// returns true if the actuators needs to be running over several frames
bool KX_NetworkMessageActuator::Update()
{
	//printf("update messageactuator\n");
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (bNegativeEvent) {
		return false; // do nothing on negative events
		//printf("messageactuator false event\n");
	}
	//printf("messageactuator true event\n");

	if (m_bPropBody) // ACT_MESG_PROP in DNA_actuator_types.h
	{
		m_networkscene->SendMessage(
			m_toPropName,
			GetParent()->GetName(),
			m_subject,
			GetParent()->GetPropertyText(m_body));
	} else
	{
		m_networkscene->SendMessage(
			m_toPropName,
			GetParent()->GetName(),
			m_subject,
			m_body);
	}
	return false;
}
bool SCA_2DFilterActuator::Update()
{
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();


	if (bNegativeEvent)
		return false; // do nothing on negative events

	if( m_type == RAS_2DFilterManager::RAS_2DFILTER_MOTIONBLUR )
	{
		if(!m_disableMotionBlur)
			m_rasterizer->EnableMotionBlur(m_float_arg);
		else
			m_rasterizer->DisableMotionBlur();

		return false;
	}
	else if(m_type < RAS_2DFilterManager::RAS_2DFILTER_NUMBER_OF_FILTERS)
	{
		m_scene->Update2DFilter(m_propNames, m_gameobj, m_type, m_int_arg, m_shaderText);
	}
	// once the filter is in place, no need to update it again => disable the actuator
    return false;
}
bool KX_SCA_EndObjectActuator::Update()
{
	// bool result = false;	/*unused*/
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (bNegativeEvent)
		return false; // do nothing on negative events
	m_scene->DelayedRemoveObject(GetParent());
	
	return false;
}
bool KX_SCA_AddObjectActuator::Update()
{
	//bool result = false;	/*unused*/
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();
	
	if (bNegativeEvent) return false; // do nothing on negative events

	InstantAddObject();

	
	return false;
}
Example #5
0
bool KX_TrackToActuator::Update(double curtime, bool frame)
{
	bool result = false;
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (bNegativeEvent)
	{
		// do nothing on negative events
	}
	else if (m_object)
	{
		KX_GameObject* curobj = (KX_GameObject*) GetParent();
		MT_Vector3 dir = curobj->NodeGetWorldPosition() - ((KX_GameObject*)m_object)->NodeGetWorldPosition();
		MT_Matrix3x3 mat;
		MT_Matrix3x3 oldmat;

		mat = vectomat(dir, m_trackflag, m_upflag, m_allow3D);
		oldmat = curobj->NodeGetWorldOrientation();
		
		/* erwin should rewrite this! */
		mat = matrix3x3_interpol(oldmat, mat, m_time);
		
		/* check if the model is parented and calculate the child transform */
		if (m_parentobj) {
				
			MT_Point3 localpos;
			localpos = curobj->GetSGNode()->GetLocalPosition();
			// Get the inverse of the parent matrix
			MT_Matrix3x3 parentmatinv;
			parentmatinv = m_parentobj->NodeGetWorldOrientation().inverse();
			// transform the local coordinate system into the parents system
			mat = parentmatinv * mat;
			// append the initial parent local rotation matrix
			mat = m_parentlocalmat * mat;

			// set the models tranformation properties
			curobj->NodeSetLocalOrientation(mat);
			curobj->NodeSetLocalPosition(localpos);
			//curobj->UpdateTransform();
		}
		else {
			curobj->NodeSetLocalOrientation(mat);
		}

		result = true;
	}

	return result;
}
bool
KX_VisibilityActuator::Update()
{
	bool bNegativeEvent = IsNegativeEvent();
	
	RemoveAllEvents();
	if (bNegativeEvent) return false;

	KX_GameObject *obj = (KX_GameObject*) GetParent();
	
	obj->SetVisible(m_visible, m_recursive);
	obj->SetOccluder(m_occlusion, m_recursive);
	obj->UpdateBuckets(m_recursive);

	return false;
}
bool KX_SCA_DynamicActuator::Update()
{
	// bool result = false;	/*unused*/
	KX_GameObject *obj = (KX_GameObject*) GetParent();
	bool bNegativeEvent = IsNegativeEvent();
	PHY_IPhysicsController* controller;
	RemoveAllEvents();

	if (bNegativeEvent)
		return false; // do nothing on negative events
	
	if (!obj)
		return false; // object not accessible, shouldnt happen
	controller = obj->GetPhysicsController();
	if (!controller)
		return false;	// no physic object

	switch (m_dyn_operation)
	{
		case 0:
			// Child objects must be static, so we block changing to dynamic
			if (!obj->GetParent())
				controller->RestoreDynamics();
			break;
		case 1:
			controller->SuspendDynamics();
			break;
		case 2:
			controller->SetRigidBody(true);
			break;
		case 3:
			controller->SetRigidBody(false);
			break;
		case 4:
			controller->SetMass(m_setmass);
			break;
	}

	return false;
}
Example #8
0
bool BL_ArmatureActuator::Update(double curtime, bool frame)
{
    // the only role of this actuator is to ensure that the armature pose will be evaluated
    bool result = false;
    bool bNegativeEvent = IsNegativeEvent();
    RemoveAllEvents();

    if (!bNegativeEvent) {
        BL_ArmatureObject *obj = (BL_ArmatureObject*)GetParent();
        switch (m_type) {
        case ACT_ARM_RUN:
            result = true;
            obj->UpdateTimestep(curtime);
            break;
        case ACT_ARM_ENABLE:
            if (m_constraint)
                m_constraint->ClrConstraintFlag(CONSTRAINT_OFF);
            break;
        case ACT_ARM_DISABLE:
            if (m_constraint)
                m_constraint->SetConstraintFlag(CONSTRAINT_OFF);
            break;
        case ACT_ARM_SETTARGET:
            if (m_constraint) {
                m_constraint->SetTarget(m_gametarget);
                m_constraint->SetSubtarget(m_gamesubtarget);
            }
            break;
        case ACT_ARM_SETWEIGHT:
            if (m_constraint)
                m_constraint->SetWeight(m_weight);
            break;
        case ACT_ARM_SETINFLUENCE:
            if (m_constraint)
                m_constraint->SetInfluence(m_influence);
            break;
        }
    }
    return result;
}
bool KX_ParentActuator::Update()
{
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (bNegativeEvent)
		return false; // do nothing on negative events

	KX_GameObject *obj = (KX_GameObject*) GetParent();
	KX_Scene *scene = KX_GetActiveScene();
	switch (m_mode) {
		case KX_PARENT_SET:
			if (m_ob)
				obj->SetParent(scene, (KX_GameObject*)m_ob, m_addToCompound, m_ghost);
			break;
		case KX_PARENT_REMOVE:
			obj->RemoveParent(scene);
			break;
	};
	
	return false;
}
Example #10
0
bool
KX_StateActuator::Update()
{
	bool bNegativeEvent = IsNegativeEvent();
	unsigned int objMask;

	// execution of state actuator means that we are in the execution phase, reset this pointer
	// because all the active actuator of this object will be removed for sure.
	m_gameobj->m_firstState = NULL;
	RemoveAllEvents();
	if (bNegativeEvent) return false;

	KX_GameObject *obj = (KX_GameObject*) GetParent();
	
	objMask = obj->GetState();
	switch (m_operation) 
	{
	case OP_CPY:
		objMask = m_mask;
		break;
	case OP_SET:
		objMask |= m_mask;
		break;
	case OP_CLR:
		objMask &= ~m_mask;
		break;
	case OP_NEG:
		objMask ^= m_mask;
		break;
	default:
		// unsupported operation, no  nothing
		return false;
	}
	obj->SetState(objMask);
	return false;
}
Example #11
0
bool KX_ConstraintActuator::Update(double curtime, bool frame)
{

	bool result = false;
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (!bNegativeEvent) {
		/* Constraint clamps the values to the specified range, with a sort of    */
		/* low-pass filtered time response, if the damp time is unequal to 0.     */

		/* Having to retrieve location/rotation and setting it afterwards may not */
		/* be efficient enough... Something to look at later.                     */
		KX_GameObject  *obj = (KX_GameObject*) GetParent();
		MT_Vector3    position = obj->NodeGetWorldPosition();
		MT_Vector3    newposition;
		MT_Vector3   normal, direction, refDirection;
		MT_Matrix3x3 rotation = obj->NodeGetWorldOrientation();
		MT_Scalar    filter, newdistance, cosangle;
		int axis, sign;

