Example #1
0
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {
  int attr[NINT];
  FLA_Obj obj[NOBJ];
  double *dtime;

  FLA_Init();

  /* Check if the number of arguments supplied is correct */
  FLA_M2C_CheckNumArgs(NRHS, nrhs);

  /* Convert Matlab arguments into the appropriate FLAME C arguments */
  FLA_M2C_ConvertArgs(NRHS, prhs, NINT, attr, obj);

  /* If an extra argument is supplied, collect timing informaion in it. */
  if (nrhs == NRHS+1)
    dtime = FLA_M2C_ConvertDoublePtr(prhs[NRHS]);

  /* Now call the C FLAME function, timing it if the extra argument is given. */

  if (nrhs == NRHS+1)
    *dtime = FLA_Clock();

  FLA_Axpyt_external(attr[0], obj[0], obj[1], obj[2]);

  if (nrhs == NRHS+1)
    *dtime = FLA_Clock() - *dtime;

  FLA_Finalize();

}
Example #2
0
int main(int argc, char* argv[]){
	dim_t order;
	dim_t nA;
	dim_t permutation[FLA_MAX_ORDER];

	FLA_Init();

	//Parse input
	if(parse_input(argc, argv, &order, &nA, permutation) == FLA_FAILURE){
		Usage();
		FLA_Finalize();
		return 0;
	}

	if(check_errors(order, nA, permutation) == FLA_FAILURE){
		Usage();
		FLA_Finalize();
		return 0;
	}

	test_permute_tensor(order, nA, permutation);

	FLA_Finalize();

	return 0;
}
Example #3
0
int phonopy_pinv_libflame(double *matrix,
			  double *eigvals,
			  const int size,
			  const double cutoff)
{
  FLA_Obj A, B, l;
  /* FLA_Obj C; */
  double *inv_eigvals;
  int i;

  inv_eigvals = (double*)malloc(sizeof(double) * size);
  
  FLA_Init();
  FLA_Obj_create_without_buffer(FLA_DOUBLE, size, size, &A);
  FLA_Obj_attach_buffer(matrix, 0, 0, &A);
  
  FLA_Obj_create_without_buffer(FLA_DOUBLE, size, 1, &l);
  FLA_Obj_attach_buffer(eigvals, 0, 0, &l);

  /* Eigensolver */
  FLA_Obj_create_copy_of(FLA_NO_TRANSPOSE, A, &B);
  FLA_Hevd(FLA_EVD_WITH_VECTORS, FLA_LOWER_TRIANGULAR, B, l);

  /* SVD */
  /* FLA_Obj_create(FLA_DOUBLE, size, size, 0, 0, &B); */
  /* use U */
  /* FLA_Svd(FLA_SVD_VECTORS_ALL, FLA_SVD_VECTORS_NONE, A, l, B, C); */
  /* use V */
  /* FLA_Svd(FLA_SVD_VECTORS_NONE, FLA_SVD_VECTORS_ALL, A, l, C, B); */
  
  FLA_Obj_free_without_buffer(&l);
  
  for (i = 0; i < size; i++) {
    if (eigvals[i] < cutoff) {
      inv_eigvals[i] = 0;
    } else {
      inv_eigvals[i] = 1.0 / sqrt(eigvals[i]);
    }
  }
  
  FLA_Obj_create_without_buffer(FLA_DOUBLE, size, 1, &l);
  FLA_Obj_attach_buffer(inv_eigvals, 0, 0, &l);
  
  FLA_Apply_diag_matrix(FLA_RIGHT, FLA_NO_CONJUGATE, l, B);
  FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_ONE, B, FLA_ZERO, A);
  FLA_Symmetrize(FLA_LOWER_TRIANGULAR, A);
  
  FLA_Obj_free_without_buffer(&A);
  FLA_Obj_free_without_buffer(&l);
  FLA_Obj_free(&B);

  FLA_Finalize();

  free(inv_eigvals);
  
  return 0;
}
Example #4
0
void FLA_Init_safe( FLA_Error* init_result )
{
  if ( FLA_Initialized() )
  {
    *init_result = FLA_FAILURE;
  }
  else
  {
    FLA_Init();
    *init_result = FLA_SUCCESS;
  }
}
Example #5
0
int main(int argc, char* argv[]){
	dim_t order;
	TLA_sym sym;
	dim_t n[FLA_MAX_ORDER];
	dim_t b[FLA_MAX_ORDER];
	dim_t permutation[FLA_MAX_ORDER];
	FLA_Obj T;

	FLA_Init();


	//Parse inputs
	if(parse_input(argc, argv, &order, &sym, n, b, permutation) == FLA_FAILURE){
	    Usage();
	    FLA_Finalize();
	    return 0;
	}

	//Error check
	if(check_errors(order, sym, n, b, permutation) == FLA_FAILURE){
		Usage();
	    FLA_Finalize();
	    return 0;
	}

	//Perform test

	create_psym_tensor(order, sym, n, b, &T);
	FLA_Obj_print_matlab("T", T);
	
	test_permute_tensor(permutation, T);

    FLA_Obj_blocked_psym_tensor_free_buffer(&T);
    FLA_Obj_free_without_buffer(&T);

    FLA_Finalize();
	return 0;
}
Example #6
0
void mexFunction(int nargout, mxArray * pargout[],
                 int nargin, const mxArray * pargin[]){
    if (nargin > 1)
    {
        mexErrMsgTxt("Too many input arguments.");
    }

    FLA_Init();
    int i;

    //Parse input
    FLA_Obj A;
    mexPrintf("Creating tensor\n");
    TLA_mxa_to_tensor(pargin[0], &A);

    FLA_Obj_print_matlab("A", A);
    //Pass output
    mexPrintf("Passing C back\n");
    TLA_tensor_to_mxa(A, &(pargout[0]));

    //DELETE EVERYTHING
    mexPrintf("finalizing\n");
    FLA_Finalize();
}
Example #7
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    precision,
    nb_alg, bm, bn,
    m_input, n_input,
    m, n,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;
  
  char *colors = "brkgmcbrkgmcbrkgmc";
  char *ticks  = "o+*xso+*xso+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, A_save, A_flat, B, B_ref, T, T_flat, W, t;
  
  FLA_Init( );


  fprintf( stdout, "%c number of repeats: ", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter FLASH blocksize: ", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc: ", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d%d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }

  //precision = FLA_SINGLE_PRECISION;
  precision = FLA_DOUBLE_PRECISION;

  FLASH_Queue_disable();

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;
    n = n_input;

    if( m < 0 ) m = p / abs(m_input);
    if( n < 0 ) n = p / abs(n_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){

      // Determine datatype based on trans argument.
      if ( pc_str[param_combo][1] == 'c' )
      {
        if ( precision == FLA_SINGLE_PRECISION )
          datatype = FLA_COMPLEX;
        else
          datatype = FLA_DOUBLE_COMPLEX;
      }
      else
      {
        if ( precision == FLA_SINGLE_PRECISION )
          datatype = FLA_FLOAT;
        else
          datatype = FLA_DOUBLE;
      }

      bm = nb_alg / 4;
      bn = nb_alg;

      // If multiplying Q on the left, A is m x m; ...on the right, A is n x n.
      if ( pc_str[param_combo][0] == 'l' )
      {
        FLA_Obj_create( datatype, nb_alg, nb_alg, &A_flat );
        FLASH_Obj_create( datatype, nb_alg, nb_alg, 1, &nb_alg, &A );
        FLASH_Obj_create( datatype, nb_alg, nb_alg, 1, &nb_alg, &A_save );

        FLA_Obj_create( datatype, bm, bn, &T_flat );
        FLASH_Obj_create_ext( datatype, bm, bn, 1, &bm, &bn, &T );
        FLASH_Obj_create_ext( datatype, bm, n,  1, &bm, &bn, &W );
      }
      else
      {
        FLASH_Obj_create( datatype, n, n, 1, &nb_alg, &A );
      }

      FLASH_Obj_create( datatype, nb_alg, n, 1, &nb_alg, &B );
      FLASH_Obj_create( datatype, nb_alg, n, 1, &nb_alg, &B_ref );

      FLA_Obj_create( datatype, nb_alg, 1, &t );

      FLASH_Random_matrix( A );
      FLASH_Random_matrix( B );

      fprintf( stdout, "data_applyq_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );

      FLASH_Copy( A, A_save );

      FLASH_Obj_flatten( A, A_flat );
      FLA_QR_blk_external( A_flat, t );
      FLASH_Obj_hierarchify( A_flat, A );

      time_Apply_Q( param_combo, FLA_ALG_REFERENCE, n_repeats, m, n,
                    A, B, B_ref, t, T, W, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      FLASH_Copy( A_save, A );

      FLASH_Obj_flatten( A, A_flat );
      FLA_QR_UT( A_flat, t, T_flat );
      FLASH_Obj_hierarchify( A_flat, A );
      FLASH_Obj_hierarchify( T_flat, T );

      time_Apply_Q( param_combo, FLA_ALG_FRONT, n_repeats, m, n,
                    A, B, B_ref, t, T, W, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLASH_Obj_free( &A );
      FLA_Obj_free( &A_flat );
      FLASH_Obj_free( &B );
      FLASH_Obj_free( &B_ref );
      FLA_Obj_free( &t );
      FLASH_Obj_free( &T );
      FLA_Obj_free( &T_flat );
      FLASH_Obj_free( &W );
    }

    fprintf( stdout, "\n" );
  }

  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_applyq_%s( :,1 ), data_applyq_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_applyq_%s( :,1 ), data_applyq_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_applyq\\_%s', 'fla\\_applyq\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );


  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME applyq front-end performance (%s, %s)' );\n",
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc applyq_front_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );

  FLA_Finalize( );

  return 0;
}
Example #8
0
int main( int argc, char *argv[] ) 
{ 
   int
      i, j,
      n_threads,
      n_repeats,
      n_trials,
      increment,
      begin,
      sorting,
      caching,
      work_stealing,
      data_affinity;

   dim_t
      size,
      nb_alg;

   FLA_Datatype
      datatype = FLA_DOUBLE;

   FLA_Inv    
      inv = FLA_NO_INVERSE;

   FLA_Uplo
      uplo = FLA_LOWER_TRIANGULAR;

   FLA_Obj 
      A, B, x, b, b_norm,
      AH, BH;
   
   double 
      length,
      b_norm_value = 0.0,
      dtime, 
      *dtimes,
      *flops;

#ifndef FLA_ENABLE_WINDOWS_BUILD
   char
      output_file_m[100];
   
   FILE
      *fpp;
#endif

   fprintf( stdout, "%c Enter number of repeats: ", '%' );
   scanf( "%d", &n_repeats );
   fprintf( stdout, "%c %d\n", '%', n_repeats );

   fprintf( stdout, "%c Enter blocksize: ", '%' );
   scanf( "%u", &nb_alg );
   fprintf( stdout, "%c %u\n", '%', nb_alg );

   fprintf( stdout, "%c Enter problem size parameters: first, inc, num: ", '%' );
   scanf( "%d%d%d", &begin, &increment, &n_trials );
   fprintf( stdout, "%c %d %d %d\n", '%', begin, increment, n_trials );

   fprintf( stdout, "%c Enter number of threads: ", '%' );
   scanf( "%d", &n_threads );
   fprintf( stdout, "%c %d\n", '%', n_threads );

   fprintf( stdout, "%c Enter SuperMatrix parameters: sorting, caching, work stealing, data affinity: ", '%' );
   scanf( "%d%d%d%d", &sorting, &caching, &work_stealing, &data_affinity );
   fprintf( stdout, "%c %s %s %s %s\n\n", '%', ( sorting ? "TRUE" : "FALSE" ), ( caching ? "TRUE" : "FALSE" ), ( work_stealing ? "TRUE" : "FALSE" ), ( data_affinity ? ( data_affinity == 1 ? "FLASH_QUEUE_AFFINITY_2D_BLOCK_CYCLIC" : "FLASH_QUEUE_AFFINITY_OTHER" ) : "FLASH_QUEUE_AFFINITY_NONE" ) );

