Ejemplo n.º 1
0
void GrClipMaskManager::mergeMask(GrTexture* dstMask,
                                  GrTexture* srcMask,
                                  SkRegion::Op op,
                                  const GrIRect& dstBound,
                                  const GrIRect& srcBound) {
    GrDrawState* drawState = fGpu->drawState();
    SkMatrix oldMatrix = drawState->getViewMatrix();
    drawState->viewMatrix()->reset();

    drawState->setRenderTarget(dstMask->asRenderTarget());

    setup_boolean_blendcoeffs(drawState, op);

    SkMatrix sampleM;
    sampleM.setIDiv(srcMask->width(), srcMask->height());
    drawState->setEffect(0,
        GrTextureDomainEffect::Create(srcMask,
                                      sampleM,
                                      GrTextureDomainEffect::MakeTexelDomain(srcMask, srcBound),
                                      GrTextureDomainEffect::kDecal_WrapMode,
                                      false))->unref();
    fGpu->drawSimpleRect(SkRect::MakeFromIRect(dstBound), NULL);

    drawState->disableStage(0);
    drawState->setViewMatrix(oldMatrix);
}
Ejemplo n.º 2
0
GrDrawTarget::AutoDeviceCoordDraw::~AutoDeviceCoordDraw() {
    GrDrawState* drawState = fDrawTarget->drawState();
    drawState->setViewMatrix(fViewMatrix);
    for (int s = 0; s < GrDrawState::kNumStages; ++s) {
        if (fStageMask & (1 << s)) {
            *drawState->sampler(s)->matrix() = fSamplerMatrices[s];
        }
    }
}
void GrAAHairLinePathRenderer::drawPath(GrDrawState::StageMask stageMask) {

    if (!this->createGeom(stageMask)) {
        return;
    }

    GrDrawState* drawState = fTarget->drawState();

    GrDrawTarget::AutoStateRestore asr;
    if (!drawState->getViewMatrix().hasPerspective()) {
        asr.set(fTarget);
        GrMatrix ivm;
        if (drawState->getViewInverse(&ivm)) {
            drawState->preConcatSamplerMatrices(stageMask, ivm);
        }
        drawState->setViewMatrix(GrMatrix::I());
    }

    // TODO: See whether rendering lines as degenerate quads improves perf
    // when we have a mix
    fTarget->setIndexSourceToBuffer(fLinesIndexBuffer);
    int lines = 0;
    int nBufLines = fLinesIndexBuffer->maxQuads();
    while (lines < fLineSegmentCnt) {
        int n = GrMin(fLineSegmentCnt-lines, nBufLines);
        drawState->setVertexEdgeType(GrDrawState::kHairLine_EdgeType);
        fTarget->drawIndexed(kTriangles_PrimitiveType,
                             kVertsPerLineSeg*lines,    // startV
                             0,                         // startI
                             kVertsPerLineSeg*n,        // vCount
                             kIdxsPerLineSeg*n);        // iCount
        lines += n;
    }

    fTarget->setIndexSourceToBuffer(fQuadsIndexBuffer);
    int quads = 0;
    while (quads < fQuadCnt) {
        int n = GrMin(fQuadCnt-quads, kNumQuadsInIdxBuffer);
        drawState->setVertexEdgeType(GrDrawState::kHairQuad_EdgeType);
        fTarget->drawIndexed(kTriangles_PrimitiveType,
                             4*fLineSegmentCnt + kVertsPerQuad*quads, // startV
                             0,                                       // startI
                             kVertsPerQuad*n,                         // vCount
                             kIdxsPerQuad*n);                         // iCount
        quads += n;
    }

}
Ejemplo n.º 4
0
bool GrGpu::setupClipAndFlushState(GrPrimitiveType type) {
    const GrIRect* r = NULL;
    GrIRect clipRect;

    GrDrawState* drawState = this->drawState();
    const GrRenderTarget* rt = drawState->getRenderTarget();