		if (m_posDampTime) {
			filter = m_posDampTime/(1.0f+m_posDampTime);
		} else {
			filter = 0.0f;
		}
		switch (m_locrot) {
		case KX_ACT_CONSTRAINT_ORIX:
		case KX_ACT_CONSTRAINT_ORIY:
		case KX_ACT_CONSTRAINT_ORIZ:
			switch (m_locrot) {
			case KX_ACT_CONSTRAINT_ORIX:
				direction[0] = rotation[0][0];
				direction[1] = rotation[1][0];
				direction[2] = rotation[2][0];
				axis = 0;
				break;
			case KX_ACT_CONSTRAINT_ORIY:
				direction[0] = rotation[0][1];
				direction[1] = rotation[1][1];
				direction[2] = rotation[2][1];
				axis = 1;
				break;
			default:
				direction[0] = rotation[0][2];
				direction[1] = rotation[1][2];
				direction[2] = rotation[2][2];
				axis = 2;
				break;
			}
			if ((m_maximumBound < (1.0f-FLT_EPSILON)) || (m_minimumBound < (1.0f-FLT_EPSILON))) {
				// reference direction needs to be evaluated
				// 1. get the cosine between current direction and target
				cosangle = direction.dot(m_refDirVector);
				if (cosangle >= (m_maximumBound-FLT_EPSILON) && cosangle <= (m_minimumBound+FLT_EPSILON)) {
					// no change to do
					result = true;
					goto CHECK_TIME;
				}
				// 2. define a new reference direction
				//    compute local axis with reference direction as X and
				//    Y in direction X refDirection plane
				MT_Vector3 zaxis = m_refDirVector.cross(direction);
				if (MT_fuzzyZero2(zaxis.length2())) {
					// direction and refDirection are identical,
					// choose any other direction to define plane
					if (direction[0] < 0.9999f)
						zaxis = m_refDirVector.cross(MT_Vector3(1.0f,0.0f,0.0f));
					else
						zaxis = m_refDirVector.cross(MT_Vector3(0.0f,1.0f,0.0f));
				}
				MT_Vector3 yaxis = zaxis.cross(m_refDirVector);
				yaxis.normalize();
				if (cosangle > m_minimumBound) {
					// angle is too close to reference direction,
					// choose a new reference that is exactly at minimum angle
					refDirection = m_minimumBound * m_refDirVector + m_minimumSine * yaxis;
				} else {
					// angle is too large, choose new reference direction at maximum angle
					refDirection = m_maximumBound * m_refDirVector + m_maximumSine * yaxis;
				}
			} else {
				refDirection = m_refDirVector;
			}
			// apply damping on the direction
			direction = filter*direction + (1.0f-filter)*refDirection;
			obj->AlignAxisToVect(direction, axis);
			result = true;
			goto CHECK_TIME;
		case KX_ACT_CONSTRAINT_DIRPX:
		case KX_ACT_CONSTRAINT_DIRPY:
		case KX_ACT_CONSTRAINT_DIRPZ:
		case KX_ACT_CONSTRAINT_DIRNX:
		case KX_ACT_CONSTRAINT_DIRNY:
		case KX_ACT_CONSTRAINT_DIRNZ:
			switch (m_locrot) {
			case KX_ACT_CONSTRAINT_DIRPX:
				normal[0] = rotation[0][0];
				normal[1] = rotation[1][0];
				normal[2] = rotation[2][0];
				axis = 0;		// axis according to KX_GameObject::AlignAxisToVect()
				sign = 0;		// X axis will be parrallel to direction of ray
				break;
			case KX_ACT_CONSTRAINT_DIRPY:
				normal[0] = rotation[0][1];
				normal[1] = rotation[1][1];
				normal[2] = rotation[2][1];
				axis = 1;
				sign = 0;
				break;
			case KX_ACT_CONSTRAINT_DIRPZ:
				normal[0] = rotation[0][2];
				normal[1] = rotation[1][2];
				normal[2] = rotation[2][2];
				axis = 2;
				sign = 0;
				break;
			case KX_ACT_CONSTRAINT_DIRNX:
				normal[0] = -rotation[0][0];
				normal[1] = -rotation[1][0];
				normal[2] = -rotation[2][0];
				axis = 0;
				sign = 1;
				break;
			case KX_ACT_CONSTRAINT_DIRNY:
				normal[0] = -rotation[0][1];
				normal[1] = -rotation[1][1];
				normal[2] = -rotation[2][1];
				axis = 1;
				sign = 1;
				break;
			case KX_ACT_CONSTRAINT_DIRNZ:
				normal[0] = -rotation[0][2];
				normal[1] = -rotation[1][2];
				normal[2] = -rotation[2][2];
				axis = 2;
				sign = 1;
				break;
			}
			normal.normalize();
			if (m_option & KX_ACT_CONSTRAINT_LOCAL) {
				// direction of the ray is along the local axis
				direction = normal;
			} else {
				switch (m_locrot) {
				case KX_ACT_CONSTRAINT_DIRPX:
					direction = MT_Vector3(1.0f,0.0f,0.0f);
					break;
				case KX_ACT_CONSTRAINT_DIRPY:
					direction = MT_Vector3(0.0f,1.0f,0.0f);
					break;
				case KX_ACT_CONSTRAINT_DIRPZ:
					direction = MT_Vector3(0.0f,0.0f,1.0f);
					break;
				case KX_ACT_CONSTRAINT_DIRNX:
					direction = MT_Vector3(-1.0f,0.0f,0.0f);
					break;
				case KX_ACT_CONSTRAINT_DIRNY:
					direction = MT_Vector3(0.0f,-1.0f,0.0f);
					break;
				case KX_ACT_CONSTRAINT_DIRNZ:
					direction = MT_Vector3(0.0f,0.0f,-1.0f);
					break;
				}
			}
			{
				MT_Vector3 topoint = position + (m_maximumBound) * direction;
				PHY_IPhysicsEnvironment* pe = KX_GetActiveScene()->GetPhysicsEnvironment();
				PHY_IPhysicsController *spc = obj->GetPhysicsController();

				if (!pe) {
					CM_LogicBrickWarning(this, "there is no physics environment!");
					goto CHECK_TIME;
				}	 
				if (!spc) {
					// the object is not physical, we probably want to avoid hitting its own parent
					KX_GameObject *parent = obj->GetParent();
					if (parent) {
						spc = parent->GetPhysicsController();
					}
				}
				KX_RayCast::Callback<KX_ConstraintActuator, void> callback(this,dynamic_cast<PHY_IPhysicsController*>(spc));
				result = KX_RayCast::RayTest(pe, position, topoint, callback);
				if (result)	{
					MT_Vector3 newnormal = callback.m_hitNormal;
					// compute new position & orientation
					if ((m_option & (KX_ACT_CONSTRAINT_NORMAL|KX_ACT_CONSTRAINT_DISTANCE)) == 0) {
						// if none option is set, the actuator does nothing but detect ray 
						// (works like a sensor)
						goto CHECK_TIME;
					}
					if (m_option & KX_ACT_CONSTRAINT_NORMAL) {
						MT_Scalar rotFilter;
						// apply damping on the direction
						if (m_rotDampTime) {
							rotFilter = m_rotDampTime/(1.0f+m_rotDampTime);
						} else {
							rotFilter = filter;
						}
						newnormal = rotFilter*normal - (1.0f-rotFilter)*newnormal;
						obj->AlignAxisToVect((sign)?-newnormal:newnormal, axis);
						if (m_option & KX_ACT_CONSTRAINT_LOCAL) {
							direction = newnormal;
							direction.normalize();
						}
					}
					if (m_option & KX_ACT_CONSTRAINT_DISTANCE) {
						if (m_posDampTime) {
							newdistance = filter*(position-callback.m_hitPoint).length()+(1.0f-filter)*m_minimumBound;
						} else {
							newdistance = m_minimumBound;
						}
						// logically we should cancel the speed along the ray direction as we set the
						// position along that axis
						spc = obj->GetPhysicsController();
						if (spc && spc->IsDynamic()) {
							MT_Vector3 linV = spc->GetLinearVelocity();
							// cancel the projection along the ray direction
							MT_Scalar fallspeed = linV.dot(direction);
							if (!MT_fuzzyZero(fallspeed))
								spc->SetLinearVelocity(linV-fallspeed*direction,false);
						}
					} else {
						newdistance = (position-callback.m_hitPoint).length();
					}
					newposition = callback.m_hitPoint-newdistance*direction;
				} else if (m_option & KX_ACT_CONSTRAINT_PERMANENT) {
					// no contact but still keep running
					result = true;
					goto CHECK_TIME;
				}
			}
			break; 
		case KX_ACT_CONSTRAINT_FHPX:
		case KX_ACT_CONSTRAINT_FHPY:
		case KX_ACT_CONSTRAINT_FHPZ:
		case KX_ACT_CONSTRAINT_FHNX:
		case KX_ACT_CONSTRAINT_FHNY:
		case KX_ACT_CONSTRAINT_FHNZ:
			switch (m_locrot) {
			case KX_ACT_CONSTRAINT_FHPX:
				normal[0] = -rotation[0][0];
				normal[1] = -rotation[1][0];
				normal[2] = -rotation[2][0];
				direction = MT_Vector3(1.0f,0.0f,0.0f);
				break;
			case KX_ACT_CONSTRAINT_FHPY:
				normal[0] = -rotation[0][1];
				normal[1] = -rotation[1][1];
				normal[2] = -rotation[2][1];
				direction = MT_Vector3(0.0f,1.0f,0.0f);
				break;
			case KX_ACT_CONSTRAINT_FHPZ:
				normal[0] = -rotation[0][2];
				normal[1] = -rotation[1][2];
				normal[2] = -rotation[2][2];
				direction = MT_Vector3(0.0f,0.0f,1.0f);
				break;
			case KX_ACT_CONSTRAINT_FHNX:
				normal[0] = rotation[0][0];
				normal[1] = rotation[1][0];
				normal[2] = rotation[2][0];
				direction = MT_Vector3(-1.0f,0.0f,0.0f);
				break;
			case KX_ACT_CONSTRAINT_FHNY:
				normal[0] = rotation[0][1];
				normal[1] = rotation[1][1];
				normal[2] = rotation[2][1];
				direction = MT_Vector3(0.0f,-1.0f,0.0f);
				break;
			case KX_ACT_CONSTRAINT_FHNZ:
				normal[0] = rotation[0][2];
				normal[1] = rotation[1][2];
				normal[2] = rotation[2][2];
				direction = MT_Vector3(0.0f,0.0f,-1.0f);
				break;
			}
			normal.normalize();
			{
				PHY_IPhysicsEnvironment* pe = KX_GetActiveScene()->GetPhysicsEnvironment();
				PHY_IPhysicsController *spc = obj->GetPhysicsController();

