int main(int argc,char **argv) { PetscErrorCode ierr; PetscInt time_steps = 100,steps; PetscMPIInt size; Vec global; PetscReal dt,ftime; TS ts; MatStructure A_structure; Mat A = 0; ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr); ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); ierr = PetscOptionsGetInt(NULL,"-time",&time_steps,NULL);CHKERRQ(ierr); /* set initial conditions */ ierr = VecCreate(PETSC_COMM_WORLD,&global);CHKERRQ(ierr); ierr = VecSetSizes(global,PETSC_DECIDE,3);CHKERRQ(ierr); ierr = VecSetFromOptions(global);CHKERRQ(ierr); ierr = Initial(global,NULL);CHKERRQ(ierr); /* make timestep context */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSMonitorSet(ts,Monitor,NULL,NULL);CHKERRQ(ierr); dt = 0.1; /* The user provides the RHS and Jacobian */ ierr = TSSetRHSFunction(ts,NULL,RHSFunction,NULL);CHKERRQ(ierr); ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,3,3);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = RHSJacobian(ts,0.0,global,&A,&A,&A_structure,NULL);CHKERRQ(ierr); ierr = TSSetRHSJacobian(ts,A,A,RHSJacobian,NULL);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,dt);CHKERRQ(ierr); ierr = TSSetDuration(ts,time_steps,1);CHKERRQ(ierr); ierr = TSSetSolution(ts,global);CHKERRQ(ierr); ierr = TSSolve(ts,global);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&steps);CHKERRQ(ierr); /* free the memories */ ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = VecDestroy(&global);CHKERRQ(ierr); ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = PetscFinalize(); return 0; }
TimeStepper( Jac G_u, Matrix& A, times t, TSType solver_type) : TimeStepper( problem_type::linear, solver_type, A.comm() ) { static Jac G_u_ = G_u; TSSetInitialTimeStep( ts, t.ti, t.dt ); TSSetDuration( ts, static_cast<int>( ( t.tf - t.ti ) / t.dt ) + 10, t.tf ); TSSetRHSFunction( ts, NULL, TSComputeRHSFunctionLinear, NULL ); TSSetRHSJacobian( ts, A.m_, A.m_, TimeStepper::RHSJacobian_function<Jac>, &G_u_ ); }
int main(int argc, char **argv) { PetscErrorCode ierr; Vec x; /* Solution vector */ TS ts; /* Time-stepping context */ AppCtx user; /* Application context */ Mat J; PetscViewer viewer; PetscInitialize(&argc,&argv,"petscopt_ex6", help); /* Get physics and time parameters */ ierr = Parameter_settings(&user);CHKERRQ(ierr); /* Create a 2D DA with dof = 1 */ ierr = DMDACreate2d(PETSC_COMM_WORLD,DMDA_BOUNDARY_NONE,DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR,-4,-4,PETSC_DECIDE,PETSC_DECIDE,1,1,NULL,NULL,&user.da);CHKERRQ(ierr); /* Set x and y coordinates */ ierr = DMDASetUniformCoordinates(user.da,user.xmin,user.xmax,user.ymin,user.ymax,NULL,NULL);CHKERRQ(ierr); /* Get global vector x from DM */ ierr = DMCreateGlobalVector(user.da,&x);CHKERRQ(ierr); ierr = ini_bou(x,&user);CHKERRQ(ierr); ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD,"ini_x",FILE_MODE_WRITE,&viewer);CHKERRQ(ierr); ierr = VecView(x,viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); /* Get Jacobian matrix structure from the da */ ierr = DMSetMatType(user.da,MATAIJ);CHKERRQ(ierr); ierr = DMCreateMatrix(user.da,&J);CHKERRQ(ierr); ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,IFunction,&user);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,J,J,IJacobian,&user);CHKERRQ(ierr); ierr = TSSetApplicationContext(ts,&user);CHKERRQ(ierr); ierr = TSSetDuration(ts,PETSC_DEFAULT,user.tmax);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,user.t0,.005);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); ierr = TSSetPostStep(ts,PostStep);CHKERRQ(ierr); ierr = TSSolve(ts,x);CHKERRQ(ierr); ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD,"fin_x",FILE_MODE_WRITE,&viewer);CHKERRQ(ierr); ierr = VecView(x,viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = MatDestroy(&J);CHKERRQ(ierr); ierr = DMDestroy(&user.da);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); PetscFinalize(); return 0; }
int main(int argc, char **argv) { PetscErrorCode ierr; Vec x; /* Solution vector */ TS ts; /* Time-stepping context */ AppCtx user; /* Application context */ PetscViewer viewer; PetscInitialize(&argc,&argv,"petscopt_ex7", help); /* Get physics and time parameters */ ierr = Parameter_settings(&user);CHKERRQ(ierr); /* Create a 2D DA with dof = 1 */ ierr = DMDACreate2d(PETSC_COMM_WORLD,user.bx,user.by,DMDA_STENCIL_STAR,-4,-4,PETSC_DECIDE,PETSC_DECIDE,1,user.st_width,NULL,NULL,&user.da);CHKERRQ(ierr); /* Set x and y coordinates */ ierr = DMDASetUniformCoordinates(user.da,user.xmin,user.xmax,user.ymin,user.ymax,0,0);CHKERRQ(ierr); ierr = DMDASetCoordinateName(user.da,0,"X - the angle"); ierr = DMDASetCoordinateName(user.da,1,"Y - the speed"); /* Get global vector x from DM */ ierr = DMCreateGlobalVector(user.da,&x);CHKERRQ(ierr); ierr = ini_bou(x,&user);CHKERRQ(ierr); ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD,"ini_x",FILE_MODE_WRITE,&viewer);CHKERRQ(ierr); ierr = VecView(x,viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetDM(ts,user.da);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSARKIMEX);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,IFunction,&user);CHKERRQ(ierr); /* ierr = TSSetIJacobian(ts,NULL,NULL,IJacobian,&user);CHKERRQ(ierr); */ ierr = TSSetApplicationContext(ts,&user);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.005);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); ierr = TSSetPostStep(ts,PostStep);CHKERRQ(ierr); ierr = TSSolve(ts,x);CHKERRQ(ierr); ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD,"fin_x",FILE_MODE_WRITE,&viewer);CHKERRQ(ierr); ierr = VecView(x,viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = DMDestroy(&user.da);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); PetscFinalize(); return 0; }
int main(int argc,char **argv) { TS ts; SNES snes; SNESLineSearch linesearch; Vec x; AppCtx ctx; PetscErrorCode ierr; DM da; ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr; ierr = SetFromOptions(&ctx);CHKERRQ(ierr); ierr = TSCreate(PETSC_COMM_WORLD, &ts);CHKERRQ(ierr); ierr = TSSetType(ts,TSCN);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetIFunction(ts, NULL, FormIFunction, &ctx);CHKERRQ(ierr); ierr = DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,-4,-4,PETSC_DECIDE,PETSC_DECIDE,N_SPECIES,1,NULL,NULL,&da);CHKERRQ(ierr); ierr = DMDASetUniformCoordinates(da, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);CHKERRQ(ierr); ierr = DMDASetFieldName(da,0,"species A");CHKERRQ(ierr); ierr = DMDASetFieldName(da,1,"species B");CHKERRQ(ierr); ierr = DMDASetFieldName(da,2,"species C");CHKERRQ(ierr); ierr = DMSetApplicationContext(da,&ctx);CHKERRQ(ierr); ierr = DMCreateGlobalVector(da,&x);CHKERRQ(ierr); ierr = FormInitialGuess(da, &ctx, x);CHKERRQ(ierr); ierr = TSSetDM(ts, da);CHKERRQ(ierr); ierr = TSSetDuration(ts,10000,1000.0);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,1.0);CHKERRQ(ierr); ierr = TSSetSolution(ts,x);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); ierr = TSGetSNES(ts,&snes);CHKERRQ(ierr); ierr = SNESGetLineSearch(snes,&linesearch);CHKERRQ(ierr); ierr = SNESLineSearchSetPostCheck(linesearch, ReactingFlowPostCheck, (void*)&ctx);CHKERRQ(ierr); ierr = SNESSetFromOptions(snes);CHKERRQ(ierr); ierr = TSSolve(ts,x);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); ierr = PetscFinalize(); PetscFunctionReturn(0); }
int main(int argc, char **argv) { PetscInitialize( &argc, &argv, (char*)0, 0); Grid g = DecomposeGrid( CartesianGrid(N, N) ); std::cout << g.cells().size() << std::endl; Vec u,r; u = CreateGhostedVector(g); VecDuplicate(u, &r); double dt = 1.0 / (N*(fabs(a)+fabs(b))); // Pocatecni podminka VecSet(u, 0.0); MyContext ctx; ctx.gptr = &g; double t = 0; TS ts; TSCreate(PETSC_COMM_WORLD, &ts); TSSetProblemType(ts, TS_NONLINEAR); TSSetSolution(ts, u); TSSetRHSFunction(ts, NULL, CalculateRHS, &ctx); TSSetType(ts, TSEULER); TSSetInitialTimeStep(ts, 0.0, dt); TSSetDuration(ts, 10000000, tEnd); TSSetExactFinalTime(ts, TS_EXACTFINALTIME_MATCHSTEP); TSSetFromOptions(ts); TSSolve(ts, u); Save(u, "u.dat"); VecDestroy(&r); VecDestroy(&u); PetscFinalize(); return 0; }
int main(int argc,char **argv) { TS ts; Vec x,c; PetscErrorCode ierr; DM da; PetscInitialize(&argc,&argv,(char *)0,help); ierr = TSCreate(PETSC_COMM_WORLD, &ts);CHKERRQ(ierr); ierr = TSSetType(ts,TSCN);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = DMDACreate2d(PETSC_COMM_WORLD, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR,-4,-4,PETSC_DECIDE,PETSC_DECIDE,1,1,PETSC_NULL,PETSC_NULL,&da);CHKERRQ(ierr); ierr = DMDASetUniformCoordinates(da, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);CHKERRQ(ierr); ierr = DMDASetFieldName(da,0,"Heat");CHKERRQ(ierr); ierr = DMCreateGlobalVector(da,&x);CHKERRQ(ierr); ierr = FormInitialGuess(da,PETSC_NULL,x);CHKERRQ(ierr); ierr = DMDATSSetIFunctionLocal(da,INSERT_VALUES,(PetscErrorCode (*)(DMDALocalInfo*,PetscReal,void*,void*,void*,void*))FormIFunctionLocal,PETSC_NULL);CHKERRQ(ierr); /* set up the coefficient */ ierr = DMGetNamedGlobalVector(da,"coefficient",&c);CHKERRQ(ierr); ierr = FormDiffusionCoefficient(da,PETSC_NULL,c);CHKERRQ(ierr); ierr = DMRestoreNamedGlobalVector(da,"coefficient",&c);CHKERRQ(ierr); ierr = DMCoarsenHookAdd(da,PETSC_NULL,CoefficientRestrictHook,ts);CHKERRQ(ierr); ierr = DMSubDomainHookAdd(da,PETSC_NULL,CoefficientSubDomainRestrictHook,ts);CHKERRQ(ierr); ierr = TSSetDM(ts, da);CHKERRQ(ierr); ierr = TSSetDuration(ts,10000,1000.0);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,0.05);CHKERRQ(ierr); ierr = TSSetSolution(ts,x);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); ierr = TSSolve(ts,x);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); ierr = PetscFinalize(); PetscFunctionReturn(0); }
int main(int argc,char **argv) { TS ts; /* ODE integrator */ Vec Y; /* solution will be stored here */ Mat A; /* Jacobian matrix */ PetscErrorCode ierr; PetscMPIInt size; PetscInt n = 6; PetscScalar *y; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr); ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs"); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create necessary matrix and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatCreateVecs(A,&Y,PETSC_NULL);CHKERRQ(ierr); ierr = VecGetArray(Y,&y);CHKERRQ(ierr); y[0] = 0.0; y[1] = 3.0; y[2] = y[1]; y[3] = 6.0; y[4] = 0.0; y[5] = 0.0; ierr = VecRestoreArray(Y,&y);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSARKIMEX);CHKERRQ(ierr); ierr = TSSetEquationType(ts,TS_EQ_DAE_IMPLICIT_INDEX1);CHKERRQ(ierr); ierr = TSARKIMEXSetFullyImplicit(ts,PETSC_TRUE);CHKERRQ(ierr); /*ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr);*/ ierr = TSSetIFunction(ts,PETSC_NULL,IFunctionImplicit,PETSC_NULL);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,A,A,IJacobianImplicit,PETSC_NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetSolution(ts,Y);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set solver options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetDuration(ts,100000,0.15);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.001);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Do Time stepping - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,Y);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = VecDestroy(&Y);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = PetscFinalize(); return(0); }