#ifdef FLA_ENABLE_WINDOWS_BUILD
   fprintf( stdout, "%s_%u = [\n", OUTPUT_FILE, nb_alg );
#else
   sprintf( output_file_m, "%s/%s_output.m", OUTPUT_PATH, OUTPUT_FILE );
   fpp = fopen( output_file_m, "a" );

   fprintf( fpp, "%%\n" );
   fprintf( fpp, "%% | Matrix Size |    FLASH    |\n" );
   fprintf( fpp, "%% |    n x n    |    GFlops   |\n" );
   fprintf( fpp, "%% -----------------------------\n" );
   fprintf( fpp, "%s_%u = [\n", OUTPUT_FILE, nb_alg );
#endif

   FLA_Init();

   dtimes = ( double * ) FLA_malloc( n_repeats * sizeof( double ) );
   flops  = ( double * ) FLA_malloc( n_trials  * sizeof( double ) );
   
   FLASH_Queue_set_num_threads( n_threads );
   FLASH_Queue_set_sorting( sorting );
   FLASH_Queue_set_caching( caching );
   FLASH_Queue_set_work_stealing( work_stealing );
   FLASH_Queue_set_data_affinity( data_affinity );

   for ( i = 0; i < n_trials; i++ )
   {
      size = begin + i * increment;
      
      FLA_Obj_create( datatype, size, size, 0, 0, &A ); 
      FLA_Obj_create( datatype, size, size, 0, 0, &B ); 
      FLA_Obj_create( datatype, size, 1,    0, 0, &x ); 
      FLA_Obj_create( datatype, size, 1,    0, 0, &b ); 
      FLA_Obj_create( datatype, 1,    1,    0, 0, &b_norm ); 
      
      for ( j = 0; j < n_repeats; j++ )
      {
         FLA_Random_matrix( A );
         FLA_Random_matrix( B );
         FLA_Random_matrix( x );
         FLA_Random_matrix( b );

         FLA_Symmetrize( uplo, A );
         FLA_Symmetrize( uplo, B );

         length = ( double ) FLA_Obj_length( B );
         FLA_Add_to_diag( &length, B );
         FLA_Symv_external( uplo, FLA_ONE, B, x, FLA_ZERO, b );

         FLASH_Obj_create_hier_copy_of_flat( A, 1, &nb_alg, &AH );  
         FLASH_Obj_create_hier_copy_of_flat( B, 1, &nb_alg, &BH );  

         FLASH_Chol( uplo, BH );
         
         dtime = FLA_Clock();
         
         FLASH_Eig_gest( inv, uplo, AH, BH );
         
         dtime = FLA_Clock() - dtime;
         dtimes[j] = dtime;
         
         FLASH_Obj_free( &AH );
         FLASH_Obj_free( &BH );
      }
      
      dtime = dtimes[0];
      for ( j = 1; j < n_repeats; j++ )
         dtime = min( dtime, dtimes[j] );
      flops[i] = 1.0 * size * size * size / dtime / 1e9;

#ifdef FLA_ENABLE_WINDOWS_BUILD      
      fprintf( stdout, "   %d   %6.3f   %le\n", size, flops[i], b_norm_value );
#else
      fprintf( fpp, "   %d   %6.3f\n", size, flops[i] );
      
      fprintf( stdout, "Time: %e  |  GFlops: %6.3f\n", dtime, flops[i] );
      fprintf( stdout, "Matrix size: %u x %u  |  nb_alg: %u\n", 
               size, size, nb_alg ); 
      fprintf( stdout, "Norm of difference: %le\n\n", b_norm_value ); 
#endif
 
      FLA_Obj_free( &A ); 
      FLA_Obj_free( &B ); 
      FLA_Obj_free( &x ); 
      FLA_Obj_free( &b ); 
      FLA_Obj_free( &b_norm ); 
   }

#ifdef FLA_ENABLE_WINDOWS_BUILD
   fprintf( stdout, "];\n\n" );
#else
   fprintf( fpp, "];\n" );
   
   fflush( fpp );
   fclose( fpp );
#endif

   FLA_free( dtimes );
   FLA_free( flops );

   FLA_Finalize(); 
   
   return 0; 
}
Example #9
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    m_input, k_input,
    m, k,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;
  
  char *colors = "brkgmcbrkgmcbrkgmc";
  char *ticks  = "o+*xso+*xso+*xso+*xs";
  char m_dim_desc[14];
  char k_dim_desc[14];
  char m_dim_tag[10];
  char k_dim_tag[10];

  dim_t nb_alg, n_threads;

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, B, C, C_ref;
  
  FLA_Init( );


  fprintf( stdout, "%c number of repeats: ", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter FLASH blocksize: ", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc: ", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m k (-1 means bind to problem size): ", '%' );
  scanf( "%d%d", &m_input, &k_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, k_input );

  fprintf( stdout, "%c enter the number of SuperMatrix threads: ", '%' );
  scanf( "%d", &n_threads );
  fprintf( stdout, "%c %d\n", '%', n_threads );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( k_input >  0 ) {
    sprintf( k_dim_desc, "k = %d", k_input );
    sprintf( k_dim_tag,  "k%dc", k_input);
  }
  else if( k_input <  -1 ) {
    sprintf( k_dim_desc, "k = p/%d", -k_input );
    sprintf( k_dim_tag,  "k%dp", -k_input );
  }
  else if( k_input == -1 ) {
    sprintf( k_dim_desc, "k = p" );
    sprintf( k_dim_tag,  "k%dp", 1 );
  }

  //datatype = FLA_COMPLEX;
  datatype = FLA_DOUBLE_COMPLEX;

  FLASH_Queue_set_num_threads( n_threads );

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;
    k = k_input;

    if( m < 0 ) m = p / abs(m_input);
    if( k < 0 ) k = p / abs(k_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){
      
      // If transposing A, switch dimensions.
      if ( pc_str[param_combo][1] == 'n' )
      {
        FLASH_Obj_create( datatype, m, k, 1, &nb_alg, &A );
        FLASH_Obj_create( datatype, m, k, 1, &nb_alg, &B );
      }
      else
      {
        FLASH_Obj_create( datatype, k, m, 1, &nb_alg, &A );
        FLASH_Obj_create( datatype, k, m, 1, &nb_alg, &B );
      }

      FLASH_Obj_create( datatype, m, m, 1, &nb_alg, &C );
      FLASH_Obj_create( datatype, m, m, 1, &nb_alg, &C_ref );

      FLASH_Random_matrix( A );
      FLASH_Random_matrix( B );
      FLASH_Random_matrix( C );

      fprintf( stdout, "data_her2k_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );

      time_Her2k( param_combo, FLA_ALG_REFERENCE, n_repeats, m, k,
                 A, B, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Her2k( param_combo, FLA_ALG_FRONT, n_repeats, m, k,
                 A, B, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLASH_Obj_free( &A );
      FLASH_Obj_free( &B );
      FLASH_Obj_free( &C );
      FLASH_Obj_free( &C_ref );
    }

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_her2k_%s( :,1 ), data_her2k_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_her2k_%s( :,1 ), data_her2k_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_her2k\\_%s', 'fla\\_her2k\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );


  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME her2k front-end performance (%s, %s)' );\n",
           m_dim_desc, k_dim_desc );
  fprintf( stdout, "print -depsc her2k_front_%s_%s.eps\n", m_dim_tag, k_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Example #10
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i, j,
    n_param_combos = N_PARAM_COMBOS;

  int sign;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, C, C_ref, scale, isgn, norm;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter sign (-1 or 1):", '%' );
  scanf( "%d", &sign );
  fprintf( stdout, "%c %d\n", '%', sign );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }

  if ( 0 < sign )
    isgn = FLA_ONE;
  else
    isgn = FLA_MINUS_ONE;

  //datatype = FLA_FLOAT;
  datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  //datatype = FLA_DOUBLE_COMPLEX;


  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;

    if( m < 0 ) m = p / abs(m_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){

      FLA_Obj_create( datatype, m, m, 0, 0, &A );
      FLA_Obj_create( datatype, m, m, 0, 0, &C );
      FLA_Obj_create( datatype, m, m, 0, 0, &C_ref );

      FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &scale );
      FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );

      FLA_Random_tri_matrix( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
      FLA_Triangularize( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
      FLA_Norm1( A, norm );
      FLA_Shift_diag( FLA_NO_CONJUGATE, norm, A );

      FLA_Random_matrix( C );
      FLA_Hermitianize( FLA_UPPER_TRIANGULAR, C );

      fprintf( stdout, "data_lyap_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );


      time_Lyap( param_combo, FLA_ALG_REFERENCE, n_repeats, m,
                 isgn, A, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Lyap( param_combo, FLA_ALG_FRONT, n_repeats, m,
                 isgn, A, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLA_Obj_free( &A );
      FLA_Obj_free( &C );
      FLA_Obj_free( &C_ref );
      FLA_Obj_free( &scale );
      FLA_Obj_free( &norm );
    }

    fprintf( stdout, "\n" );
  }


/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_lyap_%s( :,1 ), data_lyap_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_lyap_%s( :,1 ), data_lyap_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_lyap\\_%s', 'fla\\_lyap\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME lyap front-end performance (%s)' );\n", m_dim_desc );
  fprintf( stdout, "print -depsc lyap_front_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Example #11
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;

  dim_t nb_alg;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, A_ref;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats: ", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter FLASH blocksize: ", '%' );
  scanf( "%u", &nb_alg );
  fprintf( stdout, "%c %u\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc: ", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }


  //datatype = FLA_FLOAT;
  datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  //datatype = FLA_DOUBLE_COMPLEX;

  FLASH_Queue_disable();

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;

    if( m < 0 ) m = p / abs(m_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){

      FLASH_Obj_create( datatype, m, m, 1, &nb_alg, &A );
      FLASH_Obj_create( datatype, m, m, 1, &nb_alg, &A_ref );

      if ( pc_str[param_combo][0] == 'l' )
        FLASH_Random_spd_matrix( FLA_LOWER_TRIANGULAR, A );
      else
        FLASH_Random_spd_matrix( FLA_UPPER_TRIANGULAR, A );
      
      FLASH_Copy( A, A_ref );

      fprintf( stdout, "data_chol_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );


      time_Chol( param_combo, FLA_ALG_REFERENCE, n_repeats, m,
                 A, A_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Chol( param_combo, FLA_ALG_FRONT, n_repeats, m,
                 A, A_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLASH_Obj_free( &A );
      FLASH_Obj_free( &A_ref );
    }

    fprintf( stdout, "\n" );
  }


  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_chol_%s( :,1 ), data_chol_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_chol_%s( :,1 ), data_chol_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_chol\\_%s', 'fla\\_chol\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME chol front-end performance (%s)' );\n", m_dim_desc );
  fprintf( stdout, "print -depsc chol_front_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );

  FLA_Finalize( );

  return 0;
}
Example #12
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    nb_alg,
    variant,
    n_repeats,
    i, j,
    n_variants = N_VARIANTS;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;
  

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, b, b_orig, norm;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size:", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }

  //datatype = FLA_FLOAT;
  //datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  datatype = FLA_DOUBLE_COMPLEX;

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;

    if( m < 0 ) m = p / f2c_abs(m_input);

    FLA_Obj_create( datatype, m, m, 0, 0, &A );
    FLA_Obj_create( datatype, m, 1, 0, 0, &b );
    FLA_Obj_create( datatype, m, 1, 0, 0, &b_orig );
/*
    FLA_Obj_create( datatype, m, m, m, 1, &A );
    FLA_Obj_create( datatype, m, 1, 1, 1, &b );
    FLA_Obj_create( datatype, m, 1, 1, 1, &b_orig );
*/

    if ( FLA_Obj_is_single_precision( A ) )
      FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &norm );
    else
      FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &norm );

    FLA_Random_tri_matrix( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
    FLA_Random_matrix( b );
    FLA_Copy_external( b, b_orig );

/*
    time_Trinv_un( 0, FLA_ALG_REFERENCE, n_repeats, m, nb_alg,
                   A, b, b_orig, norm, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REF( %d, 1:2 ) = [ %d  %6.3lf ]; \n", i, p, gflops );
    fflush( stdout );
*/

    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:7 ) = [ %d  ", variant, i, p );
      fflush( stdout );

      time_Trinv_un( variant, FLA_ALG_UNBLOCKED, n_repeats, m, nb_alg,
                     A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Trinv_un( variant, FLA_ALG_UNB_OPT, n_repeats, m, nb_alg,
                     A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Trinv_un( variant, FLA_ALG_BLOCKED, n_repeats, m, nb_alg,
                     A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );
    }

