Example #1
0
/**
 * Flush pending queues.
 * This is a forced action callback.
 *
 * @param   pVM     Pointer to the VM.
 * @thread  Emulation thread only.
 */
VMMR3_INT_DECL(void) PDMR3QueueFlushAll(PVM pVM)
{
    VM_ASSERT_EMT(pVM);
    LogFlow(("PDMR3QueuesFlush:\n"));

    /*
     * Only let one EMT flushing queues at any one time to preserve the order
     * and to avoid wasting time. The FF is always cleared here, because it's
     * only used to get someones attention. Queue inserts occurring during the
     * flush are caught using the pending bit.
     *
     * Note! We must check the force action and pending flags after clearing
     *       the active bit!
     */
    VM_FF_CLEAR(pVM, VM_FF_PDM_QUEUES);
    while (!ASMAtomicBitTestAndSet(&pVM->pdm.s.fQueueFlushing, PDM_QUEUE_FLUSH_FLAG_ACTIVE_BIT))
    {
        ASMAtomicBitClear(&pVM->pdm.s.fQueueFlushing, PDM_QUEUE_FLUSH_FLAG_PENDING_BIT);

        for (PPDMQUEUE pCur = pVM->pUVM->pdm.s.pQueuesForced; pCur; pCur = pCur->pNext)
            if (    pCur->pPendingR3
                    ||  pCur->pPendingR0
                    ||  pCur->pPendingRC)
                pdmR3QueueFlush(pCur);

        ASMAtomicBitClear(&pVM->pdm.s.fQueueFlushing, PDM_QUEUE_FLUSH_FLAG_ACTIVE_BIT);

        /* We're done if there were no inserts while we were busy. */
        if (   !ASMBitTest(&pVM->pdm.s.fQueueFlushing, PDM_QUEUE_FLUSH_FLAG_PENDING_BIT)
                && !VM_FF_ISPENDING(pVM, VM_FF_PDM_QUEUES))
            break;
        VM_FF_CLEAR(pVM, VM_FF_PDM_QUEUES);
    }
}
Example #2
0
/**
 * Insert the per thread data structure into the tree.
 *
 * This can be called from both the thread it self and the parent,
 * thus it must handle insertion failures in a nice manner.
 *
 * @param   pThread         Pointer to thread structure allocated by rtThreadAlloc().
 * @param   NativeThread    The native thread id.
 */
DECLHIDDEN(void) rtThreadInsert(PRTTHREADINT pThread, RTNATIVETHREAD NativeThread)
{
    Assert(pThread);
    Assert(pThread->u32Magic == RTTHREADINT_MAGIC);

    {
        RT_THREAD_LOCK_RW();

        /*
         * Do not insert a terminated thread.
         *
         * This may happen if the thread finishes before the RTThreadCreate call
         * gets this far. Since the OS may quickly reuse the native thread ID
         * it should not be reinserted at this point.
         */
        if (rtThreadGetState(pThread) != RTTHREADSTATE_TERMINATED)
        {
            /*
             * Before inserting we must check if there is a thread with this id
             * in the tree already. We're racing parent and child on insert here
             * so that the handle is valid in both ends when they return / start.
             *
             * If it's not ourself we find, it's a dead alien thread and we will
             * unlink it from the tree. Alien threads will be released at this point.
             */
            PRTTHREADINT pThreadOther = (PRTTHREADINT)RTAvlPVGet(&g_ThreadTree, (void *)NativeThread);
            if (pThreadOther != pThread)
            {
                bool fRc;
                /* remove dead alien if any */
                if (pThreadOther)
                {
                    AssertMsg(pThreadOther->fIntFlags & RTTHREADINT_FLAGS_ALIEN, ("%p:%s; %p:%s\n", pThread, pThread->szName, pThreadOther, pThreadOther->szName));
                    ASMAtomicBitClear(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE_BIT);
                    rtThreadRemoveLocked(pThreadOther);
                    if (pThreadOther->fIntFlags & RTTHREADINT_FLAGS_ALIEN)
                    rtThreadRelease(pThreadOther);
                }

                /* insert the thread */
                ASMAtomicWritePtr(&pThread->Core.Key, (void *)NativeThread);
                fRc = RTAvlPVInsert(&g_ThreadTree, &pThread->Core);
                ASMAtomicOrU32(&pThread->fIntFlags, RTTHREADINT_FLAG_IN_TREE);
                if (fRc)
                    ASMAtomicIncU32(&g_cThreadInTree);