				if (!pe) {
					CM_LogicBrickWarning(this, "there is no physics environment!");
					goto CHECK_TIME;
				}	 
				if (!spc || !spc->IsDynamic()) {
					// the object is not dynamic, it won't support setting speed
					goto CHECK_TIME;
				}
				m_hitObject = NULL;
				// distance of Fh area is stored in m_minimum
				MT_Vector3 topoint = position + (m_minimumBound+spc->GetRadius()) * direction;
				KX_RayCast::Callback<KX_ConstraintActuator, void> callback(this, spc);
				result = KX_RayCast::RayTest(pe, position, topoint, callback);
				// we expect a hit object
				if (!m_hitObject)
					result = false;
				if (result)
				{
					MT_Vector3 newnormal = callback.m_hitNormal;
					// compute new position & orientation
					MT_Scalar distance = (callback.m_hitPoint-position).length()-spc->GetRadius(); 
					// estimate the velocity of the hit point
					MT_Vector3 relativeHitPoint;
					relativeHitPoint = (callback.m_hitPoint-m_hitObject->NodeGetWorldPosition());
					MT_Vector3 velocityHitPoint = m_hitObject->GetVelocity(relativeHitPoint);
					MT_Vector3 relativeVelocity = spc->GetLinearVelocity() - velocityHitPoint;
					MT_Scalar relativeVelocityRay = direction.dot(relativeVelocity);
					MT_Scalar springExtent = 1.0f - distance/m_minimumBound;
					// Fh force is stored in m_maximum
					MT_Scalar springForce = springExtent * m_maximumBound;
					// damping is stored in m_refDirection [0] = damping, [1] = rot damping
					MT_Scalar springDamp = relativeVelocityRay * m_refDirVector[0];
					MT_Vector3 newVelocity = spc->GetLinearVelocity()-(springForce+springDamp)*direction;
					if (m_option & KX_ACT_CONSTRAINT_NORMAL)
					{
						newVelocity+=(springForce+springDamp)*(newnormal-newnormal.dot(direction)*direction);
					}
					spc->SetLinearVelocity(newVelocity, false);
					if (m_option & KX_ACT_CONSTRAINT_DOROTFH)
					{
						MT_Vector3 angSpring = (normal.cross(newnormal))*m_maximumBound;
						MT_Vector3 angVelocity = spc->GetAngularVelocity();
						// remove component that is parallel to normal
						angVelocity -= angVelocity.dot(newnormal)*newnormal;
						MT_Vector3 angDamp = angVelocity * ((m_refDirVector[1]>MT_EPSILON)?m_refDirVector[1]:m_refDirVector[0]);
						spc->SetAngularVelocity(spc->GetAngularVelocity()+(angSpring-angDamp), false);
					}
				} else if (m_option & KX_ACT_CONSTRAINT_PERMANENT) {
					// no contact but still keep running
					result = true;
				}
				// don't set the position with this constraint
				goto CHECK_TIME;
			}
			break; 
		case KX_ACT_CONSTRAINT_LOCX:
		case KX_ACT_CONSTRAINT_LOCY:
		case KX_ACT_CONSTRAINT_LOCZ:
			newposition = position = obj->GetSGNode()->GetLocalPosition();
			switch (m_locrot) {
			case KX_ACT_CONSTRAINT_LOCX:
				Clamp(newposition[0], m_minimumBound, m_maximumBound);
				break;
			case KX_ACT_CONSTRAINT_LOCY:
				Clamp(newposition[1], m_minimumBound, m_maximumBound);
				break;
			case KX_ACT_CONSTRAINT_LOCZ:
				Clamp(newposition[2], m_minimumBound, m_maximumBound);
				break;
			}
			result = true;
			if (m_posDampTime) {
				newposition = filter*position + (1.0f-filter)*newposition;
			}
			obj->NodeSetLocalPosition(newposition);
			goto CHECK_TIME;
		}
		if (result) {
			// set the new position but take into account parent if any
			obj->NodeSetWorldPosition(newposition);
		}
	CHECK_TIME:
		if (result && m_activeTime > 0 ) {
			if (++m_currentTime >= m_activeTime)
				result = false;
		}
	}
	if (!result) {
		m_currentTime = 0;
	}
	return result;
} /* end of KX_ConstraintActuator::Update(double curtime,double deltatime)   */
bool KX_GameActuator::Update()
{
	// bool result = false;	 /*unused*/
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (bNegativeEvent)
		return false; // do nothing on negative events

	switch (m_mode)
	{
	case KX_GAME_LOAD:
	case KX_GAME_START:
		{
			if (m_ketsjiengine)
			{
				STR_String exitstring = "start other game";
				m_ketsjiengine->RequestExit(KX_EXIT_REQUEST_START_OTHER_GAME);
				m_ketsjiengine->SetNameNextGame(m_filename);
				m_scene->AddDebugProperty((this)->GetParent(), exitstring);
			}

			break;
		}
	case KX_GAME_RESTART:
		{
			if (m_ketsjiengine)
			{
				STR_String exitstring = "restarting game";
				m_ketsjiengine->RequestExit(KX_EXIT_REQUEST_RESTART_GAME);
				m_ketsjiengine->SetNameNextGame(m_filename);
				m_scene->AddDebugProperty((this)->GetParent(), exitstring);
			}
			break;
		}
	case KX_GAME_QUIT:
		{
			if (m_ketsjiengine)
			{
				STR_String exitstring = "quiting game";
				m_ketsjiengine->RequestExit(KX_EXIT_REQUEST_QUIT_GAME);
				m_scene->AddDebugProperty((this)->GetParent(), exitstring);
			}
			break;
		}
	case KX_GAME_SAVECFG:
		{
#ifdef WITH_PYTHON
			if (m_ketsjiengine)
			{
				char mashal_path[512];
				char *marshal_buffer = NULL;
				unsigned int marshal_length;
				FILE *fp = NULL;
				
				pathGamePythonConfig(mashal_path);
				marshal_length = saveGamePythonConfig(&marshal_buffer);
				
				if (marshal_length && marshal_buffer) {
					fp = fopen(mashal_path, "wb");
					if (fp) {
						if (fwrite(marshal_buffer, 1, marshal_length, fp) != marshal_length) {
							printf("Warning: could not write marshal data\n");
						}
						fclose(fp);
					} else {
						printf("Warning: could not open marshal file\n");
					}
				} else {
					printf("Warning: could not create marshal buffer\n");
				}
				if (marshal_buffer)
					delete [] marshal_buffer;
			}
			break;
#endif // WITH_PYTHON
		}
	case KX_GAME_LOADCFG:
		{
#ifdef WITH_PYTHON
			if (m_ketsjiengine)
			{
				char mashal_path[512];
				char *marshal_buffer;
				int marshal_length;
				FILE *fp = NULL;
				int result;
				
				pathGamePythonConfig(mashal_path);
				
				fp = fopen(mashal_path, "rb");
				if (fp) {
					// obtain file size:
					fseek (fp , 0 , SEEK_END);
					marshal_length = ftell(fp);
					if (marshal_length == -1) {
						printf("warning: could not read position of '%s'\n", mashal_path);
						fclose(fp);
						break;
					}
					rewind(fp);
					
					marshal_buffer = (char*) malloc (sizeof(char)*marshal_length);
					
					result = fread (marshal_buffer, 1, marshal_length, fp);
					
					if (result == marshal_length) {
						loadGamePythonConfig(marshal_buffer, marshal_length);
					} else {
						printf("warning: could not read all of '%s'\n", mashal_path);
					}
					
					free(marshal_buffer);
					fclose(fp);
				} else {
					printf("warning: could not open '%s'\n", mashal_path);
				}
			}
			break;
#endif // WITH_PYTHON
		}
		case KX_GAME_SCREENSHOT:
		{
			RAS_ICanvas *canvas = m_ketsjiengine->GetCanvas();
			if (canvas) {
				canvas->MakeScreenShot(m_filename);
			}
			else {
				printf("KX_GAME_SCREENSHOT error: Rasterizer not available");
			}
			break;
		}
	default:
		; /* do nothing? this is an internal error !!! */
	}
	
	return false;
}
Example #13
0
bool KX_SteeringActuator::Update(double curtime, bool frame)
{
	if (frame)
	{
		double delta =  curtime - m_updateTime;
		m_updateTime = curtime;
		
		if (m_posevent && !m_isActive)
		{
			delta = 0.0;
			m_pathUpdateTime = -1.0;
			m_updateTime = curtime;
			m_isActive = true;
		}
		bool bNegativeEvent = IsNegativeEvent();
		if (bNegativeEvent)
			m_isActive = false;

		RemoveAllEvents();

		if (!delta)
			return true;

		if (bNegativeEvent || !m_target)
			return false; // do nothing on negative events

		KX_GameObject *obj = (KX_GameObject*) GetParent();
		const MT_Vector3& mypos = obj->NodeGetWorldPosition();
		const MT_Vector3& targpos = m_target->NodeGetWorldPosition();
		MT_Vector3 vectotarg = targpos - mypos;
		MT_Vector3 vectotarg2d = vectotarg;
		vectotarg2d.z() = 0.0f;
		m_steerVec = MT_Vector3(0.0f, 0.0f, 0.0f);
		bool apply_steerforce = false;
		bool terminate = true;

		switch (m_mode) {
			case KX_STEERING_SEEK:
				if (vectotarg2d.length2()>m_distance*m_distance)
				{
					terminate = false;
					m_steerVec = vectotarg;
					m_steerVec.normalize();
					apply_steerforce = true;
				}
				break;
			case KX_STEERING_FLEE:
				if (vectotarg2d.length2()<m_distance*m_distance)
				{
					terminate = false;
					m_steerVec = -vectotarg;
					m_steerVec.normalize();
					apply_steerforce = true;
				}
				break;
			case KX_STEERING_PATHFOLLOWING:
				if (m_navmesh && vectotarg.length2()>m_distance*m_distance)
				{
					terminate = false;

					static const MT_Scalar WAYPOINT_RADIUS(0.25f);

					if (m_pathUpdateTime<0 || (m_pathUpdatePeriod>=0 && 
												curtime - m_pathUpdateTime>((double)m_pathUpdatePeriod/1000.0)))
					{
						m_pathUpdateTime = curtime;
						m_pathLen = m_navmesh->FindPath(mypos, targpos, m_path, MAX_PATH_LENGTH);
						m_wayPointIdx = m_pathLen > 1 ? 1 : -1;
					}

					if (m_wayPointIdx>0)
					{
						MT_Vector3 waypoint(&m_path[3*m_wayPointIdx]);
						if ((waypoint-mypos).length2()<WAYPOINT_RADIUS*WAYPOINT_RADIUS)
						{
							m_wayPointIdx++;
							if (m_wayPointIdx>=m_pathLen)
							{
								m_wayPointIdx = -1;
								terminate = true;
							}
							else
								waypoint.setValue(&m_path[3*m_wayPointIdx]);
						}

						m_steerVec = waypoint - mypos;
						apply_steerforce = true;

						
						if (m_enableVisualization)
						{
							//debug draw
							static const MT_Vector4 PATH_COLOR(1.0f, 0.0f, 0.0f, 1.0f);
							m_navmesh->DrawPath(m_path, m_pathLen, PATH_COLOR);
						}
					}
					