    // GrDrawTarget should have filtered this for us
    GrAssert(NULL != rt);

    if (drawState->isClipState()) {

        GrRect bounds;
        GrRect rtRect;
        rtRect.setLTRB(0, 0,
                       GrIntToScalar(rt->width()), GrIntToScalar(rt->height()));
        if (fClip.hasConservativeBounds()) {
            bounds = fClip.getConservativeBounds();
            if (!bounds.intersect(rtRect)) {
                bounds.setEmpty();
            }
        } else {
            bounds = rtRect;
        }

        bounds.roundOut(&clipRect);
        if  (clipRect.isEmpty()) {
            clipRect.setLTRB(0,0,0,0);
        }
        r = &clipRect;

        // use the stencil clip if we can't represent the clip as a rectangle.
        fClipInStencil = !fClip.isRect() && !fClip.isEmpty() && 
                         !bounds.isEmpty();

        // TODO: dynamically attach a SB when needed.
        GrStencilBuffer* stencilBuffer = rt->getStencilBuffer();
        if (fClipInStencil && NULL == stencilBuffer) {
            return false;
        }

        if (fClipInStencil &&
            stencilBuffer->mustRenderClip(fClip, rt->width(), rt->height())) {

            stencilBuffer->setLastClip(fClip, rt->width(), rt->height());

            // we set the current clip to the bounds so that our recursive
            // draws are scissored to them. We use the copy of the complex clip
            // we just stashed on the SB to render from. We set it back after
            // we finish drawing it into the stencil.
            const GrClip& clip = stencilBuffer->getLastClip();
            fClip.setFromRect(bounds);

            AutoStateRestore asr(this);
            AutoGeometryPush agp(this);

            drawState->setViewMatrix(GrMatrix::I());
            this->flushScissor(NULL);
#if !VISUALIZE_COMPLEX_CLIP
            drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
#else
            drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
#endif
            int count = clip.getElementCount();
            int clipBit = stencilBuffer->bits();
            SkASSERT((clipBit <= 16) &&
                     "Ganesh only handles 16b or smaller stencil buffers");
            clipBit = (1 << (clipBit-1));
            
            bool clearToInside;
            GrSetOp startOp = kReplace_SetOp; // suppress warning
            int start = process_initial_clip_elements(clip,
                                                      rtRect,
                                                      &clearToInside,
                                                      &startOp);

            this->clearStencilClip(clipRect, clearToInside);

            // walk through each clip element and perform its set op
            // with the existing clip.
            for (int c = start; c < count; ++c) {
                GrPathFill fill;
                bool fillInverted;
                // enabled at bottom of loop
                drawState->disableState(kModifyStencilClip_StateBit);

                bool canRenderDirectToStencil; // can the clip element be drawn
                                               // directly to the stencil buffer
                                               // with a non-inverted fill rule
                                               // without extra passes to
                                               // resolve in/out status.

                GrPathRenderer* pr = NULL;
                const GrPath* clipPath = NULL;
                GrPathRenderer::AutoClearPath arp;
                if (kRect_ClipType == clip.getElementType(c)) {
                    canRenderDirectToStencil = true;
                    fill = kEvenOdd_PathFill;
                    fillInverted = false;
                    // there is no point in intersecting a screen filling
                    // rectangle.
                    if (kIntersect_SetOp == clip.getOp(c) &&
                        clip.getRect(c).contains(rtRect)) {
                        continue;
                    }
                } else {
                    fill = clip.getPathFill(c);
                    fillInverted = GrIsFillInverted(fill);
                    fill = GrNonInvertedFill(fill);
                    clipPath = &clip.getPath(c);
                    pr = this->getClipPathRenderer(*clipPath, fill);
                    if (NULL == pr) {
                        fClipInStencil = false;
                        fClip = clip;
                        return false;
                    }
                    canRenderDirectToStencil =
                        !pr->requiresStencilPass(this, *clipPath, fill);
                    arp.set(pr, this, clipPath, fill, false, NULL);
                }

                GrSetOp op = (c == start) ? startOp : clip.getOp(c);
                int passes;
                GrStencilSettings stencilSettings[GrStencilSettings::kMaxStencilClipPasses];

                bool canDrawDirectToClip; // Given the renderer, the element,
                                          // fill rule, and set operation can
                                          // we render the element directly to
                                          // stencil bit used for clipping.
                canDrawDirectToClip =
                    GrStencilSettings::GetClipPasses(op,
                                                     canRenderDirectToStencil,
                                                     clipBit,
                                                     fillInverted,
                                                     &passes, stencilSettings);