int main(int argc,char **argv) { TS ts; /* time integrator */ TSAdapt adapt; Vec X; /* solution vector */ Mat J; /* Jacobian matrix */ PetscInt steps,maxsteps,ncells,xs,xm,i; PetscErrorCode ierr; PetscReal ftime,dt; char chemfile[PETSC_MAX_PATH_LEN] = "chem.inp",thermofile[PETSC_MAX_PATH_LEN] = "therm.dat"; struct _User user; TSConvergedReason reason; PetscBool showsolutions = PETSC_FALSE; char **snames,*names; Vec lambda; /* used with TSAdjoint for sensitivities */ ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr; ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Chemistry solver options","");CHKERRQ(ierr); ierr = PetscOptionsString("-chem","CHEMKIN input file","",chemfile,chemfile,sizeof(chemfile),NULL);CHKERRQ(ierr); ierr = PetscOptionsString("-thermo","NASA thermo input file","",thermofile,thermofile,sizeof(thermofile),NULL);CHKERRQ(ierr); user.pressure = 1.01325e5; /* Pascal */ ierr = PetscOptionsReal("-pressure","Pressure of reaction [Pa]","",user.pressure,&user.pressure,NULL);CHKERRQ(ierr); user.Tini = 1550; ierr = PetscOptionsReal("-Tini","Initial temperature [K]","",user.Tini,&user.Tini,NULL);CHKERRQ(ierr); user.diffus = 100; ierr = PetscOptionsReal("-diffus","Diffusion constant","",user.diffus,&user.diffus,NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-draw_solution","Plot the solution for each cell","",showsolutions,&showsolutions,NULL);CHKERRQ(ierr); user.diffusion = PETSC_TRUE; ierr = PetscOptionsBool("-diffusion","Have diffusion","",user.diffusion,&user.diffusion,NULL);CHKERRQ(ierr); user.reactions = PETSC_TRUE; ierr = PetscOptionsBool("-reactions","Have reactions","",user.reactions,&user.reactions,NULL);CHKERRQ(ierr); ierr = PetscOptionsEnd();CHKERRQ(ierr); ierr = TC_initChem(chemfile, thermofile, 0, 1.0);TCCHKERRQ(ierr); user.Nspec = TC_getNspec(); user.Nreac = TC_getNreac(); ierr = DMDACreate1d(PETSC_COMM_WORLD,DM_BOUNDARY_PERIODIC,-1,user.Nspec+1,1,NULL,&user.dm);CHKERRQ(ierr); ierr = DMDAGetInfo(user.dm,NULL,&ncells,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);CHKERRQ(ierr); user.dx = 1.0/ncells; /* Set the coordinates of the cell centers; note final ghost cell is at x coordinate 1.0 */ ierr = DMDASetUniformCoordinates(user.dm,0.0,1.0,0.0,1.0,0.0,1.0);CHKERRQ(ierr); /* set the names of each field in the DMDA based on the species name */ ierr = PetscMalloc1((user.Nspec+1)*LENGTHOFSPECNAME,&names);CHKERRQ(ierr); ierr = PetscStrcpy(names,"Temp");CHKERRQ(ierr); TC_getSnames(user.Nspec,names+LENGTHOFSPECNAME);CHKERRQ(ierr); ierr = PetscMalloc1((user.Nspec+2),&snames);CHKERRQ(ierr); for (i=0; i<user.Nspec+1; i++) snames[i] = names+i*LENGTHOFSPECNAME; snames[user.Nspec+1] = NULL; ierr = DMDASetFieldNames(user.dm,(const char * const *)snames);CHKERRQ(ierr); ierr = PetscFree(snames);CHKERRQ(ierr); ierr = PetscFree(names);CHKERRQ(ierr); ierr = DMCreateMatrix(user.dm,&J);CHKERRQ(ierr); ierr = DMCreateGlobalVector(user.dm,&X);CHKERRQ(ierr); ierr = PetscMalloc3(user.Nspec+1,&user.tchemwork,PetscSqr(user.Nspec+1),&user.Jdense,user.Nspec+1,&user.rows);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetDM(ts,user.dm);CHKERRQ(ierr); ierr = TSSetType(ts,TSARKIMEX);CHKERRQ(ierr); ierr = TSARKIMEXSetFullyImplicit(ts,PETSC_TRUE);CHKERRQ(ierr); ierr = TSARKIMEXSetType(ts,TSARKIMEX4);CHKERRQ(ierr); ierr = TSSetRHSFunction(ts,NULL,FormRHSFunction,&user);CHKERRQ(ierr); ierr = TSSetRHSJacobian(ts,J,J,FormRHSJacobian,&user);CHKERRQ(ierr); ftime = 1.0; maxsteps = 10000; ierr = TSSetDuration(ts,maxsteps,ftime);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = FormInitialSolution(ts,X,&user);CHKERRQ(ierr); ierr = TSSetSolution(ts,X);CHKERRQ(ierr); dt = 1e-10; /* Initial time step */ ierr = TSSetInitialTimeStep(ts,0.0,dt);CHKERRQ(ierr); ierr = TSGetAdapt(ts,&adapt);CHKERRQ(ierr); ierr = TSAdaptSetStepLimits(adapt,1e-12,1e-4);CHKERRQ(ierr); /* Also available with -ts_adapt_dt_min/-ts_adapt_dt_max */ ierr = TSSetMaxSNESFailures(ts,-1);CHKERRQ(ierr); /* Retry step an unlimited number of times */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Pass information to graphical monitoring routine - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ if (showsolutions) { ierr = DMDAGetCorners(user.dm,&xs,NULL,NULL,&xm,NULL,NULL);CHKERRQ(ierr); for (i=xs;i<xs+xm;i++) { ierr = MonitorCell(ts,&user,i);CHKERRQ(ierr); } } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set final conditions for sensitivities - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMCreateGlobalVector(user.dm,&lambda);CHKERRQ(ierr); ierr = TSSetCostGradients(ts,1,&lambda,NULL);CHKERRQ(ierr); ierr = VecSetValue(lambda,0,1.0,INSERT_VALUES);CHKERRQ(ierr); ierr = VecAssemblyBegin(lambda);CHKERRQ(ierr); ierr = VecAssemblyEnd(lambda);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve ODE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,X);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&steps);CHKERRQ(ierr); ierr = TSGetConvergedReason(ts,&reason);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"%s at time %g after %D steps\n",TSConvergedReasons[reason],(double)ftime,steps);CHKERRQ(ierr); { Vec max; const char * const *names; PetscInt i; const PetscReal *bmax; ierr = TSMonitorEnvelopeGetBounds(ts,&max,NULL);CHKERRQ(ierr); if (max) { ierr = TSMonitorLGGetVariableNames(ts,&names);CHKERRQ(ierr); if (names) { ierr = VecGetArrayRead(max,&bmax);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_SELF,"Species - maximum mass fraction\n");CHKERRQ(ierr); for (i=1; i<user.Nspec; i++) { if (bmax[i] > .01) {ierr = PetscPrintf(PETSC_COMM_SELF,"%s %g\n",names[i],bmax[i]);CHKERRQ(ierr);} } ierr = VecRestoreArrayRead(max,&bmax);CHKERRQ(ierr); } } } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ TC_reset(); ierr = DMDestroy(&user.dm);CHKERRQ(ierr); ierr = MatDestroy(&J);CHKERRQ(ierr); ierr = VecDestroy(&X);CHKERRQ(ierr); ierr = VecDestroy(&lambda);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = PetscFree3(user.tchemwork,user.Jdense,user.rows);CHKERRQ(ierr); ierr = PetscFinalize(); return ierr; }
int main(int argc,char **argv) { AppCtx appctx; /* user-defined application context */ TS ts; /* timestepping context */ Vec U; /* approximate solution vector */ PetscErrorCode ierr; PetscReal dt; DM da; PetscInt M; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program and set problem parameters - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr); appctx.a = 1.0; appctx.d = 0.0; ierr = PetscOptionsGetScalar(NULL,"-a",&appctx.a,NULL);CHKERRQ(ierr); ierr = PetscOptionsGetScalar(NULL,"-d",&appctx.d,NULL);CHKERRQ(ierr); appctx.upwind = PETSC_TRUE; ierr = PetscOptionsGetBool(NULL,"-upwind",&appctx.upwind,NULL);CHKERRQ(ierr); ierr = DMDACreate1d(PETSC_COMM_WORLD,DMDA_BOUNDARY_PERIODIC, -60, 1, 1,NULL,&da);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create vector data structures - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Create vector data structures for approximate and exact solutions */ ierr = DMCreateGlobalVector(da,&U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetDM(ts,da);CHKERRQ(ierr); /* For linear problems with a time-dependent f(U,t) in the equation u_t = f(u,t), the user provides the discretized right-hand-side as a time-dependent matrix. */ ierr = TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,&appctx);CHKERRQ(ierr); ierr = TSSetRHSJacobian(ts,NULL,NULL,RHSMatrixHeat,&appctx);CHKERRQ(ierr); ierr = TSSetSolutionFunction(ts,(PetscErrorCode (*)(TS,PetscReal,Vec,void*))Solution,&appctx);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Customize timestepping solver: - Set timestepping duration info Then set runtime options, which can override these defaults. For example, -ts_max_steps <maxsteps> -ts_final_time <maxtime> to override the defaults set by TSSetDuration(). - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMDAGetInfo(da,PETSC_IGNORE,&M,0,0,0,0,0,0,0,0,0,0,0);CHKERRQ(ierr); dt = .48/(M*M); ierr = TSSetInitialTimeStep(ts,0.0,dt);CHKERRQ(ierr); ierr = TSSetDuration(ts,1000,100.0);CHKERRQ(ierr); ierr = TSSetType(ts,TSARKIMEX);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* Evaluate initial conditions */ ierr = InitialConditions(ts,U,&appctx);CHKERRQ(ierr); /* Run the timestepping solver */ ierr = TSSolve(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = VecDestroy(&U);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); /* Always call PetscFinalize() before exiting a program. This routine - finalizes the PETSc libraries as well as MPI - provides summary and diagnostic information if certain runtime options are chosen (e.g., -log_summary). */ ierr = PetscFinalize(); return 0; }
int main(int argc,char **argv) { TS ts; /* nonlinear solver */ Vec U; /* solution, residual vectors */ PetscErrorCode ierr; DM da; AppCtx appctx; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ PetscInitialize(&argc,&argv,(char*)0,help); appctx.epsilon = 1.0e-3; appctx.delta = 1.0; appctx.alpha = 10.0; appctx.beta = 4.0; appctx.gamma = 1.0; appctx.kappa = .75; appctx.lambda = 1.0; appctx.mu = 100.; appctx.cstar = .2; appctx.upwind = PETSC_TRUE; ierr = PetscOptionsGetScalar(NULL,"-delta",&appctx.delta,NULL);CHKERRQ(ierr); ierr = PetscOptionsGetBool(NULL,"-upwind",&appctx.upwind,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create distributed array (DMDA) to manage parallel grid and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMDACreate1d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE,-8,2,1,NULL,&da);CHKERRQ(ierr); ierr = DMDASetFieldName(da,0,"rho");CHKERRQ(ierr); ierr = DMDASetFieldName(da,1,"c");CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Extract global vectors from DMDA; then duplicate for remaining vectors that are the same types - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMCreateGlobalVector(da,&U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr); ierr = TSSetDM(ts,da);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,IFunction,&appctx);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = InitialConditions(da,U);CHKERRQ(ierr); ierr = TSSetSolution(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set solver options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetInitialTimeStep(ts,0.0,.0001);CHKERRQ(ierr); ierr = TSSetDuration(ts,PETSC_DEFAULT,1.0);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = VecDestroy(&U);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); ierr = PetscFinalize(); PetscFunctionReturn(0); }
