Example #1
0
/******************************************************************************
 * @fn      HalDMAInit
 *
 * @brief   DMA Interrupt Service Routine
 *
 * @param   None
 *
 * @return  None
 *****************************************************************************/
HAL_ISR_FUNCTION( halDmaIsr, DMA_VECTOR )
{
  DMAIF = 0;

  if (ZNP_CFG1_UART == znpCfg1)
  {
    if (HAL_DMA_CHECK_IRQ(HAL_DMA_CH_TX))
    {
      extern void HalUARTIsrDMA(void);
      HalUARTIsrDMA();
    }
  }
  else
  {
    if ( HAL_DMA_CHECK_IRQ( HAL_DMA_CH_RX ) )
    {
      HAL_DMA_CLEAR_IRQ( HAL_DMA_CH_RX );
      HalSpiRxIsr();
    }

    if ( HAL_DMA_CHECK_IRQ( HAL_DMA_CH_TX ) )
    {
      HAL_DMA_CLEAR_IRQ( HAL_DMA_CH_TX );
      HalSpiTxIsr();
    }
  }
}
Example #2
0
/******************************************************************************
 * @fn      AesDmaSetup
 *
 * @brief   Sets up DMA of 16 byte block using CC2540 HW aes encryption engine
 *
 * input parameters
 *
 * @param   Cstate  - Pointer to output data.
 * @param   msg_out_len - message out length
 * @param   msg_in  - pointer to input data.
 * @param   msg_in_len - message in length
 *
 * output parameters
 *
 * @param   Cstate  - Pointer to encrypted data.
 *
 * @return  None
 *
 */
void AesDmaSetup( uint8 *Cstate, uint16 msg_out_len, uint8 *msg_in, uint16 msg_in_len )
{
  halDMADesc_t *ch;

  /* Modify descriptors for channel 1 */
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_IN );
  HAL_DMA_SET_SOURCE( ch, msg_in );
  HAL_DMA_SET_LEN( ch, msg_in_len );

  /* Modify descriptors for channel 2 */
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_OUT );
  HAL_DMA_SET_DEST( ch, Cstate );
  HAL_DMA_SET_LEN( ch, msg_out_len );

  /* Arm DMA channels 1 and 2 */
  HAL_DMA_CLEAR_IRQ( HAL_DMA_AES_IN );
  HAL_DMA_ARM_CH( HAL_DMA_AES_IN );
  do {
    asm("NOP");
  } while (!HAL_DMA_CH_ARMED(HAL_DMA_AES_IN));
  HAL_DMA_CLEAR_IRQ( HAL_DMA_AES_OUT );
  HAL_DMA_ARM_CH( HAL_DMA_AES_OUT );
  do {
    asm("NOP");
  } while (!HAL_DMA_CH_ARMED(HAL_DMA_AES_OUT));
}
Example #3
0
/******************************************************************************
 * @fn      HalDMAInit
 *
 * @brief   DMA Interrupt Service Routine
 *
 * @param   None
 *
 * @return  None
 *****************************************************************************/
HAL_ISR_FUNCTION( halDmaIsr, DMA_VECTOR )
{
  extern void HalUARTIsrDMA(void);

  DMAIF = 0;

#if HAL_UART_DMA
  if (HAL_DMA_CHECK_IRQ(HAL_DMA_CH_TX))
  {
    HalUARTIsrDMA();
  }
#endif // HAL_UART_DMA

#if (defined HAL_SPI) && (HAL_SPI == TRUE)
  if ( HAL_DMA_CHECK_IRQ( HAL_DMA_CH_RX ) )
  {
    HAL_DMA_CLEAR_IRQ( HAL_DMA_CH_RX );
    HalSpiRxIsr();
  }

  if ( HAL_DMA_CHECK_IRQ( HAL_DMA_CH_TX ) )
  {
    HAL_DMA_CLEAR_IRQ( HAL_DMA_CH_TX );
    HalSpiTxIsr();
  }
#endif // (defined HAL_SPI) && (HAL_SPI == TRUE)