                // draw the element to the client stencil bits if necessary
                if (!canDrawDirectToClip) {
                    GR_STATIC_CONST_SAME_STENCIL(gDrawToStencil,
                        kIncClamp_StencilOp,
                        kIncClamp_StencilOp,
                        kAlways_StencilFunc,
                        0xffff,
                        0x0000,
                        0xffff);
                    SET_RANDOM_COLOR
                    if (kRect_ClipType == clip.getElementType(c)) {
                        *drawState->stencil() = gDrawToStencil;
                        this->drawSimpleRect(clip.getRect(c), NULL, 0);
                    } else {
                        if (canRenderDirectToStencil) {
                            *drawState->stencil() = gDrawToStencil;
                            pr->drawPath(0);
                        } else {
                            pr->drawPathToStencil();
                        }
                    }
                }

                // now we modify the clip bit by rendering either the clip
                // element directly or a bounding rect of the entire clip.
                drawState->enableState(kModifyStencilClip_StateBit);
                for (int p = 0; p < passes; ++p) {
                    *drawState->stencil() = stencilSettings[p];
                    if (canDrawDirectToClip) {
                        if (kRect_ClipType == clip.getElementType(c)) {
                            SET_RANDOM_COLOR
                            this->drawSimpleRect(clip.getRect(c), NULL, 0);
                        } else {
                            SET_RANDOM_COLOR
                            pr->drawPath(0);
                        }
                    } else {
                        SET_RANDOM_COLOR
                        this->drawSimpleRect(bounds, NULL, 0);
                    }
                }
            }
Ejemplo n.º 5
0
////////////////////////////////////////////////////////////////////////////////
// Create a 8-bit clip mask in alpha
bool GrClipMaskManager::createAlphaClipMask(GrGpu* gpu,
                                            const GrClip& clipIn,
                                            GrTexture** result,
                                            GrIRect *resultBounds) {

    if (this->clipMaskPreamble(gpu, clipIn, result, resultBounds)) {
        return true;
    }

    GrTexture* accum = fAACache.getLastMask();
    if (NULL == accum) {
        fClipMaskInAlpha = false;
        fAACache.reset();
        return false;
    }

    GrDrawTarget::AutoStateRestore asr(gpu, GrDrawTarget::kReset_ASRInit);
    GrDrawState* drawState = gpu->drawState();

    GrDrawTarget::AutoGeometryPush agp(gpu);

    int count = clipIn.getElementCount();

    if (0 != resultBounds->fTop || 0 != resultBounds->fLeft) {
        // if we were able to trim down the size of the mask we need to 
        // offset the paths & rects that will be used to compute it
        GrMatrix m;

        m.setTranslate(SkIntToScalar(-resultBounds->fLeft), 
                       SkIntToScalar(-resultBounds->fTop));

        drawState->setViewMatrix(m);
    }

    bool clearToInside;
    SkRegion::Op startOp = SkRegion::kReplace_Op; // suppress warning
    int start = process_initial_clip_elements(clipIn,
                                              *resultBounds,
                                              &clearToInside,
                                              &startOp);

    clear(gpu, accum, clearToInside ? 0xffffffff : 0x00000000);

    GrAutoScratchTexture temp;

    // walk through each clip element and perform its set op
    for (int c = start; c < count; ++c) {

        SkRegion::Op op = (c == start) ? startOp : clipIn.getOp(c);

        if (SkRegion::kReplace_Op == op) {
            // TODO: replace is actually a lot faster then intersection
            // for this path - refactor the stencil path so it can handle
            // replace ops and alter GrClip to allow them through

            // clear the accumulator and draw the new object directly into it
            clear(gpu, accum, 0x00000000);

            setup_boolean_blendcoeffs(drawState, op);
            this->drawClipShape(gpu, accum, clipIn, c);