int main(int argc,char **argv) { TS ts; /* ODE integrator */ Vec U; /* solution will be stored here */ Mat A; /* Jacobian matrix */ PetscErrorCode ierr; PetscMPIInt rank; PetscInt n = 2; PetscScalar *u; PetscInt direction=-1; PetscBool terminate=PETSC_FALSE; TSAdapt adapt; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr; ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create necessary matrix and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr); ierr = MatSetType(A,MATDENSE);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatCreateVecs(A,&U,NULL);CHKERRQ(ierr); ierr = VecGetArray(U,&u);CHKERRQ(ierr); u[0] = 1.0*rank; u[1] = 20.0; ierr = VecRestoreArray(U,&u);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,(TSIFunction) IFunction,NULL);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,A,A,(TSIJacobian)IJacobian,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetSolution(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set solver options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetDuration(ts,1000,30.0);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,0.1);CHKERRQ(ierr); ierr = TSSetEventHandler(ts,1,&direction,&terminate,EventFunction,PostEventFunction,NULL);CHKERRQ(ierr); /* The adapative time step controller could take very large timesteps resulting in the same event occuring multiple times in the same interval. A maximum step size limit is enforced here to avoid this issue. */ ierr = TSGetAdapt(ts,&adapt);CHKERRQ(ierr); ierr = TSAdaptSetStepLimits(adapt,0.0,0.5);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Run timestepping solver - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = VecDestroy(&U);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = PetscFinalize(); return ierr; }
int main(int argc,char **argv) { TS ts; /* nonlinear solver */ Vec u,r; /* solution, residual vector */ Mat J; /* Jacobian matrix */ PetscInt steps,maxsteps = 1000; /* iterations for convergence */ PetscErrorCode ierr; DM da; PetscReal ftime,dt; AppCtx user; /* user-defined work context */ PetscInitialize(&argc,&argv,(char*)0,help); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create distributed array (DMDA) to manage parallel grid and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMDACreate2d(PETSC_COMM_WORLD, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR,-8,-8,PETSC_DECIDE,PETSC_DECIDE, 1,1,NULL,NULL,&da);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Extract global vectors from DMDA; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMCreateGlobalVector(da,&u);CHKERRQ(ierr); ierr = VecDuplicate(u,&r);CHKERRQ(ierr); /* Initialize user application context */ user.c = -30.0; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetDM(ts,da);CHKERRQ(ierr); ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr); ierr = TSSetRHSFunction(ts,r,RHSFunction,&user);CHKERRQ(ierr); /* Set Jacobian */ ierr = DMCreateMatrix(da,MATAIJ,&J);CHKERRQ(ierr); ierr = TSSetRHSJacobian(ts,J,J,RHSJacobian,NULL);CHKERRQ(ierr); ftime = 1.0; ierr = TSSetDuration(ts,maxsteps,ftime);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = FormInitialSolution(da,u,&user);CHKERRQ(ierr); dt = .01; ierr = TSSetInitialTimeStep(ts,0.0,dt);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,u);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&steps);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&J);CHKERRQ(ierr); ierr = VecDestroy(&u);CHKERRQ(ierr); ierr = VecDestroy(&r);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); ierr = PetscFinalize(); PetscFunctionReturn(0); }
/* FormFunction - Evaluates the function and corresponding gradient. Input Parameters: tao - the Tao context X - the input vector ptr - optional user-defined context, as set by TaoSetObjectiveAndGradientRoutine() Output Parameters: f - the newly evaluated function */ PetscErrorCode FormFunction(Tao tao,Vec P,PetscReal *f,void *ctx0) { AppCtx *ctx = (AppCtx*)ctx0; TS ts; Vec U; /* solution will be stored here */ Mat A; /* Jacobian matrix */ Mat Jacp; /* Jacobian matrix */ PetscErrorCode ierr; PetscInt n = 2; PetscReal ftime; PetscInt steps; PetscScalar *u; PetscScalar *x_ptr,*y_ptr; Vec lambda[1],q,mu[1]; ierr = VecGetArray(P,&x_ptr);CHKERRQ(ierr); ctx->Pm = x_ptr[0]; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create necessary matrix and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr); ierr = MatSetType(A,MATDENSE);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatCreateVecs(A,&U,NULL);CHKERRQ(ierr); ierr = MatCreate(PETSC_COMM_WORLD,&Jacp);CHKERRQ(ierr); ierr = MatSetSizes(Jacp,PETSC_DECIDE,PETSC_DECIDE,2,1);CHKERRQ(ierr); ierr = MatSetFromOptions(Jacp);CHKERRQ(ierr); ierr = MatSetUp(Jacp);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,(TSIFunction) IFunction,ctx);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,A,A,(TSIJacobian)IJacobian,ctx);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = VecGetArray(U,&u);CHKERRQ(ierr); u[0] = PetscAsinScalar(ctx->Pm/ctx->Pmax); u[1] = 1.0; ierr = VecRestoreArray(U,&u);CHKERRQ(ierr); ierr = TSSetSolution(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Save trajectory of solution so that TSAdjointSolve() may be used - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set solver options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetDuration(ts,PETSC_DEFAULT,10.0);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.01);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,U);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&steps);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Adjoint model starts here - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreateVecs(A,&lambda[0],NULL);CHKERRQ(ierr); /* Set initial conditions for the adjoint integration */ ierr = VecGetArray(lambda[0],&y_ptr);CHKERRQ(ierr); y_ptr[0] = 0.0; y_ptr[1] = 0.0; ierr = VecRestoreArray(lambda[0],&y_ptr);CHKERRQ(ierr); ierr = MatCreateVecs(Jacp,&mu[0],NULL);CHKERRQ(ierr); ierr = VecGetArray(mu[0],&x_ptr);CHKERRQ(ierr); x_ptr[0] = -1.0; ierr = VecRestoreArray(mu[0],&x_ptr);CHKERRQ(ierr); ierr = TSAdjointSetCostGradients(ts,1,lambda,mu);CHKERRQ(ierr); ierr = TSAdjointSetRHSJacobian(ts,Jacp,RHSJacobianP,ctx);CHKERRQ(ierr); ierr = TSAdjointSetCostIntegrand(ts,1,(PetscErrorCode (*)(TS,PetscReal,Vec,Vec,void*))CostIntegrand, (PetscErrorCode (*)(TS,PetscReal,Vec,Vec*,void*))DRDYFunction, (PetscErrorCode (*)(TS,PetscReal,Vec,Vec*,void*))DRDPFunction,ctx);CHKERRQ(ierr); ierr = TSAdjointSolve(ts);CHKERRQ(ierr); ierr = TSAdjointGetCostIntegral(ts,&q);CHKERRQ(ierr); ierr = ComputeSensiP(lambda[0],mu[0],ctx);CHKERRQ(ierr); ierr = VecGetArray(q,&x_ptr);CHKERRQ(ierr); *f = -ctx->Pm + x_ptr[0]; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = MatDestroy(&Jacp);CHKERRQ(ierr); ierr = VecDestroy(&U);CHKERRQ(ierr); ierr = VecDestroy(&lambda[0]);CHKERRQ(ierr); ierr = VecDestroy(&mu[0]);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); return 0; }
int main(int argc,char **argv) { TS ts; /* ODE integrator */ Vec U; /* solution will be stored here */ Mat A; /* Jacobian matrix */ Mat Jacp; /* Jacobian matrix */ PetscErrorCode ierr; PetscMPIInt size; PetscInt n = 2; AppCtx ctx; PetscScalar *u; PetscReal du[2] = {0.0,0.0}; PetscBool ensemble = PETSC_FALSE,flg1,flg2; PetscReal ftime; PetscInt steps; PetscScalar *x_ptr,*y_ptr; Vec lambda[1],q,mu[1]; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr); ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs"); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create necessary matrix and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr); ierr = MatSetType(A,MATDENSE);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatCreateVecs(A,&U,NULL);CHKERRQ(ierr); ierr = MatCreate(PETSC_COMM_WORLD,&Jacp);CHKERRQ(ierr); ierr = MatSetSizes(Jacp,PETSC_DECIDE,PETSC_DECIDE,2,1);CHKERRQ(ierr); ierr = MatSetFromOptions(Jacp);CHKERRQ(ierr); ierr = MatSetUp(Jacp);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Swing equation options","");CHKERRQ(ierr); { ctx.beta = 2; ctx.c = 10000.0; ctx.u_s = 1.0; ctx.omega_s = 1.0; ctx.omega_b = 120.0*PETSC_PI; ctx.H = 5.0; ierr = PetscOptionsScalar("-Inertia","","",ctx.H,&ctx.H,NULL);CHKERRQ(ierr); ctx.D = 5.0; ierr = PetscOptionsScalar("-D","","",ctx.D,&ctx.D,NULL);CHKERRQ(ierr); ctx.E = 1.1378; ctx.V = 1.0; ctx.X = 0.545; ctx.Pmax = ctx.E*ctx.V/ctx.X;; ierr = PetscOptionsScalar("-Pmax","","",ctx.Pmax,&ctx.Pmax,NULL);CHKERRQ(ierr); ctx.Pm = 1.1; ierr = PetscOptionsScalar("-Pm","","",ctx.Pm,&ctx.Pm,NULL);CHKERRQ(ierr); ctx.tf = 0.1; ctx.tcl = 0.2; ierr = PetscOptionsReal("-tf","Time to start fault","",ctx.tf,&ctx.tf,NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-tcl","Time to end fault","",ctx.tcl,&ctx.tcl,NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-ensemble","Run ensemble of different initial conditions","",ensemble,&ensemble,NULL);CHKERRQ(ierr); if (ensemble) { ctx.tf = -1; ctx.tcl = -1; } ierr = VecGetArray(U,&u);CHKERRQ(ierr); u[0] = PetscAsinScalar(ctx.Pm/ctx.Pmax); u[1] = 1.0; ierr = PetscOptionsRealArray("-u","Initial solution","",u,&n,&flg1);CHKERRQ(ierr); n = 2; ierr = PetscOptionsRealArray("-du","Perturbation in initial solution","",du,&n,&flg2);CHKERRQ(ierr); u[0] += du[0]; u[1] += du[1]; ierr = VecRestoreArray(U,&u);CHKERRQ(ierr); if (flg1 || flg2) { ctx.tf = -1; ctx.tcl = -1; } } ierr = PetscOptionsEnd();CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSRK);CHKERRQ(ierr); ierr = TSSetRHSFunction(ts,NULL,(TSRHSFunction)RHSFunction,&ctx);CHKERRQ(ierr); ierr = TSSetRHSJacobian(ts,A,A,(TSRHSJacobian)RHSJacobian,&ctx);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetSolution(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Save trajectory of solution so that TSAdjointSolve() may be used - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr); ierr = MatCreateVecs(A,&lambda[0],NULL);CHKERRQ(ierr); /* Set initial conditions for the adjoint integration */ ierr = VecGetArray(lambda[0],&y_ptr);CHKERRQ(ierr); y_ptr[0] = 0.0; y_ptr[1] = 0.0; ierr = VecRestoreArray(lambda[0],&y_ptr);CHKERRQ(ierr); ierr = MatCreateVecs(Jacp,&mu[0],NULL);CHKERRQ(ierr); ierr = VecGetArray(mu[0],&x_ptr);CHKERRQ(ierr); x_ptr[0] = -1.0; ierr = VecRestoreArray(mu[0],&x_ptr);CHKERRQ(ierr); ierr = TSSetCostGradients(ts,1,lambda,mu);CHKERRQ(ierr); ierr = TSSetCostIntegrand(ts,1,(PetscErrorCode (*)(TS,PetscReal,Vec,Vec,void*))CostIntegrand, (PetscErrorCode (*)(TS,PetscReal,Vec,Vec*,void*))DRDYFunction, (PetscErrorCode (*)(TS,PetscReal,Vec,Vec*,void*))DRDPFunction,PETSC_TRUE,&ctx);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set solver options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetDuration(ts,PETSC_DEFAULT,10.0);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.01);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ if (ensemble) { for (du[1] = -2.5; du[1] <= .01; du[1] += .1) { ierr = VecGetArray(U,&u);CHKERRQ(ierr); u[0] = PetscAsinScalar(ctx.Pm/ctx.Pmax); u[1] = ctx.omega_s; u[0] += du[0]; u[1] += du[1]; ierr = VecRestoreArray(U,&u);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.01);CHKERRQ(ierr); ierr = TSSolve(ts,U);CHKERRQ(ierr); } } else { ierr = TSSolve(ts,U);CHKERRQ(ierr); } ierr = VecView(U,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&steps);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Adjoint model starts here - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Set initial conditions for the adjoint integration */ ierr = VecGetArray(lambda[0],&y_ptr);CHKERRQ(ierr); y_ptr[0] = 0.0; y_ptr[1] = 0.0; ierr = VecRestoreArray(lambda[0],&y_ptr);CHKERRQ(ierr); ierr = VecGetArray(mu[0],&x_ptr);CHKERRQ(ierr); x_ptr[0] = -1.0; ierr = VecRestoreArray(mu[0],&x_ptr);CHKERRQ(ierr); /* Set RHS JacobianP */ ierr = TSAdjointSetRHSJacobian(ts,Jacp,RHSJacobianP,&ctx);CHKERRQ(ierr); ierr = TSAdjointSolve(ts);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"\n sensitivity wrt initial conditions: d[Psi(tf)]/d[phi0] d[Psi(tf)]/d[omega0]\n");CHKERRQ(ierr); ierr = VecView(lambda[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); ierr = VecView(mu[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); ierr = TSGetCostIntegral(ts,&q);CHKERRQ(ierr); ierr = VecView(q,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); ierr = VecGetArray(q,&x_ptr);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"\n cost function=%g\n",(double)(x_ptr[0]-ctx.Pm));CHKERRQ(ierr); ierr = VecRestoreArray(q,&x_ptr);CHKERRQ(ierr); ierr = ComputeSensiP(lambda[0],mu[0],&ctx);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = MatDestroy(&Jacp);CHKERRQ(ierr); ierr = VecDestroy(&U);CHKERRQ(ierr); ierr = VecDestroy(&lambda[0]);CHKERRQ(ierr); ierr = VecDestroy(&mu[0]);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = PetscFinalize(); return(0); }