#if (defined HAL_IRGEN) && (HAL_IRGEN == TRUE)
  if ( HAL_IRGEN == TRUE && HAL_DMA_CHECK_IRQ( HAL_IRGEN_DMA_CH ) )
  {
    HAL_DMA_CLEAR_IRQ( HAL_IRGEN_DMA_CH );
    HalIrGenDmaIsr();
  }
#endif // (defined HAL_IRGEN) && (HAL_IRGEN == TRUE)
}
Example #4
0
/******************************************************************************
 * @fn      HalDMAInit
 *
 * @brief   DMA Interrupt Service Routine
 *
 * @param   None
 *
 * @return  None
 *****************************************************************************/
HAL_ISR_FUNCTION( halDmaIsr, DMA_VECTOR )
{
  HAL_ENTER_ISR();

  DMAIF = 0;

  if (ZNP_CFG1_UART == znpCfg1)
  {
    if (HAL_DMA_CHECK_IRQ(HAL_DMA_CH_TX))
    {
      extern void HalUARTIsrDMA(void);
      HalUARTIsrDMA();
    }
  }
#if (defined HAL_SPI) && (HAL_SPI == TRUE)
  else
  {
    if ( HAL_DMA_CHECK_IRQ( HAL_DMA_CH_RX ) )
    {
      HAL_DMA_CLEAR_IRQ( HAL_DMA_CH_RX );
      HalSpiRxIsr();
    }

    if ( HAL_DMA_CHECK_IRQ( HAL_DMA_CH_TX ) )
    {
      HAL_DMA_CLEAR_IRQ( HAL_DMA_CH_TX );
      HalSpiTxIsr();
    }
  }
#endif // #if (defined HAL_SPI) && (HAL_SPI == TRUE)

  HAL_EXIT_ISR();
}
Example #5
0
/**************************************************************************************************
 * @fn          sblRun
 *
 * @brief       Serial Boot run code for the SPI transport.
 *
 * input parameters
 *
 * None.
 *
 * output parameters
 *
 * None.
 *
 * @return      None.
 */
static void sblRun(void)
{
  halUARTCfg_t uartConfig;
  uartConfig.callBackFunc = sblRxCB;

  HAL_DMA_SET_ADDR_DESC1234(dmaCh1234);

  HalUARTInitSPI();
  HalUARTOpenSPI(&uartConfig);

  while (1)
  {
    if (PxIFG & SPI_RDYIn_BIT)
    {
      spiRdyIn();
    }

    HalUARTPollSPI();

    if (HAL_DMA_CHECK_IRQ(HAL_SPI_CH_TX))
    {
      HAL_DMA_CLEAR_IRQ(HAL_SPI_CH_TX);
      HalUART_DMAIsrSPI();

      if (sblReset)
      {
        HAL_SYSTEM_RESET();
      }
    }
  }
}
Example #6
0
/**************************************************************************************************
 * @fn          HalFlashWrite
 *
 * @brief       This function writes 'cnt' bytes to the internal flash.
 *
 * input parameters
 *
 * @param       addr - Valid HAL flash write address: actual addr / 4 and quad-aligned.
 * @param       buf - Valid buffer space at least as big as 'cnt' X 4.
 * @param       cnt - Number of 4-byte blocks to write.
 *
 * output parameters
 *
 * None.
 *
 * @return      None.
 **************************************************************************************************
 */
void HalFlashWrite(uint16 addr, uint8 *buf, uint16 cnt)
{
  halDMADesc_t *ch = HAL_NV_DMA_GET_DESC();

  HAL_DMA_SET_SOURCE(ch, buf);
  HAL_DMA_SET_DEST(ch, &FWDATA);
  HAL_DMA_SET_VLEN(ch, HAL_DMA_VLEN_USE_LEN);
  HAL_DMA_SET_LEN(ch, (cnt * HAL_FLASH_WORD_SIZE));
  HAL_DMA_SET_WORD_SIZE(ch, HAL_DMA_WORDSIZE_BYTE);
  HAL_DMA_SET_TRIG_MODE(ch, HAL_DMA_TMODE_SINGLE);
  HAL_DMA_SET_TRIG_SRC(ch, HAL_DMA_TRIG_FLASH);
  HAL_DMA_SET_SRC_INC(ch, HAL_DMA_SRCINC_1);
  HAL_DMA_SET_DST_INC(ch, HAL_DMA_DSTINC_0);
  // The DMA is to be polled and shall not issue an IRQ upon completion.
  HAL_DMA_SET_IRQ(ch, HAL_DMA_IRQMASK_DISABLE);
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS);
  HAL_DMA_SET_PRIORITY(ch, HAL_DMA_PRI_HIGH);
  HAL_DMA_CLEAR_IRQ(HAL_NV_DMA_CH);
  HAL_DMA_ARM_CH(HAL_NV_DMA_CH);