        } else if (SkRegion::kReverseDifference_Op == op ||
                   SkRegion::kIntersect_Op == op) {
            // there is no point in intersecting a screen filling rectangle.
            if (SkRegion::kIntersect_Op == op &&
                kRect_ClipType == clipIn.getElementType(c) &&
                contains(clipIn.getRect(c), *resultBounds)) {
                continue;
            }

            getTemp(*resultBounds, &temp);
            if (NULL == temp.texture()) {
                fClipMaskInAlpha = false;
                fAACache.reset();
                return false;
            }

            // clear the temp target & draw into it
            clear(gpu, temp.texture(), 0x00000000);

            setup_boolean_blendcoeffs(drawState, SkRegion::kReplace_Op);
            this->drawClipShape(gpu, temp.texture(), clipIn, c);

            // TODO: rather than adding these two translations here
            // compute the bounding box needed to render the texture
            // into temp
            if (0 != resultBounds->fTop || 0 != resultBounds->fLeft) {
                GrMatrix m;

                m.setTranslate(SkIntToScalar(resultBounds->fLeft), 
                               SkIntToScalar(resultBounds->fTop));

                drawState->preConcatViewMatrix(m);
            }

            // Now draw into the accumulator using the real operation
            // and the temp buffer as a texture
            setup_boolean_blendcoeffs(drawState, op);
            this->drawTexture(gpu, accum, temp.texture());

            if (0 != resultBounds->fTop || 0 != resultBounds->fLeft) {
                GrMatrix m;

                m.setTranslate(SkIntToScalar(-resultBounds->fLeft), 
                               SkIntToScalar(-resultBounds->fTop));

                drawState->preConcatViewMatrix(m);
            }

        } else {
            // all the remaining ops can just be directly draw into 
            // the accumulation buffer
            setup_boolean_blendcoeffs(drawState, op);
            this->drawClipShape(gpu, accum, clipIn, c);
        }
    }

    *result = accum;

    return true;
}
void GrDefaultPathRenderer::onDrawPath(GrDrawState::StageMask stageMask,
                                       bool stencilOnly) {

    GrMatrix viewM = fTarget->getDrawState().getViewMatrix();
    GrScalar tol = GR_Scalar1;
    tol = GrPathUtils::scaleToleranceToSrc(tol, viewM, fPath->getBounds());
    GrDrawState* drawState = fTarget->drawState();

    // FIXME: It's really dumb that we recreate the verts for a new vertex
    // layout. We only do that because the GrDrawTarget API doesn't allow
    // us to change the vertex layout after reserveVertexSpace(). We won't
    // actually change the vertex data when the layout changes since all the
    // stages reference the positions (rather than having separate tex coords)
    // and we don't ever have per-vert colors. In practice our call sites
    // won't change the stages in use inside a setPath / removePath pair. But
    // it is a silly limitation of the GrDrawTarget design that should be fixed.
    if (tol != fPreviousSrcTol ||
        stageMask != fPreviousStages) {
        if (!this->createGeom(tol, stageMask)) {
            return;
        }
    }

    GrAssert(NULL != fTarget);
    GrDrawTarget::AutoStateRestore asr(fTarget);
    bool colorWritesWereDisabled = drawState->isColorWriteDisabled();
    // face culling doesn't make sense here
    GrAssert(GrDrawState::kBoth_DrawFace == drawState->getDrawFace());

    int                         passCount = 0;
    const GrStencilSettings*    passes[3];
    GrDrawState::DrawFace       drawFace[3];
    bool                        reverse = false;
    bool                        lastPassIsBounds;

    if (kHairLine_PathFill == fFill) {
        passCount = 1;
        if (stencilOnly) {
            passes[0] = &gDirectToStencil;
        } else {
            passes[0] = NULL;
        }
        lastPassIsBounds = false;
        drawFace[0] = GrDrawState::kBoth_DrawFace;
    } else {
        if (single_pass_path(*fTarget, *fPath, fFill)) {
            passCount = 1;
            if (stencilOnly) {
                passes[0] = &gDirectToStencil;
            } else {
                passes[0] = NULL;
            }
            drawFace[0] = GrDrawState::kBoth_DrawFace;
            lastPassIsBounds = false;
        } else {
            switch (fFill) {
                case kInverseEvenOdd_PathFill:
                    reverse = true;
                    // fallthrough
                case kEvenOdd_PathFill:
                    passes[0] = &gEOStencilPass;
                    if (stencilOnly) {
                        passCount = 1;
                        lastPassIsBounds = false;
                    } else {
                        passCount = 2;
                        lastPassIsBounds = true;
                        if (reverse) {
                            passes[1] = &gInvEOColorPass;
                        } else {
                            passes[1] = &gEOColorPass;
                        }
                    }
                    drawFace[0] = drawFace[1] = GrDrawState::kBoth_DrawFace;
                    break;

