Example #1
0
void
unpack0 (gfc_array_char *ret, const gfc_array_char *vector,
	 const gfc_array_l1 *mask, char *field)
{
  gfc_array_char tmp;

  index_type type_size;
  index_type size;

  type_size = GFC_DTYPE_TYPE_SIZE (vector);
  size = GFC_DESCRIPTOR_SIZE (vector);

  switch(type_size)
    {
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_DERIVED_1:
      unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
		  mask, (GFC_INTEGER_1 *) field);
      return;

    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_INTEGER_2:
      unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
		  mask, (GFC_INTEGER_2 *) field);
      return;

    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_INTEGER_4:
      unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
		  mask, (GFC_INTEGER_4 *) field);
      return;

    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_INTEGER_8:
      unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
		  mask, (GFC_INTEGER_8 *) field);
      return;

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_INTEGER_16:
      unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
		   mask, (GFC_INTEGER_16 *) field);
      return;
#endif
    case GFC_DTYPE_REAL_4:
      unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
		  mask, (GFC_REAL_4 *) field);
      return;

    case GFC_DTYPE_REAL_8:
      unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector,
		  mask, (GFC_REAL_8  *) field);
      return;

#ifdef HAVE_GFC_REAL_10
    case GFC_DTYPE_REAL_10:
      unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
		   mask, (GFC_REAL_10 *) field);
      return;
#endif

#ifdef HAVE_GFC_REAL_16
    case GFC_DTYPE_REAL_16:
      unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
		   mask, (GFC_REAL_16 *) field);
      return;
#endif

    case GFC_DTYPE_COMPLEX_4:
      unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
		  mask, (GFC_COMPLEX_4 *) field);
      return;

    case GFC_DTYPE_COMPLEX_8:
      unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
		  mask, (GFC_COMPLEX_8 *) field);
      return;

#ifdef HAVE_GFC_COMPLEX_10
    case GFC_DTYPE_COMPLEX_10:
      unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
		   mask, (GFC_COMPLEX_10 *) field);
      return;
#endif

#ifdef HAVE_GFC_COMPLEX_16
    case GFC_DTYPE_COMPLEX_16:
      unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
		   mask, (GFC_COMPLEX_16 *) field);
      return;
#endif
    case GFC_DTYPE_DERIVED_2:
      if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data)
	  || GFC_UNALIGNED_2(field))
	break;
      else
	{
	  unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
		      mask, (GFC_INTEGER_2 *) field);
	  return;
	}

    case GFC_DTYPE_DERIVED_4:
      if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data)
	  || GFC_UNALIGNED_4(field))
	break;
      else
	{
	  unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
		      mask, (GFC_INTEGER_4 *) field);
	  return;
	}

    case GFC_DTYPE_DERIVED_8:
      if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data)
	  || GFC_UNALIGNED_8(field))
	break;
      else
	{
	  unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
		      mask, (GFC_INTEGER_8 *) field);
	  return;
	}
#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_DERIVED_16:
      if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data)
	  || GFC_UNALIGNED_16(field))
	break;
      else
	{
	  unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
		       mask, (GFC_INTEGER_16 *) field);
	  return;
	}
#endif
    }

  memset (&tmp, 0, sizeof (tmp));
  tmp.dtype = 0;
  tmp.data = field;
  unpack_internal (ret, vector, mask, &tmp, GFC_DESCRIPTOR_SIZE (vector), 0);
}
Example #2
0
static void
cshift0 (gfc_array_char * ret, const gfc_array_char * array,
	 ptrdiff_t shift, int which, index_type size)
{
  /* r.* indicates the return array.  */
  index_type rstride[GFC_MAX_DIMENSIONS];
  index_type rstride0;
  index_type roffset;
  char *rptr;

  /* s.* indicates the source array.  */
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride0;
  index_type soffset;
  const char *sptr;

  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type dim;
  index_type len;
  index_type n;
  index_type arraysize;

  index_type type_size;

  if (which < 1 || which > GFC_DESCRIPTOR_RANK (array))
    runtime_error ("Argument 'DIM' is out of range in call to 'CSHIFT'");

  arraysize = size0 ((array_t *) array);

  if (ret->base_addr == NULL)
    {
      int i;

      ret->offset = 0;
      GFC_DTYPE_COPY(ret,array);
      for (i = 0; i < GFC_DESCRIPTOR_RANK (array); i++)
        {
	  index_type ub, str;

          ub = GFC_DESCRIPTOR_EXTENT(array,i) - 1;

          if (i == 0)
            str = 1;
          else
            str = GFC_DESCRIPTOR_EXTENT(ret,i-1) *
	      GFC_DESCRIPTOR_STRIDE(ret,i-1);