  FADDRL = (uint8)addr;
  FADDRH = (uint8)(addr >> 8);
  FCTL |= 0x02;         // Trigger the DMA writes.
  while (FCTL & 0x80);  // Wait until writing is done.
}
Example #7
0
/******************************************************************************
 * @fn      AesLoadKey
 *
 * @brief   Writes the key into the CC2540
 *
 * input parameters
 *
 * @param   AesKey  - Pointer to AES Key.
 *
 * @return  None
 */
void AesLoadKey( uint8 *AesKey )
{
#if (defined HAL_AES_DMA) && (HAL_AES_DMA == TRUE)
  halDMADesc_t *ch = HAL_DMA_GET_DESC1234( HAL_DMA_AES_IN );

  /* Modify descriptors for channel 1 */
  HAL_DMA_SET_SOURCE( ch, AesKey );
  HAL_DMA_SET_LEN( ch, KEY_BLENGTH );

  /* Arm DMA channel 1 */
  HAL_DMA_CLEAR_IRQ( HAL_DMA_AES_IN );
  HAL_DMA_ARM_CH( HAL_DMA_AES_IN );
  do {
    asm("NOP");
  } while (!HAL_DMA_CH_ARMED(HAL_DMA_AES_IN));

  /* Set AES mode */
  AES_SET_ENCR_DECR_KEY_IV( AES_LOAD_KEY );

  /* Kick it off, block until AES is ready */
  AES_START();
  while( !(ENCCS & 0x08) );
#else
  /* Set AES mode */
  AES_SET_ENCR_DECR_KEY_IV( AES_LOAD_KEY );

  /* Load the block */
  AesLoadBlock( AesKey );
#endif
}
/******************************************************************************
 * @fn      startIrGenNec
 *
 * @brief   Generate repeat IR signal corresponding to NEC protocol
 *
 * input parameters
 *
 * @param   IrBufSize - Size of the command containing the IR signal
 *
 * output parameters
 *
 * None.
 *
 * @return  None.
 *
 */
static void startIrGenNec(uint8 IrBufSize)
{
  halIntState_t intState;
  
  //check if IR generation timers are already in use
  if (halIrGenTimerRunning)
  {
    // Timer is already running. Cannot generate the signals.
    return;
  }
  
  halIrGenTimerRunning = TRUE;

 
  // Inlcude stop bit ('1')
  halIrGenCc0Buf[IrBufSize] = HAL_IRGEN_NEC_BIT_1_PER;
  
  // Inlcude dummy value as last entry in buffer to make sure stop bit is generated
  halIrGenCc0Buf[IrBufSize+1] = 0xFFFF;
  
  // Set data length.
  HAL_DMA_SET_LEN(pDmaDescCc0, IrBufSize + 2);
  HAL_DMA_SET_LEN(pDmaDescCc1, IrBufSize + 2);
  
  // ARM both DMA channels
  HAL_DMA_CLEAR_IRQ(HAL_IRGEN_DMA_CH_CC0);
  HAL_DMA_ARM_CH(HAL_IRGEN_DMA_CH_CC0);

  HAL_DMA_CLEAR_IRQ(HAL_IRGEN_DMA_CH_CC1);
  HAL_DMA_ARM_CH(HAL_IRGEN_DMA_CH_CC1);
 
  // program initial state (preamble)
  // duty cycle
  if (IrBufSize)  // command signal generation
  {
    T1CC0L = ((6 * HAL_IRGEN_NEC_BIT_1_PER) & 0xff) - 1;
    T1CC0H = (6 * HAL_IRGEN_NEC_BIT_1_PER) >> 8;
  }
  else  // repeat signal generation
  {
void HalUARTIsrDMA(void)
{
  HAL_DMA_CLEAR_IRQ(HAL_DMA_CH_TX);

  // Indicate that the other buffer is free now.
  dmaCfg.txIdx[(dmaCfg.txSel ^ 1)] = 0;
  dmaCfg.txMT = TRUE;
  
  // Set TX shadow
  dmaCfg.txShdw = ST0;
  dmaCfg.txShdwValid = TRUE;