                case kInverseWinding_PathFill:
                    reverse = true;
                    // fallthrough
                case kWinding_PathFill:
                    if (fSeparateStencil) {
                        if (fStencilWrapOps) {
                            passes[0] = &gWindStencilSeparateWithWrap;
                        } else {
                            passes[0] = &gWindStencilSeparateNoWrap;
                        }
                        passCount = 2;
                        drawFace[0] = GrDrawState::kBoth_DrawFace;
                    } else {
                        if (fStencilWrapOps) {
                            passes[0] = &gWindSingleStencilWithWrapInc;
                            passes[1] = &gWindSingleStencilWithWrapDec;
                        } else {
                            passes[0] = &gWindSingleStencilNoWrapInc;
                            passes[1] = &gWindSingleStencilNoWrapDec;
                        }
                        // which is cw and which is ccw is arbitrary.
                        drawFace[0] = GrDrawState::kCW_DrawFace;
                        drawFace[1] = GrDrawState::kCCW_DrawFace;
                        passCount = 3;
                    }
                    if (stencilOnly) {
                        lastPassIsBounds = false;
                        --passCount;
                    } else {
                        lastPassIsBounds = true;
                        drawFace[passCount-1] = GrDrawState::kBoth_DrawFace;
                        if (reverse) {
                            passes[passCount-1] = &gInvWindColorPass;
                        } else {
                            passes[passCount-1] = &gWindColorPass;
                        }
                    }
                    break;
                default:
                    GrAssert(!"Unknown path fFill!");
                    return;
            }
        }
    }

    {
    for (int p = 0; p < passCount; ++p) {
        drawState->setDrawFace(drawFace[p]);
        if (NULL != passes[p]) {
            *drawState->stencil() = *passes[p];
        }

        if (lastPassIsBounds && (p == passCount-1)) {
            if (!colorWritesWereDisabled) {
                drawState->disableState(GrDrawState::kNoColorWrites_StateBit);
            }
            GrRect bounds;
            if (reverse) {
                GrAssert(NULL != drawState->getRenderTarget());
                // draw over the whole world.
                bounds.setLTRB(0, 0,
                               GrIntToScalar(drawState->getRenderTarget()->width()),
                               GrIntToScalar(drawState->getRenderTarget()->height()));
                GrMatrix vmi;
                // mapRect through persp matrix may not be correct
                if (!drawState->getViewMatrix().hasPerspective() &&
                    drawState->getViewInverse(&vmi)) {
                    vmi.mapRect(&bounds);
                } else {
                    if (stageMask) {
                        if (!drawState->getViewInverse(&vmi)) {
                            GrPrintf("Could not invert matrix.");
                            return;
                        }
                        drawState->preConcatSamplerMatrices(stageMask, vmi);
                    }
                    drawState->setViewMatrix(GrMatrix::I());
                }
            } else {
                bounds = fPath->getBounds();
                bounds.offset(fTranslate);
            }
            GrDrawTarget::AutoGeometryPush agp(fTarget);
            fTarget->drawSimpleRect(bounds, NULL, stageMask);
        } else {
            if (passCount > 1) {
                drawState->enableState(GrDrawState::kNoColorWrites_StateBit);
            }
            if (fUseIndexedDraw) {
                fTarget->drawIndexed(fPrimitiveType, 0, 0, 
                                     fVertexCnt, fIndexCnt);
            } else {
                int baseVertex = 0;
                for (int sp = 0; sp < fSubpathCount; ++sp) {
                    fTarget->drawNonIndexed(fPrimitiveType, baseVertex,
                                            fSubpathVertCount[sp]);
                    baseVertex += fSubpathVertCount[sp];
                }
            }
        }
    }
    }
}