                AssertReleaseMsg(fRc, ("Lock problem? %p (%RTnthrd) %s\n", pThread, NativeThread, pThread->szName));
                NOREF(fRc);
            }
        }

        RT_THREAD_UNLOCK_RW();
    }
}
Example #3
0
/**
 * Prepare non-blocking mode.
 *
 * @returns VINF_SUCCESS
 * @retval  VERR_WRONG_ORDER
 * @retval  VERR_INTERNAL_ERROR_4
 *
 * @param   pThis               The pipe handle.
 */
static int rtPipeTryNonBlocking(RTPIPEINTERNAL *pThis)
{
    /*
     * Update the state.
     */
    for (;;)
    {
        uint32_t        u32State    = ASMAtomicReadU32(&pThis->u32State);
        uint32_t const  u32StateOld = u32State;
        uint32_t const  cUsers      = (u32State & RTPIPE_POSIX_USERS_MASK);

        if (!(u32State & RTPIPE_POSIX_BLOCKING))
        {
            AssertReturn(cUsers < RTPIPE_POSIX_USERS_MASK / 2, VERR_INTERNAL_ERROR_4);
            u32State &= ~RTPIPE_POSIX_USERS_MASK;
            u32State |= cUsers + 1;
            if (ASMAtomicCmpXchgU32(&pThis->u32State, u32State, u32StateOld))
            {
                if (u32State & RTPIPE_POSIX_SWITCHING)
                    break;
                return VINF_SUCCESS;
            }
        }
        else if (cUsers == 0)
        {
            u32State = 1 | RTPIPE_POSIX_SWITCHING;
            if (ASMAtomicCmpXchgU32(&pThis->u32State, u32State, u32StateOld))
                break;
        }
        else
            return VERR_WRONG_ORDER;
        ASMNopPause();
    }

    /*
     * Do the switching.
     */
    int fFlags = fcntl(pThis->fd, F_GETFL, 0);
    if (fFlags != -1)
    {
        if (    (fFlags & O_NONBLOCK)
            ||  fcntl(pThis->fd, F_SETFL, fFlags | O_NONBLOCK) != -1)
        {
            ASMAtomicBitClear(&pThis->u32State, RTPIPE_POSIX_SWITCHING_BIT);
            return VINF_SUCCESS;
        }
    }

    ASMAtomicDecU32(&pThis->u32State);
    return RTErrConvertFromErrno(errno);
}
Example #4
0
RTR3DECL(int) RTTlsFree(RTTLS iTls)
{
    if (iTls == NIL_RTTLS)
        return VINF_SUCCESS;
    if (    iTls < 0
        ||  iTls >= RTTHREAD_TLS_ENTRIES
        ||  !ASMBitTest(&g_au32AllocatedBitmap[0], iTls))
        return VERR_INVALID_PARAMETER;

    ASMAtomicWriteNullPtr(&g_apfnDestructors[iTls]);
    rtThreadClearTlsEntry(iTls);
    ASMAtomicBitClear(&g_au32AllocatedBitmap[0], iTls);
    return VINF_SUCCESS;
}
Example #5
0
int main()
{
    /*
     * Init the runtime and stuff.
     */
    RTTEST hTest;
    int rc = RTTestInitAndCreate("tstRTBitOperations", &hTest);
    if (rc)
        return rc;
    RTTestBanner(hTest);

    int i;
    int j;
    int k;

    /*
     * Tests
     */
    struct TestMap
    {
        uint32_t au32[4];
    };
#if 0
    struct TestMap sTest;
    struct TestMap *p = &sTest;
#else
    struct TestMap *p = (struct TestMap *)RTTestGuardedAllocTail(hTest, sizeof(*p));
#endif
#define DUMP()          RTTestPrintf(hTest, RTTESTLVL_INFO, "au32={%08x,%08x,%08x,%08x}", p->au32[0], p->au32[1], p->au32[2], p->au32[3])
#define CHECK(expr)     do { if (!(expr)) { RTTestFailed(hTest, "line %d: %s", __LINE__, #expr); DUMP(); } CHECK_GUARD(s); } while (0)
#define CHECK_BIT(expr,  b1)            do { if (!(expr)) { RTTestFailed(hTest, "line %d, b1=%d: %s", __LINE__, b1, #expr); } CHECK_GUARD(s); } while (0)
#define CHECK_BIT2(expr, b1, b2)        do { if (!(expr)) { RTTestFailed(hTest, "line %d, b1=%d b2=%d: %s", __LINE__, b1, b2, #expr); } CHECK_GUARD(s); } while (0)
#define CHECK_BIT3(expr, b1, b2, b3)    do { if (!(expr)) { RTTestFailed(hTest, "line %d, b1=%d b2=%d b3=%d: %s", __LINE__, b1, b2, b3, #expr); } CHECK_GUARD(s); } while (0)