int main(int argc,char **argv) { TS ts; /* ODE integrator */ Vec x; /* solution */ PetscErrorCode ierr; DM da; AppCtx appctx; Vec lambda[1]; PetscScalar *x_ptr; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr; PetscFunctionBeginUser; appctx.D1 = 8.0e-5; appctx.D2 = 4.0e-5; appctx.gamma = .024; appctx.kappa = .06; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create distributed array (DMDA) to manage parallel grid and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMDACreate2d(PETSC_COMM_WORLD,DM_BOUNDARY_PERIODIC,DM_BOUNDARY_PERIODIC,DMDA_STENCIL_STAR,65,65,PETSC_DECIDE,PETSC_DECIDE,2,1,NULL,NULL,&da);CHKERRQ(ierr); ierr = DMSetFromOptions(da);CHKERRQ(ierr); ierr = DMSetUp(da);CHKERRQ(ierr); ierr = DMDASetFieldName(da,0,"u");CHKERRQ(ierr); ierr = DMDASetFieldName(da,1,"v");CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Extract global vectors from DMDA; then duplicate for remaining vectors that are the same types - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMCreateGlobalVector(da,&x);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetType(ts,TSCN);CHKERRQ(ierr); ierr = TSSetDM(ts,da);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetRHSFunction(ts,NULL,RHSFunction,&appctx);CHKERRQ(ierr); ierr = TSSetRHSJacobian(ts,NULL,NULL,RHSJacobian,&appctx);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = InitialConditions(da,x);CHKERRQ(ierr); ierr = TSSetSolution(ts,x);CHKERRQ(ierr); /* Have the TS save its trajectory so that TSAdjointSolve() may be used */ ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set solver options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetDuration(ts,PETSC_DEFAULT,2000.0);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.0001);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve ODE system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,x);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Start the Adjoint model - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = VecDuplicate(x,&lambda[0]);CHKERRQ(ierr); /* Reset initial conditions for the adjoint integration */ ierr = VecGetArray(lambda[0],&x_ptr);CHKERRQ(ierr); ierr = InitializeLambda(da,lambda[0],0.5,0.5);CHKERRQ(ierr); ierr = TSSetCostGradients(ts,1,lambda,NULL);CHKERRQ(ierr); ierr = TSAdjointSolve(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = VecDestroy(&lambda[0]);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); ierr = PetscFinalize(); return ierr; }
int main(int argc,char **argv) { TS ts; /* nonlinear solver */ Vec x; /* solution, residual vectors */ Mat A; /* Jacobian matrix */ PetscInt steps; PetscReal ftime = 0.5; PetscBool monitor = PETSC_FALSE; PetscScalar *x_ptr; PetscMPIInt size; struct _n_User user; PetscErrorCode ierr; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscInitialize(&argc,&argv,NULL,help);CHKERRQ(ierr); ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); if (size != 1) SETERRQ(PETSC_COMM_SELF,1,"This is a uniprocessor example only!"); /* Register user-specified ARKIMEX method */ ierr = RegisterMyARK2();CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ user.imex = PETSC_TRUE; user.next_output = 0.0; user.mu = 1.0e6; ierr = PetscOptionsGetBool(NULL,NULL,"-imex",&user.imex,NULL);CHKERRQ(ierr); ierr = PetscOptionsGetBool(NULL,NULL,"-monitor",&monitor,NULL);CHKERRQ(ierr); ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Physical parameters",NULL); ierr = PetscOptionsReal("-mu","Stiffness parameter","<1.0e6>",user.mu,&user.mu,NULL);CHKERRQ(ierr); ierr = PetscOptionsEnd(); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create necessary matrix and vectors, solve same ODE on every process - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,2,2);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatCreateVecs(A,&x,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr); ierr = TSSetRHSFunction(ts,NULL,RHSFunction,&user);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,IFunction,&user);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,A,A,IJacobian,&user);CHKERRQ(ierr); ierr = TSSetDuration(ts,PETSC_DEFAULT,ftime);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr); if (monitor) { ierr = TSMonitorSet(ts,Monitor,&user,NULL);CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = VecGetArray(x,&x_ptr);CHKERRQ(ierr); x_ptr[0] = 2.0; x_ptr[1] = -6.666665432100101e-01; ierr = VecRestoreArray(x,&x_ptr);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.001);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,x);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&steps);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"steps %D, ftime %g\n",steps,(double)ftime);CHKERRQ(ierr); ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = PetscFinalize(); PetscFunctionReturn(0); }
int main(int argc,char **argv) { PetscErrorCode ierr; PatternCtx user; TS ts; Vec x; DMDALocalInfo info; double noiselevel = -1.0; // negative value means no initial noise PetscInitialize(&argc,&argv,(char*)0,help); // parameter values from pages 21-22 in Hundsdorfer & Verwer (2003) user.L = 2.5; user.Du = 8.0e-5; user.Dv = 4.0e-5; user.phi = 0.024; user.kappa = 0.06; ierr = PetscOptionsBegin(PETSC_COMM_WORLD, "ptn_", "options for patterns", ""); CHKERRQ(ierr); ierr = PetscOptionsReal("-noisy_init", "initialize u,v with this much random noise (e.g. 0.2) on top of usual initial values", "pattern.c",noiselevel,&noiselevel,NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-L","square domain side length; recommend L >= 0.5", "pattern.c",user.L,&user.L,NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-Du","diffusion coefficient of first equation", "pattern.c",user.Du,&user.Du,NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-Dv","diffusion coefficient of second equation", "pattern.c",user.Dv,&user.Dv,NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-phi","dimensionless feed rate (=F in (Pearson, 1993))", "pattern.c",user.phi,&user.phi,NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-kappa","dimensionless rate constant (=k in (Pearson, 1993))", "pattern.c",user.kappa,&user.kappa,NULL);CHKERRQ(ierr); ierr = PetscOptionsEnd(); CHKERRQ(ierr); //DMDACREATE ierr = DMDACreate2d(PETSC_COMM_WORLD, DM_BOUNDARY_PERIODIC, DM_BOUNDARY_PERIODIC, DMDA_STENCIL_BOX, // for 9-point stencil 4,4,PETSC_DECIDE,PETSC_DECIDE, 2, 1, // degrees of freedom, stencil width NULL,NULL,&user.da); CHKERRQ(ierr); //ENDDMDACREATE ierr = DMSetFromOptions(user.da); CHKERRQ(ierr); ierr = DMSetUp(user.da); CHKERRQ(ierr); ierr = DMDASetFieldName(user.da,0,"u"); CHKERRQ(ierr); ierr = DMDASetFieldName(user.da,1,"v"); CHKERRQ(ierr); ierr = DMDAGetLocalInfo(user.da,&info); CHKERRQ(ierr); if (info.mx != info.my) { SETERRQ(PETSC_COMM_WORLD,1,"pattern.c requires mx == my"); } ierr = DMDASetUniformCoordinates(user.da, 0.0, user.L, 0.0, user.L, -1.0, -1.0); CHKERRQ(ierr); ierr = DMSetApplicationContext(user.da,&user); CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD, "running on %d x %d grid with square cells of side h = %.6f ...\n", info.mx,info.my,user.L/(double)(info.mx)); CHKERRQ(ierr); //TSSETUP ierr = TSCreate(PETSC_COMM_WORLD,&ts); CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR); CHKERRQ(ierr); ierr = TSSetDM(ts,user.da); CHKERRQ(ierr); ierr = DMDATSSetRHSFunctionLocal(user.da,INSERT_VALUES, (DMDATSRHSFunctionLocal)FormRHSFunctionLocal,&user); CHKERRQ(ierr); ierr = DMDATSSetIFunctionLocal(user.da,INSERT_VALUES, (DMDATSIFunctionLocal)FormIFunctionLocal,&user); CHKERRQ(ierr); ierr = DMDATSSetIJacobianLocal(user.da, (DMDATSIJacobianLocal)FormIJacobianLocal,&user); CHKERRQ(ierr); ierr = TSSetType(ts,TSARKIMEX); CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,5.0); CHKERRQ(ierr); // t_0 = 0.0, dt = 5.0 ierr = TSSetDuration(ts,1000000,200.0); CHKERRQ(ierr); // t_f = 200 ierr = TSSetFromOptions(ts);CHKERRQ(ierr); //ENDTSSETUP ierr = DMCreateGlobalVector(user.da,&x); CHKERRQ(ierr); ierr = InitialState(x,noiselevel,&user); CHKERRQ(ierr); ierr = TSSolve(ts,x); CHKERRQ(ierr); VecDestroy(&x); TSDestroy(&ts); DMDestroy(&user.da); PetscFinalize(); return 0; }
int main(int argc,char **argv) { TS ts; /* ODE integrator */ Vec U; /* solution will be stored here */ Mat A; /* Jacobian matrix */ PetscErrorCode ierr; PetscMPIInt size; PetscInt n = 2; AppCtx ctx; PetscScalar *u; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr; ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs"); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create necessary matrix and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatCreateVecs(A,&U,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Reaction options","");CHKERRQ(ierr); { ctx.omega_s = 1.0; ierr = PetscOptionsScalar("-omega_s","","",ctx.omega_s,&ctx.omega_s,NULL);CHKERRQ(ierr); ctx.H = 1.0; ierr = PetscOptionsScalar("-H","","",ctx.H,&ctx.H,NULL);CHKERRQ(ierr); ctx.E = 1.0; ierr = PetscOptionsScalar("-E","","",ctx.E,&ctx.E,NULL);CHKERRQ(ierr); ctx.V = 1.0; ierr = PetscOptionsScalar("-V","","",ctx.V,&ctx.V,NULL);CHKERRQ(ierr); ctx.X = 1.0; ierr = PetscOptionsScalar("-X","","",ctx.X,&ctx.X,NULL);CHKERRQ(ierr); ierr = VecGetArray(U,&u);CHKERRQ(ierr); u[0] = 1; u[1] = .7; ierr = VecRestoreArray(U,&u);CHKERRQ(ierr); ierr = PetscOptionsGetVec(NULL,NULL,"-initial",U,NULL);CHKERRQ(ierr); } ierr = PetscOptionsEnd();CHKERRQ(ierr); ierr = PetscRandomCreate(PETSC_COMM_WORLD,&ctx.rand);CHKERRQ(ierr); ierr = PetscRandomSetFromOptions(ctx.rand);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,(TSIFunction) IFunction,&ctx);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,A,A,(TSIJacobian)IJacobian,&ctx);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetSolution(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set solver options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetDuration(ts,100000,2000.0);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.001);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = VecDestroy(&U);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = PetscRandomDestroy(&ctx.rand);CHKERRQ(ierr); ierr = PetscFinalize(); return ierr; }