    FLA_Obj_free( &A );
    FLA_Obj_free( &b );
    FLA_Obj_free( &b_orig );
    FLA_Obj_free( &norm );

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  for ( i = 1; i <= n_variants; i++ ){
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n", 
             variant, variant, colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i <= n_variants; i++ )
    fprintf( stdout, "'FLAME var%d', ... \n", i );

  fprintf( stdout, "'Location', 'SouthWest' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME trinv\\_u performance (%s)' );\n", 
           m_dim_desc );
  fprintf( stdout, "print -depsc trinv_l_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );
}
Example #13
0
int main(int argc, char *argv[])
{
  int 
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    k_accum,
    b_alg,
    n_iter_max,
    variant,
    n_repeats,
    i,
    n_variants = 2;

  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff1, diff2;

  FLA_Datatype datatype, dt_real;

  FLA_Obj
    A, l, Q, Ql, TT, r, d, e, A_orig, G, R, W2, de, alpha;

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter n_iter_max (per eigenvalue): ", '%' );
  scanf( "%d", &n_iter_max );
  fprintf( stdout, "%c %d\n", '%', n_iter_max );

  fprintf( stdout, "%c enter number of sets of Givens rotations to accumulate:", '%' );
  scanf( "%d", &k_accum );
  fprintf( stdout, "%c %d\n", '%', k_accum );

  fprintf( stdout, "%c enter blocking size for application of G:", '%' );
  scanf( "%d", &b_alg );
  fprintf( stdout, "%c %d\n", '%', b_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }


  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;

    if( m < 0 ) m = p / abs(m_input);

    //datatype = FLA_FLOAT;
    //datatype = FLA_DOUBLE;
    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    FLA_Obj_create( datatype,  m,         m, 0, 0, &A );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &A_orig );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &Q );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &Ql );
    FLA_Obj_create( datatype,  m,         1, 0, 0, &r );
    FLA_Obj_create( datatype,  m,         m, 0, 0, &W2 );
    FLA_Obj_create( datatype,  m-1, k_accum, 0, 0, &G );

	dt_real = FLA_Obj_datatype_proj_to_real( A );

    FLA_Obj_create( dt_real, m,      1, 0, 0, &l );
    FLA_Obj_create( dt_real, m,      1, 0, 0, &d );
    FLA_Obj_create( dt_real, m-1,    1, 0, 0, &e );
    FLA_Obj_create( dt_real, m,      m, 0, 0, &R );

	FLA_Obj_create( dt_real, 1,      1, 0, 0, &alpha );

	*FLA_DOUBLE_PTR( alpha ) = 1.0 / ( sqrt( sqrt( (double) m ) ) );

	FLA_Random_unitary_matrix( Q );

	//FLA_Fill_with_uniform_dist( FLA_ONE,   l );
	//FLA_Fill_with_inverse_dist( FLA_ONE,   l );
	FLA_Fill_with_geometric_dist( alpha,   l );


    {
      FLA_Copy( Q, Ql );
      FLA_Apply_diag_matrix( FLA_RIGHT, FLA_NO_CONJUGATE, l, Ql );
      FLA_Gemm( FLA_NO_TRANSPOSE, FLA_CONJ_TRANSPOSE,
                FLA_ONE, Ql, Q, FLA_ZERO, A );
      FLA_Triangularize( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
      FLA_Copy( A, A_orig );
    }

    FLA_Set( FLA_ZERO, l );
    FLA_Set( FLA_ZERO, Q );

	FLA_Tridiag_UT_create_T( A, &TT );
	FLA_Tridiag_UT( FLA_LOWER_TRIANGULAR, A, TT );
	FLA_Tridiag_UT_realify( FLA_LOWER_TRIANGULAR, A, r );
	FLA_Tridiag_UT_extract_diagonals( FLA_LOWER_TRIANGULAR, A, d, e );
	FLA_Tridiag_UT_form_Q( FLA_LOWER_TRIANGULAR, A, TT );
	FLA_Apply_diag_matrix( FLA_RIGHT, FLA_CONJUGATE, r, A );
    FLA_Obj_free( &TT );

    time_Tevd_v( 0, FLA_ALG_REFERENCE, n_repeats, m, k_accum, b_alg, n_iter_max,
                 A_orig, d, e, G, R, W2, A, l, &dtime, &diff1, &diff2, &gflops );

    fprintf( stdout, "data_REFq( %d, 1:3 ) = [ %d %6.3lf %9.2e %6.2le %6.2le ]; \n", i, p, gflops, dtime, diff1, diff2 );
    fflush( stdout );

    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:3 ) = [ %d ", variant, i, p );
      fflush( stdout );

      time_Tevd_v( variant, FLA_ALG_UNB_OPT, n_repeats, m, k_accum, b_alg, n_iter_max,
                   A_orig, d, e, G, R, W2, A, l, &dtime, &diff1, &diff2, &gflops );

      fprintf( stdout, "%6.3lf %9.2e %6.2le %6.2le ", gflops, dtime, diff1, diff2 );
      fflush( stdout );

      fprintf( stdout, "];\n" );
      fflush( stdout );
    }

    fprintf( stdout, "\n" );

    FLA_Obj_free( &A );
    FLA_Obj_free( &A_orig );
    FLA_Obj_free( &Q );
    FLA_Obj_free( &Ql );
    FLA_Obj_free( &G );
    FLA_Obj_free( &W2 );
    FLA_Obj_free( &r );
    FLA_Obj_free( &l );
    FLA_Obj_free( &d );
    FLA_Obj_free( &e );
    FLA_Obj_free( &R );
    FLA_Obj_free( &alpha );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 1; i <= n_variants; i++ ) {
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 4 ), '%c-.%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i < n_variants; i++ )
    fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d', ... \n", i, i );
  fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d' ); \n", i, i );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME Hevd_lv performance (%s, %s)' );\n", 
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc tridiag_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Example #14
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    n_threads,
    m_input,
    m,
    n_input,
    n,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;

  dim_t
    b_flash,
    b_alg;

  char *colors = "brkgmcbrkgmcbrkgmc";
  char *ticks  = "o+*xso+*xso+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj A, TW, b, x;
  FLA_Obj A_flat, b_flat, x_flat;
  
  FLA_Init( );


  fprintf( stdout, "%c number of repeats: ", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter FLASH blocksize: ", '%' );
  scanf( "%u", &b_flash );
  fprintf( stdout, "%c %u\n", '%', b_flash );

  fprintf( stdout, "%c enter problem size first, last, inc: ", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d %d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );

  fprintf( stdout, "%c enter the number of SuperMatrix threads: ", '%' );
  scanf( "%d", &n_threads );
  fprintf( stdout, "%c %d\n", '%', n_threads );


  fprintf( stdout, "\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }

  //datatype = FLA_FLOAT;
  datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  //datatype = FLA_DOUBLE_COMPLEX;

  FLASH_Queue_set_num_threads( n_threads );
  //FLASH_Queue_set_verbose_output( TRUE );
  //FLA_Check_error_level_set( FLA_NO_ERROR_CHECKING );
  //FLASH_Queue_disable();

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;
    n = n_input;

    if ( m < 0 ) m = p * abs(m_input);
    if ( n < 0 ) n = p * abs(n_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ )
    {
      FLA_Obj_create( datatype, m, n, 0, 0, &A_flat );
      FLA_Obj_create( datatype, n, 1, 0, 0, &x_flat );
      FLA_Obj_create( datatype, m, 1, 0, 0, &b_flat );

      FLA_Random_matrix( A_flat );
      FLA_Random_matrix( b_flat );

      FLASH_QR_UT_create_hier_matrices( A_flat, 1, &b_flash, &A, &TW );
      FLASH_Obj_create_hier_copy_of_flat( b_flat, 1, &b_flash, &b );
      FLASH_Obj_create_hier_copy_of_flat( x_flat, 1, &b_flash, &x );


      fprintf( stdout, "data_qrut_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );

      time_QR_UT( param_combo, FLA_ALG_FRONT, n_repeats, m, n,
                  A, TW, b, x, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLA_Obj_free( &A_flat );
      FLA_Obj_free( &b_flat );
      FLA_Obj_free( &x_flat );

      FLASH_Obj_free( &A );
      FLASH_Obj_free( &TW );
      FLASH_Obj_free( &b );
      FLASH_Obj_free( &x );
    }

  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_qrut_%s( :,1 ), data_qrut_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_qrut_%s( :,1 ), data_qrut_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_qrut\\_%s', 'fla\\_qrut\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );


  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME qrut front-end performance (%s)' );\n",
           m_dim_desc );
  fprintf( stdout, "print -depsc qrut_front_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Example #15
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;

  FLA_Uplo uplo;
  FLA_Diag diag;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, b, b_orig, norm;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }

  //datatype = FLA_FLOAT;
  //datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  datatype = FLA_DOUBLE_COMPLEX;

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;

    if( m < 0 ) m = p / abs(m_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){
      
      //FLA_Obj_create( datatype, m, m, 0, 0, &A );
      FLA_Obj_create( datatype, m, m, m, 1, &A );
      FLA_Obj_create( datatype, m, 1, 0, 0, &b );
      FLA_Obj_create( datatype, m, 1, 0, 0, &b_orig );

      if ( FLA_Obj_is_single_precision( A ) )
        FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &norm );
      else
        FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &norm );

      FLA_Param_map_netlib_to_flame_uplo( &pc_str[param_combo][0], &uplo );
      FLA_Param_map_netlib_to_flame_diag( &pc_str[param_combo][1], &diag );

      FLA_Random_tri_matrix( uplo, diag, A );
      FLA_Random_matrix( b );
      FLA_Copy_external( b, b_orig );

      fprintf( stdout, "data_trinv_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );

/*
      time_Trinv( param_combo, FLA_ALG_REFERENCE, n_repeats, m, uplo, diag,
                  A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );
*/

      time_Trinv( param_combo, FLA_ALG_FRONT, n_repeats, m, uplo, diag,
                  A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLA_Obj_free( &A );
      FLA_Obj_free( &b );
      FLA_Obj_free( &b_orig );
      FLA_Obj_free( &norm );
    }

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_trinv_%s( :,1 ), data_trinv_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_trinv_%s( :,1 ), data_trinv_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_trinv\\_%s', 'fla\\_trinv\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthWest' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME trinv front-end performance (%s)' );\n", m_dim_desc );
  fprintf( stdout, "print -depsc trinv_front_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Example #16
0
int main( int argc, char *argv[] )
{
  int
    m_input, n_input,
    m, n, rs, cs,
    i,
    datatype;

  int blocksize[3];
  int depth;
  double buffer[64];
  double buffer2[64];

  FLA_Obj Af, Ah, Bh;

  FLA_Init();

  fprintf( stdout, "%c Enter hierarchy depth:", '%' );
  scanf( "%d", &depth );
  fprintf( stdout, "%c %d\n", '%', depth );

  for ( i = 0; i < depth; ++i )
  {
    fprintf( stdout, "%c Enter blocksize %d:", '%', i );
    scanf( "%d", &blocksize[i] );
    fprintf( stdout, "%c %d\n", '%', blocksize[i] );
  }

  fprintf( stdout, "%c enter m n: ", '%' );
  scanf( "%d%d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );

  datatype      = FLA_DOUBLE;
  m             = m_input;
  n             = n_input;
  rs            = 1;
  cs            = m_input;

  for( i = 0; i < 64; i++ ) buffer[i] = ( double ) i;
  for( i = 0; i < 64; i++ ) buffer2[i] = ( double ) 0;

  //FLASH_Obj_create( datatype, m, n, depth, blocksize, &Ah );
  FLASH_Obj_create_without_buffer( datatype, m, n, depth, blocksize, &Ah );
  FLASH_Obj_attach_buffer( buffer, rs, cs, &Ah );

  //FLASH_Obj_create_flat_conf_to_hier( FLA_NO_TRANSPOSE, Ah, &Af );
  //FLASH_Obj_create_hier_conf_to_flat( FLA_NO_TRANSPOSE, Af, depth, blocksize, &Bh );
  //FLASH_Obj_create_flat_copy_of_hier( Ah, &Af );
  //FLASH_Obj_create_hier_copy_of_flat( Af, depth, blocksize, &Bh );
  FLASH_Obj_create_conf_to( FLA_NO_TRANSPOSE, Ah, &Bh );