				}
				break;
		}

		if (apply_steerforce)
		{
			bool isdyna = obj->IsDynamic();
			if (isdyna)
				m_steerVec.z() = 0;
			if (!m_steerVec.fuzzyZero())
				m_steerVec.normalize();
			MT_Vector3 newvel = m_velocity * m_steerVec;

			//adjust velocity to avoid obstacles
			if (m_simulation && m_obstacle /*&& !newvel.fuzzyZero()*/)
			{
				if (m_enableVisualization)
					KX_RasterizerDrawDebugLine(mypos, mypos + newvel, MT_Vector4(1.0f, 0.0f, 0.0f, 1.0f));
				m_simulation->AdjustObstacleVelocity(m_obstacle, m_mode!=KX_STEERING_PATHFOLLOWING ? m_navmesh : NULL,
								newvel, m_acceleration*(float)delta, m_turnspeed/(180.0f*(float)(M_PI*delta)));
				if (m_enableVisualization)
					KX_RasterizerDrawDebugLine(mypos, mypos + newvel, MT_Vector4(0.0f, 1.0f, 0.0f, 1.0f));
			}

			HandleActorFace(newvel);
			if (isdyna)
			{
				//temporary solution: set 2D steering velocity directly to obj
				//correct way is to apply physical force
				MT_Vector3 curvel = obj->GetLinearVelocity();

				if (m_lockzvel)
					newvel.z() = 0.0f;
				else
					newvel.z() = curvel.z();

				obj->setLinearVelocity(newvel, false);
			}
			else
			{
				MT_Vector3 movement = delta*newvel;
				obj->ApplyMovement(movement, false);
			}
		}
		else
		{
			if (m_simulation && m_obstacle)
			{
				m_obstacle->dvel[0] = 0.f;
				m_obstacle->dvel[1] = 0.f;
			}
			
		}

		if (terminate && m_isSelfTerminated)
			return false;
	}

	return true;
}
Example #14
0
bool KX_CameraActuator::Update(double curtime, bool frame)
{
	/* wondering... is it really necessary/desirable to suppress negative    */
	/* events here?                                                          */
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (bNegativeEvent || !m_ob) 
		return false;
	
	KX_GameObject *obj = (KX_GameObject*) GetParent();
	MT_Point3 from = obj->NodeGetWorldPosition();
	MT_Matrix3x3 frommat = obj->NodeGetWorldOrientation();
	/* These casts are _very_ dangerous!!! */
	MT_Point3 lookat = ((KX_GameObject*)m_ob)->NodeGetWorldPosition();
	MT_Matrix3x3 actormat = ((KX_GameObject*)m_ob)->NodeGetWorldOrientation();

	float fp1[3]={0}, fp2[3]={0}, rc[3];
	float inp, fac; //, factor = 0.0; /* some factor...                                    */
	float mindistsq, maxdistsq, distsq;
	float mat[3][3];
	
	/* The rules:                                                            */
	/* CONSTRAINT 1: not implemented */
	/* CONSTRAINT 2: can camera see actor?              */
	/* CONSTRAINT 3: fixed height relative to floor below actor.             */
	/* CONSTRAINT 4: camera rotates behind actor                              */
	/* CONSTRAINT 5: minimum / maximum distance                             */
	/* CONSTRAINT 6: again: fixed height relative to floor below actor        */
	/* CONSTRAINT 7: track to floor below actor                               */
	/* CONSTRAINT 8: look a little bit left or right, depending on how the
	 *
	 * character is looking (horizontal x)
	 */

	/* ...and then set the camera position. Since we assume the parent of    */
	/* this actuator is always a camera, just set the parent position and    */
	/* rotation. We do not check whether we really have a camera as parent.  */
	/* It may be better to turn this into a general tracking actuator later  */
	/* on, since lots of plausible relations can be filled in here.          */

	/* ... set up some parameters ...                                        */
	/* missing here: the 'floorloc' of the actor's shadow */

	mindistsq= m_minHeight*m_minHeight;
	maxdistsq= m_maxHeight*m_maxHeight;

	/* C1: not checked... is a future option                                 */

	/* C2: blender test_visibility function. Can this be a ray-test?         */

	/* C3: fixed height  */
	from[2] = (15.0f * from[2] + lookat[2] + m_height) / 16.0f;


	/* C4: camera behind actor   */
	switch (m_axis) {
		case OB_POSX:
			/* X */
			fp1[0] = actormat[0][0];
			fp1[1] = actormat[1][0];
			fp1[2] = actormat[2][0];

			fp2[0] = frommat[0][0];
			fp2[1] = frommat[1][0];
			fp2[2] = frommat[2][0];
			break;
		case OB_POSY:
			/* Y */
			fp1[0] = actormat[0][1];
			fp1[1] = actormat[1][1];
			fp1[2] = actormat[2][1];

			fp2[0] = frommat[0][1];
			fp2[1] = frommat[1][1];
			fp2[2] = frommat[2][1];
			break;
		case OB_NEGX:
			/* -X */
			fp1[0] = -actormat[0][0];
			fp1[1] = -actormat[1][0];
			fp1[2] = -actormat[2][0];

			fp2[0] = frommat[0][0];
			fp2[1] = frommat[1][0];
			fp2[2] = frommat[2][0];
			break;
		case OB_NEGY:
			/* -Y */
			fp1[0] = -actormat[0][1];
			fp1[1] = -actormat[1][1];
			fp1[2] = -actormat[2][1];

			fp2[0] = frommat[0][1];
			fp2[1] = frommat[1][1];
			fp2[2] = frommat[2][1];
			break;
		default:
			assert(0);
			break;
	}

	inp = fp1[0]*fp2[0] + fp1[1]*fp2[1] + fp1[2]*fp2[2];
	fac = (-1.0f + inp) * m_damping;

	from[0] += fac * fp1[0];
	from[1] += fac * fp1[1];
	from[2] += fac * fp1[2];
	
	/* only for it lies: cross test and perpendicular bites up */
	if (inp < 0.0f) {
		/* Don't do anything if the cross product is too small.
		 * The camera up-axis becomes unstable and starts to oscillate.
		 * The 0.01f threshold is arbitrary but seems to work well in practice. */
		float cross = fp1[0] * fp2[1] - fp1[1] * fp2[0];
		if (cross > 0.01f) {
			from[0] -= fac * fp1[1];
			from[1] += fac * fp1[0];
		}
		else if (cross < -0.01f) {
			from[0] += fac * fp1[1];
			from[1] -= fac * fp1[0];
		}
	}

	/* CONSTRAINT 5: minimum / maximum distance */

	rc[0] = (lookat[0]-from[0]);
	rc[1] = (lookat[1]-from[1]);
	rc[2] = (lookat[2]-from[2]);
	distsq = rc[0]*rc[0] + rc[1]*rc[1] + rc[2]*rc[2];

	if (distsq > maxdistsq) {
		distsq = 0.15f * (distsq - maxdistsq) / distsq;
		
		from[0] += distsq*rc[0];
		from[1] += distsq*rc[1];
		from[2] += distsq*rc[2];
	}
	else if (distsq < mindistsq) {
		distsq = 0.15f * (mindistsq - distsq) / mindistsq;
		
		from[0] -= distsq*rc[0];
		from[1] -= distsq*rc[1];
		from[2] -= distsq*rc[2];
	}


	/* CONSTRAINT 7: track to floor below actor */
	rc[0] = (lookat[0]-from[0]);
	rc[1] = (lookat[1]-from[1]);
	rc[2] = (lookat[2]-from[2]);
	Kx_VecUpMat3(rc, mat, 3);	/* y up Track -z */
	



