Ejemplo n.º 1
0
void TrPlaneStress2dXFEM :: computeGaussPoints()
{
    XfemManager *xMan = this->giveDomain()->giveXfemManager();

    for(int i = 1; i <= xMan->giveNumberOfEnrichmentItems(); i++)
    {
    	std::vector<FloatArray> intersecPoints;
    	EnrichmentItem *ei = xMan->giveEnrichmentItem(i);

        std::vector< int > intersecEdgeInd;
    	ei->computeIntersectionPoints(intersecPoints, intersecEdgeInd, this);
    	int numIntersecPoints = intersecPoints.size();

        if ( numIntersecPoints > 0 )
        {
            this->XfemElementInterface_updateIntegrationRule();
        } else
        {
            TrPlaneStress2d ::computeGaussPoints();
        }

    }

//	this->XfemElementInterface_updateIntegrationRule();
}
Ejemplo n.º 2
0
std::vector<std::unique_ptr<EnrichmentItem>> NCPrincipalStress::nucleateEnrichmentItems() {


	SpatialLocalizer *octree = this->mpDomain->giveSpatialLocalizer();
	XfemManager *xMan = mpDomain->giveXfemManager();

	std::vector<std::unique_ptr<EnrichmentItem>> eiList;

	// Center coordinates of newly inserted cracks
	std::vector<FloatArray> center_coord_inserted_cracks;

	// Loop over all elements and all bulk GP.
	for(auto &el : mpDomain->giveElements() ) {

		int numIR = el->giveNumberOfIntegrationRules();

		int csNum = el->giveCrossSection()->giveNumber();

		if(csNum == mCrossSectionInd || true) {

			for(int irInd = 0; irInd < numIR; irInd++) {
				IntegrationRule *ir = el->giveIntegrationRule(irInd);



				int numGP = ir->giveNumberOfIntegrationPoints();

				for(int gpInd = 0; gpInd < numGP; gpInd++) {
					GaussPoint *gp = ir->getIntegrationPoint(gpInd);

	//				int csNum = gp->giveCrossSection()->giveNumber();
	//				printf("csNum: %d\n", csNum);


						StructuralMaterialStatus *ms = dynamic_cast<StructuralMaterialStatus*>(gp->giveMaterialStatus());

						if(ms != NULL) {

							const FloatArray &stress = ms->giveTempStressVector();

							FloatArray principalVals;
							FloatMatrix principalDirs;
							StructuralMaterial::computePrincipalValDir(principalVals, principalDirs, stress, principal_stress);

							if(principalVals[0] > mStressThreshold) {



		//						printf("\nFound GP with stress above threshold.\n");
		//						printf("principalVals: "); principalVals.printYourself();

								FloatArray crackNormal;
								crackNormal.beColumnOf(principalDirs, 1);
		//						printf("crackNormal: "); crackNormal.printYourself();

								FloatArray crackTangent = {-crackNormal(1), crackNormal(0)};
								crackTangent.normalize();
		//						printf("crackTangent: "); crackTangent.printYourself();



								// Create geometry
								FloatArray pc = {gp->giveGlobalCoordinates()(0), gp->giveGlobalCoordinates()(1)};
		//						printf("Global coord: "); pc.printYourself();


								FloatArray ps = pc;
								ps.add(-0.5*mInitialCrackLength, crackTangent);

								FloatArray pe = pc;
								pe.add(0.5*mInitialCrackLength, crackTangent);

								if(mCutOneEl) {
									// If desired, ensure that the crack cuts exactly one element.
									Line line(ps, pe);
									std::vector<FloatArray> intersecPoints;
		//							line.computeIntersectionPoints(el.get(), intersecPoints);

									for ( int i = 1; i <= el->giveNumberOfDofManagers(); i++ ) {
//										int n1 = i;
//										int n2 = 0;
//										if ( i < el->giveNumberOfDofManagers() ) {
//											n2 = i + 1;
//										} else {
//											n2 = 1;
//										}

		//						        const FloatArray &p1 = *(el->giveDofManager(n1)->giveCoordinates());
		//						        const FloatArray &p2 = *(el->giveDofManager(n2)->giveCoordinates());


									}

		//							printf("intersecPoints.size(): %lu\n", intersecPoints.size());

									if(intersecPoints.size() == 2) {
										ps = std::move(intersecPoints[0]);
										pe = std::move(intersecPoints[1]);
									}
									else {
										OOFEM_ERROR("intersecPoints.size() != 2")
									}
								}

								FloatArray points = {ps(0), ps(1), pc(0), pc(1), pe(0), pe(1)};

		//						double diffX = 0.5*(ps(0) + pe(0)) - pc(0);
		//						printf("diffX: %e\n", diffX);

		//						double diffY = 0.5*(ps(1) + pe(1)) - pc(1);
		//						printf("diffY: %e\n", diffY);


