Ejemplo n.º 1
0
/* ************************************************************************** */
TEST(GaussianPriorWorkspacePoseArm, optimization) {

  noiseModel::Gaussian::shared_ptr cost_model = noiseModel::Isotropic::Sigma(6, 0.1);

  Vector a = (Vector(2) << 1, 1).finished();
  Vector alpha = (Vector(2) << 0, 0).finished();
  Vector d = (Vector(2) << 0, 0).finished();
  ArmModel arm = ArmModel(Arm(2, a, alpha, d), BodySphereVector());
  Pose3 des = Pose3(Rot3(), Point3(2, 0, 0));

  Key qkey = Symbol('x', 0);
  Vector q = (Vector(2) << 0, 0).finished();
  Vector qinit = (Vector(2) << M_PI/2, M_PI/2).finished();

  NonlinearFactorGraph graph;
  graph.add(GaussianPriorWorkspacePoseArm(qkey, arm, 1, des, cost_model));
  Values init_values;
  init_values.insert(qkey, qinit);

  LevenbergMarquardtParams parameters;
  parameters.setVerbosity("ERROR");
  parameters.setAbsoluteErrorTol(1e-12);
  LevenbergMarquardtOptimizer optimizer(graph, init_values, parameters);
  optimizer.optimize();
  Values results = optimizer.values();

  EXPECT_DOUBLES_EQUAL(0, graph.error(results), 1e-3);
  EXPECT(assert_equal(q, results.at<Vector>(qkey), 1e-3));
}
Ejemplo n.º 2
0
/* ************************************************************************** */
TEST(GoalFactorArm, optimization_1) {

  // use optimization to solve inverse kinematics
  noiseModel::Gaussian::shared_ptr cost_model = noiseModel::Isotropic::Sigma(3, 0.1);

  // 2 link simple example
  Vector a = (Vector(2) << 1, 1).finished();
  Vector alpha = (Vector(2) << 0, 0).finished();
  Vector d = (Vector(2) << 0, 0).finished();
  Arm arm(2, a, alpha, d);
  Point3 goal(1.414213562373095, 1.414213562373095, 0);

  Key qkey = Symbol('x', 0);
  Vector q = (Vector(2) << M_PI/4.0, 0).finished();
  Vector qinit = (Vector(2) << 0, 0).finished();

  NonlinearFactorGraph graph;
  graph.add(GoalFactorArm(qkey, cost_model, arm, goal));
  Values init_values;
  init_values.insert(qkey, qinit);

  LevenbergMarquardtParams parameters;
  parameters.setVerbosity("ERROR");
  parameters.setAbsoluteErrorTol(1e-12);
  LevenbergMarquardtOptimizer optimizer(graph, init_values, parameters);
  optimizer.optimize();
  Values results = optimizer.values();

  EXPECT_DOUBLES_EQUAL(0, graph.error(results), 1e-3);
  EXPECT(assert_equal(q, results.at<Vector>(qkey), 1e-3));
}
Ejemplo n.º 3
0
/* ************************************************************************* */
int main (int argc, char* argv[]) {

  // Find default file, but if an argument is given, try loading a file
  string filename = findExampleDataFile("dubrovnik-3-7-pre");
  if (argc>1) filename = string(argv[1]);

  // Load the SfM data from file
  SfM_data mydata;
  assert(readBAL(filename, mydata));
  cout << boost::format("read %1% tracks on %2% cameras\n") % mydata.number_tracks() % mydata.number_cameras();

  // Create a factor graph
  NonlinearFactorGraph graph;

  // We share *one* noiseModel between all projection factors
  noiseModel::Isotropic::shared_ptr noise =
      noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v

  // Add measurements to the factor graph
  size_t j = 0;
  BOOST_FOREACH(const SfM_Track& track, mydata.tracks) {
    BOOST_FOREACH(const SfM_Measurement& m, track.measurements) {
      size_t i = m.first;
      Point2 uv = m.second;
      graph.push_back(MyFactor(uv, noise, C(i), P(j))); // note use of shorthand symbols C and P
    }
    j += 1;
  }

  // Add a prior on pose x1. This indirectly specifies where the origin is.
  // and a prior on the position of the first landmark to fix the scale
  graph.push_back(PriorFactor<SfM_Camera>(C(0), mydata.cameras[0],  noiseModel::Isotropic::Sigma(9, 0.1)));
  graph.push_back(PriorFactor<Point3>    (P(0), mydata.tracks[0].p, noiseModel::Isotropic::Sigma(3, 0.1)));

  // Create initial estimate
  Values initial;
  size_t i = 0; j = 0;
  BOOST_FOREACH(const SfM_Camera& camera, mydata.cameras) initial.insert(C(i++), camera);
  BOOST_FOREACH(const SfM_Track& track, mydata.tracks)    initial.insert(P(j++), track.p);

  /* Optimize the graph and print results */
  Values result;
  try {
    LevenbergMarquardtParams params;
    params.setVerbosity("ERROR");
    LevenbergMarquardtOptimizer lm(graph, initial, params);
    result = lm.optimize();
  } catch (exception& e) {
    cout << e.what();
  }
  cout << "final error: " << graph.error(result) << endl;

  return 0;
}