
            const SkPath* clipPath = NULL;
            if (kRect_ClipType == clipCopy.getElementType(c)) {
                canRenderDirectToStencil = true;
                fill = kEvenOdd_PathFill;
                fillInverted = false;
                // there is no point in intersecting a screen filling
                // rectangle.
                if (SkRegion::kIntersect_Op == op &&
                    contains(clipCopy.getRect(c), rtRect)) {
                    continue;
                }
            } else {
                fill = clipCopy.getPathFill(c);
                fillInverted = GrIsFillInverted(fill);
                fill = GrNonInvertedFill(fill);
                clipPath = &clipCopy.getPath(c);
                pr = this->getContext()->getPathRenderer(*clipPath,
                                                         fill, gpu, false,
                                                         true);
                if (NULL == pr) {
                    fClipMaskInStencil = false;
                    gpu->setClip(clipCopy);     // restore to the original
                    return false;
                }
                canRenderDirectToStencil =
                    !pr->requiresStencilPass(*clipPath, fill, gpu);
            }

            int passes;
            GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];

            bool canDrawDirectToClip; // Given the renderer, the element,
                                        // fill rule, and set operation can
                                        // we render the element directly to
                                        // stencil bit used for clipping.
            canDrawDirectToClip =
                GrStencilSettings::GetClipPasses(op,
                                                    canRenderDirectToStencil,
                                                    clipBit,
                                                    fillInverted,
                                                    &passes, stencilSettings);

            // draw the element to the client stencil bits if necessary
            if (!canDrawDirectToClip) {
                GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil,
                    kIncClamp_StencilOp,
                    kIncClamp_StencilOp,
                    kAlways_StencilFunc,
                    0xffff,
                    0x0000,
                    0xffff);
                SET_RANDOM_COLOR
                if (kRect_ClipType == clipCopy.getElementType(c)) {
                    *drawState->stencil() = gDrawToStencil;
                    gpu->drawSimpleRect(clipCopy.getRect(c), NULL, 0);
                } else {
                    if (canRenderDirectToStencil) {
                        *drawState->stencil() = gDrawToStencil;
                        pr->drawPath(*clipPath, fill, NULL, gpu, 0, false);
                    } else {
                        pr->drawPathToStencil(*clipPath, fill, gpu);
                    }
                }
            }

            // now we modify the clip bit by rendering either the clip
            // element directly or a bounding rect of the entire clip.
            drawState->enableState(GrGpu::kModifyStencilClip_StateBit);
            for (int p = 0; p < passes; ++p) {
                *drawState->stencil() = stencilSettings[p];
                if (canDrawDirectToClip) {
                    if (kRect_ClipType == clipCopy.getElementType(c)) {
                        SET_RANDOM_COLOR
                        gpu->drawSimpleRect(clipCopy.getRect(c), NULL, 0);
                    } else {
                        SET_RANDOM_COLOR
                        pr->drawPath(*clipPath, fill, NULL, gpu, 0, false);
                    }
                } else {
                    SET_RANDOM_COLOR
                    gpu->drawSimpleRect(bounds, NULL, 0);
                }
            }
        }
Ejemplo n.º 13
0
////////////////////////////////////////////////////////////////////////////////
// sort out what kind of clip mask needs to be created: alpha, stencil,
// scissor, or entirely software
bool GrClipMaskManager::createClipMask(GrGpu* gpu, 
                                       const GrClip& clipIn,
                                       ScissoringSettings* scissorSettings) {

    GrAssert(scissorSettings);

    scissorSettings->fEnableScissoring = false;
    fClipMaskInStencil = false;
    fClipMaskInAlpha = false;

    GrDrawState* drawState = gpu->drawState();
    if (!drawState->isClipState()) {
        return true;
    }

    GrRenderTarget* rt = drawState->getRenderTarget();

    // GrDrawTarget should have filtered this for us
    GrAssert(NULL != rt);

#if GR_SW_CLIP
    // If MSAA is enabled we can do everything in the stencil buffer.
    // Otherwise check if we should just create the entire clip mask 
    // in software (this will only happen if the clip mask is anti-aliased
    // and too complex for the gpu to handle in its entirety)
    if (0 == rt->numSamples() && useSWOnlyPath(gpu, clipIn)) {
        // The clip geometry is complex enough that it will be more
        // efficient to create it entirely in software
        GrTexture* result = NULL;
        GrIRect bound;
        if (this->createSoftwareClipMask(gpu, clipIn, &result, &bound)) {
            fClipMaskInAlpha = true;

            setup_drawstate_aaclip(gpu, result, bound);
            return true;
        }

        // if SW clip mask creation fails fall through to the other
        // two possible methods (bottoming out at stencil clipping)
    }
#endif // GR_SW_CLIP

#if GR_AA_CLIP
    // If MSAA is enabled use the (faster) stencil path for AA clipping
    // otherwise the alpha clip mask is our only option
    if (0 == rt->numSamples() && clipIn.requiresAA()) {
        // Since we are going to create a destination texture of the correct
        // size for the mask (rather than being bound by the size of the
        // render target) we aren't going to use scissoring like the stencil
        // path does (see scissorSettings below)
        GrTexture* result = NULL;
        GrIRect bound;
        if (this->createAlphaClipMask(gpu, clipIn, &result, &bound)) {
            fClipMaskInAlpha = true;

            setup_drawstate_aaclip(gpu, result, bound);
            return true;
        }

        // if alpha clip mask creation fails fall through to the stencil
        // buffer method
    }
#endif // GR_AA_CLIP

    // Either a hard (stencil buffer) clip was explicitly requested or 
    // an antialiased clip couldn't be created. In either case, free up
    // the texture in the antialiased mask cache.
    // TODO: this may require more investigation. Ganesh performs a lot of
    // utility draws (e.g., clears, InOrderDrawBuffer playbacks) that hit
    // the stencil buffer path. These may be "incorrectly" clearing the 
    // AA cache.
    fAACache.reset();

    GrRect bounds;
    GrRect rtRect;
    rtRect.setLTRB(0, 0,
                   GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
    if (clipIn.hasConservativeBounds()) {
        bounds = clipIn.getConservativeBounds();
        if (!bounds.intersect(rtRect)) {
            bounds.setEmpty();
        }
    } else {
        bounds = rtRect;
    }

    bounds.roundOut(&scissorSettings->fScissorRect);
    if  (scissorSettings->fScissorRect.isEmpty()) {
        scissorSettings->fScissorRect.setLTRB(0,0,0,0);
        // TODO: I think we can do an early exit here - after refactoring try:
        //  set fEnableScissoring to true but leave fClipMaskInStencil false
        //  and return - everything is going to be scissored away anyway!
    }
    scissorSettings->fEnableScissoring = true;

    // use the stencil clip if we can't represent the clip as a rectangle.
    fClipMaskInStencil = !clipIn.isRect() && !clipIn.isEmpty() &&
                         !bounds.isEmpty();

    if (fClipMaskInStencil) {
        return this->createStencilClipMask(gpu, clipIn, bounds, scissorSettings);
    }

    return true;
}