	  GFC_DIMENSION_SET(ret->dim[i], 0, ub, str);
        }

      /* xmallocarray allocates a single byte for zero size.  */
      ret->base_addr = xmallocarray (arraysize, size);
    }
  else if (unlikely (compile_options.bounds_check))
    {
      bounds_equal_extents ((array_t *) ret, (array_t *) array,
				 "return value", "CSHIFT");
    }

  if (arraysize == 0)
    return;

  type_size = GFC_DTYPE_TYPE_SIZE (array);

  switch(type_size)
    {
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_INTEGER_1:
      cshift0_i1 ((gfc_array_i1 *)ret, (gfc_array_i1 *) array, shift, which);
      return;

    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_INTEGER_2:
      cshift0_i2 ((gfc_array_i2 *)ret, (gfc_array_i2 *) array, shift, which);
      return;

    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_INTEGER_4:
      cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift, which);
      return;

    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_INTEGER_8:
      cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift, which);
      return;

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_INTEGER_16:
      cshift0_i16 ((gfc_array_i16 *)ret, (gfc_array_i16 *) array, shift,
		   which);
      return;
#endif

    case GFC_DTYPE_REAL_4:
      cshift0_r4 ((gfc_array_r4 *)ret, (gfc_array_r4 *) array, shift, which);
      return;

    case GFC_DTYPE_REAL_8:
      cshift0_r8 ((gfc_array_r8 *)ret, (gfc_array_r8 *) array, shift, which);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_REAL_10
    case GFC_DTYPE_REAL_10:
      cshift0_r10 ((gfc_array_r10 *)ret, (gfc_array_r10 *) array, shift,
		   which);
      return;
# endif

# ifdef HAVE_GFC_REAL_16
    case GFC_DTYPE_REAL_16:
      cshift0_r16 ((gfc_array_r16 *)ret, (gfc_array_r16 *) array, shift,
		   which);
      return;
# endif
#endif

    case GFC_DTYPE_COMPLEX_4:
      cshift0_c4 ((gfc_array_c4 *)ret, (gfc_array_c4 *) array, shift, which);
      return;

    case GFC_DTYPE_COMPLEX_8:
      cshift0_c8 ((gfc_array_c8 *)ret, (gfc_array_c8 *) array, shift, which);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_COMPLEX_10
    case GFC_DTYPE_COMPLEX_10:
      cshift0_c10 ((gfc_array_c10 *)ret, (gfc_array_c10 *) array, shift,
		   which);
      return;
# endif

# ifdef HAVE_GFC_COMPLEX_16
    case GFC_DTYPE_COMPLEX_16:
      cshift0_c16 ((gfc_array_c16 *)ret, (gfc_array_c16 *) array, shift,
		   which);
      return;
# endif
#endif

    default:
      break;
    }

  switch (size)
    {
      /* Let's check the actual alignment of the data pointers.  If they
	 are suitably aligned, we can safely call the unpack functions.  */

    case sizeof (GFC_INTEGER_1):
      cshift0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array, shift,
		  which);
      break;

    case sizeof (GFC_INTEGER_2):
      if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(array->base_addr))
	break;
      else
	{
	  cshift0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, shift,
		      which);
	  return;
	}

    case sizeof (GFC_INTEGER_4):
      if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(array->base_addr))
	break;
      else
	{
	  cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift,
		      which);
	  return;
	}

    case sizeof (GFC_INTEGER_8):
      if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(array->base_addr))
	{
	  /* Let's try to use the complex routines.  First, a sanity
	     check that the sizes match; this should be optimized to
	     a no-op.  */
	  if (sizeof(GFC_INTEGER_8) != sizeof(GFC_COMPLEX_4))
	    break;

	  if (GFC_UNALIGNED_C4(ret->base_addr)
	      || GFC_UNALIGNED_C4(array->base_addr))
	    break;

	  cshift0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array, shift,
		      which);
	  return;
	}
      else
	{
	  cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift,
		      which);
	  return;
	}

#ifdef HAVE_GFC_INTEGER_16
    case sizeof (GFC_INTEGER_16):
      if (GFC_UNALIGNED_16(ret->base_addr)
	  || GFC_UNALIGNED_16(array->base_addr))
	{
	  /* Let's try to use the complex routines.  First, a sanity
	     check that the sizes match; this should be optimized to
	     a no-op.  */
	  if (sizeof(GFC_INTEGER_16) != sizeof(GFC_COMPLEX_8))
	    break;

	  if (GFC_UNALIGNED_C8(ret->base_addr)
	      || GFC_UNALIGNED_C8(array->base_addr))
	    break;

	  cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift,
		      which);
	  return;
	}
      else
	{
	  cshift0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array,
		       shift, which);
	  return;
	}
#else
    case sizeof (GFC_COMPLEX_8):

      if (GFC_UNALIGNED_C8(ret->base_addr)
	  || GFC_UNALIGNED_C8(array->base_addr))
	break;
      else
	{
	  cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift,
		      which);
	  return;
	}
#endif

    default:
      break;
    }


  which = which - 1;
  sstride[0] = 0;
  rstride[0] = 0;

  extent[0] = 1;
  count[0] = 0;
  n = 0;
  /* Initialized for avoiding compiler warnings.  */
  roffset = size;
  soffset = size;
  len = 0;