int main(int argc,char **argv) { PetscFunctionList plist = NULL; char pname[256]; TS ts; /* nonlinear solver */ Vec x,r; /* solution, residual vectors */ Mat A; /* Jacobian matrix */ Problem problem; PetscBool use_monitor; PetscInt steps,maxsteps = 1000,nonlinits,linits,snesfails,rejects; PetscReal ftime; MonitorCtx mon; PetscErrorCode ierr; PetscMPIInt size; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ PetscInitialize(&argc,&argv,(char*)0,help); ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs"); /* Register the available problems */ ierr = PetscFunctionListAdd(&plist,"rober",&RoberCreate);CHKERRQ(ierr); ierr = PetscFunctionListAdd(&plist,"ce",&CECreate);CHKERRQ(ierr); ierr = PetscFunctionListAdd(&plist,"orego",&OregoCreate);CHKERRQ(ierr); ierr = PetscStrcpy(pname,"ce");CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Timestepping benchmark options","");CHKERRQ(ierr); { ierr = PetscOptionsFList("-problem_type","Name of problem to run","",plist,pname,pname,sizeof(pname),NULL);CHKERRQ(ierr); use_monitor = PETSC_FALSE; ierr = PetscOptionsBool("-monitor_error","Display errors relative to exact solutions","",use_monitor,&use_monitor,NULL);CHKERRQ(ierr); } ierr = PetscOptionsEnd();CHKERRQ(ierr); /* Create the new problem */ ierr = PetscNew(&problem);CHKERRQ(ierr); problem->comm = MPI_COMM_WORLD; { PetscErrorCode (*pcreate)(Problem); ierr = PetscFunctionListFind(plist,pname,&pcreate);CHKERRQ(ierr); if (!pcreate) SETERRQ1(PETSC_COMM_SELF,1,"No problem '%s'",pname); ierr = (*pcreate)(problem);CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create necessary matrix and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,problem->n,problem->n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatGetVecs(A,&x,NULL);CHKERRQ(ierr); ierr = VecDuplicate(x,&r);CHKERRQ(ierr); mon.comm = PETSC_COMM_WORLD; mon.problem = problem; ierr = VecDuplicate(x,&mon.x);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr); /* Rosenbrock-W */ ierr = TSSetIFunction(ts,NULL,problem->function,problem->data);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,A,A,problem->jacobian,problem->data);CHKERRQ(ierr); ierr = TSSetDuration(ts,maxsteps,problem->final_time);CHKERRQ(ierr); ierr = TSSetMaxStepRejections(ts,10);CHKERRQ(ierr); ierr = TSSetMaxSNESFailures(ts,-1);CHKERRQ(ierr); /* unlimited */ if (use_monitor) { ierr = TSMonitorSet(ts,&MonitorError,&mon,NULL);CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = (*problem->solution)(0,x,problem->data);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.001);CHKERRQ(ierr); ierr = TSSetSolution(ts,x);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,x);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&steps);CHKERRQ(ierr); ierr = TSGetSNESFailures(ts,&snesfails);CHKERRQ(ierr); ierr = TSGetStepRejections(ts,&rejects);CHKERRQ(ierr); ierr = TSGetSNESIterations(ts,&nonlinits);CHKERRQ(ierr); ierr = TSGetKSPIterations(ts,&linits);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"steps %D (%D rejected, %D SNES fails), ftime %G, nonlinits %D, linits %D\n",steps,rejects,snesfails,ftime,nonlinits,linits);CHKERRQ(ierr); if (problem->hasexact) { ierr = MonitorError(ts,steps,ftime,x,&mon);CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = VecDestroy(&r);CHKERRQ(ierr); ierr = VecDestroy(&mon.x);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); if (problem->destroy) { ierr = (*problem->destroy)(problem);CHKERRQ(ierr); } ierr = PetscFree(problem);CHKERRQ(ierr); ierr = PetscFunctionListDestroy(&plist);CHKERRQ(ierr); ierr = PetscFinalize(); PetscFunctionReturn(0); }
int main(int argc,char **argv) { TS ts; /* ODE integrator */ Vec U; /* solution will be stored here */ Mat A; /* Jacobian matrix */ PetscErrorCode ierr; PetscMPIInt size; PetscInt n = 2; AppCtx ctx; PetscScalar *u; PetscReal du[2] = {0.0,0.0}; PetscBool ensemble = PETSC_FALSE,flg1,flg2; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr); ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs"); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create necessary matrix and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr); ierr = MatSetType(A,MATDENSE);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatCreateVecs(A,&U,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Swing equation options","");CHKERRQ(ierr); { ctx.omega_s = 2.0*PETSC_PI*60.0; ctx.H = 5.0; ierr = PetscOptionsScalar("-Inertia","","",ctx.H,&ctx.H,NULL);CHKERRQ(ierr); ctx.D = 5.0; ierr = PetscOptionsScalar("-D","","",ctx.D,&ctx.D,NULL);CHKERRQ(ierr); ctx.E = 1.1378; ctx.V = 1.0; ctx.X = 0.545; ctx.Pmax = ctx.E*ctx.V/ctx.X;; ierr = PetscOptionsScalar("-Pmax","","",ctx.Pmax,&ctx.Pmax,NULL);CHKERRQ(ierr); ctx.Pm = 0.9; ierr = PetscOptionsScalar("-Pm","","",ctx.Pm,&ctx.Pm,NULL);CHKERRQ(ierr); ctx.tf = 1.0; ctx.tcl = 1.05; ierr = PetscOptionsReal("-tf","Time to start fault","",ctx.tf,&ctx.tf,NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-tcl","Time to end fault","",ctx.tcl,&ctx.tcl,NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-ensemble","Run ensemble of different initial conditions","",ensemble,&ensemble,NULL);CHKERRQ(ierr); if (ensemble) { ctx.tf = -1; ctx.tcl = -1; } ierr = VecGetArray(U,&u);CHKERRQ(ierr); u[0] = PetscAsinScalar(ctx.Pm/ctx.Pmax); u[1] = 1.0; ierr = PetscOptionsRealArray("-u","Initial solution","",u,&n,&flg1);CHKERRQ(ierr); n = 2; ierr = PetscOptionsRealArray("-du","Perturbation in initial solution","",du,&n,&flg2);CHKERRQ(ierr); u[0] += du[0]; u[1] += du[1]; ierr = VecRestoreArray(U,&u);CHKERRQ(ierr); if (flg1 || flg2) { ctx.tf = -1; ctx.tcl = -1; } } ierr = PetscOptionsEnd();CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,(TSIFunction) IFunction,&ctx);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,A,A,(TSIJacobian)IJacobian,&ctx);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetSolution(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set solver options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetDuration(ts,100000,35.0);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.01);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* ierr = TSSetPostStep(ts,PostStep);CHKERRQ(ierr); */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ if (ensemble) { for (du[1] = -2.5; du[1] <= .01; du[1] += .1) { ierr = VecGetArray(U,&u);CHKERRQ(ierr); u[0] = PetscAsinScalar(ctx.Pm/ctx.Pmax); u[1] = ctx.omega_s; u[0] += du[0]; u[1] += du[1]; ierr = VecRestoreArray(U,&u);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.01);CHKERRQ(ierr); ierr = TSSolve(ts,U);CHKERRQ(ierr); } } else { ierr = TSSolve(ts,U);CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = VecDestroy(&U);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = PetscFinalize(); return(0); }
int main(int argc,char **argv) { PetscErrorCode ierr; int time; /* amount of loops */ struct in put; PetscScalar rh; /* relative humidity */ PetscScalar x; /* memory varialbe for relative humidity calculation */ PetscScalar deep_grnd_temp; /* temperature of ground under top soil surface layer */ PetscScalar emma; /* absorption-emission constant for air */ PetscScalar pressure1 = 101300; /* surface pressure */ PetscScalar mixratio; /* mixing ratio */ PetscScalar airtemp; /* temperature of air near boundary layer inversion */ PetscScalar dewtemp; /* dew point temperature */ PetscScalar sfctemp; /* temperature at surface */ PetscScalar pwat; /* total column precipitable water */ PetscScalar cloudTemp; /* temperature at base of cloud */ AppCtx user; /* user-defined work context */ MonitorCtx usermonitor; /* user-defined monitor context */ PetscMPIInt rank,size; TS ts; SNES snes; DM da; Vec T,rhs; /* solution vector */ Mat J; /* Jacobian matrix */ PetscReal ftime,dt; PetscInt steps,dof = 5; PetscBool use_coloring = PETSC_TRUE; MatFDColoring matfdcoloring = 0; PetscBool monitor_off = PETSC_FALSE; PetscInitialize(&argc,&argv,(char*)0,help); ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr); /* Inputs */ readinput(&put); sfctemp = put.Ts; dewtemp = put.Td; cloudTemp = put.Tc; airtemp = put.Ta; pwat = put.pwt; if (!rank) PetscPrintf(PETSC_COMM_SELF,"Initial Temperature = %g\n",sfctemp); /* input surface temperature */ deep_grnd_temp = sfctemp - 10; /* set underlying ground layer temperature */ emma = emission(pwat); /* accounts for radiative effects of water vapor */ /* Converts from Fahrenheit to Celsuis */ sfctemp = fahr_to_cel(sfctemp); airtemp = fahr_to_cel(airtemp); dewtemp = fahr_to_cel(dewtemp); cloudTemp = fahr_to_cel(cloudTemp); deep_grnd_temp = fahr_to_cel(deep_grnd_temp); /* Converts from Celsius to Kelvin */ sfctemp += 273; airtemp += 273; dewtemp += 273; cloudTemp += 273; deep_grnd_temp += 273; /* Calculates initial relative humidity */ x = calcmixingr(dewtemp,pressure1); mixratio = calcmixingr(sfctemp,pressure1); rh = (x/mixratio)*100; if (!rank) printf("Initial RH = %.1f percent\n\n",rh); /* prints initial relative humidity */ time = 3600*put.time; /* sets amount of timesteps to run model */ /* Configure PETSc TS solver */ /*------------------------------------------*/ /* Create grid */ ierr = DMDACreate2d(PETSC_COMM_WORLD,DMDA_BOUNDARY_PERIODIC,DMDA_BOUNDARY_PERIODIC,DMDA_STENCIL_STAR,-20,-20, PETSC_DECIDE,PETSC_DECIDE,dof,1,NULL,NULL,&da);CHKERRQ(ierr); ierr = DMDASetUniformCoordinates(da, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);CHKERRQ(ierr); /* Define output window for each variable of interest */ ierr = DMDASetFieldName(da,0,"Ts");CHKERRQ(ierr); ierr = DMDASetFieldName(da,1,"Ta");CHKERRQ(ierr); ierr = DMDASetFieldName(da,2,"u");CHKERRQ(ierr); ierr = DMDASetFieldName(da,3,"v");CHKERRQ(ierr); ierr = DMDASetFieldName(da,4,"p");CHKERRQ(ierr); /* set values for appctx */ user.da = da; user.Ts = sfctemp; user.fract = put.fr; /* fraction of sky covered by clouds */ user.dewtemp = dewtemp; /* dew point temperature (mositure in air) */ user.csoil = 2000000; /* heat constant for layer */ user.dzlay = 0.08; /* thickness of top soil layer */ user.emma = emma; /* emission parameter */ user.wind = put.wnd; /* wind spped */ user.pressure1 = pressure1; /* sea level pressure */ user.airtemp = airtemp; /* temperature of air near boundar layer inversion */ user.Tc = cloudTemp; /* temperature at base of lowest cloud layer */ user.init = put.init; /* user chosen initiation scenario */ user.lat = 70*0.0174532; /* converts latitude degrees to latitude in radians */ user.deep_grnd_temp = deep_grnd_temp; /* temp in lowest ground layer */ /* set values for MonitorCtx */ usermonitor.drawcontours = PETSC_FALSE; ierr = PetscOptionsHasName(NULL,"-drawcontours",&usermonitor.drawcontours);CHKERRQ(ierr); if (usermonitor.drawcontours) { PetscReal bounds[] = {1000.0,-1000., -1000.,-1000., 1000.,-1000., 1000.,-1000., 1000,-1000, 100700,100800}; ierr = PetscViewerDrawOpen(PETSC_COMM_WORLD,0,0,0,0,300,300,&usermonitor.drawviewer);CHKERRQ(ierr); ierr = PetscViewerDrawSetBounds(usermonitor.drawviewer,dof,bounds);CHKERRQ(ierr); } usermonitor.interval = 1; ierr = PetscOptionsGetInt(NULL,"-monitor_interval",&usermonitor.interval,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Extract global vectors from