								// TODO: Check if nucleation is allowed, by checking for already existing cracks close to the GP.
								// Idea: Nucleation is not allowed if we are within an enriched element. In this way, branching is not
								// completely prohibited, but we avoid initiating multiple similar cracks.
								bool insertionAllowed = true;

								Element *el_s = octree->giveElementContainingPoint(ps);
								if(el_s) {
									if( xMan->isElementEnriched(el_s) ) {
										insertionAllowed = false;
									}
								}

								Element *el_c = octree->giveElementContainingPoint(pc);
								if(el_c) {
									if( xMan->isElementEnriched(el_c) ) {
										insertionAllowed = false;
									}
								}

								Element *el_e = octree->giveElementContainingPoint(pe);
								if(el_e) {
									if( xMan->isElementEnriched(el_e) ) {
										insertionAllowed = false;
									}
								}

								for(const auto &x: center_coord_inserted_cracks) {
									if( x.distance(pc) <  2.0*mInitialCrackLength) {
										insertionAllowed = false;
										break;
										printf("Preventing insertion.\n");
									}
								}

								if(insertionAllowed) {
									int n = xMan->giveNumberOfEnrichmentItems() + 1;
									std::unique_ptr<Crack> crack = std::make_unique<Crack>(n, xMan, mpDomain);


									// Geometry
									std::unique_ptr<BasicGeometry> geom = std::make_unique<PolygonLine>();
									geom->insertVertexBack(ps);
									geom->insertVertexBack(pc);
									geom->insertVertexBack(pe);
									crack->setGeometry(std::move(geom));

									// Enrichment function
									EnrichmentFunction *ef = new HeavisideFunction(1, mpDomain);
									crack->setEnrichmentFunction(ef);

									// Enrichment fronts
//									EnrichmentFront *efStart = new EnrFrontLinearBranchFuncOneEl();
									EnrichmentFront *efStart = new EnrFrontCohesiveBranchFuncOneEl();
									crack->setEnrichmentFrontStart(efStart);

//									EnrichmentFront *efEnd = new EnrFrontLinearBranchFuncOneEl();
									EnrichmentFront *efEnd = new EnrFrontCohesiveBranchFuncOneEl();
									crack->setEnrichmentFrontEnd(efEnd);




									///////////////////////////////////////
									// Propagation law

									// Options
			//					    double radius = 0.5*mInitialCrackLength, angleInc = 10.0, incrementLength = 0.5*mInitialCrackLength, hoopStressThreshold = 0.0;
			//					    bool useRadialBasisFunc = true;

			//						PLHoopStressCirc *pl = new PLHoopStressCirc();
			//						pl->setRadius(radius);
			//						pl->setAngleInc(angleInc);
			//						pl->setIncrementLength(incrementLength);
			//						pl->setHoopStressThreshold(hoopStressThreshold);
			//						pl->setUseRadialBasisFunc(useRadialBasisFunc);

			//					    PLDoNothing *pl = new PLDoNothing();

									PLMaterialForce *pl = new PLMaterialForce();
									pl->setRadius(mMatForceRadius);
									pl->setIncrementLength(mIncrementLength);
//									pl->setIncrementLength(0.25);
//									pl->setCrackPropThreshold(0.25);
									pl->setCrackPropThreshold(mCrackPropThreshold);

									crack->setPropagationLaw(pl);

									crack->updateDofIdPool();

									center_coord_inserted_cracks.push_back(pc);
									eiList.push_back( std::unique_ptr<EnrichmentItem>(std::move(crack)) );

//									printf("Nucleating a crack in NCPrincipalStress::nucleateEnrichmentItems.\n");
//									printf("el->giveGlobalNumber(): %d\n", el->giveGlobalNumber() );

									// We only introduce one crack per element in a single time step.
									break;
								}
							}
						}

				}
			}
		} // If correct csNum
	}
Ejemplo n.º 3
0
void GnuplotExportModule::doOutput(TimeStep *tStep, bool forcedOutput)
{
    if (!(testTimeStepOutput(tStep) || forcedOutput)) {
        return;
    }

    // Export the sum of reaction forces for each Dirichlet BC
    if(mExportReactionForces) {
        outputReactionForces(tStep);
    }

    Domain *domain = emodel->giveDomain(1);

    // Export output from boundary conditions
    if(mExportBoundaryConditions) {
        int numBC = domain->giveNumberOfBoundaryConditions();

        for(int i = 1; i <= numBC; i++) {

            PrescribedGradient *presGradBC = dynamic_cast<PrescribedGradient*>( domain->giveBc(i) );
            if(presGradBC != NULL) {
                outputBoundaryCondition(*presGradBC, tStep);
            }