#define GUARD_MAP(p)    do {  } while (0)
#define CHECK_GUARD(p)  do {  } while (0)
#define MAP_CLEAR(p)    do { RT_ZERO(*(p)); GUARD_MAP(p); } while (0)
#define MAP_SET(p)      do { memset(p, 0xff, sizeof(*(p))); GUARD_MAP(p); } while (0)

    /* self check. */
    MAP_CLEAR(p);
    CHECK_GUARD(p);

    /* bit set */
    MAP_CLEAR(p);
    ASMBitSet(&p->au32[0], 0);
    ASMBitSet(&p->au32[0], 31);
    ASMBitSet(&p->au32[0], 65);
    CHECK(p->au32[0] == 0x80000001U);
    CHECK(p->au32[2] == 0x00000002U);
    CHECK(ASMBitTestAndSet(&p->au32[0], 0)   && p->au32[0] == 0x80000001U);
    CHECK(!ASMBitTestAndSet(&p->au32[0], 16) && p->au32[0] == 0x80010001U);
    CHECK(ASMBitTestAndSet(&p->au32[0], 16)  && p->au32[0] == 0x80010001U);
    CHECK(!ASMBitTestAndSet(&p->au32[0], 80) && p->au32[2] == 0x00010002U);

    MAP_CLEAR(p);
    ASMAtomicBitSet(&p->au32[0], 0);
    ASMAtomicBitSet(&p->au32[0], 30);
    ASMAtomicBitSet(&p->au32[0], 64);
    CHECK(p->au32[0] == 0x40000001U);
    CHECK(p->au32[2] == 0x00000001U);
    CHECK(ASMAtomicBitTestAndSet(&p->au32[0], 0)   && p->au32[0] == 0x40000001U);
    CHECK(!ASMAtomicBitTestAndSet(&p->au32[0], 16) && p->au32[0] == 0x40010001U);
    CHECK(ASMAtomicBitTestAndSet(&p->au32[0], 16)  && p->au32[0] == 0x40010001U);
    CHECK(!ASMAtomicBitTestAndSet(&p->au32[0], 80) && p->au32[2] == 0x00010001U);

    /* bit clear */
    MAP_SET(p);
    ASMBitClear(&p->au32[0], 0);
    ASMBitClear(&p->au32[0], 31);
    ASMBitClear(&p->au32[0], 65);
    CHECK(p->au32[0] == ~0x80000001U);
    CHECK(p->au32[2] == ~0x00000002U);
    CHECK(!ASMBitTestAndClear(&p->au32[0], 0)   && p->au32[0] == ~0x80000001U);
    CHECK(ASMBitTestAndClear(&p->au32[0], 16)   && p->au32[0] == ~0x80010001U);
    CHECK(!ASMBitTestAndClear(&p->au32[0], 16)  && p->au32[0] == ~0x80010001U);
    CHECK(ASMBitTestAndClear(&p->au32[0], 80)   && p->au32[2] == ~0x00010002U);

    MAP_SET(p);
    ASMAtomicBitClear(&p->au32[0], 0);
    ASMAtomicBitClear(&p->au32[0], 30);
    ASMAtomicBitClear(&p->au32[0], 64);
    CHECK(p->au32[0] == ~0x40000001U);
    CHECK(p->au32[2] == ~0x00000001U);
    CHECK(!ASMAtomicBitTestAndClear(&p->au32[0], 0)   && p->au32[0] == ~0x40000001U);
    CHECK(ASMAtomicBitTestAndClear(&p->au32[0], 16)   && p->au32[0] == ~0x40010001U);
    CHECK(!ASMAtomicBitTestAndClear(&p->au32[0], 16)  && p->au32[0] == ~0x40010001U);
    CHECK(ASMAtomicBitTestAndClear(&p->au32[0], 80)   && p->au32[2] == ~0x00010001U);