  //FLASH_Axpy( FLA_TWO, Ah, Bh );
  FLASH_Copy( Ah, Bh );

  //FLA_Obj_create_without_buffer( datatype, 4, 4, &Af );
  //FLA_Obj_attach_buffer( buffer2, 4, &Af );

  //FLASH_Axpy_flat_to_hier( FLA_TWO, Af, 1, 1, Ah );
  //FLASH_Axpy_hier_to_flat( FLA_TWO, 1, 1, Ah, Af );
  //FLASH_Axpy_buffer_to_hier( FLA_ONE, 4, 4, buffer, 4, 1, 1, Ah );

  //FLASH_Axpy_hier_to_buffer( FLA_ONE, 2, 2, Ah, 4, 4, buffer2, 4 );

  //fprintf( stderr, "T: Am An = %d %d\n", FLASH_Obj_scalar_length( Ah ), 
  //                                       FLASH_Obj_scalar_width( Ah ) );

  //FLASH_Random_matrix( Ah );

  //fprintf( stderr, "depth = %d\n", FLASH_Obj_depth( Ah ) );;

/*
  {
    int depth;
    int b_m[4];
    int b_n[4];

    depth = FLASH_Obj_blocksizes( Bh, b_m, b_n );
    fprintf( stderr, "depth = %d\n", depth );;
    fprintf( stderr, "b_m[0] = %d\n", b_m[0] );;
    fprintf( stderr, "b_n[0] = %d\n", b_n[0] );;
  }
*/

  FLASH_Obj_show( "", Ah, "%11.4e", "" );
  FLASH_Obj_show( "", Bh, "%11.4e", "" );

  //FLA_Obj_show( "", Af, "%11.4e", "" );
  //FLASH_print_struct( Ah );

  //fprintf( stderr, "max_diff = %e\n", FLASH_Max_elemwise_diff( Ah, Bh ) );;

  //FLASH_Obj_free_without_buffer( &Ah );
  //FLASH_Obj_free( &Af );
  //FLA_Obj_free( &Af );


  FLA_Finalize();

  return 0;
}
Example #17
0
int main(int argc, char *argv[])
{
  int 
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    b_alg,
    variant,
    n_repeats,
    i, j,
    datatype,
    n_variants = 5;
  
  int  blocksize[16];

  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, Y, B, norm;

  FLA_Inv  inv  = FLA_NO_INVERSE;
  FLA_Uplo uplo = FLA_UPPER_TRIANGULAR;
  

  /* Initialize FLAME */
  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size:", '%' );
  scanf( "%d", &b_alg );
  fprintf( stdout, "%c %d\n", '%', b_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );

  fprintf( stdout, "\n" );

  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }


  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;

    if( m < 0 ) m = p / f2c_abs(m_input);

    //datatype = FLA_FLOAT;
    //datatype = FLA_DOUBLE;
    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    FLA_Obj_create( datatype, m, m, 0, 0, &A );
    FLA_Obj_create( datatype, m, m, 0, 0, &Y );
    FLA_Obj_create( datatype, m, m, 0, 0, &B );

    FLA_Random_spd_matrix( uplo, A );
    FLA_Hermitianize( uplo, A );

    FLA_Random_spd_matrix( uplo, B );
    FLA_Chol( uplo, B );

/*
    time_Eig_gest_nu( 0, FLA_ALG_REFERENCE, n_repeats, p, b_alg,
                      inv, uplo, A, B, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REF( %d, 1:2 ) = [ %d  %6.3lf ]; \n", i, p, gflops );
    fflush( stdout );
*/

    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:7 ) = [ %d  ", variant, i, p );
      fflush( stdout );

      time_Eig_gest_nu( variant, FLA_ALG_UNBLOCKED, n_repeats, p, b_alg,
                        inv, uplo, A, Y, B, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Eig_gest_nu( variant, FLA_ALG_UNB_OPT, n_repeats, p, b_alg,
                        inv, uplo, A, Y, B, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Eig_gest_nu( variant, FLA_ALG_BLOCKED, n_repeats, p, b_alg,
                        inv, uplo, A, Y, B, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );
    }

    FLA_Obj_free( &A );
    FLA_Obj_free( &Y );
    FLA_Obj_free( &B );

    fprintf( stdout, "\n" );
  }

/*
  // Print the MATLAB commands to plot the data

  // Delete all existing figures
  fprintf( stdout, "figure;\n" );

  // Plot the performance of the reference implementation
  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  // Indicate that you want to add to the existing plot
  fprintf( stdout, "hold on;\n" );

  // Plot the data for the other numbers of threads
  for ( i = 1; i <= n_variants; i++ ){
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n", 
             i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i <= n_variants; i++ )
    fprintf( stdout, "'FLAME var%d', ... \n", i );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME chol\\_l performance (%s)' );\n", 
           m_dim_desc );
  fprintf( stdout, "print -depsc chol_l_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Example #18
0
int main(int argc, char *argv[])
{
  int m, n, k, nfirst, nlast, ninc, i, irep,
    nrepeats, nb_alg, check;;

  double
    dtime,
    dtime_best,
    gflops,
    max_gflops,
    diff,
    d_n;

  FLA_Obj
    A, B, C, Cref, Cold;
  
  /* Initialize FLAME */
  FLA_Init( );

  /* Every time trial is repeated "repeat" times */
  printf( "%% number of repeats:" );
  scanf( "%d", &nrepeats );
  printf( "%% %d\n", nrepeats );

  /* Enter the max GFLOPS attainable */
  printf( "%% enter max GFLOPS:" );
  scanf( "%lf", &max_gflops );
  printf( "%% %lf\n", max_gflops );

  /* Enter the algorithmic block size */
  printf( "%% enter nb_alg:" );
  scanf( "%d", &nb_alg );
  printf( "%% %d\n", nb_alg );

  /* Timing trials for matrix sizes n=nfirst to nlast in increments 
     of ninc will be performed */
  printf( "%% enter nfirst, nlast, ninc:" );
  scanf( "%d%d%d", &nfirst, &nlast, &ninc );
  printf( "%% %d %d %d\n", nfirst, nlast, ninc );

  i = 1;
  for ( n=nfirst; n<= nlast; n+=ninc ){
   
    /* Allocate space for the matrices */

    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &A );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &B );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &C );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &Cref );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &Cold );

    /* Generate random matrices L and B */
    FLA_Random_matrix( A );
    FLA_Random_matrix( B );
    FLA_Random_matrix( Cold );

    gflops = 2.0 * n * n * n * 1.0e-09;

    /* Time FLA_Symm */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, Cref );

      dtime = FLA_Clock();

      FLA_Symm( FLA_LEFT, FLA_LOWER_TRIANGULAR, 
		FLA_ONE, A, B, FLA_ONE, Cref );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    printf( "data_FLAME( %d, 1:2 ) = [ %d %le ];\n", i, n,
            gflops / dtime_best );
    fflush( stdout );


    /* Time the your implementations */


#if TEST_UNB_VAR1==TRUE
    /* Variant 1 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var1( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var1( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR1==TRUE
    /* Variant 1 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var1( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var1( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_UNB_VAR2==TRUE
    /* Variant 2 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var2( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var2( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR2==TRUE
    /* Variant 2 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var2( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var2( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_UNB_VAR3==TRUE
    /* Variant 3 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var3( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var3( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR3==TRUE
    /* Variant 3 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var3( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var3( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_UNB_VAR4==TRUE
    /* Variant 4 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var4( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var4( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR4==TRUE
    /* Variant 4 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var4( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var4( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif


#if TEST_UNB_VAR5==TRUE
    /* Variant 5 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var5( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var5( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR5==TRUE
    /* Variant 5 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var5( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var5( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif


#if TEST_UNB_VAR6==TRUE
    /* Variant 6 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var6( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var6( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR6==TRUE
    /* Variant 6 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var6( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var6( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif


#if TEST_UNB_VAR7==TRUE
    /* Variant 7 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var7( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var7( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR7==TRUE
    /* Variant 4 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var7( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var7( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif


#if TEST_UNB_VAR8==TRUE
    /* Variant 8 unblocked */

    for ( irep=0; irep<nrepeats; irep++ ){

      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_unb_var8( A, B, C );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }    

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_unb_var8( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif

#if TEST_BLK_VAR8==TRUE
    /* Variant 4 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Cold, C );
    
      dtime = FLA_Clock();

      Symm_blk_var8( A, B, C, nb_alg );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( C, Cref );

    printf( "data_blk_var8( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );
#endif


    FLA_Obj_free( &A );
    FLA_Obj_free( &B );
    FLA_Obj_free( &C );
    FLA_Obj_free( &Cref );
    FLA_Obj_free( &Cold );
    printf( "\n" );

    i++;
  }

  /* Print the MATLAB commands to plot the data */

  /* Delete all existing figures */
  printf( "close all\n" );

  /* Plot the performance of FLAME */
  printf( "plot( data_FLAME( :,1 ), data_FLAME( :, 2 ), 'k--' ); \n" );

  /* Indicate that you want to add to the existing plot */
  printf( "hold on\n" );

  /* Plot the performance of the reference implementation */
  //  printf( "plot( data_REF( :,1 ), data_REF( :, 2 ), 'k-' ); \n" );

  /* Plot the performance of your implementations */

#if TEST_UNB_VAR1==TRUE
  printf( "plot( data_unb_var1( :,1 ), data_unb_var1( :, 2 ), 'r-.' ); \n" );
#endif
#if TEST_UNB_VAR2==TRUE
  printf( "plot( data_unb_var2( :,1 ), data_unb_var2( :, 2 ), 'g-.' ); \n" );
#endif
#if TEST_UNB_VAR3==TRUE
  printf( "plot( data_unb_var3( :,1 ), data_unb_var3( :, 2 ), 'b-.' ); \n" );
#endif
#if TEST_UNB_VAR4==TRUE
  printf( "plot( data_unb_var4( :,1 ), data_unb_var4( :, 2 ), 'm-.' ); \n" );
#endif
#if TEST_UNB_VAR5==TRUE
  printf( "plot( data_unb_var5( :,1 ), data_unb_var5( :, 2 ), 'c-.' ); \n" );
#endif
#if TEST_UNB_VAR6==TRUE
  printf( "plot( data_unb_var6( :,1 ), data_unb_var6( :, 2 ), 'y-.' ); \n" );
#endif
#if TEST_UNB_VAR7==TRUE
  printf( "plot( data_unb_var7( :,1 ), data_unb_var7( :, 2 ), 'k-.' ); \n" );
#endif
#if TEST_UNB_VAR8==TRUE
  printf( "plot( data_unb_var8( :,1 ), data_unb_var8( :, 2 ), 'm:' ); \n" );
#endif
#if TEST_BLK_VAR1==TRUE
  printf( "plot( data_blk_var1( :,1 ), data_blk_var1( :, 2 ), 'r--' ); \n" );
#endif
#if TEST_BLK_VAR2==TRUE
  printf( "plot( data_blk_var2( :,1 ), data_blk_var2( :, 2 ), 'g--' ); \n" );
#endif
#if TEST_BLK_VAR3==TRUE
  printf( "plot( data_blk_var3( :,1 ), data_blk_var3( :, 2 ), 'b--' ); \n" );
#endif
#if TEST_BLK_VAR4==TRUE
  printf( "plot( data_blk_var4( :,1 ), data_blk_var4( :, 2 ), 'm--' ); \n" );
#endif
#if TEST_BLK_VAR5==TRUE
  printf( "plot( data_blk_var5( :,1 ), data_blk_var5( :, 2 ), 'c--' ); \n" );
#endif
#if TEST_BLK_VAR6==TRUE
  printf( "plot( data_blk_var6( :,1 ), data_blk_var6( :, 2 ), 'y--' ); \n" );
#endif
#if TEST_BLK_VAR7==TRUE
  printf( "plot( data_blk_var7( :,1 ), data_blk_var7( :, 2 ), 'k--' ); \n" );
#endif
#if TEST_BLK_VAR8==TRUE
  printf( "plot( data_blk_var8( :,1 ), data_blk_var8( :, 2 ), 'm-' ); \n" );
#endif

  printf( "hold on \n");