	/* now set the camera position and rotation */
	
	obj->NodeSetLocalPosition(from);
	
	actormat[0][0] = mat[0][0]; actormat[0][1] = mat[1][0]; actormat[0][2] = mat[2][0];
	actormat[1][0] = mat[0][1]; actormat[1][1] = mat[1][1]; actormat[1][2] = mat[2][1];
	actormat[2][0] = mat[0][2]; actormat[2][1] = mat[1][2]; actormat[2][2] = mat[2][2];
	obj->NodeSetLocalOrientation(actormat);

	return true;
}
Example #15
0
bool KX_GameActuator::Update()
{
	// bool result = false;	 /*unused*/
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (bNegativeEvent)
		return false; // do nothing on negative events

	switch (m_mode)
	{
	case KX_GAME_LOAD:
	case KX_GAME_START:
		{
			if (m_ketsjiengine)
			{
				std::string exitstring = "start other game";
				m_ketsjiengine->RequestExit(KX_EXIT_REQUEST_START_OTHER_GAME);
				m_ketsjiengine->SetNameNextGame(m_filename);
				m_scene->AddDebugProperty((this)->GetParent(), exitstring);
			}

			break;
		}
	case KX_GAME_RESTART:
		{
			if (m_ketsjiengine)
			{
				std::string exitstring = "restarting game";
				m_ketsjiengine->RequestExit(KX_EXIT_REQUEST_RESTART_GAME);
				m_ketsjiengine->SetNameNextGame(m_filename);
				m_scene->AddDebugProperty((this)->GetParent(), exitstring);
			}
			break;
		}
	case KX_GAME_QUIT:
		{
			if (m_ketsjiengine)
			{
				std::string exitstring = "quiting game";
				m_ketsjiengine->RequestExit(KX_EXIT_REQUEST_QUIT_GAME);
				m_scene->AddDebugProperty((this)->GetParent(), exitstring);
			}
			break;
		}
	case KX_GAME_SAVECFG:
		{
#ifdef WITH_PYTHON
			if (m_ketsjiengine) {
				saveGamePythonConfig();
			}
			break;
#endif // WITH_PYTHON
		}
	case KX_GAME_LOADCFG:
		{
#ifdef WITH_PYTHON
			if (m_ketsjiengine) {
				loadGamePythonConfig();
			}
			break;
#endif // WITH_PYTHON
		}
		case KX_GAME_SCREENSHOT:
		{
			RAS_ICanvas *canvas = m_ketsjiengine->GetCanvas();
			if (canvas) {
				canvas->MakeScreenShot(m_filename);
			}
			else {
				CM_LogicBrickError(this, "KX_GAME_SCREENSHOT Rasterizer not available");
			}
			break;
		}
	default:
		; /* do nothing? this is an internal error !!! */
	}
	
	return false;
}
Example #16
0
bool SCA_PropertyActuator::Update()
{
	bool result = false;

	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();


	if (bNegativeEvent)
		return false; // do nothing on negative events


	CValue* propowner = GetParent();
	CParser parser;
	parser.SetContext( propowner->AddRef());
	
	CExpression* userexpr= NULL;
	
	if (m_type==KX_ACT_PROP_TOGGLE)
	{
		/* dont use */
		CValue* newval;
		CValue* oldprop = propowner->GetProperty(m_propname);
		if (oldprop)
		{
			newval = new CBoolValue((oldprop->GetNumber()==0.0) ? true:false);
			oldprop->SetValue(newval);
		} else
		{	/* as not been assigned, evaluate as false, so assign true */
			newval = new CBoolValue(true);
			propowner->SetProperty(m_propname,newval);
		}
		newval->Release();
	}
	else if ((userexpr = parser.ProcessText(m_exprtxt))) {
		switch (m_type)
		{

		case KX_ACT_PROP_ASSIGN:
			{
				
				CValue* newval = userexpr->Calculate();
				CValue* oldprop = propowner->GetProperty(m_propname);
				if (oldprop)
				{
					oldprop->SetValue(newval);
				} else
				{
					propowner->SetProperty(m_propname,newval);
				}
				newval->Release();
				break;
			}
		case KX_ACT_PROP_ADD:
			{
				CValue* oldprop = propowner->GetProperty(m_propname);
				if (oldprop)
				{
					// int waarde = (int)oldprop->GetNumber();  /*unused*/
					CExpression* expr = new COperator2Expr(VALUE_ADD_OPERATOR,new CConstExpr(oldprop->AddRef()),
															userexpr->AddRef());

					CValue* newprop = expr->Calculate();
					oldprop->SetValue(newprop);
					newprop->Release();
					expr->Release();

				}

				break;
			}
		case KX_ACT_PROP_COPY:
			{
				if (m_sourceObj)
				{
					CValue* copyprop = m_sourceObj->GetProperty(m_exprtxt);
					if (copyprop)
					{
						CValue *val = copyprop->GetReplica();
						GetParent()->SetProperty(
							 m_propname,
							 val);
						val->Release();

					}
				}
				break;
			}
		/* case KX_ACT_PROP_TOGGLE: */ /* accounted for above, no need for userexpr */
		default:
			{

			}
		}

		userexpr->Release();
	}
	
	return result;
}
bool KX_IpoActuator::Update(double curtime, bool frame)
{
	// result = true if animation has to be continued, false if animation stops
	// maybe there are events for us in the queue !
	bool bNegativeEvent = false;
	bool numevents = false;
	bool bIpoStart = false;

	curtime -= KX_KetsjiEngine::GetSuspendedDelta();

	if (frame)
	{
		numevents = m_posevent || m_negevent;
		bNegativeEvent = IsNegativeEvent();
		RemoveAllEvents();
	}
	
	float  start_smaller_then_end = ( m_startframe < m_endframe ? 1.0f : -1.0f);

	bool result=true;
	if (!bNegativeEvent)
	{
		if (m_starttime < -2.0f*fabs(m_endframe - m_startframe))
		{
			// start for all Ipo, initial start for LOOP_STOP
			m_starttime = curtime;
			m_bIpoPlaying = true;
			bIpoStart = true;
		}
	}

	switch ((IpoActType)m_type)
	{
		
	case KX_ACT_IPO_PLAY:
	{
		// Check if playing forwards.  result = ! finished
		
		if (start_smaller_then_end > 0.f)
			result = (m_localtime < m_endframe && m_bIpoPlaying);
		else
			result = (m_localtime > m_endframe && m_bIpoPlaying);
		
		if (result)
		{
			SetLocalTime(curtime);
		
			/* Perform clamping */
			ClampLocalTime();
	
			if (bIpoStart)
				((KX_GameObject*)GetParent())->InitIPO(m_ipo_as_force, m_ipo_add, m_ipo_local);
			((KX_GameObject*)GetParent())->UpdateIPO(m_localtime,m_recurse);
		} else
		{
			m_localtime=m_startframe;
			m_direction=1;
		}
		break;
	}
	case KX_ACT_IPO_PINGPONG:
	{
		result = true;
		if (bNegativeEvent && !m_bIpoPlaying)
			result = false;
		else
			SetLocalTime(curtime);
			
		if (ClampLocalTime())
		{
			result = false;
			m_direction = -m_direction;
		}
		
		if (bIpoStart && m_direction > 0)
			((KX_GameObject*)GetParent())->InitIPO(m_ipo_as_force, m_ipo_add, m_ipo_local);
		((KX_GameObject*)GetParent())->UpdateIPO(m_localtime,m_recurse);
		break;
	}
	case KX_ACT_IPO_FLIPPER:
	{
		if (bNegativeEvent && !m_bIpoPlaying)
			result = false;
		if (numevents)
		{
			float oldDirection = m_direction;
			if (bNegativeEvent)
				m_direction = -1;
			else
				m_direction = 1;
			if (m_direction != oldDirection)
				// changing direction, reset start time
				SetStartTime(curtime);
		}
		
		SetLocalTime(curtime);
		
		if (ClampLocalTime() && m_localtime == m_startframe)
			result = false;

		if (bIpoStart)
			((KX_GameObject*)GetParent())->InitIPO(m_ipo_as_force, m_ipo_add, m_ipo_local);
		((KX_GameObject*)GetParent())->UpdateIPO(m_localtime,m_recurse);
		break;
	}

	case KX_ACT_IPO_LOOPSTOP:
	{
		if (numevents)
		{
			if (bNegativeEvent)
			{
				result = false;
				m_bNegativeEvent = false;
				numevents = false;
			}
			if (!m_bIpoPlaying)
			{
				// Ipo was stopped, make sure we will restart from where it stopped
				SetStartTime(curtime);
				if (!bNegativeEvent)
					// positive signal will restart the Ipo
					m_bIpoPlaying = true;
			}

		} // fall through to loopend, and quit the ipo animation immediatly 
	}
	case KX_ACT_IPO_LOOPEND:
	{
		if (numevents) {
			if (bNegativeEvent && m_bIpoPlaying) {
				m_bNegativeEvent = true;
			}
		}
		
		if (bNegativeEvent && !m_bIpoPlaying) {
			result = false;
		} 
		else
		{
			if (m_localtime*start_smaller_then_end < m_endframe*start_smaller_then_end)
			{
				SetLocalTime(curtime);
			}
			else {
				if (!m_bNegativeEvent) {
					/* Perform wraparound */
					SetLocalTime(curtime);
					if (start_smaller_then_end > 0.f)
						m_localtime = m_startframe + fmod(m_localtime - m_startframe, m_endframe - m_startframe);
					else
						m_localtime = m_startframe - fmod(m_startframe - m_localtime, m_startframe - m_endframe);
					SetStartTime(curtime);
					bIpoStart = true;
				}
				else
				{
					/* Perform clamping */
					m_localtime=m_endframe;
					result = false;
					m_bNegativeEvent = false;
				}
			}
		}
		
		if (m_bIpoPlaying && bIpoStart)
			((KX_GameObject*)GetParent())->InitIPO(m_ipo_as_force, m_ipo_add, m_ipo_local);
		((KX_GameObject*)GetParent())->UpdateIPO(m_localtime,m_recurse);
		break;
	}
	
	case KX_ACT_IPO_KEY2KEY:
	{
		// not implemented yet
		result = false;
		break;
	}
	
	case KX_ACT_IPO_FROM_PROP:
	{
		result = !bNegativeEvent;

		CValue* propval = GetParent()->GetProperty(m_propname);
		if (propval)
		{
			m_localtime = propval->GetNumber(); 
	
			if (bIpoStart)
				((KX_GameObject*)GetParent())->InitIPO(m_ipo_as_force, m_ipo_add, m_ipo_local);
			((KX_GameObject*)GetParent())->UpdateIPO(m_localtime,m_recurse);
		} else
		{
			result = false;
		}
		break;
	}
		
	default:
		result = false;
	}

	/* Set the property if its defined */
	if (m_framepropname[0] != '\0') {
		CValue* propowner = GetParent();
		CValue* oldprop = propowner->GetProperty(m_framepropname);
		CValue* newval = new CFloatValue(m_localtime);
		if (oldprop) {
			oldprop->SetValue(newval);
		} else {
			propowner->SetProperty(m_framepropname, newval);
		}
		newval->Release();
	}

	if (!result)
	{
		if (m_type != KX_ACT_IPO_LOOPSTOP)
			this->ResetStartTime();
		m_bIpoPlaying = false;
	}

	return result;
}
Example #18
0
bool KX_TrackToActuator::Update(double curtime, bool frame)
{
	bool result = false;	
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (bNegativeEvent)
	{
		// do nothing on negative events
	}
	else if (m_object)
	{
		KX_GameObject* curobj = (KX_GameObject*) GetParent();
		MT_Vector3 dir = ((KX_GameObject*)m_object)->NodeGetWorldPosition() - curobj->NodeGetWorldPosition();
		if (dir.length2())
			dir.normalize();
		MT_Vector3 up(0,0,1);
		