    /* toggle */
    MAP_SET(p);
    ASMBitToggle(&p->au32[0], 0);
    ASMBitToggle(&p->au32[0], 31);
    ASMBitToggle(&p->au32[0], 65);
    ASMBitToggle(&p->au32[0], 47);
    ASMBitToggle(&p->au32[0], 47);
    CHECK(p->au32[0] == ~0x80000001U);
    CHECK(p->au32[2] == ~0x00000002U);
    CHECK(!ASMBitTestAndToggle(&p->au32[0], 0)   && p->au32[0] == ~0x80000000U);
    CHECK(ASMBitTestAndToggle(&p->au32[0], 0)    && p->au32[0] == ~0x80000001U);
    CHECK(ASMBitTestAndToggle(&p->au32[0], 16)   && p->au32[0] == ~0x80010001U);
    CHECK(!ASMBitTestAndToggle(&p->au32[0], 16)  && p->au32[0] == ~0x80000001U);
    CHECK(ASMBitTestAndToggle(&p->au32[0], 80)   && p->au32[2] == ~0x00010002U);

    MAP_SET(p);
    ASMAtomicBitToggle(&p->au32[0], 0);
    ASMAtomicBitToggle(&p->au32[0], 30);
    ASMAtomicBitToggle(&p->au32[0], 64);
    ASMAtomicBitToggle(&p->au32[0], 47);
    ASMAtomicBitToggle(&p->au32[0], 47);
    CHECK(p->au32[0] == ~0x40000001U);
    CHECK(p->au32[2] == ~0x00000001U);
    CHECK(!ASMAtomicBitTestAndToggle(&p->au32[0], 0)   && p->au32[0] == ~0x40000000U);
    CHECK(ASMAtomicBitTestAndToggle(&p->au32[0], 0)    && p->au32[0] == ~0x40000001U);
    CHECK(ASMAtomicBitTestAndToggle(&p->au32[0], 16)   && p->au32[0] == ~0x40010001U);
    CHECK(!ASMAtomicBitTestAndToggle(&p->au32[0], 16)  && p->au32[0] == ~0x40000001U);
    CHECK(ASMAtomicBitTestAndToggle(&p->au32[0], 80)   && p->au32[2] == ~0x00010001U);

    /* test bit. */
    for (i = 0; i < 128; i++)
    {
        MAP_SET(p);
        CHECK_BIT(ASMBitTest(&p->au32[0], i), i);
        ASMBitToggle(&p->au32[0], i);
        CHECK_BIT(!ASMBitTest(&p->au32[0], i), i);
        CHECK_BIT(!ASMBitTestAndToggle(&p->au32[0], i), i);
        CHECK_BIT(ASMBitTest(&p->au32[0], i), i);
        CHECK_BIT(ASMBitTestAndToggle(&p->au32[0], i), i);
        CHECK_BIT(!ASMBitTest(&p->au32[0], i), i);

        MAP_SET(p);
        CHECK_BIT(ASMBitTest(&p->au32[0], i), i);
        ASMAtomicBitToggle(&p->au32[0], i);
        CHECK_BIT(!ASMBitTest(&p->au32[0], i), i);
        CHECK_BIT(!ASMAtomicBitTestAndToggle(&p->au32[0], i), i);
        CHECK_BIT(ASMBitTest(&p->au32[0], i), i);
        CHECK_BIT(ASMAtomicBitTestAndToggle(&p->au32[0], i), i);
        CHECK_BIT(!ASMBitTest(&p->au32[0], i), i);
    }

    /* bit searching */
    MAP_SET(p);
    CHECK(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == -1);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 0);

    ASMBitClear(&p->au32[0], 1);
    CHECK(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == 1);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 0);

    MAP_SET(p);
    ASMBitClear(&p->au32[0], 95);
    CHECK(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == 95);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 0);

    MAP_SET(p);
    ASMBitClear(&p->au32[0], 127);
    CHECK(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == 127);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 0);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 0) == 1);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 1) == 2);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 2) == 3);


    MAP_SET(p);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, 0) == -1);
    ASMBitClear(&p->au32[0], 32);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, 32) == -1);
    ASMBitClear(&p->au32[0], 88);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8,  57) ==  88);