  printf( "xlabel( 'matrix dimension m=n' );\n");
  printf( "ylabel( 'GFLOPS/sec.' );\n");
  //  printf( "axis( [ 0 %d 0 %3.1f ] ); \n", nlast, max_gflops );
  printf( "legend( 'FLA Trsm', ...\n");
#if TEST_UNB_VAR1==TRUE
  printf( "        'unb var1', ...\n");
#endif
#if TEST_UNB_VAR2==TRUE
  printf( "        'unb var2', ...\n");
#endif
#if TEST_UNB_VAR3==TRUE
  printf( "        'unb var3', ...\n");
#endif
#if TEST_UNB_VAR4==TRUE
  printf( "        'unb var4', ...\n");
#endif
#if TEST_UNB_VAR5==TRUE
  printf( "        'unb var5', ...\n");
#endif
#if TEST_UNB_VAR6==TRUE
  printf( "        'unb var6', ...\n");
#endif
#if TEST_UNB_VAR7==TRUE
  printf( "        'unb var7', ...\n");
#endif
#if TEST_UNB_VAR8==TRUE
  printf( "        'unb var8', ...\n");
#endif
#if TEST_BLK_VAR1==TRUE
  printf( "        'blk var1', ...\n");
#endif
#if TEST_BLK_VAR2==TRUE
  printf( "        'blk var2', ...\n");
#endif
#if TEST_BLK_VAR3==TRUE
  printf( "        'blk var3', ...\n");
#endif
#if TEST_BLK_VAR4==TRUE
  printf( "        'blk var4', ...\n");
#endif
#if TEST_BLK_VAR5==TRUE
  printf( "        'blk var5', ...\n");
#endif
#if TEST_BLK_VAR6==TRUE
  printf( "        'blk var6', ...\n");
#endif
#if TEST_BLK_VAR7==TRUE
  printf( "        'blk var7', ...\n");
#endif
#if TEST_BLK_VAR8==TRUE
  printf( "        'blk var8', ...\n");
#endif
  printf( "         2 );\n");

  FLA_Finalize( );
}
Example #19
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    nb_alg,
    m_input, n_input,
    m, n,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i, j,
    n_param_combos = N_PARAM_COMBOS;

  int sign;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, B, C, C_ref, scale, isgn, norm;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats: ", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter FLASH blocksize: ", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc: ", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c Enter sign (-1 or 1):", '%' );
  scanf( "%d", &sign );
  fprintf( stdout, "%c %d\n", '%', sign );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d %d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }

  if ( 0 < sign )
    isgn = FLA_ONE;
  else
    isgn = FLA_MINUS_ONE;

  //datatype = FLA_FLOAT;
  datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  //datatype = FLA_DOUBLE_COMPLEX;

  if ( datatype == FLA_DOUBLE || datatype == FLA_DOUBLE_COMPLEX )
  {
    FLA_Obj_create( FLA_DOUBLE, 1, 1, &scale );
    FLA_Obj_create( FLA_DOUBLE, 1, 1, &norm );
  }
  else if ( datatype == FLA_FLOAT || datatype == FLA_COMPLEX )
  {
    FLA_Obj_create( FLA_FLOAT, 1, 1, &scale );
    FLA_Obj_create( FLA_FLOAT, 1, 1, &norm );
  }


  FLASH_Queue_disable();

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;
    n = n_input;

    if( m < 0 ) m = p / abs(m_input);
    if( n < 0 ) n = p / abs(n_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){

      FLASH_Obj_create( datatype, m, m, 1, &nb_alg, &A );
      FLASH_Obj_create( datatype, n, n, 1, &nb_alg, &B );
      FLASH_Obj_create( datatype, m, n, 1, &nb_alg, &C );
      FLASH_Obj_create( datatype, m, n, 1, &nb_alg, &C_ref );

      FLASH_Random_matrix( A );
      FLASH_Random_matrix( B );
      FLASH_Random_matrix( C );

      FLASH_Norm1( A, norm );
      FLASH_Obj_shift_diagonal( FLA_NO_CONJUGATE, norm, A );

      FLASH_Norm1( B, norm );
      if ( FLA_Obj_is( isgn, FLA_MINUS_ONE ) )
        FLA_Negate( norm );
      FLASH_Obj_shift_diagonal( FLA_NO_CONJUGATE, norm, B );


      FLASH_Copy( C, C_ref );

      fprintf( stdout, "data_sylv_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );


      time_Sylv( param_combo, FLA_ALG_REFERENCE, n_repeats, m, n,
                 isgn, A, B, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Sylv( param_combo, FLA_ALG_FRONT, n_repeats, m, n,
                 isgn, A, B, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLASH_Obj_free( &A );
      FLASH_Obj_free( &B );
      FLASH_Obj_free( &C );
      FLASH_Obj_free( &C_ref );
    }

    fprintf( stdout, "\n" );
  }

  FLA_Obj_free( &scale );
  FLA_Obj_free( &norm );

  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_sylv_%s( :,1 ), data_sylv_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_sylv_%s( :,1 ), data_sylv_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_sylv\\_%s', 'fla\\_sylv\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME sylv front-end performance (%s)' );\n", m_dim_desc );
  fprintf( stdout, "print -depsc sylv_front_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );

  FLA_Finalize( );
}
void F77_fla_init()
{
    FLA_Init();
}
Example #21
0
int main(int argc, char *argv[])
{
  int 
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;

  dim_t b_flash;
  dim_t n_threads;

  FLA_Datatype datatype;
  FLA_Uplo     uplo;
  FLA_Inv      inv;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, B, norm;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats: ", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter FLASH blocksize: ", '%' );
  scanf( "%u", &b_flash );
  fprintf( stdout, "%c %u\n", '%', b_flash );

  fprintf( stdout, "%c enter problem size first, last, inc: ", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );

  fprintf( stdout, "%c enter the number of SuperMatrix threads: ", '%' );
  scanf( "%d", &n_threads );
  fprintf( stdout, "%c %d\n", '%', n_threads );

  fprintf( stdout, "\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }


  //datatype = FLA_FLOAT;
  //datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  datatype = FLA_DOUBLE_COMPLEX;

  FLASH_Queue_set_num_threads( n_threads );

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;

    if( m < 0 ) m = p / abs(m_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){

      if ( pc_str[param_combo][0] == 'i' ) inv = FLA_INVERSE;
      else                                 inv = FLA_NO_INVERSE;

      if ( pc_str[param_combo][1] == 'l' ) uplo = FLA_LOWER_TRIANGULAR;
      else                                 uplo = FLA_UPPER_TRIANGULAR;

      FLASH_Obj_create( datatype, m, m, 1, &b_flash, &A );
      FLASH_Obj_create( datatype, m, m, 1, &b_flash, &B );

      FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );

      FLASH_Random_spd_matrix( uplo, A );
      FLASH_Hermitianize( uplo, A );
      
      FLASH_Random_spd_matrix( uplo, B );
      FLASH_Chol( uplo, B );

      
      fprintf( stdout, "data_eig_gest_%s( %d, 1:3 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );

      time_Eig_gest( param_combo, FLA_ALG_FRONT, n_repeats, m,
                     inv, uplo, A, B, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLASH_Obj_free( &A );
      FLASH_Obj_free( &B );
      FLA_Obj_free( &norm );
    }

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_eig_gest_%s( :,1 ), data_eig_gest_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_eig_gest_%s( :,1 ), data_eig_gest_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_eig_gest\\_%s', 'fla\\_eig_gest\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME eig_gest front-end performance (%s)' );\n", m_dim_desc );
  fprintf( stdout, "print -depsc eig_gest_front_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize();

  return 0;
}
Example #22
0
int main(int argc, char *argv[])
{
  int 
    m_input, k_input, n_input,
    m, n, k,
    p_first, p_last, p_inc,
    p,
    nb_alg,
    n_repeats,
    variant,
    n_threads,
    n_thread_experiments,
    i, j;

  int n_threads_exp[64];

  char *colors = "brkgmckkk";
  char *ticks =  "o+*xso+*x";
  char m_dim_desc[14];
  char k_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[5];
  char k_dim_tag[5];
  char n_dim_tag[5];
  char nth_str[32];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff,
    d_n;

  FLA_Obj
    A, B, C, C_ref;

  
  /* Initialize FLAME */
  FLA_Init( );


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size:", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m k n (-1 means bind to problem size: ", '%' );
  scanf( "%d%d%d", &m_input, &k_input, &n_input );
  fprintf( stdout, "%c %d %d %d\n", '%', m_input, k_input, n_input );
  
  fprintf( stdout, "%c enter number of thread experiments: ", '%' );
  scanf( "%d", &n_thread_experiments );
  fprintf( stdout, "%c %d\n", '%', n_thread_experiments );

  fprintf( stdout, "%c enter number of threads for each experiment (separated by spaces): ", '%' );
  for( i = 0; i < n_thread_experiments; ++i )
    scanf( "%d", &n_threads_exp[i] );

  fprintf( stdout, "%c", '%' );
  for( i = 0; i < n_thread_experiments; ++i )
    fprintf( stdout, " %d", n_threads_exp[i] );

  /* Delete all existing data structures */
  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( k_input >  0 ) {
    sprintf( k_dim_desc, "k = %d", k_input );
    sprintf( k_dim_tag,  "k%dc", k_input);
  }
  else if( k_input <  -1 ) {
    sprintf( k_dim_desc, "k = p/%d", -k_input );
    sprintf( k_dim_tag,  "k%dp", -k_input );
  }
  else if( k_input == -1 ) {
    sprintf( k_dim_desc, "k = p" );
    sprintf( k_dim_tag,  "k%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }

  m = p_last;
  k = p_last;
  n = p_last;
  



  sprintf( nth_str, "OMP_NUM_THREADS=%d", n_threads_exp[ n_thread_experiments-1 ] );
  putenv( nth_str );
  blas_cpu_number = n_threads_exp[ n_thread_experiments-1 ];
  blas_thread_init();



  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;
    k = k_input;
    n = n_input;

    if( m < 0 ) m = p / abs(m_input);
    if( k < 0 ) k = p / abs(k_input);
    if( n < 0 ) n = p / abs(n_input);
	
    FLA_Obj_create( FLA_DOUBLE, m, k, &A );
    FLA_Obj_create( FLA_DOUBLE, k, n, &B );
    FLA_Obj_create( FLA_DOUBLE, m, n, &C );
    FLA_Obj_create( FLA_DOUBLE, m, n, &C_ref );

	
    /* Generate random matrices A, C */
	if( p > 4000 ){
    FLA_Random_matrix( A );
    FLA_Random_matrix( B );
    FLA_Random_matrix( C );
	
    FLA_Copy_external( C, C_ref );
	}
	


    blas_cpu_number = 1;

    //time_Gemm_nn( 0, FLA_ALG_REFERENCE, n_repeats, p, nb_alg,
    //                A, B, C, C_ref, &dtime, &diff, &gflops );

    //fprintf( stdout, "data_REF( %d, 1:2 ) = [ %d  %6.3lf ]; \n", i, p, gflops );
    //fflush( stdout );

    for ( j = 0; j < n_thread_experiments; j++ ){

      n_threads = n_threads_exp[j];
      blas_cpu_number = n_threads;

      fprintf( stdout, "data_nth%d( %d, 1:3 ) = [ %d  ", n_threads, i, p );
      fflush( stdout );

      time_Gemm_nn( 0, FLA_ALG_REFERENCE, n_repeats, p, nb_alg,
                    A, B, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );
    }

    fprintf( stdout, "\n" );

    FLA_Obj_free( &A );
    FLA_Obj_free( &B );
    FLA_Obj_free( &C );
    FLA_Obj_free( &C_ref );



  }

  /* Print the MATLAB commands to plot the data */

  /* Delete all existing figures */
  fprintf( stdout, "figure;\n" );

  /* Indicate that you want to add to the existing plot */
  fprintf( stdout, "hold on;\n" );

  /* Plot the data for the other numbers of threads */
  for ( i = 0; i < n_thread_experiments; i++ ){
    fprintf( stdout, "plot( data_nth%d( :,1 ), data_nth%d( :, 2 ), '%c:%c' ); \n", 
             n_threads_exp[ i ], n_threads_exp[ i ], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_thread_experiments-1; i++ )
    fprintf( stdout, "'%d threads', ... \n", n_threads_exp[ i ] );

  fprintf( stdout, "'%d threads', 'Location', 'Best' ); \n", n_threads_exp[ n_thread_experiments-1 ] );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, n_threads_exp[n_thread_experiments-1] * max_gflops );
  fprintf( stdout, "title( 'Goto BLAS dgemm performance (%s, %s, %s)' );\n", 
           m_dim_desc, k_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc gemm_nn_goto_p_%s_%s_%s.eps\n", m_dim_tag, k_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );

