int PEM_write_bio(BIO *bp, const char *name, const char *header, const unsigned char *data, long len) { int nlen, n, i, j, outl; unsigned char *buf = NULL; EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); int reason = ERR_R_BUF_LIB; if (ctx == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } EVP_EncodeInit(ctx); nlen = strlen(name); if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || (BIO_write(bp, name, nlen) != nlen) || (BIO_write(bp, "-----\n", 6) != 6)) goto err; i = strlen(header); if (i > 0) { if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) goto err; } buf = OPENSSL_malloc(PEM_BUFSIZE * 8); if (buf == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } i = j = 0; while (len > 0) { n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); if (!EVP_EncodeUpdate(ctx, buf, &outl, &(data[j]), n)) goto err; if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) goto err; i += outl; len -= n; j += n; } EVP_EncodeFinal(ctx, buf, &outl); if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) goto err; if ((BIO_write(bp, "-----END ", 9) != 9) || (BIO_write(bp, name, nlen) != nlen) || (BIO_write(bp, "-----\n", 6) != 6)) goto err; OPENSSL_clear_free(buf, PEM_BUFSIZE * 8); EVP_ENCODE_CTX_free(ctx); return (i + outl); err: OPENSSL_clear_free(buf, PEM_BUFSIZE * 8); EVP_ENCODE_CTX_free(ctx); PEMerr(PEM_F_PEM_WRITE_BIO, reason); return (0); }
/* {{{ proto string Crypto\Base64::decode(string $data) Decodes base64 string $data to raw encoding */ PHP_CRYPTO_METHOD(Base64, decode) { char *in; phpc_str_size_t in_len; int real_len, update_len, final_len; PHPC_STR_DECLARE(out); EVP_ENCODE_CTX *ctx; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &in, &in_len) == FAILURE) { return; } ctx = EVP_ENCODE_CTX_new(); php_crypto_base64_decode_init(ctx); real_len = EVP_DECODE_LENGTH(in_len); PHPC_STR_ALLOC(out, real_len); if (php_crypto_base64_decode_update(ctx, PHPC_STR_VAL(out), &update_len, in, in_len TSRMLS_CC) == FAILURE) { EVP_ENCODE_CTX_free(ctx); RETURN_FALSE; } php_crypto_base64_decode_finish(ctx, PHPC_STR_VAL(out), &final_len); final_len += update_len; if (real_len > final_len) { PHPC_STR_REALLOC(out, final_len); } EVP_ENCODE_CTX_free(ctx); PHPC_STR_VAL(out)[final_len] = '\0'; PHPC_STR_RETURN(out); }
static int b64_new(BIO *bi) { BIO_B64_CTX *ctx; ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) return (0); ctx->cont = 1; ctx->start = 1; ctx->base64 = EVP_ENCODE_CTX_new(); bi->init = 1; bi->ptr = (char *)ctx; bi->flags = 0; bi->num = 0; return (1); }
/* * Convert a raw byte string into a null-terminated base64 ASCII string. * Returns 1 on success or 0 on error. */ static int t_tob64(char *dst, const unsigned char *src, int size) { EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); int outl = 0, outl2 = 0; unsigned char pad[2] = {0, 0}; size_t leadz = 0; if (ctx == NULL) return 0; EVP_EncodeInit(ctx); evp_encode_ctx_set_flags(ctx, EVP_ENCODE_CTX_NO_NEWLINES | EVP_ENCODE_CTX_USE_SRP_ALPHABET); /* * We pad at the front with zero bytes until the length is a multiple of 3 * so that EVP_EncodeUpdate/EVP_EncodeFinal does not add any of its own "=" * padding */ leadz = 3 - (size % 3); if (leadz != 3 && !EVP_EncodeUpdate(ctx, (unsigned char *)dst, &outl, pad, leadz)) { EVP_ENCODE_CTX_free(ctx); return 0; } if (!EVP_EncodeUpdate(ctx, (unsigned char *)dst + outl, &outl2, src, size)) { EVP_ENCODE_CTX_free(ctx); return 0; } outl += outl2; EVP_EncodeFinal(ctx, (unsigned char *)dst + outl, &outl2); outl += outl2; /* Strip the encoded padding at the front */ if (leadz != 3) { memmove(dst, dst + leadz, outl - leadz); dst[outl - leadz] = '\0'; } EVP_ENCODE_CTX_free(ctx); return 1; }
static int b64_new(BIO *bi) { BIO_B64_CTX *ctx; ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) return 0; ctx->cont = 1; ctx->start = 1; ctx->base64 = EVP_ENCODE_CTX_new(); if (ctx->base64 == NULL) { OPENSSL_free(ctx); return 0; } BIO_set_data(bi, ctx); BIO_set_init(bi, 1); return 1; }