    MAP_SET(p);
    ASMBitClear(&p->au32[0], 31);
    ASMBitClear(&p->au32[0], 57);
    ASMBitClear(&p->au32[0], 88);
    ASMBitClear(&p->au32[0], 101);
    ASMBitClear(&p->au32[0], 126);
    ASMBitClear(&p->au32[0], 127);
    CHECK(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == 31);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8,  31) ==  57);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8,  57) ==  88);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8,  88) == 101);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, 101) == 126);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, 126) == 127);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, 127) == -1);

    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 29) == 30);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 30) == 32);

    MAP_CLEAR(p);
    for (i = 1; i < 128; i++)
        CHECK_BIT(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, i - 1) == i, i);
    for (i = 0; i < 128; i++)
    {
        MAP_SET(p);
        ASMBitClear(&p->au32[0], i);
        CHECK_BIT(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == i, i);
        for (j = 0; j < i; j++)
            CHECK_BIT(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, j) == i, i);
        for (j = i; j < 128; j++)
            CHECK_BIT(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, j) == -1, i);
    }

    /* clear range. */
    MAP_SET(p);
    ASMBitClearRange(&p->au32, 0, 128);
    CHECK(!p->au32[0] && !p->au32[1] && !p->au32[2] && !p->au32[3]);
    for (i = 0; i < 128; i++)
    {
        for (j = i + 1; j <= 128; j++)
        {
            MAP_SET(p);
            ASMBitClearRange(&p->au32, i, j);
            for (k = 0; k < i; k++)
                CHECK_BIT3(ASMBitTest(&p->au32[0], k), i, j, k);
            for (k = i; k < j; k++)
                CHECK_BIT3(!ASMBitTest(&p->au32[0], k), i, j, k);
            for (k = j; k < 128; k++)
                CHECK_BIT3(ASMBitTest(&p->au32[0], k), i, j, k);
        }
    }

    /* set range. */
    MAP_CLEAR(p);
    ASMBitSetRange(&p->au32[0], 0, 5);
    ASMBitSetRange(&p->au32[0], 6, 44);
    ASMBitSetRange(&p->au32[0], 64, 65);
    CHECK(p->au32[0] == UINT32_C(0xFFFFFFDF));
    CHECK(p->au32[1] == UINT32_C(0x00000FFF));
    CHECK(p->au32[2] == UINT32_C(0x00000001));

    MAP_CLEAR(p);
    ASMBitSetRange(&p->au32[0], 0, 1);
    ASMBitSetRange(&p->au32[0], 62, 63);
    ASMBitSetRange(&p->au32[0], 63, 64);
    ASMBitSetRange(&p->au32[0], 127, 128);
    CHECK(p->au32[0] == UINT32_C(0x00000001) && p->au32[1] == UINT32_C(0xC0000000));
    CHECK(p->au32[2] == UINT32_C(0x00000000) && p->au32[3] == UINT32_C(0x80000000));

    MAP_CLEAR(p);
    ASMBitSetRange(&p->au32, 0, 128);
    CHECK(!~p->au32[0] && !~p->au32[1] && !~p->au32[2] && !~p->au32[3]);
    for (i = 0; i < 128; i++)
    {
        for (j = i + 1; j <= 128; j++)
        {
            MAP_CLEAR(p);
            ASMBitSetRange(&p->au32, i, j);
            for (k = 0; k < i; k++)
                CHECK_BIT3(!ASMBitTest(&p->au32[0], k), i, j, k);
            for (k = i; k < j; k++)
                CHECK_BIT3(ASMBitTest(&p->au32[0], k), i, j, k);
            for (k = j; k < 128; k++)
                CHECK_BIT3(!ASMBitTest(&p->au32[0], k), i, j, k);
        }
    }

    /* searching for set bits. */
    MAP_CLEAR(p);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == -1);

    ASMBitSet(&p->au32[0], 65);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 65);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 65) == -1);
    for (i = 0; i < 65; i++)
        CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, i) == 65);
    for (i = 65; i < 128; i++)
        CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, i) == -1);

    ASMBitSet(&p->au32[0], 17);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 17);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 17) == 65);
    for (i = 0; i < 16; i++)
        CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, i) == 17);
    for (i = 17; i < 65; i++)
        CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, i) == 65);