  FLA_Finalize( );
}
Example #23
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    m_input, n_input,
    m, n, min_m_n,
    p_first, p_last, p_inc,
    pp,
    pivot_combo,
    n_repeats,
    i,
    n_pivot_combos = N_PIVOT_COMBOS;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    C, b, b_orig, b_norm;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d %d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }

  //datatype = FLA_FLOAT;
  //datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  datatype = FLA_DOUBLE_COMPLEX;

  for ( pp = p_first, i = 1; pp <= p_last; pp += p_inc, i += 1 )
  {
    m = m_input;
    n = n_input;

    if( m < 0 ) m = pp / abs(m_input);
    if( n < 0 ) n = pp / abs(n_input);

    min_m_n = min( m, n );

    for ( pivot_combo = 0; pivot_combo < n_pivot_combos; pivot_combo++ ){
      
      FLA_Obj_create( datatype, m, n, 0, 0, &C );
      FLA_Obj_create( datatype, m, 1, 0, 0, &b );
      FLA_Obj_create( datatype, m, 1, 0, 0, &b_orig );

      if ( FLA_Obj_is_single_precision( C ) )
        FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &b_norm );
      else
        FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &b_norm );

      FLA_Random_matrix( C );
      FLA_Random_matrix( b );
      FLA_Copy_external( b, b_orig );


      fprintf( stdout, "data_lu_%s( %d, 1:5 ) = [ %d  ", pc_str[pivot_combo], i, pp );
      fflush( stdout );

      //time_LU( pivot_combo, FLA_ALG_REFERENCE, n_repeats, m, n,
      //         C, b, b_orig, b_norm, &dtime, &diff, &gflops );

      //fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      //fflush( stdout );

      time_LU( pivot_combo, FLA_ALG_FRONT, n_repeats, m, n,
               C, b, b_orig, b_norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLA_Obj_free( &C );
      FLA_Obj_free( &b );
      FLA_Obj_free( &b_orig );
      FLA_Obj_free( &b_norm );
    }

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_pivot_combos; i++ ) {
    fprintf( stdout, "plot( data_lu_%s( :,1 ), data_lu_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_lu_%s( :,1 ), data_lu_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_pivot_combos; i++ )
    fprintf( stdout, "'ref\\_lu\\_%s', 'fla\\_lu\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME LU front-end performance (%s, %s)' );\n", 
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc lu_front_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Example #24
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    m_input, n_input,
    m, n,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;
  
  char *colors = "brkgmcbrkgmcbrkgmc";
  char *ticks  = "o+*xso+*xso+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, B, C, C_ref;
  
  FLA_Init( );


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d%d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }

  //datatype = FLA_FLOAT;
  //datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  datatype = FLA_DOUBLE_COMPLEX;

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;
    n = n_input;

    if( m < 0 ) m = p / abs(m_input);
    if( n < 0 ) n = p / abs(n_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){
      
      // If multiplying A on the left, A is m x m; ...on the right, A is n x n.
      if ( pc_str[param_combo][0] == 'l' )
        FLA_Obj_create( datatype, m, m, 0, 0, &A );
      else
        FLA_Obj_create( datatype, n, n, 0, 0, &A );

      FLA_Obj_create( datatype, m, n, 0, 0, &B );
      FLA_Obj_create( datatype, m, n, 0, 0, &C );
      FLA_Obj_create( datatype, m, n, 0, 0, &C_ref );

      FLA_Random_matrix( A );
      FLA_Random_matrix( B );
      FLA_Random_matrix( C );

      FLA_Copy_external( C, C_ref );

      fprintf( stdout, "data_symm_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );

      time_Symm( param_combo, FLA_ALG_REFERENCE, n_repeats, m, n,
                 A, B, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Symm( param_combo, FLA_ALG_FRONT, n_repeats, m, n,
                 A, B, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLA_Obj_free( &A );
      FLA_Obj_free( &B );
      FLA_Obj_free( &C );
      FLA_Obj_free( &C_ref );
    }

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_symm_%s( :,1 ), data_symm_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_symm_%s( :,1 ), data_symm_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_symm\\_%s', 'fla\\_symm\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );


  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME symm front-end performance (%s, %s)' );\n",
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc symm_front_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Example #25
0
int main( int argc, char *argv[] ) 
{ 
   int
      i, j,
      n_threads,
      n_repeats,
      n_trials,
      increment,
      begin,
      sorting,
      caching,
      work_stealing,
      data_affinity;

   dim_t
      size,
      nb_alg;

   FLA_Datatype
      datatype = FLA_DOUBLE;

   FLA_Obj 
      A, x, b, b_norm,
      AH, pH, bH;
   
   double 
      b_norm_value,
      dtime, 
      *dtimes,
      *flops;

#ifndef FLA_ENABLE_WINDOWS_BUILD
   char
      output_file_m[100];
   
   FILE
      *fpp;
#endif

   fprintf( stdout, "%c Enter number of repeats: ", '%' );
   scanf( "%d", &n_repeats );
   fprintf( stdout, "%c %d\n", '%', n_repeats );

   fprintf( stdout, "%c Enter blocksize: ", '%' );
   scanf( "%u", &nb_alg );
   fprintf( stdout, "%c %u\n", '%', nb_alg );

   fprintf( stdout, "%c Enter problem size parameters: first, inc, num: ", '%' );
   scanf( "%d%d%d", &begin, &increment, &n_trials );
   fprintf( stdout, "%c %d %d %d\n", '%', begin, increment, n_trials );

   fprintf( stdout, "%c Enter number of threads: ", '%' );
   scanf( "%d", &n_threads );
   fprintf( stdout, "%c %d\n", '%', n_threads );

   fprintf( stdout, "%c Enter SuperMatrix parameters: sorting, caching, work stealing, data affinity: ", '%' );
   scanf( "%d%d%d%d", &sorting, &caching, &work_stealing, &data_affinity );
   fprintf( stdout, "%c %s %s %s %s\n\n", '%', ( sorting ? "TRUE" : "FALSE" ), ( caching ? "TRUE" : "FALSE" ), ( work_stealing ? "TRUE" : "FALSE" ), ( data_affinity ? ( data_affinity == 1 ? "FLASH_QUEUE_AFFINITY_2D_BLOCK_CYCLIC" : "FLASH_QUEUE_AFFINITY_OTHER" ) : "FLASH_QUEUE_AFFINITY_NONE" ) );

#ifdef FLA_ENABLE_WINDOWS_BUILD
   fprintf( stdout, "%s_%u = [\n", OUTPUT_FILE, nb_alg );
#else
   sprintf( output_file_m, "%s/%s_output.m", OUTPUT_PATH, OUTPUT_FILE );
   fpp = fopen( output_file_m, "a" );

   fprintf( fpp, "%%\n" );
   fprintf( fpp, "%% | Matrix Size |    FLASH    |\n" );
   fprintf( fpp, "%% |    n x n    |    GFlops   |\n" );
   fprintf( fpp, "%% -----------------------------\n" );
   fprintf( fpp, "%s_%u = [\n", OUTPUT_FILE, nb_alg );
#endif

   FLA_Init();

   dtimes = ( double * ) FLA_malloc( n_repeats * sizeof( double ) );
   flops  = ( double * ) FLA_malloc( n_trials  * sizeof( double ) );
   
   FLASH_Queue_set_num_threads( n_threads );
   FLASH_Queue_set_sorting( sorting );
   FLASH_Queue_set_caching( caching );
   FLASH_Queue_set_work_stealing( work_stealing );
   FLASH_Queue_set_data_affinity( data_affinity );

   for ( i = 0; i < n_trials; i++ )
   {
      size = begin + i * increment;
      
      FLA_Obj_create( datatype, size, size, 0, 0, &A );
      FLA_Obj_create( datatype, size, 1,    0, 0, &x );
      FLA_Obj_create( datatype, size, 1,    0, 0, &b );
      FLA_Obj_create( datatype, 1,    1,    0, 0, &b_norm );

      for ( j = 0; j < n_repeats; j++ )
      {
         FLA_Random_matrix( A );
         FLA_Random_matrix( b );

         FLASH_Obj_create_hier_copy_of_flat( A, 1, &nb_alg, &AH );
         FLASH_Obj_create( FLA_INT,    size, 1, 1, &nb_alg, &pH );
         FLASH_Obj_create_hier_copy_of_flat( b, 1, &nb_alg, &bH );

         dtime = FLA_Clock();

         FLASH_LU_piv( AH, pH );

         dtime = FLA_Clock() - dtime;
         dtimes[j] = dtime;

         FLASH_Apply_pivots( FLA_LEFT, FLA_NO_TRANSPOSE, pH, bH );
         FLASH_Trsv( FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG, 
                     AH, bH );
         FLASH_Trsv( FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
                     AH, bH );

         FLASH_Obj_free( &AH );
         FLASH_Obj_free( &pH );

         FLASH_Obj_flatten( bH, x );
         FLASH_Obj_free( &bH );
      }
      
      dtime = dtimes[0];
      for ( j = 1; j < n_repeats; j++ )
         dtime = min( dtime, dtimes[j] );
      flops[i] = 2.0 / 3.0 * size * size * size / dtime / 1e9;

      FLA_Gemv_external( FLA_NO_TRANSPOSE, FLA_ONE, 
                         A, x, FLA_MINUS_ONE, b );
      FLA_Nrm2_external( b, b_norm );
      FLA_Obj_extract_real_scalar( b_norm, &b_norm_value );

#ifdef FLA_ENABLE_WINDOWS_BUILD
      fprintf( stdout, "   %d   %6.3f   %le\n", size, flops[i], b_norm_value );
#else      
      fprintf( fpp, "   %d   %6.3f\n", size, flops[i] );

      fprintf( stdout, "Time: %e  |  GFlops: %6.3f\n", dtime, flops[i] );
      fprintf( stdout, "Matrix size: %u x %u  |  nb_alg: %u\n", 
               size, size, nb_alg );
      fprintf( stdout, "Norm of difference: %le\n\n", b_norm_value );
#endif

      FLA_Obj_free( &A );
      FLA_Obj_free( &x );
      FLA_Obj_free( &b );
      FLA_Obj_free( &b_norm );
   }

#ifdef FLA_ENABLE_WINDOWS_BUILD
   fprintf( stdout, "];\n\n" );
#else
   fprintf( fpp, "];\n" );
   
   fflush( fpp );
   fclose( fpp );
#endif

   FLA_free( dtimes );
   FLA_free( flops );

   FLA_Finalize(); 
   
   return 0; 
}
Example #26
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    precision,
    m_input, k_input, n_input,
    m, k, n,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;
  
  char *colors = "brkgmcbrkgmcbrkgmc";
  char *ticks  = "o+*xso+*xso+*xso+*xs";
  char m_dim_desc[14];
  char k_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char k_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, Ad, Az, B, Bd, Bz, C, Cd, Cz, C_ref, indexd, indexz;
  FLA_Obj alpha0d, alpha0z, alpha1d, alpha1z, normd, normz;
  FLA_Obj alphad, alphaz, betad, betaz, rhod, rhoz;
  FLA_Obj xd, xz, yd, yz;
  
  FLA_Init( );



  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m k n (-1 means bind to problem size): ", '%' );
  scanf( "%d%d%d", &m_input, &k_input, &n_input );
  fprintf( stdout, "%c %d %d %d\n", '%', m_input, k_input, n_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( k_input >  0 ) {
    sprintf( k_dim_desc, "k = %d", k_input );
    sprintf( k_dim_tag,  "k%dc", k_input);
  }
  else if( k_input <  -1 ) {
    sprintf( k_dim_desc, "k = p/%d", -k_input );
    sprintf( k_dim_tag,  "k%dp", -k_input );
  }
  else if( k_input == -1 ) {
    sprintf( k_dim_desc, "k = p" );
    sprintf( k_dim_tag,  "k%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }

  //precision = FLA_SINGLE_PRECISION;
  precision = FLA_DOUBLE_PRECISION;