		
#ifdef DSADSA
		switch (m_upflag)
		{
		case 0:
			{
				up.setValue(1.0,0,0);
				break;
			} 
		case 1:
			{
				up.setValue(0,1.0,0);
				break;
			}
		case 2:
		default:
			{
				up.setValue(0,0,1.0);
			}
		}
#endif 
		if (m_allow3D)
		{
			up = (up - up.dot(dir) * dir).safe_normalized();
			
		}
		else
		{
			dir = (dir - up.dot(dir)*up).safe_normalized();
		}
		
		MT_Vector3 left;
		MT_Matrix3x3 mat;
		
		switch (m_trackflag)
		{
		case 0: // TRACK X
			{
				// (1.0 , 0.0 , 0.0 ) x direction is forward, z (0.0 , 0.0 , 1.0 ) up
				left  = dir.safe_normalized();
				dir = (left.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
				
				break;
			};
		case 1:	// TRACK Y
			{
				// (0.0 , 1.0 , 0.0 ) y direction is forward, z (0.0 , 0.0 , 1.0 ) up
				left  = (dir.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
				
				break;
			}
			
		case 2: // track Z
			{
				left = up.safe_normalized();
				up = dir.safe_normalized();
				dir = left;
				left  = (dir.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
				break;
			}
			
		case 3: // TRACK -X
			{
				// (1.0 , 0.0 , 0.0 ) x direction is forward, z (0.0 , 0.0 , 1.0 ) up
				left  = -dir.safe_normalized();
				dir = -(left.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
				
				break;
			};
		case 4: // TRACK -Y
			{
				// (0.0 , -1.0 , 0.0 ) -y direction is forward, z (0.0 , 0.0 , 1.0 ) up
				left  = (-dir.cross(up)).safe_normalized();
				mat.setValue (
					left[0], -dir[0],up[0], 
					left[1], -dir[1],up[1],
					left[2], -dir[2],up[2]
					);
				break;
			}
		case 5: // track -Z
			{
				left = up.safe_normalized();
				up = -dir.safe_normalized();
				dir = left;
				left  = (dir.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
				
				break;
			}
			
		default:
			{
				// (1.0 , 0.0 , 0.0 ) -x direction is forward, z (0.0 , 0.0 , 1.0 ) up
				left  = -dir.safe_normalized();
				dir = -(left.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
			}
		}
		
		MT_Matrix3x3 oldmat;
		oldmat= curobj->NodeGetWorldOrientation();
		
		/* erwin should rewrite this! */
		mat= matrix3x3_interpol(oldmat, mat, m_time);
		

		if(m_parentobj){ // check if the model is parented and calculate the child transform
				
			MT_Point3 localpos;
			localpos = curobj->GetSGNode()->GetLocalPosition();
			// Get the inverse of the parent matrix
			MT_Matrix3x3 parentmatinv;
			parentmatinv = m_parentobj->NodeGetWorldOrientation ().inverse ();				
			// transform the local coordinate system into the parents system
			mat = parentmatinv * mat;
			// append the initial parent local rotation matrix
			mat = m_parentlocalmat * mat;

			// set the models tranformation properties
			curobj->NodeSetLocalOrientation(mat);
			curobj->NodeSetLocalPosition(localpos);
			//curobj->UpdateTransform();
		}
		else
		{
			curobj->NodeSetLocalOrientation(mat);
		}

		result = true;
	}

	return result;
}
Example #19
0
bool KX_ObjectActuator::Update()
{
	
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();
		
	KX_GameObject *parent = static_cast<KX_GameObject *>(GetParent()); 
	PHY_ICharacter *character = parent->GetScene()->GetPhysicsEnvironment()->GetCharacterController(parent);

	if (bNegativeEvent) {
		// If we previously set the linear velocity we now have to inform
		// the physics controller that we no longer wish to apply it and that
		// it should reconcile the externally set velocity with it's 
		// own velocity.
		if (m_active_combined_velocity) {
			if (parent)
				parent->ResolveCombinedVelocities(
						m_linear_velocity,
						m_angular_velocity,
						(m_bitLocalFlag.LinearVelocity) != 0,
						(m_bitLocalFlag.AngularVelocity) != 0
					);
			m_active_combined_velocity = false;
		}

		// Explicitly stop the movement if we're using character motion
		if (m_bitLocalFlag.CharacterMotion) {
			character->SetWalkDirection(MT_Vector3 (0.0f, 0.0f, 0.0f));
		}

		m_linear_damping_active = false;
		m_angular_damping_active = false;
		m_error_accumulator.setValue(0.0f,0.0f,0.0f);
		m_previous_error.setValue(0.0f,0.0f,0.0f);
		m_jumping = false;
		return false; 

	} else if (parent)
	{
		if (m_bitLocalFlag.ServoControl) 
		{
			// In this mode, we try to reach a target speed using force
			// As we don't know the friction, we must implement a generic 
			// servo control to achieve the speed in a configurable
			// v = current velocity
			// V = target velocity
			// e = V-v = speed error
			// dt = time interval since previous update
			// I = sum(e(t)*dt)
			// dv = e(t) - e(t-1)
			// KP, KD, KI : coefficient
			// F = KP*e+KI*I+KD*dv
			MT_Scalar mass = parent->GetMass();
			if (mass < MT_EPSILON)
				return false;
			MT_Vector3 v = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
			if (m_reference)
			{
				const MT_Point3& mypos = parent->NodeGetWorldPosition();
				const MT_Point3& refpos = m_reference->NodeGetWorldPosition();
				MT_Point3 relpos;
				relpos = (mypos-refpos);
				MT_Vector3 vel= m_reference->GetVelocity(relpos);
				if (m_bitLocalFlag.LinearVelocity)
					// must convert in local space
					vel = parent->NodeGetWorldOrientation().transposed()*vel;
				v -= vel;
			}
			MT_Vector3 e = m_linear_velocity - v;
			MT_Vector3 dv = e - m_previous_error;
			MT_Vector3 I = m_error_accumulator + e;

			m_force = m_pid.x()*e+m_pid.y()*I+m_pid.z()*dv;
			// to automatically adapt the PID coefficient to mass;
			m_force *= mass;
			if (m_bitLocalFlag.Torque) 
			{
				if (m_force[0] > m_dloc[0])
				{
					m_force[0] = m_dloc[0];
					I[0] = m_error_accumulator[0];
				} else if (m_force[0] < m_drot[0])
				{
					m_force[0] = m_drot[0];
					I[0] = m_error_accumulator[0];
				}
			}
			if (m_bitLocalFlag.DLoc) 
			{
				if (m_force[1] > m_dloc[1])
				{
					m_force[1] = m_dloc[1];
					I[1] = m_error_accumulator[1];
				} else if (m_force[1] < m_drot[1])
				{
					m_force[1] = m_drot[1];
					I[1] = m_error_accumulator[1];
				}
			}
			if (m_bitLocalFlag.DRot) 
			{
				if (m_force[2] > m_dloc[2])
				{
					m_force[2] = m_dloc[2];
					I[2] = m_error_accumulator[2];
				} else if (m_force[2] < m_drot[2])
				{
					m_force[2] = m_drot[2];
					I[2] = m_error_accumulator[2];
				}
			}
			m_previous_error = e;
			m_error_accumulator = I;
			parent->ApplyForce(m_force,(m_bitLocalFlag.LinearVelocity) != 0);
		}
		else if (m_bitLocalFlag.CharacterMotion) {
			MT_Vector3 dir = m_dloc;

			if (m_bitLocalFlag.DLoc) {
				MT_Matrix3x3 basis = parent->GetPhysicsController()->GetOrientation();
				dir = basis * dir;
			}

			if (m_bitLocalFlag.AddOrSetCharLoc) {
				MT_Vector3 old_dir = character->GetWalkDirection();

				if (!old_dir.fuzzyZero()) {
					MT_Scalar mag = old_dir.length();

					dir = dir + old_dir;
					if (!dir.fuzzyZero())
						dir = dir.normalized() * mag;
				}
			}