DA; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMCreateGlobalVector(da,&T);CHKERRQ(ierr); ierr = VecDuplicate(T,&rhs);CHKERRQ(ierr); /* r: vector to put the computed right hand side */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr); ierr = TSSetRHSFunction(ts,rhs,RhsFunc,&user);CHKERRQ(ierr); /* Set Jacobian evaluation routine - use coloring to compute finite difference Jacobian efficiently */ ierr = DMSetMatType(da,MATAIJ);CHKERRQ(ierr); ierr = DMCreateMatrix(da,&J);CHKERRQ(ierr); ierr = TSGetSNES(ts,&snes);CHKERRQ(ierr); if (use_coloring) { ISColoring iscoloring; ierr = DMCreateColoring(da,IS_COLORING_GLOBAL,&iscoloring);CHKERRQ(ierr); ierr = MatFDColoringCreate(J,iscoloring,&matfdcoloring);CHKERRQ(ierr); ierr = MatFDColoringSetFromOptions(matfdcoloring);CHKERRQ(ierr); ierr = MatFDColoringSetUp(J,iscoloring,matfdcoloring);CHKERRQ(ierr); ierr = ISColoringDestroy(&iscoloring);CHKERRQ(ierr); ierr = MatFDColoringSetFunction(matfdcoloring,(PetscErrorCode (*)(void))SNESTSFormFunction,ts);CHKERRQ(ierr); ierr = SNESSetJacobian(snes,J,J,SNESComputeJacobianDefaultColor,matfdcoloring);CHKERRQ(ierr); } else { ierr = SNESSetJacobian(snes,J,J,SNESComputeJacobianDefault,NULL);CHKERRQ(ierr); } /* Define what to print for ts_monitor option */ ierr = PetscOptionsHasName(NULL,"-monitor_off",&monitor_off);CHKERRQ(ierr); if (!monitor_off) { ierr = TSMonitorSet(ts,Monitor,&usermonitor,NULL);CHKERRQ(ierr); } ierr = FormInitialSolution(da,T,&user);CHKERRQ(ierr); dt = TIMESTEP; /* initial time step */ ftime = TIMESTEP*time; if (!rank) printf("time %d, ftime %g hour, TIMESTEP %g\n",time,ftime/3600,dt); ierr = TSSetInitialTimeStep(ts,0.0,dt);CHKERRQ(ierr); ierr = TSSetDuration(ts,time,ftime);CHKERRQ(ierr); ierr = TSSetSolution(ts,T);CHKERRQ(ierr); ierr = TSSetDM(ts,da);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,T);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&steps);CHKERRQ(ierr); if (!rank) PetscPrintf(PETSC_COMM_WORLD,"Solution T after %g hours %d steps\n",ftime/3600,steps); if (matfdcoloring) {ierr = MatFDColoringDestroy(&matfdcoloring);CHKERRQ(ierr);} if (usermonitor.drawcontours) { ierr = PetscViewerDestroy(&usermonitor.drawviewer);CHKERRQ(ierr); } ierr = MatDestroy(&J);CHKERRQ(ierr); ierr = VecDestroy(&T);CHKERRQ(ierr); ierr = VecDestroy(&rhs);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); PetscFinalize(); return 0; }
int main(int argc,char **argv) { PetscErrorCode ierr; DM da; /* structured grid topology object */ TS ts; /* time-stepping object (contains snes) */ SNES snes; /* Newton solver object */ Vec X,residual; /* solution, residual */ Mat J; /* Jacobian matrix */ PetscInt Mx,My,fsteps,steps; ISColoring iscoloring; PetscReal tstart,tend,ftime,secperday=3600.0*24.0,Y0; PetscBool fdflg = PETSC_FALSE, mfileflg = PETSC_FALSE, optflg = PETSC_FALSE; char mfile[PETSC_MAX_PATH_LEN] = "out.m"; MatFDColoring matfdcoloring; PorousCtx user; /* user-defined work context */ PetscInitialize(&argc,&argv,(char *)0,help); ierr = DMDACreate2d(PETSC_COMM_WORLD, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, // correct for zero Dirichlet DMDA_STENCIL_STAR, // nonlinear diffusion but diffusivity // depends on soln W not grad W -21,-21, // default to 20x20 grid but override with // -da_grid_x, -da_grid_y (or -da_refine) PETSC_DECIDE,PETSC_DECIDE, // num of procs in each dim 2, // dof = 2: node = (W,Y) // or node = (P,dPsqr) // or node = (ddxE,ddyN) 1, // s = 1 (stencil extends out one cell) PETSC_NULL,PETSC_NULL, // no specify proc decomposition &da);CHKERRQ(ierr); ierr = DMSetApplicationContext(da,&user);CHKERRQ(ierr); /* get Vecs and Mats for this grid */ ierr = DMCreateGlobalVector(da,&X);CHKERRQ(ierr); ierr = VecDuplicate(X,&residual);CHKERRQ(ierr); ierr = VecDuplicate(X,&user.geom);CHKERRQ(ierr); ierr = DMGetMatrix(da,MATAIJ,&J);CHKERRQ(ierr); /* set up contexts */ tstart = 10.0 * secperday; /* 10 days in seconds */ tend = 30.0 * secperday; steps = 20; Y0 = 1.0; /* initial value of Y, for computing initial value of P; note Ymin = 0.1 is different */ user.da = da; ierr = DefaultContext(&user);CHKERRQ(ierr); ierr = PetscOptionsBegin(PETSC_COMM_WORLD, "","options to (W,P)-space better hydrology model alt","");CHKERRQ(ierr); { ierr = PetscOptionsReal("-alt_sigma","nonlinear power","", user.sigma,&user.sigma,PETSC_NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-alt_Ymin", "min capacity thickness (esp. in pressure computation)","", user.Ymin,&user.Ymin,PETSC_NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-alt_Wmin", "min water amount (esp. in pressure computation)","", user.Wmin,&user.Wmin,PETSC_NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-alt_Y0", "constant initial capacity thickness","", Y0,&Y0,PETSC_NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-alt_Cmelt", "additional coefficient for amount of melt","", user.Cmelt,&user.Cmelt,PETSC_NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-alt_Creep", "creep closure coefficient","", user.Creep,&user.Creep,PETSC_NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-alt_L","half-width of square region in meters","", user.L,&user.L,PETSC_NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-alt_tstart_days","start time in days","", tstart/secperday,&tstart,&optflg);CHKERRQ(ierr); if (optflg) { tstart *= secperday; } ierr = PetscOptionsReal("-alt_tend_days","end time in days","", tend/secperday,&tend,&optflg);CHKERRQ(ierr); if (optflg) { tend *= secperday; } ierr = PetscOptionsInt("-alt_steps","number of timesteps to take","", steps,&steps,PETSC_NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-alt_converge_check", "run silent and check for convergence", "",user.run_silent,&user.run_silent,PETSC_NULL); CHKERRQ(ierr); ierr = PetscOptionsString("-mfile", "name of Matlab file to write results","", mfile,mfile,PETSC_MAX_PATH_LEN,&mfileflg); CHKERRQ(ierr); } ierr = PetscOptionsEnd();CHKERRQ(ierr); /* fix remaining parameters */ ierr = DerivedConstants(&user);CHKERRQ(ierr); ierr = VecStrideSet(user.geom,0,user.H0);CHKERRQ(ierr); /* H(x,y) = H0 */ ierr = VecStrideSet(user.geom,1,0.0);CHKERRQ(ierr); /* b(x,y) = 0 */ ierr = DMDASetUniformCoordinates(da, // square domain -user.L, user.L, -user.L, user.L, 0.0, 1.0);CHKERRQ(ierr); ierr = DMDAGetInfo(da,PETSC_IGNORE,&Mx,&My, PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE, PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE, PETSC_IGNORE,PETSC_IGNORE,PETSC_IGNORE);CHKERRQ(ierr); user.dx = 2.0 * user.L / (Mx-1); user.dy = 2.0 * user.L / (My-1); /* setup TS = timestepping object */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetType(ts,TSCN);CHKERRQ(ierr); ierr = TSSetRHSFunction(ts,residual,RHSFunction,&user);CHKERRQ(ierr); /* use coloring to compute rhs Jacobian efficiently */ ierr = PetscOptionsGetBool(PETSC_NULL,"-fd",&fdflg,PETSC_NULL);CHKERRQ(ierr); if (fdflg){ ierr = DMGetColoring(da,IS_COLORING_GLOBAL,MATAIJ,&iscoloring);CHKERRQ(ierr); ierr = MatFDColoringCreate(J,iscoloring,&matfdcoloring);CHKERRQ(ierr); ierr = MatFDColoringSetFromOptions(matfdcoloring);CHKERRQ(ierr); ierr = ISColoringDestroy(&iscoloring);CHKERRQ(ierr); ierr = MatFDColoringSetFunction(matfdcoloring, (PetscErrorCode (*)(void))RHSFunction,&user);CHKERRQ(ierr); ierr = TSSetRHSJacobian(ts,J,J,TSDefaultComputeJacobianColor, matfdcoloring);CHKERRQ(ierr); } else { /* default case */ ierr = TSSetRHSJacobian(ts,J,J,RHSJacobian,&user);CHKERRQ(ierr); } /* set initial state: W = barenblatt, P = pi (W/Y0)^sigma */ ierr = InitialState(da,&user,tstart,Y0,X);CHKERRQ(ierr); /* set up times for time-stepping */ ierr = TSSetInitialTimeStep(ts,tstart, (tend - tstart) / (PetscReal)steps);CHKERRQ(ierr); ierr = TSSetDuration(ts,steps,tend);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,PETSC_TRUE);CHKERRQ(ierr); ierr = TSMonitorSet(ts,MyTSMonitor,&user,PETSC_NULL);CHKERRQ(ierr); /* Set SNESVI type and supply upper and lower bounds. */ ierr = TSGetSNES(ts,&snes);CHKERRQ(ierr); ierr = SNESVISetComputeVariableBounds(snes,FormPositivityBounds); CHKERRQ(ierr); /* ask user to finalize settings */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* report on setup */ if (!user.run_silent) { ierr = PetscPrintf(PETSC_COMM_WORLD, "setup done: square side length = %.3f km\n" " grid Mx,My = %d,%d\n" " spacing dx,dy = %.3f,%.3f m\n" " times tstart:dt:tend = %.3f:%.3f:%.3f days\n", 2.0 * user.L / 1000.0, Mx, My, user.dx, user.dy, tstart / secperday, (tend-tstart)/(steps*secperday), tend / secperday); CHKERRQ(ierr); } if (mfileflg) { if (!user.run_silent) { ierr = PetscPrintf(PETSC_COMM_WORLD, "writing initial W,P and geometry H,b to Matlab file %s ...\n", mfile);CHKERRQ(ierr); } ierr = print2vecmatlab(da,X,"W_init","P_init",mfile,PETSC_FALSE);CHKERRQ(ierr); ierr = print2vecmatlab(da,user.geom,"H","b",mfile,PETSC_TRUE);CHKERRQ(ierr); } /* run time-stepping with implicit steps */ ierr = TSSolve(ts,X,&ftime);CHKERRQ(ierr); /* make a report on run and final state */ ierr = TSGetTimeStepNumber(ts,&fsteps);CHKERRQ(ierr); if ((!user.run_silent) && (ftime != tend)) { ierr = PetscPrintf(PETSC_COMM_WORLD, "***WARNING3***: reported final time wrong: ftime(=%.12e) != tend(=%.12e) (days)\n", ftime / secperday, tend / secperday);CHKERRQ(ierr); } if ((!user.run_silent) && (fsteps != steps)) { ierr = PetscPrintf(PETSC_COMM_WORLD, "***WARNING4***: reported number of steps wrong: fsteps(=%D) != steps(=%D)\n", fsteps, steps);CHKERRQ(ierr); } if (mfileflg) { if (!user.run_silent) { ierr = PetscPrintf(PETSC_COMM_WORLD, "writing final fields to %s ...\n",mfile);CHKERRQ(ierr); } ierr = print2vecmatlab(da,X,"W_final","P_final",mfile,PETSC_TRUE);CHKERRQ(ierr); ierr = printfigurematlab(da,2,"W_init","W_final",mfile,PETSC_TRUE);CHKERRQ(ierr); ierr = printfigurematlab(da,3,"P_init","P_final",mfile,PETSC_TRUE);CHKERRQ(ierr); } if (user.run_silent) { ierr = PetscPrintf(PETSC_COMM_WORLD, "%6d %6d %9.3f %.12e\n", Mx, My, (tend-tstart)/secperday, user.maxrnorm);CHKERRQ(ierr); } /* Free work space. */ ierr = MatDestroy(&J);CHKERRQ(ierr); if (fdflg) { ierr = MatFDColoringDestroy(&matfdcoloring);CHKERRQ(ierr); } ierr = VecDestroy(&X);CHKERRQ(ierr); ierr = VecDestroy(&user.geom);CHKERRQ(ierr); ierr = VecDestroy(&residual);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); ierr = PetscFinalize();CHKERRQ(ierr); PetscFunctionReturn((PetscInt)(user.not_converged_warning)); }