            PrescribedGradientBCNeumann *presGradBCNeumann = dynamic_cast<PrescribedGradientBCNeumann*>( domain->giveBc(i) );
            if(presGradBCNeumann != NULL) {
                outputBoundaryCondition(*presGradBCNeumann, tStep);
            }

            PrescribedGradientBCWeak *presGradBCWeak = dynamic_cast<PrescribedGradientBCWeak*>( domain->giveBc(i) );
            if(presGradBCWeak != NULL) {
                outputBoundaryCondition(*presGradBCWeak, tStep);
            }

        }
    }

    mTimeHist.push_back( tStep->giveTargetTime() );

    if(mExportXFEM) {
        if(domain->hasXfemManager()) {
            XfemManager *xMan = domain->giveXfemManager();

            int numEI = xMan->giveNumberOfEnrichmentItems();

            std::vector< std::vector<FloatArray> > points;

            for(int i = 1; i <= numEI; i++) {
                EnrichmentItem *ei = xMan->giveEnrichmentItem(i);
                ei->callGnuplotExportModule(*this, tStep);

                GeometryBasedEI *geoEI = dynamic_cast<GeometryBasedEI*>(ei);
                if(geoEI != NULL) {
                    std::vector<FloatArray> eiPoints;
                    geoEI->giveSubPolygon(eiPoints, 0.0, 1.0);
                    points.push_back(eiPoints);
                }
            }

            outputXFEMGeometry(points);
        }
    }

    if(mExportMesh) {
        outputMesh(*domain);
    }

    if(mMonitorNodeIndex != -1) {
        DofManager *dMan = domain->giveDofManager(mMonitorNodeIndex);
        outputNodeDisp(*dMan, tStep);
    }
}
Ejemplo n.º 4
0
void
TrPlaneStress2dXFEM :: giveCompositeExportData(std::vector< VTKPiece > &vtkPieces, IntArray &primaryVarsToExport, IntArray &internalVarsToExport, IntArray cellVarsToExport, TimeStep *tStep)
{
    vtkPieces.resize(1);

    const int numCells = mSubTri.size();

    if(numCells == 0) {
        // Enriched but uncut element
        // Visualize as a quad
        vtkPieces[0].setNumberOfCells(1);

        int numTotalNodes = 3;
        vtkPieces[0].setNumberOfNodes(numTotalNodes);

        // Node coordinates
        std :: vector< FloatArray >nodeCoords;
        for(int i = 1; i <= 3; i++) {
            FloatArray &x = *(giveDofManager(i)->giveCoordinates());
            nodeCoords.push_back(x);

            vtkPieces[0].setNodeCoords(i, x);
        }

        // Connectivity
        IntArray nodes1 = {1, 2, 3};
        vtkPieces[0].setConnectivity(1, nodes1);

        // Offset
        int offset = 3;
        vtkPieces[0].setOffset(1, offset);

        // Cell types
        vtkPieces[0].setCellType(1, 5); // Linear triangle




        // Export nodal variables from primary fields
        vtkPieces[0].setNumberOfPrimaryVarsToExport(primaryVarsToExport.giveSize(), numTotalNodes);

        for ( int fieldNum = 1; fieldNum <= primaryVarsToExport.giveSize(); fieldNum++ ) {
            UnknownType type = ( UnknownType ) primaryVarsToExport.at(fieldNum);

            for ( int nodeInd = 1; nodeInd <= numTotalNodes; nodeInd++ ) {

                if ( type == DisplacementVector ) { // compute displacement

                        FloatArray u = {0.0, 0.0, 0.0};

                        // Fetch global coordinates (in undeformed configuration)
                        const FloatArray &x = nodeCoords[nodeInd-1];

                        // Compute local coordinates
                        FloatArray locCoord;
                        computeLocalCoordinates(locCoord, x);

                        // Compute displacement in point
                        FloatMatrix NMatrix;
                        computeNmatrixAt(locCoord, NMatrix);
                        FloatArray solVec;
                        computeVectorOf(VM_Total, tStep, solVec);
                        FloatArray uTemp;
                        uTemp.beProductOf(NMatrix, solVec);

                        if(uTemp.giveSize() == 3) {
                            u = uTemp;
                        }
                        else {
                            u = {uTemp[0], uTemp[1], 0.0};
                        }

                        vtkPieces[0].setPrimaryVarInNode(fieldNum, nodeInd, u);
                } else {
                    printf("fieldNum: %d\n", fieldNum);
                    // TODO: Implement
//                    ZZNodalRecoveryMI_recoverValues(values, layer, ( InternalStateType ) 1, tStep); // does not work well - fix
//                    for ( int j = 1; j <= numCellNodes; j++ ) {
//                        vtkPiece.setPrimaryVarInNode(fieldNum, nodeNum, values [ j - 1 ]);
//                        nodeNum += 1;
//                    }
                }
            }
        }


