Ejemplo n.º 1
0
void convert_to_binary_row(mxnet::NDArray& array) {
  CHECK(array.shape().ndim() >= 2); // second dimension is input depth from prev. layer, needed for next line

  std::cout << "array shape: " << array.shape() << std::endl;
  //if(array.shape()[1] < BITS_PER_BINARY_WORD) return;  
  
  CHECK(array.shape()[1] % BITS_PER_BINARY_WORD == 0); // depth from input has to be divisible by 32 (or 64)
  nnvm::TShape binarized_shape(1);
  size_t size = array.shape().Size();
  binarized_shape[0] = size / BITS_PER_BINARY_WORD;
  mxnet::NDArray temp(binarized_shape, mxnet::Context::CPU(), false, mxnet::op::xnor_cpu::corresponding_dtype());
  mxnet::op::xnor_cpu::get_binary_row((float*) array.data().dptr_, (BINARY_WORD*) temp.data().dptr_, size);
  array = temp;
}
Ejemplo n.º 2
0
void transpose(mxnet::NDArray& array) {
  CHECK(array.shape().ndim() == 2);
  nnvm::TShape tansposed_shape(2);
  int rows = array.shape()[0];
  int cols = array.shape()[1];
  tansposed_shape[0] = cols;
  tansposed_shape[1] = rows;
  mxnet::NDArray temp(tansposed_shape, mxnet::Context::CPU(), false, array.dtype());
  MSHADOW_REAL_TYPE_SWITCH(array.dtype(), DType, {
    for (int row = 0; row < rows; row++) {
      for (int col = 0; col < cols; col++) {
        ((DType*)temp.data().dptr_)[col * rows + row] = ((DType*)array.data().dptr_)[row * cols + col];
      }
    }
  })