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;
    k = k_input;
    n = n_input;

    if( m < 0 ) m = p / f2c_abs(m_input);
    if( k < 0 ) k = p / f2c_abs(k_input);
    if( n < 0 ) n = p / f2c_abs(n_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){

      // Determine datatype based on trans argument.
      if ( pc_str[param_combo][0] == 'c' ||
           pc_str[param_combo][1] == 'c' )
      {
        if ( precision == FLA_SINGLE_PRECISION )
          datatype = FLA_COMPLEX;
        else
          datatype = FLA_DOUBLE_COMPLEX;
      }
      else
      {
        if ( precision == FLA_SINGLE_PRECISION )
          datatype = FLA_FLOAT;
        else
          datatype = FLA_DOUBLE;
      }

      // If transposing A, switch dimensions.
      if ( pc_str[param_combo][0] == 'n' )
        FLA_Obj_create( datatype, m, k, 0, 0, &A );
      else
        FLA_Obj_create( datatype, k, m, 0, 0, &A );
      
      // If transposing B, switch dimensions.
      if ( pc_str[param_combo][1] == 'n' )
        FLA_Obj_create( datatype, k, n, 0, 0, &B );
      else
        FLA_Obj_create( datatype, n, k, 0, 0, &B );

      FLA_Obj_create( datatype, m, n, 0, 0, &C );
      FLA_Obj_create( datatype, m, n, 0, 0, &C_ref );

      FLA_Random_matrix( A );
      FLA_Random_matrix( B );
      FLA_Random_matrix( C );

      FLA_Copy_external( C, C_ref );

      
      fprintf( stdout, "data_gemm_%s( %d, 1:5 ) = [ %4d %4d %4d  ", pc_str[param_combo], i, m, k, n );
      fflush( stdout );

      time_Gemm( param_combo, FLA_ALG_REFERENCE, n_repeats, m, k, n,
                 A, B, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );
/*
      time_Gemm( param_combo, FLA_ALG_FRONT, n_repeats, m, k, n,
                 A, B, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );
*/

      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLA_Obj_free( &A );
      FLA_Obj_free( &B );
      FLA_Obj_free( &C );
      FLA_Obj_free( &C_ref );
    }

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_gemm_%s( :,1 ), data_gemm_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_gemm_%s( :,1 ), data_gemm_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_gemm\\_%s', 'fla\\_gemm\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );


  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME gemm front-end performance (%s, %s, %s)' );\n",
           m_dim_desc, k_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc gemm_front_%s_%s_%s.eps\n", m_dim_tag, k_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Example #27
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    n_input,
    mB_input, mC_input, mD_input,
    mB, mC, mD, n,
    p_first, p_last, p_inc,
    p,
    b_alg,
    variant,
    n_repeats,
    i,
    n_variants = 1;
  
  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    B, C, D, T, R, E;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter algorithmic blocksize:", '%' );
  scanf( "%d", &b_alg );
  fprintf( stdout, "%c %d\n", '%', b_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter n (-1 means bind to problem size): ", '%' );
  scanf( "%d", &n_input );
  fprintf( stdout, "%c %d\n", '%', n_input );

  fprintf( stdout, "%c enter mB mC mD (-1 means bind to problem size): ", '%' );
  scanf( "%d %d %d", &mB_input, &mC_input, &mD_input );
  fprintf( stdout, "%c %d %d %d\n", '%', mB_input, mC_input, mD_input );


  fprintf( stdout, "\nclear all;\n\n" );



  //datatype = FLA_FLOAT;
  //datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  datatype = FLA_DOUBLE_COMPLEX;

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    mB = mB_input;
    mC = mC_input;
    mD = mD_input;
    n  = n_input;

    if( mB < 0 ) mB = p / abs(mB_input);
    if( mC < 0 ) mC = p / abs(mC_input);
    if( mD < 0 ) mD = p / abs(mD_input);
    if( n  < 0 ) n  = p / abs(n_input);

    for ( variant = 0; variant < n_variants; variant++ ){
      
      FLA_Obj_create( datatype, mB, n, 0, 0, &B );
      FLA_Obj_create( datatype, mC, n, 0, 0, &C );
      FLA_Obj_create( datatype, mD, n, 0, 0, &D );
      FLA_Obj_create( datatype, b_alg, n, 0, 0, &T );
      FLA_Obj_create( datatype, n,  n, 0, 0, &R );
      FLA_Obj_create( datatype, n,  n, 0, 0, &E );

      FLA_Random_matrix( B );
      FLA_Random_matrix( C );
      FLA_Random_matrix( D );

      FLA_Set( FLA_ZERO, R );
      FLA_Herk_external( FLA_UPPER_TRIANGULAR, FLA_CONJ_TRANSPOSE, FLA_ONE, B, FLA_ONE, R );
      FLA_Herk_external( FLA_UPPER_TRIANGULAR, FLA_CONJ_TRANSPOSE, FLA_ONE, D, FLA_ONE, R );
      FLA_Chol( FLA_UPPER_TRIANGULAR, R );

      FLA_Set( FLA_ZERO, E );
      FLA_Herk_external( FLA_UPPER_TRIANGULAR, FLA_CONJ_TRANSPOSE, FLA_ONE, B, FLA_ONE, E );
      FLA_Herk_external( FLA_UPPER_TRIANGULAR, FLA_CONJ_TRANSPOSE, FLA_ONE, C, FLA_ONE, E );
      FLA_Chol( FLA_UPPER_TRIANGULAR, E );

      fprintf( stdout, "data_uddate_ut( %d, 1:5 ) = [ %d  ", i, p );
      fflush( stdout );

      time_UDdate_UT( variant, FLA_ALG_FRONT, n_repeats, mB, mC, mD, n,
                      B, C, D, T, R, E, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLA_Obj_free( &B );
      FLA_Obj_free( &C );
      FLA_Obj_free( &D );
      FLA_Obj_free( &T );
      FLA_Obj_free( &R );
      FLA_Obj_free( &E );
    }

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_variants; i++ ) {
    fprintf( stdout, "plot( data_qr_ut( :,1 ), data_qr_ut( :, 2 ), '%c:%c' ); \n",
            colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_qr_ut( :,1 ), data_qr_ut( :, 4 ), '%c-.%c' ); \n",
            colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_variants; i++ )
    fprintf( stdout, "'ref\\_qr\\_ut', 'fla\\_qr\\_ut', ... \n" );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME UDdate_UT front-end performance (%s, %s)' );\n", 
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc qr_ut_front_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Example #28
0
int main(int argc, char *argv[])
{
  int 
    m_input, n_input,
    m, n,
    p_first, p_last, p_inc,
    p,
    nb_alg,
    variant,
    n_repeats,
    i, j,
    datatype,
    n_variants = 18;

  int  sign;
  
  int  blocksize[16];

  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, B, C, C_ref, scale, isgn, norm;
  

  /* Initialize FLAME */
  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size:", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c Enter sign (-1 or 1):", '%' );
  scanf( "%d", &sign );
  fprintf( stdout, "%c %d\n", '%', sign );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d %d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );


  /* Delete all existing data structures */
  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }

  if ( 0 < sign )
    isgn = FLA_ONE;
  else
    isgn = FLA_MINUS_ONE;


  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;
    n = n_input;

    if( m < 0 ) m = p / abs(m_input);
    if( n < 0 ) n = p / abs(n_input);

    //datatype = FLA_FLOAT;
    //datatype = FLA_DOUBLE;
    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    FLA_Obj_create( datatype, m, m, 0, 0, &A );
    FLA_Obj_create( datatype, n, n, 0, 0, &B );
    FLA_Obj_create( datatype, m, n, 0, 0, &C );
    FLA_Obj_create( datatype, m, n, 0, 0, &C_ref );

    if ( datatype == FLA_DOUBLE || datatype == FLA_DOUBLE_COMPLEX )
    {
      FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &scale );
      FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &norm );
    }
    else if ( datatype == FLA_FLOAT || datatype == FLA_COMPLEX )
    {
      FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &scale );
      FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &norm );
    }

    FLA_Random_tri_matrix( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
    FLA_Random_tri_matrix( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, B );
    FLA_Random_matrix( C );

    FLA_Norm1( A, norm );
    FLA_Shift_diag( FLA_NO_CONJUGATE, norm, A );

    FLA_Norm1( B, norm );
    if ( FLA_Obj_is( isgn, FLA_MINUS_ONE ) )
      FLA_Negate( norm );
    FLA_Shift_diag( FLA_NO_CONJUGATE, norm, B );


    time_Sylv_nn( 0, FLA_ALG_REFERENCE, n_repeats, m, n, nb_alg,
                  isgn, A, B, C, C_ref, scale, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REF( %d, 1:2 ) = [ %d  %6.3lf ]; \n", i, p, gflops );
    fflush( stdout );

    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:3 ) = [ %d  ", variant, i, p );
      fflush( stdout );

      time_Sylv_nn( variant, FLA_ALG_UNB_OPT, n_repeats, m, n, nb_alg,
                    isgn, A, B, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Sylv_nn( variant, FLA_ALG_BLOCKED, n_repeats, m, n, nb_alg,
                    isgn, A, B, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );
    }

    FLA_Obj_free( &A );
    FLA_Obj_free( &B );
    FLA_Obj_free( &C );
    FLA_Obj_free( &C_ref );
    FLA_Obj_free( &scale );
    FLA_Obj_free( &norm );
    fprintf( stdout, "\n" );
  }

  /* Print the MATLAB commands to plot the data */

  /* Delete all existing figures */
  fprintf( stdout, "figure;\n" );

  /* Plot the performance of the reference implementation */
  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  /* Indicate that you want to add to the existing plot */
  fprintf( stdout, "hold on;\n" );

  /* Plot the data for the other numbers of threads */
  for ( i = 1; i <= n_variants; i++ ){
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n", 
             i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i <= n_variants; i++ )
    fprintf( stdout, "'FLAME var%d', ... \n", i );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME sylv\\_nn performance (%s)' );\n", 
           m_dim_desc );
  fprintf( stdout, "print -depsc sylv_nn_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );

  FLA_Finalize( );
}
Example #29
0
int main(int argc, char *argv[])
{
  int 
    m_input, n_input,
    m, n,
    p_first, p_last, p_inc,
    p,
    nb_alg,
    n_repeats,
    variant,
    i, j,
    datatype,
    n_variants = N_VARIANTS;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, B, C, C_ref;
  
  /* Initialize FLAME */
  FLA_Init( );


  fprintf( stdout, "%c number of repeats: ", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size: ", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc: ", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d%d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );


  /* Delete all existing data structures */
  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }



  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;
    n = n_input;

    if( m < 0 ) m = p / abs(m_input);
    if( n < 0 ) n = p / abs(n_input);

    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    /* Allocate space for the matrices */
    FLA_Obj_create( datatype, m, m, &A );
    FLA_Obj_create( datatype, m, n, &C );
    FLA_Obj_create( datatype, m, n, &C_ref );

    /* Generate random matrices A, C */
    FLA_Random_tri_matrix( FLA_LOWER_TRIANGULAR, FLA_UNIT_DIAG, A );
    FLA_Random_matrix( C );

    FLA_Copy_external( C, C_ref );


    /* Time the reference implementation */
    time_Trmm_luh( 0, FLA_ALG_REFERENCE, n_repeats, p, nb_alg,
                  A, B, C, C_ref, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REF( %d, 1:2 ) = [ %d  %6.3lf ]; \n", i, p, gflops );
    fflush( stdout );

    for ( variant = 1; variant <= n_variants; variant++ ){
      
      //fprintf( stdout, "data_var%d( %d, 1:7 ) = [ %d  ", variant, i, p );
      fprintf( stdout, "data_var%d( %d, 1:5 ) = [ %d  ", variant, i, p );
      fflush( stdout );


      time_Trmm_luh( variant, FLA_ALG_UNBLOCKED, n_repeats, p, nb_alg,
                    A, B, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Trmm_luh( variant, FLA_ALG_BLOCKED, n_repeats, p, nb_alg,
                    A, B, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      //time_Trmm_luh( variant, FLA_ALG_OPTIMIZED, n_repeats, p, nb_alg,
      //              A, B, C, C_ref, &dtime, &diff, &gflops );

      //fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      //fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );
    }
    fprintf( stdout, "\n" );