int main(int argc,char **argv) { TS ts; /* nonlinear solver */ Vec U; /* solution, residual vectors */ Mat J; /* Jacobian matrix */ PetscInt maxsteps = 1000; PetscErrorCode ierr; DM da; AppCtx user; PetscInt i; char Name[16]; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ PetscInitialize(&argc,&argv,(char*)0,help); user.N = 1; ierr = PetscOptionsGetInt(NULL,"-N",&user.N,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create distributed array (DMDA) to manage parallel grid and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMDACreate1d(PETSC_COMM_WORLD, DMDA_BOUNDARY_MIRROR,-8,user.N,1,NULL,&da);CHKERRQ(ierr); for (i=0; i<user.N; i++) { ierr = PetscSNPrintf(Name,16,"Void size %d",(int)(i+1)); ierr = DMDASetFieldName(da,i,Name);CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Extract global vectors from DMDA; then duplicate for remaining vectors that are the same types - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMCreateGlobalVector(da,&U);CHKERRQ(ierr); ierr = DMCreateMatrix(da,MATAIJ,&J);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetType(ts,TSARKIMEX);CHKERRQ(ierr); ierr = TSSetDM(ts,da);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,IFunction,&user);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,J,J,IJacobian,&user);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = InitialConditions(da,U);CHKERRQ(ierr); ierr = TSSetSolution(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set solver options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetInitialTimeStep(ts,0.0,.001);CHKERRQ(ierr); ierr = TSSetDuration(ts,maxsteps,1.0);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = VecDestroy(&U);CHKERRQ(ierr); ierr = MatDestroy(&J);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); ierr = PetscFinalize(); PetscFunctionReturn(0); }
int main(int argc, char **argv) { MPI_Comm comm; PetscMPIInt rank; PetscErrorCode ierr; User user; PetscLogDouble v1, v2; PetscInt nplot = 0; char filename1[2048], fileName[2048]; PetscBool set = PETSC_FALSE; PetscInt steps_output; ierr = PetscInitialize(&argc, &argv, (char*) 0, help);CHKERRQ(ierr); comm = PETSC_COMM_WORLD; ierr = MPI_Comm_rank(comm, &rank);CHKERRQ(ierr); ierr = PetscNew(&user);CHKERRQ(ierr); ierr = PetscNew(&user->algebra);CHKERRQ(ierr); ierr = PetscNew(&user->model);CHKERRQ(ierr); ierr = PetscNew(&user->model->physics);CHKERRQ(ierr); Algebra algebra = user->algebra; ierr = LoadOptions(comm, user);CHKERRQ(ierr); ierr = PetscTime(&v1);CHKERRQ(ierr); ierr = CreateMesh(comm, user);CHKERRQ(ierr); ierr = PetscTime(&v2);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD, "Read and Distribute mesh takes %f sec \n", v2 - v1);CHKERRQ(ierr); ierr = SetUpLocalSpace(user);CHKERRQ(ierr); //Set up the dofs of each element ierr = ConstructGeometryFVM(&user->facegeom, &user->cellgeom, user);CHKERRQ(ierr); ierr = LimiterSetup(user);CHKERRQ(ierr); if(user->output_solution){ // the output file options ierr = PetscOptionsBegin(PETSC_COMM_WORLD,0,"Options for output solution",0);CHKERRQ(ierr); ierr = PetscOptionsString("-solutionfile", "solution file", "AeroSim.c", filename1,filename1, 2048, &set);CHKERRQ(ierr); if(!set){SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_NULL,"please use option -solutionfile to specify solution file name \n");} ierr = PetscOptionsInt("-steps_output", "the number of time steps between two outputs", "", steps_output, &steps_output, &set);CHKERRQ(ierr); if(!set){ steps_output = 1;} ierr = PetscOptionsEnd();CHKERRQ(ierr); } if (user->TimeIntegralMethod == EXPLICITMETHOD) { if(user->myownexplicitmethod){ ierr = PetscPrintf(PETSC_COMM_WORLD,"Using the fully explicit method based on my own routing\n");CHKERRQ(ierr); user->current_time = user->initial_time; user->current_step = 1; ierr = DMCreateGlobalVector(user->dm, &algebra->solution);CHKERRQ(ierr); ierr = PetscObjectSetName((PetscObject) algebra->solution, "solution");CHKERRQ(ierr); ierr = SetInitialCondition(user->dm, algebra->solution, user);CHKERRQ(ierr); ierr = VecDuplicate(algebra->solution, &algebra->fn);CHKERRQ(ierr); ierr = VecDuplicate(algebra->solution, &algebra->oldsolution);CHKERRQ(ierr); if(user->Explicit_RK2){ ierr = PetscPrintf(PETSC_COMM_WORLD,"Use the second order Runge Kutta method \n");CHKERRQ(ierr); }else{ ierr = PetscPrintf(PETSC_COMM_WORLD,"Use the first order forward Euler method \n");CHKERRQ(ierr); } nplot = 0; //the plot step while(user->current_time < (user->final_time - 0.05 * user->dt)){ user->current_time = user->current_time + user->dt; ierr = FormTimeStepFunction(user, algebra, algebra->solution, algebra->fn);CHKERRQ(ierr); PetscReal fnnorm; ierr = VecNorm(algebra->fn,NORM_INFINITY,&fnnorm);CHKERRQ(ierr); if(0){ PetscViewer viewer; ierr = OutputVTK(user->dm, "function.vtk", &viewer);CHKERRQ(ierr); ierr = VecView(algebra->fn, viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"Step %D at time %g with founction norm = %g \n", user->current_step, user->current_time, fnnorm);CHKERRQ(ierr); //break; } if(user->Explicit_RK2){ ierr = VecCopy(algebra->solution, algebra->oldsolution);CHKERRQ(ierr);//U^n ierr = VecAXPY(algebra->solution, user->dt, algebra->fn);CHKERRQ(ierr);//U^{(1)} ierr = FormTimeStepFunction(user, algebra, algebra->solution, algebra->fn);CHKERRQ(ierr);//f(U^{(1)}) ierr = VecAXPY(algebra->solution, 1.0, algebra->oldsolution);CHKERRQ(ierr);//U^n + U^{(1)} ierr = VecAXPY(algebra->solution, user->dt, algebra->fn);CHKERRQ(ierr);// + dt*f(U^{(1)}) ierr = VecScale(algebra->solution, 0.5);CHKERRQ(ierr); }else{ ierr = VecCopy(algebra->solution, algebra->oldsolution);CHKERRQ(ierr); ierr = VecAXPY(algebra->solution, user->dt, algebra->fn);CHKERRQ(ierr); } {// Monitor the solution and function norms PetscReal norm; PetscLogDouble space =0; PetscInt size; ierr = VecNorm(algebra->solution,NORM_INFINITY,&norm);CHKERRQ(ierr); ierr = VecGetSize(algebra->solution, &size);CHKERRQ(ierr); norm = norm/size; if (norm>1.e5) { SETERRQ2(PETSC_COMM_WORLD, PETSC_ERR_LIB, "The norm of the solution is: %f (current time: %f). The explicit method is going to DIVERGE!!!", norm, user->current_time); } if (user->current_step%10==0) { ierr = PetscPrintf(PETSC_COMM_WORLD,"Step %D at time %g with solution norm = %g and founction norm = %g \n", user->current_step, user->current_time, norm, fnnorm);CHKERRQ(ierr); } ierr = PetscMallocGetCurrentUsage(&space);CHKERRQ(ierr); // if (user->current_step%10==0) { // ierr = PetscPrintf(PETSC_COMM_WORLD,"Current space PetscMalloc()ed %g M\n", // space/(1024*1024));CHKERRQ(ierr); // } } { // Monitor the difference of two steps' solution PetscReal norm; ierr = VecAXPY(algebra->oldsolution, -1, algebra->solution);CHKERRQ(ierr); ierr = VecNorm(algebra->oldsolution,NORM_INFINITY,&norm);CHKERRQ(ierr); if (user->current_step%10==0) { ierr = PetscPrintf(PETSC_COMM_WORLD,"Step %D at time %g with ||u_k-u_{k-1}|| = %g \n", user->current_step, user->current_time, norm);CHKERRQ(ierr); } if((norm<1.e-6)||(user->current_step > user->max_time_its)) break; } // output the solution if (user->output_solution && (user->current_step%steps_output==0)){ PetscViewer viewer; // update file name for the current time step ierr = PetscSNPrintf(fileName, sizeof(fileName),"%s_%d.vtk",filename1, nplot);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"Outputing solution %s (current time %f)\n", fileName, user->current_time);CHKERRQ(ierr); ierr = OutputVTK(user->dm, fileName, &viewer);CHKERRQ(ierr); ierr = VecView(algebra->solution, viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); nplot++; } user->current_step++; } ierr = VecDestroy(&algebra->fn);CHKERRQ(ierr); }else{ PetscReal ftime; TS ts; TSConvergedReason reason; PetscInt nsteps; ierr = PetscPrintf(PETSC_COMM_WORLD,"Using the fully explicit method based on the PETSC TS routing\n");CHKERRQ(ierr); ierr = DMCreateGlobalVector(user->dm, &algebra->solution);CHKERRQ(ierr); ierr = PetscObjectSetName((PetscObject) algebra->solution, "solution");CHKERRQ(ierr); ierr = SetInitialCondition(user->dm, algebra->solution, user);CHKERRQ(ierr); ierr = TSCreate(comm, &ts);CHKERRQ(ierr); ierr = TSSetType(ts, TSEULER);CHKERRQ(ierr); ierr = TSSetDM(ts, user->dm);CHKERRQ(ierr); ierr = TSMonitorSet(ts,TSMonitorFunctionError,&user,NULL);CHKERRQ(ierr); ierr = TSSetRHSFunction(ts, NULL, MyRHSFunction, user);CHKERRQ(ierr); ierr = TSSetDuration(ts, 1000, user->final_time);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts, user->initial_time, user->dt);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); ierr = TSSolve(ts, algebra->solution);CHKERRQ(ierr); ierr = TSGetSolveTime(ts, &ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts, &nsteps);CHKERRQ(ierr); ierr = TSGetConvergedReason(ts, &reason);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"%s at time %g after %D steps\n",TSConvergedReasons[reason],ftime,nsteps);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); } if(user->benchmark_couette) { ierr = DMCreateGlobalVector(user->dm, &algebra->exactsolution);CHKERRQ(ierr); ierr = ComputeExactSolution(user->dm, user->final_time, algebra->exactsolution, user);CHKERRQ(ierr); } if (user->output_solution){ PetscViewer viewer; ierr = OutputVTK(user->dm, "solution.vtk", &viewer);CHKERRQ(ierr); ierr = VecView(algebra->solution, viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); } if(user->benchmark_couette) { PetscViewer viewer; PetscReal norm; ierr = OutputVTK(user->dm, "exact_solution.vtk", &viewer);CHKERRQ(ierr); ierr = VecView(algebra->exactsolution, viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); ierr = VecAXPY(algebra->exactsolution, -1, algebra->solution);CHKERRQ(ierr); ierr = VecNorm(algebra->exactsolution,NORM_INFINITY,&norm);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"Final time at %f, Error: ||u_k-u|| = %g \n", user->final_time, norm);CHKERRQ(ierr); ierr = OutputVTK(user->dm, "Error.vtk", &viewer);CHKERRQ(ierr); ierr = VecView(algebra->exactsolution, viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); } ierr = VecDestroy(&algebra->solution);CHKERRQ(ierr); ierr = VecDestroy(&algebra->oldsolution);CHKERRQ(ierr); ierr = DMDestroy(&user->dm);CHKERRQ(ierr); } else if (user->TimeIntegralMethod == IMPLICITMETHOD) { ierr = PetscPrintf(PETSC_COMM_WORLD,"Using the fully implicit method\n");CHKERRQ(ierr); ierr = SNESCreate(comm,&user->snes);CHKERRQ(ierr); ierr = SNESSetDM(user->snes,user->dm);CHKERRQ(ierr); ierr = DMCreateGlobalVector(user->dm, &algebra->solution);CHKERRQ(ierr); ierr = VecDuplicate(algebra->solution, &algebra->oldsolution);CHKERRQ(ierr); ierr = VecDuplicate(algebra->solution, &algebra->f);CHKERRQ(ierr); ierr = VecDuplicate(algebra->solution, &algebra->fn);CHKERRQ(ierr); ierr = VecDuplicate(algebra->solution, &algebra->oldfn);CHKERRQ(ierr); ierr = PetscObjectSetName((PetscObject) algebra->solution, "solution");CHKERRQ(ierr); ierr = SetInitialCondition(user->dm, algebra->solution, user);CHKERRQ(ierr); ierr = DMSetMatType(user->dm, MATAIJ);CHKERRQ(ierr); // ierr = DMCreateMatrix(user->dm, &algebra->A);CHKERRQ(ierr); ierr = DMCreateMatrix(user->dm, &algebra->J);CHKERRQ(ierr); if (user->JdiffP) { /*Set up the preconditioner matrix*/ ierr = DMCreateMatrix(user->dm, &algebra->P);CHKERRQ(ierr); }else{ algebra->P = algebra->J; } ierr = MatSetOption(algebra->J, MAT_NEW_NONZERO_ALLOCATION_ERR, PETSC_FALSE);CHKERRQ(ierr); /*set nonlinear function */ ierr = SNESSetFunction(user->snes, algebra->f, FormFunction, (void*)user);CHKERRQ(ierr); /* compute Jacobian */ ierr = SNESSetJacobian(user->snes, algebra->J, algebra->P, FormJacobian, (void*)user);CHKERRQ(ierr); ierr = SNESSetFromOptions(user->snes);CHKERRQ(ierr); /* do the solve */ if (user->timestep == TIMESTEP_STEADY_STATE) { ierr = SolveSteadyState(user);CHKERRQ(ierr); } else { ierr = SolveTimeDependent(user);CHKERRQ(ierr); } if (user->output_solution){ PetscViewer viewer; ierr = OutputVTK(user->dm, "solution.vtk", &viewer);CHKERRQ(ierr); ierr = VecView(algebra->solution, viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); } if(user->benchmark_couette) { PetscViewer