  for (dim = 0; dim < GFC_DESCRIPTOR_RANK (array); dim++)
    {
      if (dim == which)
        {
          roffset = GFC_DESCRIPTOR_STRIDE_BYTES(ret,dim);
          if (roffset == 0)
            roffset = size;
          soffset = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim);
          if (soffset == 0)
            soffset = size;
          len = GFC_DESCRIPTOR_EXTENT(array,dim);
        }
      else
        {
          count[n] = 0;
          extent[n] = GFC_DESCRIPTOR_EXTENT(array,dim);
          rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret,dim);
          sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim);
          n++;
        }
    }
  if (sstride[0] == 0)
    sstride[0] = size;
  if (rstride[0] == 0)
    rstride[0] = size;

  dim = GFC_DESCRIPTOR_RANK (array);
  rstride0 = rstride[0];
  sstride0 = sstride[0];
  rptr = ret->base_addr;
  sptr = array->base_addr;

  shift = len == 0 ? 0 : shift % (ptrdiff_t)len;
  if (shift < 0)
    shift += len;

  while (rptr)
    {
      /* Do the shift for this dimension.  */

      /* If elements are contiguous, perform the operation
	 in two block moves.  */
      if (soffset == size && roffset == size)
	{
	  size_t len1 = shift * size;
	  size_t len2 = (len - shift) * size;
	  memcpy (rptr, sptr + len1, len2);
	  memcpy (rptr + len2, sptr, len1);
	}
      else
	{
	  /* Otherwise, we'll have to perform the copy one element at
	     a time.  */
	  char *dest = rptr;
	  const char *src = &sptr[shift * soffset];

	  for (n = 0; n < len - shift; n++)
	    {
	      memcpy (dest, src, size);
	      dest += roffset;
	      src += soffset;
	    }
	  for (src = sptr, n = 0; n < shift; n++)
	    {
	      memcpy (dest, src, size);
	      dest += roffset;
	      src += soffset;
	    }
	}

      /* Advance to the next section.  */
      rptr += rstride0;
      sptr += sstride0;
      count[0]++;
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          rptr -= rstride[n] * extent[n];
          sptr -= sstride[n] * extent[n];
          n++;
          if (n >= dim - 1)
            {
              /* Break out of the loop.  */
              rptr = NULL;
              break;
            }
          else
            {
              count[n]++;
              rptr += rstride[n];
              sptr += sstride[n];
            }
        }
    }
}
Example #3
0
void
unpack0 (gfc_array_char *ret, const gfc_array_char *vector,
	 const gfc_array_l1 *mask, char *field)
{
  gfc_array_char tmp;

  index_type type_size;

  if (unlikely(compile_options.bounds_check))
    unpack_bounds (ret, vector, mask, NULL);

  type_size = GFC_DTYPE_TYPE_SIZE (vector);

  switch (type_size)
    {
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_DERIVED_1:
      unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
		  mask, (GFC_INTEGER_1 *) field);
      return;

    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_INTEGER_2:
      unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
		  mask, (GFC_INTEGER_2 *) field);
      return;

    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_INTEGER_4:
      unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
		  mask, (GFC_INTEGER_4 *) field);
      return;

    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_INTEGER_8:
      unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
		  mask, (GFC_INTEGER_8 *) field);
      return;

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_INTEGER_16:
      unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
		   mask, (GFC_INTEGER_16 *) field);
      return;
#endif

    case GFC_DTYPE_REAL_4:
      unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
		  mask, (GFC_REAL_4 *) field);
      return;

    case GFC_DTYPE_REAL_8:
      unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector,
		  mask, (GFC_REAL_8  *) field);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_REAL_10
    case GFC_DTYPE_REAL_10:
      unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
		   mask, (GFC_REAL_10 *) field);
      return;
# endif

# ifdef HAVE_GFC_REAL_16
    case GFC_DTYPE_REAL_16:
      unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
		   mask, (GFC_REAL_16 *) field);
      return;
# endif
#endif

    case GFC_DTYPE_COMPLEX_4:
      unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
		  mask, (GFC_COMPLEX_4 *) field);
      return;

    case GFC_DTYPE_COMPLEX_8:
      unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
		  mask, (GFC_COMPLEX_8 *) field);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_COMPLEX_10
    case GFC_DTYPE_COMPLEX_10:
      unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
		   mask, (GFC_COMPLEX_10 *) field);
      return;
# endif

# ifdef HAVE_GFC_COMPLEX_16
    case GFC_DTYPE_COMPLEX_16:
      unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
		   mask, (GFC_COMPLEX_16 *) field);
      return;
# endif
#endif

    case GFC_DTYPE_DERIVED_2:
      if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(vector->base_addr)
	  || GFC_UNALIGNED_2(field))
	break;
      else
	{
	  unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
		      mask, (GFC_INTEGER_2 *) field);
	  return;
	}

    case GFC_DTYPE_DERIVED_4:
      if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(vector->base_addr)
	  || GFC_UNALIGNED_4(field))
	break;
      else
	{
	  unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
		      mask, (GFC_INTEGER_4 *) field);
	  return;
	}

    case GFC_DTYPE_DERIVED_8:
      if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(vector->base_addr)
	  || GFC_UNALIGNED_8(field))
	break;
      else
	{
	  unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
		      mask, (GFC_INTEGER_8 *) field);
	  return;
	}