/** * Read in PEM-formatted data from the given BIO. * * By nature of the PEM format, all content must be printable ASCII (except * for line endings). Other characters are malformed input and will be rejected. */ int PEM_read_bio_ex(BIO *bp, char **name_out, char **header, unsigned char **data, long *len_out, unsigned int flags) { EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); const BIO_METHOD *bmeth; BIO *headerB = NULL, *dataB = NULL; char *name = NULL; int len, taillen, headerlen, ret = 0; BUF_MEM * buf_mem; if (ctx == NULL) { PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE); return 0; } *len_out = 0; *name_out = *header = NULL; *data = NULL; if ((flags & PEM_FLAG_EAY_COMPATIBLE) && (flags & PEM_FLAG_ONLY_B64)) { /* These two are mutually incompatible; bail out. */ PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_PASSED_INVALID_ARGUMENT); goto end; } bmeth = (flags & PEM_FLAG_SECURE) ? BIO_s_secmem() : BIO_s_mem(); headerB = BIO_new(bmeth); dataB = BIO_new(bmeth); if (headerB == NULL || dataB == NULL) { PEMerr(PEM_F_PEM_READ_BIO_EX, ERR_R_MALLOC_FAILURE); goto end; } if (!get_name(bp, &name, flags)) goto end; if (!get_header_and_data(bp, &headerB, &dataB, name, flags)) goto end; EVP_DecodeInit(ctx); BIO_get_mem_ptr(dataB, &buf_mem); len = buf_mem->length; if (EVP_DecodeUpdate(ctx, (unsigned char*)buf_mem->data, &len, (unsigned char*)buf_mem->data, len) < 0 || EVP_DecodeFinal(ctx, (unsigned char*)&(buf_mem->data[len]), &taillen) < 0) { PEMerr(PEM_F_PEM_READ_BIO_EX, PEM_R_BAD_BASE64_DECODE); goto end; } len += taillen; buf_mem->length = len; /* There was no data in the PEM file; avoid malloc(0). */ if (len == 0) goto end; headerlen = BIO_get_mem_data(headerB, NULL); *header = pem_malloc(headerlen + 1, flags); *data = pem_malloc(len, flags); if (*header == NULL || *data == NULL) { pem_free(*header, flags, 0); pem_free(*data, flags, 0); goto end; } BIO_read(headerB, *header, headerlen); (*header)[headerlen] = '\0'; BIO_read(dataB, *data, len); *len_out = len; *name_out = name; name = NULL; ret = 1; end: EVP_ENCODE_CTX_free(ctx); pem_free(name, flags, 0); BIO_free(headerB); BIO_free(dataB); return ret; }
/* * Convert a base64 string into raw byte array representation. * Returns the length of the decoded data, or -1 on error. */ static int t_fromb64(unsigned char *a, size_t alen, const char *src) { EVP_ENCODE_CTX *ctx; int outl = 0, outl2 = 0; size_t size, padsize; const unsigned char *pad = (const unsigned char *)"00"; while (*src == ' ' || *src == '\t' || *src == '\n') ++src; size = strlen(src); padsize = 4 - (size & 3); padsize &= 3; /* Four bytes in src become three bytes output. */ if (size > INT_MAX || ((size + padsize) / 4) * 3 > alen) return -1; ctx = EVP_ENCODE_CTX_new(); if (ctx == NULL) return -1; /* * This should never occur because 1 byte of data always requires 2 bytes of * encoding, i.e. * 0 bytes unencoded = 0 bytes encoded * 1 byte unencoded = 2 bytes encoded * 2 bytes unencoded = 3 bytes encoded * 3 bytes unencoded = 4 bytes encoded * 4 bytes unencoded = 6 bytes encoded * etc */ if (padsize == 3) { outl = -1; goto err; } /* Valid padsize values are now 0, 1 or 2 */ EVP_DecodeInit(ctx); evp_encode_ctx_set_flags(ctx, EVP_ENCODE_CTX_USE_SRP_ALPHABET); /* Add any encoded padding that is required */ if (padsize != 0 && EVP_DecodeUpdate(ctx, a, &outl, pad, padsize) < 0) { outl = -1; goto err; } if (EVP_DecodeUpdate(ctx, a, &outl2, (const unsigned char *)src, size) < 0) { outl = -1; goto err; } outl += outl2; EVP_DecodeFinal(ctx, a + outl, &outl2); outl += outl2; /* Strip off the leading padding */ if (padsize != 0) { if ((int)padsize >= outl) { outl = -1; goto err; } /* * If we added 1 byte of padding prior to encoding then we have 2 bytes * of "real" data which gets spread across 4 encoded