  // If there is more Tx data ready to go, re-start the DMA immediately on it.
  if (dmaCfg.txIdx[dmaCfg.txSel])
  {
    // UART TX DMA is expected to be fired
    dmaCfg.txDMAPending = TRUE;
  }
}
Example #10
0
/**************************************************************************************************
 * @fn          HalUARTInitSPI
 *
 * @brief       Initialize the SPI UART Transport.
 *
 * input parameters
 *
 * None.
 *
 * output parameters
 *
 * None.
 *
 * @return      None.
 */
static void HalUARTInitSPI(void)
{
#if (HAL_UART_SPI == 1)
  PERCFG &= ~HAL_UART_PERCFG_BIT;    /* Set UART0 I/O to Alt. 1 location on P0 */
#else
  PERCFG |= HAL_UART_PERCFG_BIT;     /* Set UART1 I/O to Alt. 2 location on P1 */
#endif
#if defined HAL_SPI_MASTER
  PxSEL |= HAL_UART_Px_SEL_M;        /* SPI-Master peripheral select */
  UxCSR = 0;                         /* Mode is SPI-Master Mode */
  UxGCR =  15;                       /* Cfg for the max Rx/Tx baud of 2-MHz */
  UxBAUD = 255;
#elif !defined HAL_SPI_MASTER
  PxSEL |= HAL_UART_Px_SEL_S;        /* SPI-Slave peripheral select */
  UxCSR = CSR_SLAVE;                 /* Mode is SPI-Slave Mode */
#endif
  UxUCR = UCR_FLUSH;                 /* Flush it */
  UxGCR |= BV(5);                    /* Set bit order to MSB */

  P2DIR &= ~P2DIR_PRIPO;
  P2DIR |= HAL_UART_PRIPO;

  /* Setup GPIO for interrupts by falling edge on SPI_RDY_IN */
  PxIEN |= SPI_RDYIn_BIT;
  PICTL |= PICTL_BIT;

  SPI_CLR_RDY_OUT();
  PxDIR |= SPI_RDYOut_BIT;

  /* Setup Tx by DMA */
  halDMADesc_t *ch = HAL_DMA_GET_DESC1234( HAL_SPI_CH_TX );
  
  /* Abort any pending DMA operations (in case of a soft reset) */
  HAL_DMA_ABORT_CH( HAL_SPI_CH_TX );

  /* The start address of the destination */
  HAL_DMA_SET_DEST( ch, DMA_UxDBUF );

  /* Using the length field to determine how many bytes to transfer */
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );

  /* One byte is transferred each time */
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_BYTE );

  /* The bytes are transferred 1-by-1 on Tx Complete trigger */
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE );
  HAL_DMA_SET_TRIG_SRC( ch, DMATRIG_TX );

  /* The source address is incremented by 1 byte after each transfer */
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_1 );
  HAL_DMA_SET_SOURCE( ch, spiTxPkt );

  /* The destination address is constant - the Tx Data Buffer */
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_0 );

  /* The DMA Tx done is serviced by ISR */
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_ENABLE );

  /* Xfer all 8 bits of a byte xfer */
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );

  /* DMA has highest priority for memory access */
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH );

  /* Setup Rx by DMA */
  ch = HAL_DMA_GET_DESC1234( HAL_SPI_CH_RX );
  
  /* Abort any pending DMA operations (in case of a soft reset) */
  HAL_DMA_ABORT_CH( HAL_SPI_CH_RX );

  /* The start address of the source */
  HAL_DMA_SET_SOURCE( ch, DMA_UxDBUF );

  /* Using the length field to determine how many bytes to transfer */
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );

  /* The trick is to cfg DMA to xfer 2 bytes for every 1 byte of Rx.
   * The byte after the Rx Data Buffer is the Baud Cfg Register,
   * which always has a known value. So init Rx buffer to inverse of that
   * known value. DMA word xfer will flip the bytes, so every valid Rx byte
   * in the Rx buffer will be preceded by a DMA_PAD char equal to the
   * Baud Cfg Register value.
   */
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_WORD );

  /* The bytes are transferred 1-by-1 on Rx Complete trigger */
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE_REPEATED );
  HAL_DMA_SET_TRIG_SRC( ch, DMATRIG_RX );

  /* The source address is constant - the Rx Data Buffer */
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_0 );

  /* The destination address is incremented by 1 word after each transfer */
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_1 );
  HAL_DMA_SET_DEST( ch, spiRxBuf );
  HAL_DMA_SET_LEN( ch, SPI_MAX_PKT_LEN );

  /* The DMA is to be polled and shall not issue an IRQ upon completion */
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_DISABLE );