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_DERIVED_16:
      if (GFC_UNALIGNED_16(ret->base_addr)
	  || GFC_UNALIGNED_16(vector->base_addr)
	  || GFC_UNALIGNED_16(field))
	break;
      else
	{
	  unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
		       mask, (GFC_INTEGER_16 *) field);
	  return;
	}
#endif

    }

  memset (&tmp, 0, sizeof (tmp));
  tmp.dtype = 0;
  tmp.base_addr = field;
  unpack_internal (ret, vector, mask, &tmp, GFC_DESCRIPTOR_SIZE (vector));
}
Example #4
0
void
spread_scalar (gfc_array_char *ret, const char *source,
	       const index_type *along, const index_type *pncopies)
{
  index_type type_size;

  if (!ret->dtype)
    runtime_error ("return array missing descriptor in spread()");

  type_size = GFC_DTYPE_TYPE_SIZE(ret);
  switch(type_size)
    {
    case GFC_DTYPE_DERIVED_1:
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_INTEGER_1:
      spread_scalar_i1 ((gfc_array_i1 *) ret, (GFC_INTEGER_1 *) source,
			*along, *pncopies);
      return;

    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_INTEGER_2:
      spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source,
			*along, *pncopies);
      return;

    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_INTEGER_4:
      spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source,
			*along, *pncopies);
      return;

    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_INTEGER_8:
      spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source,
			*along, *pncopies);
      return;

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_INTEGER_16:
      spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source,
			*along, *pncopies);
      return;
#endif

    case GFC_DTYPE_REAL_4:
      spread_scalar_r4 ((gfc_array_r4 *) ret, (GFC_REAL_4 *) source,
			*along, *pncopies);
      return;

    case GFC_DTYPE_REAL_8:
      spread_scalar_r8 ((gfc_array_r8 *) ret, (GFC_REAL_8 *) source,
			*along, *pncopies);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_REAL_10
    case GFC_DTYPE_REAL_10:
      spread_scalar_r10 ((gfc_array_r10 *) ret, (GFC_REAL_10 *) source,
			*along, *pncopies);
      return;
# endif

# ifdef HAVE_GFC_REAL_16
    case GFC_DTYPE_REAL_16:
      spread_scalar_r16 ((gfc_array_r16 *) ret, (GFC_REAL_16 *) source,
			*along, *pncopies);
      return;
# endif
#endif

    case GFC_DTYPE_COMPLEX_4:
      spread_scalar_c4 ((gfc_array_c4 *) ret, (GFC_COMPLEX_4 *) source,
			*along, *pncopies);
      return;

    case GFC_DTYPE_COMPLEX_8:
      spread_scalar_c8 ((gfc_array_c8 *) ret, (GFC_COMPLEX_8 *) source,
			*along, *pncopies);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_COMPLEX_10
    case GFC_DTYPE_COMPLEX_10:
      spread_scalar_c10 ((gfc_array_c10 *) ret, (GFC_COMPLEX_10 *) source,
			*along, *pncopies);
      return;
# endif

# ifdef HAVE_GFC_COMPLEX_16
    case GFC_DTYPE_COMPLEX_16:
      spread_scalar_c16 ((gfc_array_c16 *) ret, (GFC_COMPLEX_16 *) source,
			*along, *pncopies);
      return;
# endif
#endif

    case GFC_DTYPE_DERIVED_2:
      if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(source))
	break;
      else
	{
	  spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source,
			    *along, *pncopies);
	  return;
	}

    case GFC_DTYPE_DERIVED_4:
      if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(source))
	break;
      else
	{
	  spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source,
			    *along, *pncopies);
	  return;
	}

    case GFC_DTYPE_DERIVED_8:
      if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(source))
	break;
      else
	{
	  spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source,
			    *along, *pncopies);
	  return;
	}
#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_DERIVED_16:
      if (GFC_UNALIGNED_16(ret->base_addr) || GFC_UNALIGNED_16(source))
	break;
      else
	{
	  spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source,
			     *along, *pncopies);
	  return;
	}
#endif
    }

  spread_internal_scalar (ret, source, along, pncopies);
}
Example #5
0
void
pack (gfc_array_char *ret, const gfc_array_char *array,
      const gfc_array_l1 *mask, const gfc_array_char *vector)
{
  index_type type_size;
  index_type size;

  type_size = GFC_DTYPE_TYPE_SIZE(array);

  switch(type_size)
    {
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_DERIVED_1:
      pack_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_i1 *) vector);
      return;