    FLA_Obj_free( &A );
    FLA_Obj_free( &C );
    FLA_Obj_free( &C_ref );
  }

  /* Print the MATLAB commands to plot the data */

  /* Delete all existing figures */
  fprintf( stdout, "figure;\n" );

  /* Plot the performance of the reference implementation */
  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  /* Indicate that you want to add to the existing plot */
  fprintf( stdout, "hold on;\n" );

  /* Plot the data for the other numbers of threads */
  for ( i = 1; i <= n_variants; i++ ) {
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 4 ), '%c-.%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
    //fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 6 ), '%c--%c' ); \n",
    //        i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i < n_variants; i++ )
    //fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d', 'opt\\_var%d', ... \n", i, i, i );
    fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d', ... \n", i, i );

  i = n_variants;
  fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d' ); \n", i, i );


  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME trmm\\_luc performance (%s, %s)' );\n", 
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc trmm_luc_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );

  FLA_Finalize( );
}
Example #30
0
int main(int argc, char *argv[])
{
  int n, nfirst, nlast, ninc, nlast_unb, i, irep,
    nrepeats, nb_alg;

  double
    dtime, dtime_best, 
    gflops, max_gflops,
    diff, d_n;

  FLA_Obj
    A, Aref, Aold, delta;
  
  /* Initialize FLAME */
  FLA_Init( );

  /* Every time trial is repeated "repeat" times and the fastest run in recorded */
  printf( "%% number of repeats:" );
  scanf( "%d", &nrepeats );
  printf( "%% %d\n", nrepeats );

  /* Enter the max GFLOPS attainable 
     This is used to set the y-axis range for the graphs. Here is how
     you figure out what to enter (on Linux machines):
     1) more /proc/cpuinfo   (this lists the contents of this file).
     2) read through this and figure out the clock rate of the machine (in GHz).
     3) Find out (from an expert of from the web) the number of floating point
        instructions that can be performed per core per clock cycle.
     4) Figure out if you are using "multithreaded BLAS" which automatically
        parallelize calls to the Basic Linear Algebra Subprograms.  If so,
        check how many cores are available.
     5) Multiply 2) x 3) x 4) and enter this in response to the below.

     If you enter a value for max GFLOPS that is lower that the maximum that
     is observed in the experiments, then the top of the graph is set to the 
     observed maximum.  Thus, one possibility is to simply set this to 0.0.
  */

  printf( "%% enter max GFLOPS:" );
  scanf( "%lf", &max_gflops );
  printf( "%% %lf\n", max_gflops );

  /* Enter the algorithmic block size */
  printf( "%% enter nb_alg:" );
  scanf( "%d", &nb_alg );
  printf( "%% %d\n", nb_alg );

  /* Timing trials for matrix sizes n=nfirst to nlast in increments 
     of ninc will be performed.  Unblocked versions are only tested to
     nlast_unb */
  printf( "%% enter nfirst, nlast, ninc, nlast_unb:" );
  scanf( "%d%d%d%d", &nfirst, &nlast, &ninc, &nlast_unb );
  printf( "%% %d %d %d %d\n", nfirst, nlast, ninc, nlast_unb );

  i = 1;
  for ( n=nfirst; n<= nlast; n+=ninc ){
   
    /* Allocate space for the matrices */
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &A );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &Aref );
    FLA_Obj_create( FLA_DOUBLE, n, n, 1, n, &Aold );
    FLA_Obj_create( FLA_DOUBLE, 1, 1, 1, 1, &delta );

    /* Generate random matrix A and save in Aold */
    FLA_Random_matrix( Aold );

    /* Add something large to the diagonal to make sure it isn't ill-conditionsed */
    d_n = ( double ) n;
    *( ( double * ) FLA_Obj_buffer_at_view( delta ) ) = d_n;
    FLA_Shift_diag( FLA_NO_CONJUGATE, delta, Aold );
    
    /* Set gflops = billions of floating point operations that will be performed */
    gflops = 1.0/3.0 * n * n * n * 1.0e-09;

    /* Time the reference implementation */
#if TIME_LAPACK == TRUE

#else
    //    if ( n <= nlast_unb )
#endif
    {
      for ( irep=0; irep<nrepeats; irep++ ){
	FLA_Copy( Aold, Aref );
    
	dtime = FLA_Clock();
    
	REF_Chol( TIME_LAPACK, Aref, nb_alg );
    
	dtime = FLA_Clock() - dtime;
    
	if ( irep == 0 ) 
	  dtime_best = dtime;
	else
	  dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
      }
  
      printf( "data_REF( %d, 1:2 ) = [ %d %le ];\n", i, n,
	      gflops / dtime_best );
      fflush( stdout );
    }  

    /* Time FLA_Chol */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );

      dtime = FLA_Clock();

      FLA_Chol( FLA_LOWER_TRIANGULAR, A );

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    printf( "data_FLAME( %d, 1:2 ) = [ %d %le ];\n", i, n,
            gflops / dtime_best );

    if ( gflops / dtime_best > max_gflops ) 
      max_gflops = gflops / dtime_best;

    fflush( stdout );


    /* Time the your implementations */


    /* Variant 1 unblocked */
    
    if ( n <= nlast_unb ){
      for ( irep=0; irep<nrepeats; irep++ ){

	FLA_Copy( Aold, A );
    
	dtime = FLA_Clock();

#if TIME_UNB_VAR1 == TRUE
	Chol_unb_var1( A );
#else
	REF_Chol( TIME_LAPACK, A, nb_alg );
#endif


	dtime = FLA_Clock() - dtime;

	if ( irep == 0 ) 
	  dtime_best = dtime;
	else
	  dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
      }    

      diff = FLA_Max_elemwise_diff( A, Aref );

      printf( "data_unb_var1( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
	      gflops / dtime_best, diff );
      fflush( stdout );
    }

    /* Variant 1 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

#if TIME_BLK_VAR1 == TRUE
      Chol_blk_var1( A, nb_alg );
#else
      REF_Chol( TIME_LAPACK, A, nb_alg );
#endif

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_blk_var1( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );


    /* Variant 2 unblocked */
    if ( n <= nlast_unb ){
      for ( irep=0; irep<nrepeats; irep++ ){
	
	FLA_Copy( Aold, A );
	
	dtime = FLA_Clock();
	

#if TIME_UNB_VAR2 == TRUE
	Chol_unb_var2( A );
#else	
      REF_Chol( TIME_LAPACK, A, nb_alg );
#endif

	dtime = FLA_Clock() - dtime;
	
	if ( irep == 0 ) 
	  dtime_best = dtime;
	else
	  dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
      }    
      
      diff = FLA_Max_elemwise_diff( A, Aref );
      
      printf( "data_unb_var2( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
	      gflops / dtime_best, diff );
      fflush( stdout );
    }

    /* Variant 2 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

#if TIME_BLK_VAR2 == TRUE
      Chol_blk_var2( A, nb_alg );
#else
      REF_Chol( TIME_LAPACK, A, nb_alg );
#endif

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_blk_var2( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    /* Variant 3 unblocked */
    if ( n <= nlast_unb ){
      for ( irep=0; irep<nrepeats; irep++ ){
	
	FLA_Copy( Aold, A );
	
	dtime = FLA_Clock();
	
#if TIME_UNB_VAR3 == TRUE
	Chol_unb_var3( A );
#else
      REF_Chol( TIME_LAPACK, A, nb_alg );
#endif

	dtime = FLA_Clock() - dtime;
	
	if ( irep == 0 ) 
	  dtime_best = dtime;
	else
	  dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
      }    
      
      diff = FLA_Max_elemwise_diff( A, Aref );
      
      printf( "data_unb_var3( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
	      gflops / dtime_best, diff );
      fflush( stdout );
    }

    /* Variant 3 blocked */

    for ( irep=0; irep<nrepeats; irep++ ){
      FLA_Copy( Aold, A );
    
      dtime = FLA_Clock();

#if TIME_BLK_VAR3 == TRUE
      Chol_blk_var3( A, nb_alg );
#else
      REF_Chol( TIME_LAPACK, A, nb_alg );
#endif

      dtime = FLA_Clock() - dtime;

      if ( irep == 0 ) 
	dtime_best = dtime;
      else
	dtime_best = ( dtime < dtime_best ? dtime : dtime_best );
    }

    diff = FLA_Max_elemwise_diff( A, Aref );

    printf( "data_blk_var3( %d, 1:3 ) = [ %d %le  %le];\n", i, n,
            gflops / dtime_best, diff );
    fflush( stdout );

    FLA_Obj_free( &A );
    FLA_Obj_free( &Aold );
    FLA_Obj_free( &Aref );
    FLA_Obj_free( &delta );
    printf( "\n" );

    i++;
  }

  /* Print the MATLAB commands to plot the data */

  /* Delete all existing figures */
  printf( "close all\n" );


#if OCTAVE == TRUE
  /* Plot the performance of FLAME */
  printf( "plot( data_FLAME( :,1 ), data_FLAME( :, 2 ), '-k;libflame;' ); \n" );

  /* Indicate that you want to add to the existing plot */
  printf( "hold on\n" );

  /* Plot the performance of the reference implementation */
  printf( "plot( data_REF( :,1 ), data_REF( :, 2 ), '-m;reference;' ); \n" );

  /* Plot the performance of your implementations */
  printf( "plot( data_unb_var1( :,1 ), data_unb_var1( :, 2 ), \"-rx;UnbVar1;\" ); \n" );
  printf( "plot( data_unb_var2( :,1 ), data_unb_var2( :, 2 ), \"-go;UnbVar2;\" ); \n" );
  printf( "plot( data_unb_var3( :,1 ), data_unb_var3( :, 2 ), \"-b*;UnbVar3;\" ); \n" );
  printf( "plot( data_blk_var1( :,1 ), data_blk_var1( :, 2 ), \"-rx;BlkVar1;\", \"markersize\", 3 ); \n" );
  printf( "plot( data_blk_var2( :,1 ), data_blk_var2( :, 2 ), \"-go;BlkVar2;\", \"markersize\", 3  ); \n" );
  printf( "plot( data_blk_var3( :,1 ), data_blk_var3( :, 2 ), \"-b*;BlkVar3;\", \"markersize\", 3  ); \n" );

#else

  /* Plot the performance of FLAME */
  printf( "plot( data_FLAME( :,1 ), data_FLAME( :, 2 ), 'k--' ); \n" );

  /* Indicate that you want to add to the existing plot */
  printf( "hold on\n" );

  /* Plot the performance of the reference implementation */
  printf( "plot( data_REF( :,1 ), data_REF( :, 2 ), 'k-' ); \n" );

  /* Plot the performance of your implementations */
  printf( "plot( data_unb_var1( :,1 ), data_unb_var1( :, 2 ), 'r-.x' ); \n" );
  printf( "plot( data_unb_var2( :,1 ), data_unb_var2( :, 2 ), 'g-.o' ); \n" );
  printf( "plot( data_unb_var3( :,1 ), data_unb_var3( :, 2 ), 'b-.*' ); \n" );
  printf( "plot( data_blk_var1( :,1 ), data_blk_var1( :, 2 ), 'r-x'); \n" );
  printf( "plot( data_blk_var2( :,1 ), data_blk_var2( :, 2 ), 'g-o'); \n" );
  printf( "plot( data_blk_var3( :,1 ), data_blk_var3( :, 2 ), 'b-*'); \n" );
#endif

  printf( "hold off \n");

  printf( "xlabel( 'matrix dimension m=n' );\n");
  printf( "ylabel( 'GFLOPS/sec.' );\n");
  printf( "axis( [ 0 %d 0 %3.1f ] ); \n", nlast, max_gflops );

#if OCTAVE == TRUE
  printf( "legend( 2 ); \n" );

  printf(" print -landscape -solid -color -deps -F:24 Chol.eps\n" );
#else
  printf( "legend( 'FLA Chol', ...\n");
  printf( "        'Simple loops', ...\n");
  printf( "        'unb var1', ...\n");
  printf( "        'unb var2', ...\n");
  printf( "        'unb var3', ...\n");
  printf( "        'blk var1', ...\n");
  printf( "        'blk var2', ...\n");
  printf( "        'blk var3', 2);\n");

  printf( "print -r100 -dpdf Chol.pdf\n");
#endif

  FLA_Finalize( );

  exit( 0 );
}