  /* Xfer all 8 bits of a byte xfer */
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );

  /* DMA has highest priority for memory access */
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH );

  volatile uint8 dummy = *(volatile uint8 *)DMA_UxDBUF;  /* Clear the DMA Rx trigger */
  HAL_DMA_CLEAR_IRQ(HAL_SPI_CH_RX);
  HAL_DMA_ARM_CH(HAL_SPI_CH_RX);
  (void)memset(spiRxBuf, (DMA_PAD ^ 0xFF), SPI_MAX_PKT_LEN * sizeof(uint16));
}
Example #11
0
/******************************************************************************
 * @fn      HalUARTInitDMA
 *
 * @brief   Initialize the UART
 *
 * @param   none
 *
 * @return  none
 *****************************************************************************/
static void HalUARTInitDMA(void)
{
  halDMADesc_t *ch;
#if (HAL_UART_DMA == 1)
  PERCFG &= ~HAL_UART_PERCFG_BIT;    // Set UART0 I/O to Alt. 1 location on P0.
#else
  PERCFG |= HAL_UART_PERCFG_BIT;     // Set UART1 I/O to Alt. 2 location on P1.
#endif
  PxSEL  |= HAL_UART_Px_SEL;         // Enable Peripheral control of Rx/Tx on Px.     p0.2 P0.3 set peripheral   //i0 setting
  UxCSR = CSR_MODE;                  // Mode is UART Mode.
  UxUCR = UCR_FLUSH;                 // Flush it.

  P2DIR &= ~P2DIR_PRIPO;                                                                                        //ÓÅÏȼ¶
  P2DIR |= HAL_UART_PRIPO;

  if (DMA_PM)
  {
    // Setup GPIO for interrupts by falling edge on DMA_RDY_IN.
    PxIEN |= DMA_RDYIn_BIT;
    PICTL |= PICTL_BIT;

    HAL_UART_DMA_CLR_RDY_OUT();
    PxDIR |= DMA_RDYOut_BIT;
  }

#if !HAL_UART_TX_BY_ISR
  // Setup Tx by DMA.
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_CH_TX );

  // Abort any pending DMA operations (in case of a soft reset).
  HAL_DMA_ABORT_CH( HAL_DMA_CH_TX );

  // The start address of the destination.
  HAL_DMA_SET_DEST( ch, DMA_UxDBUF );

  // Using the length field to determine how many bytes to transfer.
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );

  // One byte is transferred each time.
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_BYTE );

  // The bytes are transferred 1-by-1 on Tx Complete trigger.
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE );
  HAL_DMA_SET_TRIG_SRC( ch, DMATRIG_TX );

  // The source address is incremented by 1 byte after each transfer.
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_1 );

  // The destination address is constant - the Tx Data Buffer.
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_0 );

  // The DMA Tx done is serviced by ISR in order to maintain full thruput.
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_ENABLE );

  // Xfer all 8 bits of a byte xfer.
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );

  // DMA has highest priority for memory access.
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH);
#endif

  // Setup Rx by DMA.
  ch = HAL_DMA_GET_DESC1234( HAL_DMA_CH_RX );

  // Abort any pending DMA operations (in case of a soft reset).
  HAL_DMA_ABORT_CH( HAL_DMA_CH_RX );

  // The start address of the source.
  HAL_DMA_SET_SOURCE( ch, DMA_UxDBUF );

  // Using the length field to determine how many bytes to transfer.
  HAL_DMA_SET_VLEN( ch, HAL_DMA_VLEN_USE_LEN );

  /* The trick is to cfg DMA to xfer 2 bytes for every 1 byte of Rx.
   * The byte after the Rx Data Buffer is the Baud Cfg Register,
   * which always has a known value. So init Rx buffer to inverse of that
   * known value. DMA word xfer will flip the bytes, so every valid Rx byte
   * in the Rx buffer will be preceded by a DMA_PAD char equal to the
   * Baud Cfg Register value.
   */
  HAL_DMA_SET_WORD_SIZE( ch, HAL_DMA_WORDSIZE_WORD );

  // The bytes are transferred 1-by-1 on Rx Complete trigger.
  HAL_DMA_SET_TRIG_MODE( ch, HAL_DMA_TMODE_SINGLE_REPEATED );
  HAL_DMA_SET_TRIG_SRC( ch, DMATRIG_RX );