			// We always want to set the walk direction since a walk direction of (0, 0, 0) should stop the character
			character->SetWalkDirection(dir/parent->GetScene()->GetPhysicsEnvironment()->GetNumTimeSubSteps());

			if (!m_bitLocalFlag.ZeroDRot)
			{
				parent->ApplyRotation(m_drot,(m_bitLocalFlag.DRot) != 0);
			}

			if (m_bitLocalFlag.CharacterJump) {
				if (!m_jumping) {
					character->Jump();
					m_jumping = true;
				}
				else if (character->OnGround())
					m_jumping = false;
			}
		}
		else {
			if (!m_bitLocalFlag.ZeroForce)
			{
				parent->ApplyForce(m_force,(m_bitLocalFlag.Force) != 0);
			}
			if (!m_bitLocalFlag.ZeroTorque)
			{
				parent->ApplyTorque(m_torque,(m_bitLocalFlag.Torque) != 0);
			}
			if (!m_bitLocalFlag.ZeroDLoc)
			{
				parent->ApplyMovement(m_dloc,(m_bitLocalFlag.DLoc) != 0);
			}
			if (!m_bitLocalFlag.ZeroDRot)
			{
				parent->ApplyRotation(m_drot,(m_bitLocalFlag.DRot) != 0);
			}

			if (m_bitLocalFlag.ZeroLinearVelocity) {
				if (!m_bitLocalFlag.AddOrSetLinV) {
					/* No need to select local or world, as the velocity is zero anyway,
					 * and setLinearVelocity() converts local to world first. We do need to
					 * pass a true zero vector, as m_linear_velocity is only fuzzily zero. */
					parent->setLinearVelocity(MT_Vector3(0, 0, 0), false);
				}
			}
			else {
				if (m_bitLocalFlag.AddOrSetLinV) {
					parent->addLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
				} else {
					m_active_combined_velocity = true;
					if (m_damping > 0) {
						MT_Vector3 linV;
						if (!m_linear_damping_active) {
							// delta and the start speed (depends on the existing speed in that direction)
							linV = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
							// keep only the projection along the desired direction
							m_current_linear_factor = linV.dot(m_linear_velocity)/m_linear_length2;
							m_linear_damping_active = true;
						}
						if (m_current_linear_factor < 1.0f)
							m_current_linear_factor += 1.0f/m_damping;
						if (m_current_linear_factor > 1.0f)
							m_current_linear_factor = 1.0f;
						linV = m_current_linear_factor * m_linear_velocity;
						parent->setLinearVelocity(linV,(m_bitLocalFlag.LinearVelocity) != 0);
					} else {
						parent->setLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
					}
				}
			}
			if (m_bitLocalFlag.ZeroAngularVelocity) {
				/* No need to select local or world, as the velocity is zero anyway,
				 * and setAngularVelocity() converts local to world first. We do need to
				 * pass a true zero vector, as m_angular_velocity is only fuzzily zero. */
				parent->setAngularVelocity(MT_Vector3(0, 0, 0), false);
			}
			else {
				m_active_combined_velocity = true;
				if (m_damping > 0) {
					MT_Vector3 angV;
					if (!m_angular_damping_active) {
						// delta and the start speed (depends on the existing speed in that direction)
						angV = parent->GetAngularVelocity(m_bitLocalFlag.AngularVelocity);
						// keep only the projection along the desired direction
						m_current_angular_factor = angV.dot(m_angular_velocity)/m_angular_length2;
						m_angular_damping_active = true;
					}
					if (m_current_angular_factor < 1.0f)
						m_current_angular_factor += 1.0f/m_damping;
					if (m_current_angular_factor > 1.0f)
						m_current_angular_factor = 1.0f;
					angV = m_current_angular_factor * m_angular_velocity;
					parent->setAngularVelocity(angV,(m_bitLocalFlag.AngularVelocity) != 0);
				} else {
					parent->setAngularVelocity(m_angular_velocity,(m_bitLocalFlag.AngularVelocity) != 0);
				}
			}
		}
		
	}
	return true;
}
Example #20
0
bool KX_SoundActuator::Update(double curtime, bool frame)
{
	if (!frame)
		return true;
	bool result = false;

#ifdef WITH_AUDASPACE
	// do nothing on negative events, otherwise sounds are played twice!
	bool bNegativeEvent = IsNegativeEvent();
	bool bPositiveEvent = m_posevent;
#endif  // WITH_AUDASPACE
	
	RemoveAllEvents();

#ifdef WITH_AUDASPACE
	if (!m_sound)
		return false;

	// actual audio device playing state
	bool isplaying = m_handle ? (AUD_Handle_getStatus(m_handle) == AUD_STATUS_PLAYING) : false;

	if (bNegativeEvent)
	{
		// here must be a check if it is still playing
		if (m_isplaying && isplaying)
		{
			switch (m_type)
			{
			case KX_SOUNDACT_PLAYSTOP:
			case KX_SOUNDACT_LOOPSTOP:
			case KX_SOUNDACT_LOOPBIDIRECTIONAL_STOP:
				{
					// stop immediately
					if (m_handle)
					{
						AUD_Handle_stop(m_handle);
						m_handle = NULL;
					}
					break;
				}
			case KX_SOUNDACT_PLAYEND:
				{
					// do nothing, sound will stop anyway when it's finished
					break;
				}
			case KX_SOUNDACT_LOOPEND:
			case KX_SOUNDACT_LOOPBIDIRECTIONAL:
				{
					// stop the looping so that the sound stops when it finished
					if (m_handle)
						AUD_Handle_setLoopCount(m_handle, 0);
					break;
				}
			default:
				// implement me !!
				break;
			}
		}
		// remember that we tried to stop the actuator
		m_isplaying = false;
	}
	
#if 1
	// Warning: when de-activating the actuator, after a single negative event this runs again with...
	// m_posevent==false && m_posevent==false, in this case IsNegativeEvent() returns false 
	// and assumes this is a positive event.
	// check that we actually have a positive event so as not to play sounds when being disabled.
	else if (bPositiveEvent)  /* <- added since 2.49 */
#else
	else	// <- works in most cases except a loop-end sound will never stop unless
			// the negative pulse is done continuesly
#endif
	{
		if (!m_isplaying)
			play();
	}
	// verify that the sound is still playing
	isplaying = m_handle ? (AUD_Handle_getStatus(m_handle) == AUD_STATUS_PLAYING) : false;

	if (isplaying)
	{
		if (m_is3d)
		{
			KX_Camera* cam = KX_GetActiveScene()->GetActiveCamera();
			if (cam)
			{
				KX_GameObject* obj = (KX_GameObject*)this->GetParent();
				MT_Vector3 p;
				MT_Matrix3x3 Mo;
				float data[4];

				Mo = cam->NodeGetWorldOrientation().inverse();
				p = (obj->NodeGetWorldPosition() - cam->NodeGetWorldPosition());
				p = Mo * p;
				p.getValue(data);
				AUD_Handle_setLocation(m_handle, data);
				p = (obj->GetLinearVelocity() - cam->GetLinearVelocity());
				p = Mo * p;
				p.getValue(data);
				AUD_Handle_setVelocity(m_handle, data);
				(Mo * obj->NodeGetWorldOrientation()).getRotation().getValue(data);
				AUD_Handle_setOrientation(m_handle, data);
			}
		}
		result = true;
	}
	else
	{
		m_isplaying = false;
		result = false;
	}
#endif  // WITH_AUDASPACE

	return result;
}
bool KX_SceneActuator::Update()
{
    // bool result = false;	/*unused*/
    bool bNegativeEvent = IsNegativeEvent();
    RemoveAllEvents();

    if (bNegativeEvent)
        return false; // do nothing on negative events

    switch (m_mode)
    {
    case KX_SCENE_RESTART:
    {
        m_KetsjiEngine->ReplaceScene(m_scene->GetName(),m_scene->GetName());
        break;
    }
    case KX_SCENE_SET_CAMERA:
        if (m_camera)
        {
            m_scene->SetActiveCamera(m_camera);
        }
        else
        {
            // if no camera is set and the parent object is a camera, use it as the camera
            SCA_IObject* parent = GetParent();
            if (parent->GetGameObjectType()==SCA_IObject::OBJ_CAMERA)
            {
                m_scene->SetActiveCamera((KX_Camera*)parent);
            }
        }
        break;
    default:
        break;
    }

    if (!m_nextSceneName.Length())
        return false;

    switch (m_mode)
    {
    case KX_SCENE_SET_SCENE:
    {
        m_KetsjiEngine->ReplaceScene(m_scene->GetName(),m_nextSceneName);
        break;
    }
    case KX_SCENE_ADD_FRONT_SCENE:
    {
        bool overlay=true;
        m_KetsjiEngine->ConvertAndAddScene(m_nextSceneName,overlay);
        break;
    }
    case KX_SCENE_ADD_BACK_SCENE:
    {
        bool overlay=false;
        m_KetsjiEngine->ConvertAndAddScene(m_nextSceneName,overlay);
        break;
    }
    case KX_SCENE_REMOVE_SCENE:
    {
        m_KetsjiEngine->RemoveScene(m_nextSceneName);
        break;
    }
    case KX_SCENE_SUSPEND:
    {
        m_KetsjiEngine->SuspendScene(m_nextSceneName);
        break;
    }
    case KX_SCENE_RESUME:
    {
        m_KetsjiEngine->ResumeScene(m_nextSceneName);
        break;
    }
    default:
        ; /* do nothing? this is an internal error !!! */
    }

    return false;
}
Example #22
0
bool KX_ObjectActuator::Update()
{
	
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();
		
	KX_GameObject *parent = static_cast<KX_GameObject *>(GetParent()); 

	if (bNegativeEvent) {
		// If we previously set the linear velocity we now have to inform
		// the physics controller that we no longer wish to apply it and that
		// it should reconcile the externally set velocity with it's 
		// own velocity.
		if (m_active_combined_velocity) {
			if (parent)
				parent->ResolveCombinedVelocities(
						m_linear_velocity,
						m_angular_velocity,
						(m_bitLocalFlag.LinearVelocity) != 0,
						(m_bitLocalFlag.AngularVelocity) != 0
					);
			m_active_combined_velocity = false;
		} 
		m_linear_damping_active = false;
		m_angular_damping_active = false;
		m_error_accumulator.setValue(0.0,0.0,0.0);
		m_previous_error.setValue(0.0,0.0,0.0);
		return false; 