    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_INTEGER_2:
      pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_i2 *) vector);
      return;

    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_INTEGER_4:
      pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_i4 *) vector);
      return;

    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_INTEGER_8:
      pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_i8 *) vector);
      return;

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_INTEGER_16:
      pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array,
		(gfc_array_l1 *) mask, (gfc_array_i16 *) vector);
      return;
#endif

    case GFC_DTYPE_REAL_4:
      pack_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_r4 *) vector);
      return;

    case GFC_DTYPE_REAL_8:
      pack_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_r8 *) vector);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_REAL_10
    case GFC_DTYPE_REAL_10:
      pack_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) array,
		(gfc_array_l1 *) mask, (gfc_array_r10 *) vector);
      return;
# endif

# ifdef HAVE_GFC_REAL_16
    case GFC_DTYPE_REAL_16:
      pack_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) array,
		(gfc_array_l1 *) mask, (gfc_array_r16 *) vector);
      return;
# endif
#endif

    case GFC_DTYPE_COMPLEX_4:
      pack_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_c4 *) vector);
      return;

    case GFC_DTYPE_COMPLEX_8:
      pack_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array,
	       (gfc_array_l1 *) mask, (gfc_array_c8 *) vector);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_COMPLEX_10
    case GFC_DTYPE_COMPLEX_10:
      pack_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) array,
		(gfc_array_l1 *) mask, (gfc_array_c10 *) vector);
      return;
# endif

# ifdef HAVE_GFC_COMPLEX_16
    case GFC_DTYPE_COMPLEX_16:
      pack_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) array,
		(gfc_array_l1 *) mask, (gfc_array_c16 *) vector);
      return;
# endif
#endif

      /* For derived types, let's check the actual alignment of the
	 data pointers.  If they are aligned, we can safely call
	 the unpack functions.  */

    case GFC_DTYPE_DERIVED_2:
      if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(array->base_addr)
	  || (vector && GFC_UNALIGNED_2(vector->base_addr)))
	break;
      else
	{
	  pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array,
		   (gfc_array_l1 *) mask, (gfc_array_i2 *) vector);
	  return;
	}

    case GFC_DTYPE_DERIVED_4:
      if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(array->base_addr)
	  || (vector && GFC_UNALIGNED_4(vector->base_addr)))
	break;
      else
	{
	  pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array,
		   (gfc_array_l1 *) mask, (gfc_array_i4 *) vector);
	  return;
	}

    case GFC_DTYPE_DERIVED_8:
      if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(array->base_addr)
	  || (vector && GFC_UNALIGNED_8(vector->base_addr)))
	break;
      else
	{
	  pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array,
		   (gfc_array_l1 *) mask, (gfc_array_i8 *) vector);
	  return;
	}

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_DERIVED_16:
      if (GFC_UNALIGNED_16(ret->base_addr) || GFC_UNALIGNED_16(array->base_addr)
	  || (vector && GFC_UNALIGNED_16(vector->base_addr)))
	break;
      else
	{
	  pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array,
		   (gfc_array_l1 *) mask, (gfc_array_i16 *) vector);
	  return;
	}
#endif

    }

  size = GFC_DESCRIPTOR_SIZE (array);
  pack_internal (ret, array, mask, vector, size);
}
Example #6
0
void *
internal_pack (gfc_array_char * source)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type stride[GFC_MAX_DIMENSIONS];
  index_type stride0;
  index_type dim;
  index_type ssize;
  const char *src;
  char *dest;
  void *destptr;
  int n;
  int packed;
  index_type size;
  index_type type_size;

  if (source->base_addr == NULL)
    return NULL;

  type_size = GFC_DTYPE_TYPE_SIZE(source);
  size = GFC_DESCRIPTOR_SIZE (source);
  switch (type_size)
    {
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_DERIVED_1:
      return internal_pack_1 ((gfc_array_i1 *) source);

    case GFC_DTYPE_INTEGER_2:
    case GFC_DTYPE_LOGICAL_2:
      return internal_pack_2 ((gfc_array_i2 *) source);

    case GFC_DTYPE_INTEGER_4:
    case GFC_DTYPE_LOGICAL_4:
      return internal_pack_4 ((gfc_array_i4 *) source);
	
    case GFC_DTYPE_INTEGER_8:
    case GFC_DTYPE_LOGICAL_8:
      return internal_pack_8 ((gfc_array_i8 *) source);

#if defined(HAVE_GFC_INTEGER_16)
    case GFC_DTYPE_INTEGER_16:
    case GFC_DTYPE_LOGICAL_16:
      return internal_pack_16 ((gfc_array_i16 *) source);
#endif
    case GFC_DTYPE_REAL_4:
      return internal_pack_r4 ((gfc_array_r4 *) source);

    case GFC_DTYPE_REAL_8:
      return internal_pack_r8 ((gfc_array_r8 *) source);

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# if defined (HAVE_GFC_REAL_10)
    case GFC_DTYPE_REAL_10:
      return internal_pack_r10 ((gfc_array_r10 *) source);
# endif

