Ejemplo n.º 1
0
//function [y,Y,P,Y1]=ut(f,X,Wm,Wc,n,R)
void BFilterUKF::utMeasurement(fmat X, fvec Wm, fvec Wc, unsigned int n, fmat R)
{
    //Unscented Transformation
    //Input:
    //        f: nonlinear map
    //        X: sigma points
    //       Wm: weights for mean
    //       Wc: weights for covraiance
    //        n: numer of outputs of f
    //        R: additive covariance
    //Output:
    //        y: transformed mean
    //        Y: transformed smapling points
    //        P: transformed covariance
    //       Y1: transformed deviations

    unsigned int L=X.n_cols;
    z1=zeros<fvec>(n);
    Z1=zeros<fmat>(n,L);
    //for k=1:L
    for (unsigned int k=0; k < L; ++k)
    {
        fmat XColK = X.col(k);
        Z1.col(k)= process->ffun(&XColK);
        z1=z1+Wm(k)*Z1.col(k);
    }

    //Z2=Z1-x1(:,ones(1,L));
    Z2 = Z1;
    for (unsigned int j = 0; j < L; ++j)
    {
        for (unsigned int i = 0; i < x1.n_rows; ++i)
        {
            Z2(i,j) -= x1(i);
        }
    }

    P2=Z2*Wc.diag()*Z2.t()+R;
}
Ejemplo n.º 2
0
//function [y,Y,P,Y1]=ut(f,X,Wm,Wc,n,R)
void BFilterUKF::utProcess(fmat X,fvec Wm, fvec Wc, unsigned int n, fmat R)
{
    //Unscented Transformation
    //Input:
    //        f: nonlinear map
    //        X: sigma points
    //       Wm: weights for mean
    //       Wc: weights for covraiance
    //        n: numer of outputs of f
    //        R: additive covariance
    //Output:
    //        y: transformed mean
    //        Y: transformed smapling points
    //        P: transformed covariance
    //       Y1: transformed deviations

    unsigned int L=X.n_cols;
    x1 = zeros<fvec>(n);
    X1 = zeros<fmat>(n,L);
    //for k=1:L
    for (unsigned int k=0; k < L; ++k)
    {
        fmat XColK = X.col(k);
        X1.col(k)= process->ffun(&XColK);
        x1=x1+Wm(k)*X1.col(k);
    }

    //X2=X1-x1(:,ones(1,L));  // generate duplicates of vector x1
    X2 = X1;
    for (unsigned int j = 0; j < L; ++j)
    {
        for (unsigned int i = 0; i < x1.n_rows; ++i)
        {
            X2(i,j) -= x1(i);
        }
    }

    P1=X2*Wc.diag()*X2.t()+R;
}