  // The source address is constant - the Rx Data Buffer.
  HAL_DMA_SET_SRC_INC( ch, HAL_DMA_SRCINC_0 );

  // The destination address is incremented by 1 word after each transfer.
  HAL_DMA_SET_DST_INC( ch, HAL_DMA_DSTINC_1 );
  HAL_DMA_SET_DEST( ch, dmaCfg.rxBuf );
  HAL_DMA_SET_LEN( ch, HAL_UART_DMA_RX_MAX );

  // The DMA is to be polled and shall not issue an IRQ upon completion.
  HAL_DMA_SET_IRQ( ch, HAL_DMA_IRQMASK_DISABLE );

  // Xfer all 8 bits of a byte xfer.
  HAL_DMA_SET_M8( ch, HAL_DMA_M8_USE_8_BITS );

  // DMA has highest priority for memory access.
  HAL_DMA_SET_PRIORITY( ch, HAL_DMA_PRI_HIGH);

  volatile uint8 dummy = *(volatile uint8 *)DMA_UxDBUF;  // Clear the DMA Rx trigger.
  HAL_DMA_CLEAR_IRQ(HAL_DMA_CH_RX);
  HAL_DMA_ARM_CH(HAL_DMA_CH_RX);
  (void)memset(dmaCfg.rxBuf, (DMA_PAD ^ 0xFF), HAL_UART_DMA_RX_MAX * sizeof(uint16));
}
/******************************************************************************
 * @fn      HalUARTPollDMA
 *
 * @brief   Poll a USART module implemented by DMA.
 *
 * @param   none
 *
 * @return  none
 *****************************************************************************/
static void HalUARTPollDMA(void)
{
  uint16 cnt = 0;
  uint8 evt = 0;

  if (HAL_UART_DMA_NEW_RX_BYTE(dmaCfg.rxHead))
  {
    rxIdx_t tail = findTail();

    // If the DMA has transferred in more Rx bytes, reset the Rx idle timer.
    if (dmaCfg.rxTail != tail)
    {
      dmaCfg.rxTail = tail;

      // Re-sync the shadow on any 1st byte(s) received.
      if (dmaCfg.rxTick == 0)
      {
        dmaCfg.rxShdw = ST0;
      }
      dmaCfg.rxTick = HAL_UART_DMA_IDLE;
    }
    else if (dmaCfg.rxTick)
    {
      // Use the LSB of the sleep timer (ST0 must be read first anyway).
      uint8 decr = ST0 - dmaCfg.rxShdw;

      if (dmaCfg.rxTick > decr)
      {
        dmaCfg.rxTick -= decr;
        dmaCfg.rxShdw = ST0;
      }
      else
      {
        dmaCfg.rxTick = 0;
      }
    }
    cnt = HalUARTRxAvailDMA();
  }
  else
  {
    dmaCfg.rxTick = 0;
  }

  if (cnt >= HAL_UART_DMA_FULL)
  {
    evt = HAL_UART_RX_FULL;
  }
  else if (cnt >= HAL_UART_DMA_HIGH)
  {
    evt = HAL_UART_RX_ABOUT_FULL;
    PxOUT |= HAL_UART_Px_RTS;  // Disable Rx flow.
  }
  else if (cnt && !dmaCfg.rxTick)
  {
    evt = HAL_UART_RX_TIMEOUT;
  }

  if (dmaCfg.txMT)
  {
    dmaCfg.txMT = FALSE;
    evt |= HAL_UART_TX_EMPTY;
  }

  if (dmaCfg.txShdwValid)
  {
    uint8 decr = ST0;
    decr -= dmaCfg.txShdw;
    if (decr > dmaCfg.txTick)
    {
      // No protection for txShdwValid is required
      // because while the shadow was valid, DMA ISR cannot be triggered
      // to cause concurrent access to this variable.
      dmaCfg.txShdwValid = FALSE;
    }
  }
  
  if (dmaCfg.txDMAPending && !dmaCfg.txShdwValid)
  {
    // UART TX DMA is expected to be fired and enough time has lapsed since last DMA ISR
    // to know that DBUF can be overwritten
    halDMADesc_t *ch = HAL_DMA_GET_DESC1234(HAL_DMA_CH_TX);
    halIntState_t intState;

    // Clear the DMA pending flag
    dmaCfg.txDMAPending = FALSE;
    