# if defined (HAVE_GFC_REAL_16)
    case GFC_DTYPE_REAL_16:
      return internal_pack_r16 ((gfc_array_r16 *) source);
# endif
#endif

    case GFC_DTYPE_COMPLEX_4:
      return internal_pack_c4 ((gfc_array_c4 *) source);
	
    case GFC_DTYPE_COMPLEX_8:
      return internal_pack_c8 ((gfc_array_c8 *) source);

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# if defined (HAVE_GFC_COMPLEX_10)
    case GFC_DTYPE_COMPLEX_10:
      return internal_pack_c10 ((gfc_array_c10 *) source);
# endif

# if defined (HAVE_GFC_COMPLEX_16)
    case GFC_DTYPE_COMPLEX_16:
      return internal_pack_c16 ((gfc_array_c16 *) source);
# endif
#endif

    case GFC_DTYPE_DERIVED_2:
      if (GFC_UNALIGNED_2(source->base_addr))
	break;
      else
	return internal_pack_2 ((gfc_array_i2 *) source);

    case GFC_DTYPE_DERIVED_4:
      if (GFC_UNALIGNED_4(source->base_addr))
	break;
      else
	return internal_pack_4 ((gfc_array_i4 *) source);

    case GFC_DTYPE_DERIVED_8:
      if (GFC_UNALIGNED_8(source->base_addr))
	break;
      else
	return internal_pack_8 ((gfc_array_i8 *) source);

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_DERIVED_16:
      if (GFC_UNALIGNED_16(source->base_addr))
	break;
      else
	return internal_pack_16 ((gfc_array_i16 *) source);
#endif

    default:
      break;
    }

  dim = GFC_DESCRIPTOR_RANK (source);
  ssize = 1;
  packed = 1;
  for (n = 0; n < dim; n++)
    {
      count[n] = 0;
      stride[n] = GFC_DESCRIPTOR_STRIDE(source,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(source,n);
      if (extent[n] <= 0)
        {
          /* Do nothing.  */
          packed = 1;
          break;
        }

      if (ssize != stride[n])
        packed = 0;

      ssize *= extent[n];
    }

  if (packed)
    return source->base_addr;

   /* Allocate storage for the destination.  */
  destptr = xmallocarray (ssize, size);
  dest = (char *)destptr;
  src = source->base_addr;
  stride0 = stride[0] * size;

  while (src)
    {
      /* Copy the data.  */
      memcpy(dest, src, size);
      /* Advance to the next element.  */
      dest += size;
      src += stride0;
      count[0]++;
      /* Advance to the next source element.  */
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          src -= stride[n] * extent[n] * size;
          n++;
          if (n == dim)
            {
              src = NULL;
              break;
            }
          else
            {
              count[n]++;
              src += stride[n] * size;
            }
        }
    }
  return destptr;
}
Example #7
0
void
internal_unpack (gfc_array_char * d, const void * s)
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type stride[GFC_MAX_DIMENSIONS];
  index_type stride0;
  index_type dim;
  index_type dsize;
  char *dest;
  const char *src;
  int n;
  int size;
  int type_size;

  dest = d->base_addr;
  /* This check may be redundant, but do it anyway.  */
  if (s == dest || !s)
    return;

  type_size = GFC_DTYPE_TYPE_SIZE (d);
  switch (type_size)
    {
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_DERIVED_1:
      internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s);
      return;

    case GFC_DTYPE_INTEGER_2:
    case GFC_DTYPE_LOGICAL_2:
      internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
      return;

    case GFC_DTYPE_INTEGER_4:
    case GFC_DTYPE_LOGICAL_4:
      internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
      return;

    case GFC_DTYPE_INTEGER_8:
    case GFC_DTYPE_LOGICAL_8:
      internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
      return;

#if defined (HAVE_GFC_INTEGER_16)
    case GFC_DTYPE_INTEGER_16:
    case GFC_DTYPE_LOGICAL_16:
      internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
      return;
#endif

    case GFC_DTYPE_REAL_4:
      internal_unpack_r4 ((gfc_array_r4 *) d, (const GFC_REAL_4 *) s);
      return;

    case GFC_DTYPE_REAL_8:
      internal_unpack_r8 ((gfc_array_r8 *) d, (const GFC_REAL_8 *) s);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# if defined(HAVE_GFC_REAL_10)
    case GFC_DTYPE_REAL_10:
      internal_unpack_r10 ((gfc_array_r10 *) d, (const GFC_REAL_10 *) s);
      return;
# endif

# if defined(HAVE_GFC_REAL_16)
    case GFC_DTYPE_REAL_16:
      internal_unpack_r16 ((gfc_array_r16 *) d, (const GFC_REAL_16 *) s);
      return;
# endif
#endif

    case GFC_DTYPE_COMPLEX_4:
      internal_unpack_c4 ((gfc_array_c4 *)d, (const GFC_COMPLEX_4 *)s);
      return;

    case GFC_DTYPE_COMPLEX_8:
      internal_unpack_c8 ((gfc_array_c8 *)d, (const GFC_COMPLEX_8 *)s);
      return;