	} else if (parent)
	{
		if (m_bitLocalFlag.ServoControl) 
		{
			// In this mode, we try to reach a target speed using force
			// As we don't know the friction, we must implement a generic 
			// servo control to achieve the speed in a configurable
			// v = current velocity
			// V = target velocity
			// e = V-v = speed error
			// dt = time interval since previous update
			// I = sum(e(t)*dt)
			// dv = e(t) - e(t-1)
			// KP, KD, KI : coefficient
			// F = KP*e+KI*I+KD*dv
			MT_Scalar mass = parent->GetMass();
			if (mass < MT_EPSILON)
				return false;
			MT_Vector3 v = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
			if (m_reference)
			{
				const MT_Point3& mypos = parent->NodeGetWorldPosition();
				const MT_Point3& refpos = m_reference->NodeGetWorldPosition();
				MT_Point3 relpos;
				relpos = (mypos-refpos);
				MT_Vector3 vel= m_reference->GetVelocity(relpos);
				if (m_bitLocalFlag.LinearVelocity)
					// must convert in local space
					vel = parent->NodeGetWorldOrientation().transposed()*vel;
				v -= vel;
			}
			MT_Vector3 e = m_linear_velocity - v;
			MT_Vector3 dv = e - m_previous_error;
			MT_Vector3 I = m_error_accumulator + e;

			m_force = m_pid.x()*e+m_pid.y()*I+m_pid.z()*dv;
			// to automatically adapt the PID coefficient to mass;
			m_force *= mass;
			if (m_bitLocalFlag.Torque) 
			{
				if (m_force[0] > m_dloc[0])
				{
					m_force[0] = m_dloc[0];
					I[0] = m_error_accumulator[0];
				} else if (m_force[0] < m_drot[0])
				{
					m_force[0] = m_drot[0];
					I[0] = m_error_accumulator[0];
				}
			}
			if (m_bitLocalFlag.DLoc) 
			{
				if (m_force[1] > m_dloc[1])
				{
					m_force[1] = m_dloc[1];
					I[1] = m_error_accumulator[1];
				} else if (m_force[1] < m_drot[1])
				{
					m_force[1] = m_drot[1];
					I[1] = m_error_accumulator[1];
				}
			}
			if (m_bitLocalFlag.DRot) 
			{
				if (m_force[2] > m_dloc[2])
				{
					m_force[2] = m_dloc[2];
					I[2] = m_error_accumulator[2];
				} else if (m_force[2] < m_drot[2])
				{
					m_force[2] = m_drot[2];
					I[2] = m_error_accumulator[2];
				}
			}
			m_previous_error = e;
			m_error_accumulator = I;
			parent->ApplyForce(m_force,(m_bitLocalFlag.LinearVelocity) != 0);
		} else
		{
			if (!m_bitLocalFlag.ZeroForce)
			{
				parent->ApplyForce(m_force,(m_bitLocalFlag.Force) != 0);
			}
			if (!m_bitLocalFlag.ZeroTorque)
			{
				parent->ApplyTorque(m_torque,(m_bitLocalFlag.Torque) != 0);
			}
			if (!m_bitLocalFlag.ZeroDLoc)
			{
				parent->ApplyMovement(m_dloc,(m_bitLocalFlag.DLoc) != 0);
			}
			if (!m_bitLocalFlag.ZeroDRot)
			{
				parent->ApplyRotation(m_drot,(m_bitLocalFlag.DRot) != 0);
			}
			if (!m_bitLocalFlag.ZeroLinearVelocity)
			{
				if (m_bitLocalFlag.AddOrSetLinV) {
					parent->addLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
				} else {
					m_active_combined_velocity = true;
					if (m_damping > 0) {
						MT_Vector3 linV;
						if (!m_linear_damping_active) {
							// delta and the start speed (depends on the existing speed in that direction)
							linV = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
							// keep only the projection along the desired direction
							m_current_linear_factor = linV.dot(m_linear_velocity)/m_linear_length2;
							m_linear_damping_active = true;
						}
						if (m_current_linear_factor < 1.0)
							m_current_linear_factor += 1.0/m_damping;
						if (m_current_linear_factor > 1.0)
							m_current_linear_factor = 1.0;
						linV = m_current_linear_factor * m_linear_velocity;
						parent->setLinearVelocity(linV,(m_bitLocalFlag.LinearVelocity) != 0);
					} else {
						parent->setLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
					}
				}
			}
			if (!m_bitLocalFlag.ZeroAngularVelocity)
			{
				m_active_combined_velocity = true;
				if (m_damping > 0) {
					MT_Vector3 angV;
					if (!m_angular_damping_active) {
						// delta and the start speed (depends on the existing speed in that direction)
						angV = parent->GetAngularVelocity(m_bitLocalFlag.AngularVelocity);
						// keep only the projection along the desired direction
						m_current_angular_factor = angV.dot(m_angular_velocity)/m_angular_length2;
						m_angular_damping_active = true;
					}
					if (m_current_angular_factor < 1.0)
						m_current_angular_factor += 1.0/m_damping;
					if (m_current_angular_factor > 1.0)
						m_current_angular_factor = 1.0;
					angV = m_current_angular_factor * m_angular_velocity;
					parent->setAngularVelocity(angV,(m_bitLocalFlag.AngularVelocity) != 0);
				} else {
					parent->setAngularVelocity(m_angular_velocity,(m_bitLocalFlag.AngularVelocity) != 0);
				}
			}
		}
		
	}
	return true;
}
Example #23
0
bool KX_CameraActuator::Update(double curtime, bool frame)
{
	/* wondering... is it really neccesary/desirable to suppress negative    */
	/* events here?                                                          */
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (bNegativeEvent || !m_ob) 
		return false;
	
	KX_GameObject *obj = (KX_GameObject*) GetParent();
	MT_Point3 from = obj->NodeGetWorldPosition();
	MT_Matrix3x3 frommat = obj->NodeGetWorldOrientation();
	/* These casts are _very_ dangerous!!! */
	MT_Point3 lookat = ((KX_GameObject*)m_ob)->NodeGetWorldPosition();
	MT_Matrix3x3 actormat = ((KX_GameObject*)m_ob)->NodeGetWorldOrientation();

	float fp1[3], fp2[3], rc[3];
	float inp, fac; //, factor = 0.0; /* some factor...                                    */
	float mindistsq, maxdistsq, distsq;
	float mat[3][3];
	
	/* The rules:                                                            */
	/* CONSTRAINT 1: not implemented */
	/* CONSTRAINT 2: can camera see actor?              */
	/* CONSTRAINT 3: fixed height relative to floor below actor.             */
	/* CONSTRAINT 4: camera rotates behind actor                              */
	/* CONSTRAINT 5: minimum / maximum distance                             */
	/* CONSTRAINT 6: again: fixed height relative to floor below actor        */
	/* CONSTRAINT 7: track to floor below actor                               */
	/* CONSTRAINT 8: look a little bit left or right, depending on how the

	   character is looking (horizontal x)
 */

	/* ...and then set the camera position. Since we assume the parent of    */
	/* this actuator is always a camera, just set the parent position and    */
	/* rotation. We do not check whether we really have a camera as parent.  */
	/* It may be better to turn this into a general tracking actuator later  */
	/* on, since lots of plausible relations can be filled in here.          */

	/* ... set up some parameters ...                                        */
	/* missing here: the 'floorloc' of the actor's shadow */

	mindistsq= m_minHeight*m_minHeight;
	maxdistsq= m_maxHeight*m_maxHeight;

	/* C1: not checked... is a future option                                 */

	/* C2: blender test_visibility function. Can this be a ray-test?         */

	/* C3: fixed height  */
	from[2] = (15.0*from[2] + lookat[2] + m_height)/16.0;


	/* C4: camera behind actor   */
	if (m_x) {
		fp1[0] = actormat[0][0];
		fp1[1] = actormat[1][0];
		fp1[2] = actormat[2][0];

		fp2[0] = frommat[0][0];
		fp2[1] = frommat[1][0];
		fp2[2] = frommat[2][0];
	} 
	else {
		fp1[0] = actormat[0][1];
		fp1[1] = actormat[1][1];
		fp1[2] = actormat[2][1];

		fp2[0] = frommat[0][1];
		fp2[1] = frommat[1][1];
		fp2[2] = frommat[2][1];
	}
	
	inp= fp1[0]*fp2[0] + fp1[1]*fp2[1] + fp1[2]*fp2[2];
	fac= (-1.0 + inp) * m_damping;

	from[0]+= fac*fp1[0];
	from[1]+= fac*fp1[1];
	from[2]+= fac*fp1[2];
	
	/* alleen alstie ervoor ligt: cross testen en loodrechte bijtellen */
	if(inp<0.0) {
		if(fp1[0]*fp2[1] - fp1[1]*fp2[0] > 0.0) {
			from[0]-= fac*fp1[1];
			from[1]+= fac*fp1[0];
		}
		else {
			from[0]+= fac*fp1[1];
			from[1]-= fac*fp1[0];
		}
	}

	/* CONSTRAINT 5: minimum / maximum afstand */

	rc[0]= (lookat[0]-from[0]);
	rc[1]= (lookat[1]-from[1]);
	rc[2]= (lookat[2]-from[2]);
	distsq= rc[0]*rc[0] + rc[1]*rc[1] + rc[2]*rc[2];

	if(distsq > maxdistsq) {
		distsq = 0.15*(distsq-maxdistsq)/distsq;
		
		from[0] += distsq*rc[0];
		from[1] += distsq*rc[1];
		from[2] += distsq*rc[2];
	}
	else if(distsq < mindistsq) {
		distsq = 0.15*(mindistsq-distsq)/mindistsq;
		
		from[0] -= distsq*rc[0];
		from[1] -= distsq*rc[1];
		from[2] -= distsq*rc[2];
	}


	/* CONSTRAINT 7: track to schaduw */
	rc[0]= (lookat[0]-from[0]);
	rc[1]= (lookat[1]-from[1]);
	rc[2]= (lookat[2]-from[2]);
	Kx_VecUpMat3(rc, mat, 3);	/* y up Track -z */
	



	/* now set the camera position and rotation */
	
	obj->NodeSetLocalPosition(from);
	
	actormat[0][0]= mat[0][0]; actormat[0][1]= mat[1][0]; actormat[0][2]= mat[2][0];
	actormat[1][0]= mat[0][1]; actormat[1][1]= mat[1][1]; actormat[1][2]= mat[2][1];
	actormat[2][0]= mat[0][2]; actormat[2][1]= mat[1][2]; actormat[2][2]= mat[2][2];
	obj->NodeSetLocalOrientation(actormat);

	return true;
}