        // Export nodal variables from internal fields
        vtkPieces[0].setNumberOfInternalVarsToExport(0, numTotalNodes);


        // Export cell variables
        vtkPieces[0].setNumberOfCellVarsToExport(cellVarsToExport.giveSize(), 1);
        for ( int i = 1; i <= cellVarsToExport.giveSize(); i++ ) {
            InternalStateType type = ( InternalStateType ) cellVarsToExport.at(i);
            FloatArray average;
            std :: unique_ptr< IntegrationRule > &iRule = integrationRulesArray [ 0 ];
            VTKXMLExportModule :: computeIPAverage(average, iRule.get(), this, type, tStep);

            FloatArray averageV9(9);
            averageV9.at(1) = average.at(1);
            averageV9.at(5) = average.at(2);
            averageV9.at(9) = average.at(3);
            averageV9.at(6) = averageV9.at(8) = average.at(4);
            averageV9.at(3) = averageV9.at(7) = average.at(5);
            averageV9.at(2) = averageV9.at(4) = average.at(6);

            vtkPieces[0].setCellVar( i, 1, averageV9 );
        }


        // Export of XFEM related quantities
        if ( domain->hasXfemManager() ) {
            XfemManager *xMan = domain->giveXfemManager();

            int nEnrIt = xMan->giveNumberOfEnrichmentItems();
            vtkPieces[0].setNumberOfInternalXFEMVarsToExport(xMan->vtkExportFields.giveSize(), nEnrIt, numTotalNodes);

            const int nDofMan = giveNumberOfDofManagers();


            for ( int field = 1; field <= xMan->vtkExportFields.giveSize(); field++ ) {
                XFEMStateType xfemstype = ( XFEMStateType ) xMan->vtkExportFields [ field - 1 ];

                for ( int enrItIndex = 1; enrItIndex <= nEnrIt; enrItIndex++ ) {
                    EnrichmentItem *ei = xMan->giveEnrichmentItem(enrItIndex);
                    for ( int nodeInd = 1; nodeInd <= numTotalNodes; nodeInd++ ) {

                        const FloatArray &x = nodeCoords[nodeInd-1];
                        FloatArray locCoord;
                        computeLocalCoordinates(locCoord, x);

                        FloatArray N;
                        FEInterpolation *interp = giveInterpolation();
                        interp->evalN( N, locCoord, FEIElementGeometryWrapper(this) );


                        if ( xfemstype == XFEMST_LevelSetPhi ) {
                            double levelSet = 0.0, levelSetInNode = 0.0;

                            for(int elNodeInd = 1; elNodeInd <= nDofMan; elNodeInd++) {
                                DofManager *dMan = giveDofManager(elNodeInd);
                                ei->evalLevelSetNormalInNode(levelSetInNode, dMan->giveGlobalNumber(), *(dMan->giveCoordinates()) );

                                levelSet += N.at(elNodeInd)*levelSetInNode;
                            }


                            FloatArray valueArray = {levelSet};
                            vtkPieces[0].setInternalXFEMVarInNode(field, enrItIndex, nodeInd, valueArray);

                        } else if ( xfemstype == XFEMST_LevelSetGamma ) {
                            double levelSet = 0.0, levelSetInNode = 0.0;

                            for(int elNodeInd = 1; elNodeInd <= nDofMan; elNodeInd++) {
                                DofManager *dMan = giveDofManager(elNodeInd);
                                ei->evalLevelSetTangInNode(levelSetInNode, dMan->giveGlobalNumber(), *(dMan->giveCoordinates()) );

                                levelSet += N.at(elNodeInd)*levelSetInNode;
                            }


                            FloatArray valueArray = {levelSet};
                            vtkPieces[0].setInternalXFEMVarInNode(field, enrItIndex, nodeInd, valueArray);

                        } else if ( xfemstype == XFEMST_NodeEnrMarker ) {
                            double nodeEnrMarker = 0.0, nodeEnrMarkerInNode = 0.0;

                            for(int elNodeInd = 1; elNodeInd <= nDofMan; elNodeInd++) {
                                DofManager *dMan = giveDofManager(elNodeInd);
                                ei->evalNodeEnrMarkerInNode(nodeEnrMarkerInNode, dMan->giveGlobalNumber() );

                                nodeEnrMarker += N.at(elNodeInd)*nodeEnrMarkerInNode;
                            }


                            FloatArray valueArray = {nodeEnrMarker};
                            vtkPieces[0].setInternalXFEMVarInNode(field, enrItIndex, nodeInd, valueArray);
                        }

                    }
                }
            }
        }

    }
    else {
        // Enriched and cut element

        XfemStructuralElementInterface::giveSubtriangulationCompositeExportData(vtkPieces, primaryVarsToExport, internalVarsToExport, cellVarsToExport, tStep);


    }

}