/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
# if defined(HAVE_GFC_COMPLEX_10)
    case GFC_DTYPE_COMPLEX_10:
      internal_unpack_c10 ((gfc_array_c10 *) d, (const GFC_COMPLEX_10 *) s);
      return;
# endif

# if defined(HAVE_GFC_COMPLEX_16)
    case GFC_DTYPE_COMPLEX_16:
      internal_unpack_c16 ((gfc_array_c16 *) d, (const GFC_COMPLEX_16 *) s);
      return;
# endif
#endif

    case GFC_DTYPE_DERIVED_2:
      if (GFC_UNALIGNED_2(d->base_addr) || GFC_UNALIGNED_2(s))
	break;
      else
	{
	  internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s);
	  return;
	}
    case GFC_DTYPE_DERIVED_4:
      if (GFC_UNALIGNED_4(d->base_addr) || GFC_UNALIGNED_4(s))
	break;
      else
	{
	  internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s);
	  return;
	}

    case GFC_DTYPE_DERIVED_8:
      if (GFC_UNALIGNED_8(d->base_addr) || GFC_UNALIGNED_8(s))
	break;
      else
	{
	  internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s);
	  return;
	}

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_DERIVED_16:
      if (GFC_UNALIGNED_16(d->base_addr) || GFC_UNALIGNED_16(s))
	break;
      else
	{
	  internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s);
	  return;
	}
#endif

    default:
      break;
    }

  size = GFC_DESCRIPTOR_SIZE (d);

  dim = GFC_DESCRIPTOR_RANK (d);
  dsize = 1;
  for (n = 0; n < dim; n++)
    {
      count[n] = 0;
      stride[n] = GFC_DESCRIPTOR_STRIDE(d,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(d,n);
      if (extent[n] <= 0)
	return;

      if (dsize == stride[n])
	dsize *= extent[n];
      else
	dsize = 0;
    }

  src = s;

  if (dsize != 0)
    {
      memcpy (dest, src, dsize * size);
      return;
    }

  stride0 = stride[0] * size;

  while (dest)
    {
      /* Copy the data.  */
      memcpy (dest, src, size);
      /* Advance to the next element.  */
      src += size;
      dest += stride0;
      count[0]++;
      /* Advance to the next source element.  */
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          dest -= stride[n] * extent[n] * size;
          n++;
          if (n == dim)
            {
              dest = NULL;
              break;
            }
          else
            {
              count[n]++;
              dest += stride[n] * size;
            }
        }
    }
}
void
spread_scalar (gfc_array_char *ret, const char *source,
	       const index_type *along, const index_type *pncopies)
{
  index_type type_size;

  if (!ret->dtype)
    runtime_error ("return array missing descriptor in spread()");

  type_size = GFC_DTYPE_TYPE_SIZE(ret);
  switch(type_size)
    {
    case GFC_DTYPE_DERIVED_1:
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_INTEGER_1:
      spread_scalar_i1 ((gfc_array_i1 *) ret, (GFC_INTEGER_1 *) source,
			*along, *pncopies);
      return;

    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_INTEGER_2:
      spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source,
			*along, *pncopies);
      return;

    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_INTEGER_4:
      spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source,
			*along, *pncopies);
      return;

    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_INTEGER_8:
      spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source,
			*along, *pncopies);
      return;

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_INTEGER_16:
      spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source,
			*along, *pncopies);
      return;
#endif

    case GFC_DTYPE_REAL_4:
      spread_scalar_r4 ((gfc_array_r4 *) ret, (GFC_REAL_4 *) source,
			*along, *pncopies);
      return;

    case GFC_DTYPE_REAL_8:
      spread_scalar_r8 ((gfc_array_r8 *) ret, (GFC_REAL_8 *) source,
			*along, *pncopies);
      return;

#ifdef HAVE_GFC_REAL_10
    case GFC_DTYPE_REAL_10:
      spread_scalar_r10 ((gfc_array_r10 *) ret, (GFC_REAL_10 *) source,
			*along, *pncopies);
      return;
#endif

#ifdef HAVE_GFC_REAL_16
    case GFC_DTYPE_REAL_16:
      spread_scalar_r16 ((gfc_array_r16 *) ret, (GFC_REAL_16 *) source,
			*along, *pncopies);
      return;
#endif

    case GFC_DTYPE_COMPLEX_4:
      spread_scalar_c4 ((gfc_array_c4 *) ret, (GFC_COMPLEX_4 *) source,
			*along, *pncopies);
      return;

    case GFC_DTYPE_COMPLEX_8:
      spread_scalar_c8 ((gfc_array_c8 *) ret, (GFC_COMPLEX_8 *) source,
			*along, *pncopies);
      return;