bytes like this: * (6 bits pad)(2 bits pad | 4 bits data)(6 bits data)(6 bits data) * So 1 byte of pre-encoding padding results in 1 full byte of encoded * padding. * If we added 2 bytes of padding prior to encoding this gets encoded * as: * (6 bits pad)(6 bits pad)(4 bits pad | 2 bits data)(6 bits data) * So 2 bytes of pre-encoding padding results in 2 full bytes of encoded * padding, i.e. we have to strip the same number of bytes of padding * from the encoded data as we added to the pre-encoded data. */ memmove(a, a + padsize, outl - padsize); outl -= padsize; } err: EVP_ENCODE_CTX_free(ctx); return outl; }
int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, long *len) { EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); int end = 0, i, k, bl = 0, hl = 0, nohead = 0; char buf[256]; BUF_MEM *nameB; BUF_MEM *headerB; BUF_MEM *dataB, *tmpB; if (ctx == NULL) { PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); return (0); } nameB = BUF_MEM_new(); headerB = BUF_MEM_new(); dataB = BUF_MEM_new(); if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL)) { goto err; } buf[254] = '\0'; for (;;) { i = BIO_gets(bp, buf, 254); if (i <= 0) { PEMerr(PEM_F_PEM_READ_BIO, PEM_R_NO_START_LINE); goto err; } while ((i >= 0) && (buf[i] <= ' ')) i--; buf[++i] = '\n'; buf[++i] = '\0'; if (strncmp(buf, "-----BEGIN ", 11) == 0) { i = strlen(&(buf[11])); if (strncmp(&(buf[11 + i - 6]), "-----\n", 6) != 0) continue; if (!BUF_MEM_grow(nameB, i + 9)) { PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); goto err; } memcpy(nameB->data, &(buf[11]), i - 6); nameB->data[i - 6] = '\0'; break; } } hl = 0; if (!BUF_MEM_grow(headerB, 256)) { PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); goto err; } headerB->data[0] = '\0'; for (;;) { i = BIO_gets(bp, buf, 254); if (i <= 0) break; while ((i >= 0) && (buf[i] <= ' ')) i--; buf[++i] = '\n'; buf[++i] = '\0'; if (buf[0] == '\n') break; if (!BUF_MEM_grow(headerB, hl + i + 9)) { PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); goto err; } if (strncmp(buf, "-----END ", 9) == 0) { nohead = 1; break; } memcpy(&(headerB->data[hl]), buf, i); headerB->data[hl + i] = '\0'; hl += i; } bl = 0; if (!BUF_MEM_grow(dataB, 1024)) { PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); goto err; } dataB->data[0] = '\0'; if (!nohead) { for (;;) { i = BIO_gets(bp, buf, 254); if (i <= 0) break; while ((i >= 0) && (buf[i] <= ' ')) i--; buf[++i] = '\n'; buf[++i] = '\0'; if (i != 65) end = 1; if (strncmp(buf, "-----END ", 9) == 0) break; if (i > 65) break; if (!BUF_MEM_grow_clean(dataB, i + bl + 9)) { PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); goto err; } memcpy(&(dataB->data[bl]), buf, i); dataB->data[bl + i] = '\0'; bl += i; if (end) { buf[0] = '\0'; i = BIO_gets(bp, buf, 254); if (i <= 0) break; while ((i >= 0) && (buf[i] <= ' ')) i--; buf[++i] = '\n'; buf[++i] = '\0'; break; } } } else { tmpB = headerB; headerB = dataB; dataB = tmpB; bl = hl; } i = strlen(nameB->data); if ((strncmp(buf, "-----END ", 9) != 0) || (strncmp(nameB->data, &(buf[9]), i) != 0) || (strncmp(&(buf[9 + i]), "-----\n", 6) != 0)) { PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_END_LINE); goto err; } EVP_DecodeInit(ctx); i = EVP_DecodeUpdate(ctx, (unsigned char *)dataB->data, &bl, (unsigned char *)dataB->data, bl); if (i < 0) { PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE); goto err; } i = EVP_DecodeFinal(ctx, (unsigned char *)&(dataB->data[bl]), &k); if (i < 0) { PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE); goto err; } bl += k; if (bl == 0) goto err; *name = nameB->data; *header = headerB->data; *data = (unsigned char *)dataB->data; *len = bl; OPENSSL_free(nameB); OPENSSL_free(headerB); OPENSSL_free(dataB); EVP_ENCODE_CTX_free(ctx); return (1); err: BUF_MEM_free(nameB); BUF_MEM_free(headerB); BUF_MEM_free(dataB); EVP_ENCODE_CTX_free(ctx); return (0); }