    HAL_DMA_SET_SOURCE(ch, dmaCfg.txBuf[dmaCfg.txSel]);
    HAL_DMA_SET_LEN(ch, dmaCfg.txIdx[dmaCfg.txSel]);
    dmaCfg.txSel ^= 1;
    HAL_ENTER_CRITICAL_SECTION(intState);
    HAL_DMA_ARM_CH(HAL_DMA_CH_TX);
    do
    {
      asm("NOP");
    } while (!HAL_DMA_CH_ARMED(HAL_DMA_CH_TX));
    HAL_DMA_CLEAR_IRQ(HAL_DMA_CH_TX);
    HAL_DMA_MAN_TRIGGER(HAL_DMA_CH_TX);
    HAL_EXIT_CRITICAL_SECTION(intState);
  }
  else
  {
    halIntState_t his;

    HAL_ENTER_CRITICAL_SECTION(his);
    if ((dmaCfg.txIdx[dmaCfg.txSel] != 0) && !HAL_DMA_CH_ARMED(HAL_DMA_CH_TX)
                                          && !HAL_DMA_CHECK_IRQ(HAL_DMA_CH_TX))
    {
      HAL_EXIT_CRITICAL_SECTION(his);
      HalUARTIsrDMA();
    }
    else
    {
      HAL_EXIT_CRITICAL_SECTION(his);
    }
  }

  if (evt && (dmaCfg.uartCB != NULL))
  {
    dmaCfg.uartCB(HAL_UART_DMA-1, evt);
  }
}
/******************************************************************************
 * @fn      HalUARTOpenDMA
 *
 * @brief   Open a port according tp the configuration specified by parameter.
 *
 * @param   config - contains configuration information
 *
 * @return  none
 *****************************************************************************/
static void HalUARTOpenDMA(halUARTCfg_t *config)
{
  dmaCfg.uartCB = config->callBackFunc;
  // Only supporting subset of baudrate for code size - other is possible.
  HAL_UART_ASSERT((config->baudRate == HAL_UART_BR_9600) ||
                  (config->baudRate == HAL_UART_BR_19200) ||
                  (config->baudRate == HAL_UART_BR_38400) ||
                  (config->baudRate == HAL_UART_BR_57600) ||
                  (config->baudRate == HAL_UART_BR_115200));
  
  if (config->baudRate == HAL_UART_BR_57600 ||
      config->baudRate == HAL_UART_BR_115200)
  {
    UxBAUD = 216;
  }
  else
  {
    UxBAUD = 59;
  }
  
  switch (config->baudRate)
  {
    case HAL_UART_BR_9600:
      UxGCR = 8;
      dmaCfg.txTick = 35; // (32768Hz / (9600bps / 10 bits))
                          // 10 bits include start and stop bits.
      break;
    case HAL_UART_BR_19200:
      UxGCR = 9;
      dmaCfg.txTick = 18;
      break;
    case HAL_UART_BR_38400:
      UxGCR = 10;
      dmaCfg.txTick = 9;
      break;
    case HAL_UART_BR_57600:
      UxGCR = 10;
      dmaCfg.txTick = 6;
      break;
    default:
      // HAL_UART_BR_115200
      UxGCR = 11;
      dmaCfg.txTick = 3;
      break;
  }

  // 8 bits/char; no parity; 1 stop bit; stop bit hi.
  if (config->flowControl)
  {
    UxUCR = UCR_FLOW | UCR_STOP;
    PxSEL |= HAL_UART_Px_CTS;
    // DMA Rx is always on (self-resetting). So flow must be controlled by the S/W polling the Rx
    // buffer level. Start by allowing flow.
    PxOUT &= ~HAL_UART_Px_RTS;
    PxDIR |=  HAL_UART_Px_RTS;
  }
  else
  {
    UxUCR = UCR_STOP;
  }

  dmaCfg.rxBuf[0] = *(volatile uint8 *)DMA_UDBUF;  // Clear the DMA Rx trigger.
  HAL_DMA_CLEAR_IRQ(HAL_DMA_CH_RX);
  HAL_DMA_ARM_CH(HAL_DMA_CH_RX);
  osal_memset(dmaCfg.rxBuf, (DMA_PAD ^ 0xFF), HAL_UART_DMA_RX_MAX*2);

  UxCSR |= CSR_RE;
  
  // Initialize that TX DMA is not pending
  dmaCfg.txDMAPending = FALSE;
  dmaCfg.txShdwValid = FALSE;
}