#ifdef HAVE_GFC_COMPLEX_10
    case GFC_DTYPE_COMPLEX_10:
      spread_scalar_c10 ((gfc_array_c10 *) ret, (GFC_COMPLEX_10 *) source,
			*along, *pncopies);
      return;
#endif

#ifdef HAVE_GFC_COMPLEX_16
    case GFC_DTYPE_COMPLEX_16:
      spread_scalar_c16 ((gfc_array_c16 *) ret, (GFC_COMPLEX_16 *) source,
			*along, *pncopies);
      return;
#endif

    case GFC_DTYPE_DERIVED_2:
      if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(source))
	break;
      else
	{
	  spread_scalar_i2 ((gfc_array_i2 *) ret, (GFC_INTEGER_2 *) source,
			    *along, *pncopies);
	  return;
	}

    case GFC_DTYPE_DERIVED_4:
      if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(source))
	break;
      else
	{
	  spread_scalar_i4 ((gfc_array_i4 *) ret, (GFC_INTEGER_4 *) source,
			    *along, *pncopies);
	  return;
	}

    case GFC_DTYPE_DERIVED_8:
      if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(source))
	break;
      else
	{
	  spread_scalar_i8 ((gfc_array_i8 *) ret, (GFC_INTEGER_8 *) source,
			    *along, *pncopies);
	  return;
	}
#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_DERIVED_16:
      if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(source))
	break;
      else
	{
	  spread_scalar_i16 ((gfc_array_i16 *) ret, (GFC_INTEGER_16 *) source,
			     *along, *pncopies);
	  return;
	}
#endif
    }

  spread_internal_scalar (ret, source, along, pncopies, GFC_DESCRIPTOR_SIZE (ret));
}
void
unpack1 (gfc_array_char *ret, const gfc_array_char *vector,
	 const gfc_array_l1 *mask, const gfc_array_char *field)
{
  index_type type_size;
  index_type size;

  if (unlikely(compile_options.bounds_check))
    unpack_bounds (ret, vector, mask, field);

  type_size = GFC_DTYPE_TYPE_SIZE (vector);
  size = GFC_DESCRIPTOR_SIZE (vector);

  switch(type_size)
    {
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_DERIVED_1:
      unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
		  mask, (gfc_array_i1 *) field);
      return;

    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_INTEGER_2:
      unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
		  mask, (gfc_array_i2 *) field);
      return;

    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_INTEGER_4:
      unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
		  mask, (gfc_array_i4 *) field);
      return;

    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_INTEGER_8:
      unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
		  mask, (gfc_array_i8 *) field);
      return;

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_INTEGER_16:
      unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
		   mask, (gfc_array_i16 *) field);
      return;
#endif
    case GFC_DTYPE_REAL_4:
      unpack1_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
		  mask, (gfc_array_r4 *) field);
      return;

    case GFC_DTYPE_REAL_8:
      unpack1_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) vector,
		  mask, (gfc_array_r8 *) field);
      return;

#ifdef HAVE_GFC_REAL_10
    case GFC_DTYPE_REAL_10:
      unpack1_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
		   mask, (gfc_array_r10 *) field);
	  return;
#endif

#ifdef HAVE_GFC_REAL_16
    case GFC_DTYPE_REAL_16:
      unpack1_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
		   mask, (gfc_array_r16 *) field);
      return;
#endif

    case GFC_DTYPE_COMPLEX_4:
      unpack1_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
		  mask, (gfc_array_c4 *) field);
      return;

    case GFC_DTYPE_COMPLEX_8:
      unpack1_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
		  mask, (gfc_array_c8 *) field);
      return;

#ifdef HAVE_GFC_COMPLEX_10
    case GFC_DTYPE_COMPLEX_10:
      unpack1_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
		   mask, (gfc_array_c10 *) field);
      return;
#endif

#ifdef HAVE_GFC_COMPLEX_16
    case GFC_DTYPE_COMPLEX_16:
      unpack1_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
		   mask, (gfc_array_c16 *) field);
      return;
#endif

    case GFC_DTYPE_DERIVED_2:
      if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data)
	  || GFC_UNALIGNED_2(field->data))
	break;
      else
	{
	  unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
		      mask, (gfc_array_i2 *) field);
	  return;
	}

    case GFC_DTYPE_DERIVED_4:
      if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data)
	  || GFC_UNALIGNED_4(field->data))
	break;
      else
	{
	  unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
		      mask, (gfc_array_i4 *) field);
	  return;
	}

    case GFC_DTYPE_DERIVED_8:
      if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data)
	  || GFC_UNALIGNED_8(field->data))
	break;
      else
	{
	  unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
		      mask, (gfc_array_i8 *) field);
	  return;
	}

#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_DERIVED_16:
      if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data)
	  || GFC_UNALIGNED_16(field->data))
	break;
      else
	{
	  unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
		       mask, (gfc_array_i16 *) field);
	  return;
	}
#endif
    }

  unpack_internal (ret, vector, mask, field, size);
}