    MAP_SET(p);
    for (i = 1; i < 128; i++)
        CHECK_BIT(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, i - 1) == i, i);
    for (i = 0; i < 128; i++)
    {
        MAP_CLEAR(p);
        ASMBitSet(&p->au32[0], i);
        CHECK_BIT(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == i, i);
        for (j = 0; j < i; j++)
            CHECK_BIT(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, j) == i, i);
        for (j = i; j < 128; j++)
            CHECK_BIT(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, j) == -1, i);
    }


    CHECK(ASMBitLastSetU32(0) == 0);
    CHECK(ASMBitLastSetU32(1) == 1);
    CHECK(ASMBitLastSetU32(0x80000000) == 32);
    CHECK(ASMBitLastSetU32(0xffffffff) == 32);
    CHECK(ASMBitLastSetU32(RT_BIT(23) | RT_BIT(11)) == 24);
    for (i = 0; i < 32; i++)
        CHECK(ASMBitLastSetU32(1 << i) == (unsigned)i + 1);

    CHECK(ASMBitFirstSetU32(0) == 0);
    CHECK(ASMBitFirstSetU32(1) == 1);
    CHECK(ASMBitFirstSetU32(0x80000000) == 32);
    CHECK(ASMBitFirstSetU32(0xffffffff) == 1);
    CHECK(ASMBitFirstSetU32(RT_BIT(23) | RT_BIT(11)) == 12);
    for (i = 0; i < 32; i++)
        CHECK(ASMBitFirstSetU32(1 << i) == (unsigned)i + 1);

    /*
     * Special tests.
     */
    test2(hTest);

    /*
     * Summary
     */
    return RTTestSummaryAndDestroy(hTest);
}
Example #6
0
RTDECL(int) RTPowerSignalEvent(RTPOWEREVENT enmEvent)
{
    PRTPOWERNOTIFYREG pCur;
    RTSPINLOCK        hSpinlock;

    /*
     * This is a little bit tricky as we cannot be holding the spinlock
     * while calling the callback. This means that the list might change
     * while we're walking it, and that multiple events might be running
     * concurrently (depending on the OS).
     *
     * So, the first measure is to employ a 32-bitmask for each
     * record where we'll use a bit that rotates for each call to
     * this function to indicate which records that has been
     * processed. This will take care of both changes to the list
     * and a reasonable amount of concurrent events.
     *
     * In order to avoid having to restart the list walks for every
     * callback we make, we'll make use a list generation number that is
     * incremented everytime the list is changed. So, if it remains
     * unchanged over a callback we can safely continue the iteration.
     */
    uint32_t iDone = ASMAtomicIncU32(&g_iRTPowerDoneBit);
    iDone %= RT_SIZEOFMEMB(RTPOWERNOTIFYREG, bmDone) * 8;

    hSpinlock = g_hRTPowerNotifySpinLock;
    if (hSpinlock == NIL_RTSPINLOCK)
        return VERR_ACCESS_DENIED;
    RTSpinlockAcquire(hSpinlock);

    /* Clear the bit. */
    for (pCur = g_pRTPowerCallbackHead; pCur; pCur = pCur->pNext)
        ASMAtomicBitClear(&pCur->bmDone[0], iDone);

    /* Iterate the records and perform the callbacks. */
    do
    {
        uint32_t const iGeneration = ASMAtomicUoReadU32(&g_iRTPowerGeneration);

        pCur = g_pRTPowerCallbackHead;
        while (pCur)
        {
            if (!ASMAtomicBitTestAndSet(&pCur->bmDone[0], iDone))
            {
                PFNRTPOWERNOTIFICATION pfnCallback = pCur->pfnCallback;
                void *pvUser = pCur->pvUser;
                pCur = pCur->pNext;
                RTSpinlockRelease(g_hRTPowerNotifySpinLock);

                pfnCallback(enmEvent, pvUser);

                /* carefully require the lock here, see RTR0MpNotificationTerm(). */
                hSpinlock = g_hRTPowerNotifySpinLock;
                if (hSpinlock == NIL_RTSPINLOCK)
                    return VERR_ACCESS_DENIED;
                RTSpinlockAcquire(hSpinlock);
                if (ASMAtomicUoReadU32(&g_iRTPowerGeneration) != iGeneration)
                    break;
            }
            else
                pCur = pCur->pNext;
        }
    } while (pCur);

    RTSpinlockRelease(hSpinlock);
    return VINF_SUCCESS;
}