viewer; PetscReal norm; ierr = OutputVTK(user->dm, "exact_solution.vtk", &viewer);CHKERRQ(ierr); ierr = VecView(algebra->exactsolution, viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); ierr = VecAXPY(algebra->exactsolution, -1, algebra->solution);CHKERRQ(ierr); ierr = VecNorm(algebra->exactsolution,NORM_INFINITY,&norm);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"Error: ||u_k-u|| = %g \n", norm);CHKERRQ(ierr); ierr = OutputVTK(user->dm, "Error.vtk", &viewer);CHKERRQ(ierr); ierr = VecView(algebra->exactsolution, viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); } ierr = VecDestroy(&algebra->solution);CHKERRQ(ierr); ierr = VecDestroy(&algebra->f);CHKERRQ(ierr); ierr = VecDestroy(&algebra->oldsolution);CHKERRQ(ierr); ierr = VecDestroy(&algebra->fn);CHKERRQ(ierr); ierr = VecDestroy(&algebra->oldfn);CHKERRQ(ierr); ierr = SNESDestroy(&user->snes);CHKERRQ(ierr); ierr = DMDestroy(&user->dm);CHKERRQ(ierr); } else { SETERRQ(PETSC_COMM_SELF,PETSC_ERR_USER,"WRONG option for the time integral method. Using the option '-time_integral_method 0 or 1'"); } ierr = VecDestroy(&user->cellgeom);CHKERRQ(ierr); ierr = VecDestroy(&user->facegeom);CHKERRQ(ierr); ierr = DMDestroy(&user->dmGrad);CHKERRQ(ierr); ierr = PetscFunctionListDestroy(&LimitList);CHKERRQ(ierr); ierr = PetscFree(user->model->physics);CHKERRQ(ierr); ierr = PetscFree(user->algebra);CHKERRQ(ierr); ierr = PetscFree(user->model);CHKERRQ(ierr); ierr = PetscFree(user);CHKERRQ(ierr); { PetscLogDouble space =0; ierr = PetscMallocGetCurrentUsage(&space);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"Unfreed space at the End %g M\n", space/(1024*1024));CHKERRQ(ierr); } ierr = PetscFinalize(); return(0); }
int main(int argc,char **argv) { TS ts; /* nonlinear solver */ Vec x; /* solution, residual vectors */ Mat A; /* Jacobian matrix */ PetscInt steps; PetscReal ftime = 0.5; PetscBool monitor = PETSC_FALSE; PetscScalar *x_ptr; PetscMPIInt size; struct _n_User user; PetscErrorCode ierr; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ PetscInitialize(&argc,&argv,NULL,help); ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); if (size != 1) SETERRQ(PETSC_COMM_SELF,1,"This is a uniprocessor example only!"); ierr = RegisterMyARK2();CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ user.next_output = 0.0; ierr = PetscOptionsGetBool(NULL,"-monitor",&monitor,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create necessary matrix and vectors, solve same ODE on every process - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,2,2);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatCreateVecs(A,&x,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,IFunction,&user);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,A,A,IJacobian,&user);CHKERRQ(ierr); ierr = TSSetDuration(ts,PETSC_DEFAULT,ftime);CHKERRQ(ierr); if (monitor) { ierr = TSMonitorSet(ts,Monitor,&user,NULL);CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = VecGetArray(x,&x_ptr);CHKERRQ(ierr); x_ptr[0] = -2; x_ptr[1] = -2.355301397608119909925287735864250951918; ierr = VecRestoreArray(x,&x_ptr);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.001);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,x);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&steps);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"steps %D, ftime %g\n",steps,(double)ftime);CHKERRQ(ierr); ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = PetscFinalize(); PetscFunctionReturn(0); }
int main(int argc,char **argv) { TS ts; /* time integrator */ SNES snes; /* nonlinear solver */ SNESLineSearch linesearch; /* line search */ Vec X; /* solution, residual vectors */ Mat J; /* Jacobian matrix */ PetscInt steps,maxsteps,mx; PetscErrorCode ierr; DM da; PetscReal ftime,dt; struct _User user; /* user-defined work context */ TSConvergedReason reason; PetscInitialize(&argc,&argv,(char*)0,help); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create distributed array (DMDA) to manage parallel grid and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMDACreate1d(PETSC_COMM_WORLD,DMDA_BOUNDARY_NONE,-11,2,2,NULL,&da);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Extract global vectors from DMDA; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMCreateGlobalVector(da,&X);CHKERRQ(ierr); /* Initialize user application context */ ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Advection-reaction options",""); { user.a[0] = 1; ierr = PetscOptionsReal("-a0","Advection rate 0","",user.a[0],&user.a[0],NULL);CHKERRQ(ierr); user.a[1] = 0; ierr = PetscOptionsReal("-a1","Advection rate 1","",user.a[1],&user.a[1],NULL);CHKERRQ(ierr); user.k[0] = 1e6; ierr = PetscOptionsReal("-k0","Reaction rate 0","",user.k[0],&user.k[0],NULL);CHKERRQ(ierr); user.k[1] = 2*user.k[0]; ierr = PetscOptionsReal("-k1","Reaction rate 1","",user.k[1],&user.k[1],NULL);CHKERRQ(ierr); user.s[0] = 0; ierr = PetscOptionsReal("-s0","Source 0","",user.s[0],&user.s[0],NULL);CHKERRQ(ierr); user.s[1] = 1; ierr = PetscOptionsReal("-s1","Source 1","",user.s[1],&user.s[1],NULL);CHKERRQ(ierr); } ierr = PetscOptionsEnd();CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetDM(ts,da);CHKERRQ(ierr); ierr = TSSetType(ts,TSARKIMEX);CHKERRQ(ierr); ierr = TSSetRHSFunction(ts,NULL,FormRHSFunction,&user);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,FormIFunction,&user);CHKERRQ(ierr); ierr = DMCreateMatrix(da,MATAIJ,&J);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,J,J,FormIJacobian,&user);CHKERRQ(ierr); /* A line search in the nonlinear solve can fail due to ill-conditioning unless an absolute tolerance is set. Since * this problem is linear, we deactivate the line search. For a linear problem, it is usually recommended to also use * SNESSetType(snes,SNESKSPONLY). */ ierr = TSGetSNES(ts,&snes);CHKERRQ(ierr); ierr = SNESGetLineSearch(snes,&linesearch);CHKERRQ(ierr); ierr = SNESLineSearchSetType(linesearch,SNESLINESEARCHBASIC);CHKERRQ(ierr); ftime = 1.0; maxsteps = 10000; ierr = TSSetDuration(ts,maxsteps,ftime);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = FormInitialSolution(ts,X,&user);CHKERRQ(ierr); ierr = TSSetSolution(ts,X);CHKERRQ(ierr); ierr = VecGetSize(X,&mx);CHKERRQ(ierr); dt = .1 * PetscMax(user.a[0],user.a[1]) / mx; /* Advective CFL, I don't know why it needs so much safety factor. */ ierr = TSSetInitialTimeStep(ts,0.0,dt);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,X);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&steps);CHKERRQ(ierr); ierr = TSGetConvergedReason(ts,&reason);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"%s at time %G after %D steps\n",TSConvergedReasons[reason],ftime,steps);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&J);CHKERRQ(ierr); ierr = VecDestroy(&X);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); ierr = PetscFinalize(); return 0; }
int main(int argc,char **argv) { TS ts; /* nonlinear solver */ Vec u,r; /* solution, residual vectors */ Mat J,Jmf = PETSC_NULL; /* Jacobian matrices */ PetscInt maxsteps = 1000; /* iterations for convergence */ PetscErrorCode ierr; DM da; PetscReal dt; AppCtx user; /* user-defined work context */ SNES snes; PetscInt Jtype; /* Jacobian type 0: user provide Jacobian; 1: slow finite difference; 2: fd with coloring; */ PetscInitialize(&argc,&argv,(char *)0,help); /* Initialize user application context */ user.da = PETSC_NULL; user.nstencilpts = 5; user.c = -30.0; user.boundary = 0; /* 0: Drichlet BC; 1: Neumann BC */ user.viewJacobian = PETSC_FALSE; ierr = PetscOptionsGetInt(PETSC_NULL,"-nstencilpts",&user.nstencilpts,PETSC_NULL);CHKERRQ(ierr); ierr = PetscOptionsGetInt(PETSC_NULL,"-boundary",&user.boundary,PETSC_NULL);CHKERRQ(ierr); ierr = PetscOptionsHasName(PETSC_NULL,"-viewJacobian",&user.viewJacobian);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create distributed array (DMDA) to manage parallel grid and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ if (user.nstencilpts == 5){ ierr = DMDACreate2d(PETSC_COMM_WORLD, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE,DMDA_STENCIL_STAR,-11,-11,PETSC_DECIDE,PETSC_DECIDE,1,1,PETSC_NULL,PETSC_NULL,&da);CHKERRQ(ierr); } else if (user.nstencilpts == 9){ ierr = DMDACreate2d(PETSC_COMM_WORLD, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE,DMDA_STENCIL_BOX,-11,-11,PETSC_DECIDE,PETSC_DECIDE,1,1,PETSC_NULL,PETSC_NULL,&da);CHKERRQ(ierr); } else { SETERRQ1(PETSC_COMM_WORLD,PETSC_ERR_SUP,"nstencilpts %d is not supported",user.nstencilpts); } user.da = da; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Extract global vectors from DMDA; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMCreateGlobalVector(da,&u);CHKERRQ(ierr); ierr = VecDuplicate(u,&r);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr); ierr = TSSetDM(ts,da);CHKERRQ(ierr); ierr = TSSetIFunction(ts,r,FormIFunction,&user);CHKERRQ(ierr); ierr = TSSetDuration(ts,maxsteps,1.0);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = FormInitialSolution(u,&user);CHKERRQ(ierr); ierr = TSSetSolution(ts,u);CHKERRQ(ierr); dt = .01; ierr = TSSetInitialTimeStep(ts,0.0,dt);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set Jacobian evaluation routine - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMCreateMatrix(da,MATAIJ,&J);CHKERRQ(ierr); Jtype = 0; ierr = PetscOptionsGetInt(PETSC_NULL, "-Jtype",&Jtype,PETSC_NULL);CHKERRQ(ierr); if (Jtype == 0){ /* use user provided Jacobian evaluation routine */ if (user.nstencilpts != 5) SETERRQ1(PETSC_COMM_WORLD,PETSC_ERR_SUP,"user Jacobian routine FormIJacobian() does not support nstencilpts=%D",user.nstencilpts); ierr = TSSetIJacobian(ts,J,J,FormIJacobian,&user);CHKERRQ(ierr); } else { /* use finite difference Jacobian J as preconditioner and '-snes_mf_operator' for Mat*vec */ ierr = TSGetSNES(ts,&snes);CHKERRQ(ierr); ierr = MatCreateSNESMF(snes,&Jmf);CHKERRQ(ierr); if (Jtype == 1){ /* slow finite difference J; */ ierr = SNESSetJacobian(snes,Jmf,J,SNESDefaultComputeJacobian,PETSC_NULL);CHKERRQ(ierr); } else if (Jtype == 2){ /* Use coloring to compute finite difference J efficiently */ ierr = SNESSetJacobian(snes,Jmf,J,SNESDefaultComputeJacobianColor,0);CHKERRQ(ierr); } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Jtype is not supported"); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Sets various TS parameters from user options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,u);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&J);CHKERRQ(ierr); ierr = MatDestroy(&Jmf);CHKERRQ(ierr); ierr = VecDestroy(&u);CHKERRQ(ierr); ierr = VecDestroy(&r);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); ierr = PetscFinalize(); PetscFunctionReturn(0); }
int main(int argc,char **argv) { TS ts; /* ODE integrator */ Vec U; /* solution will be stored here */ Mat A; /* Jacobian matrix */ PetscErrorCode ierr; PetscMPIInt size; PetscInt n = 3; AppCtx ctx; PetscScalar *u; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscInitialize(&argc,&argv,(char*)0,help);CHKERRQ(ierr); ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs"); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create necessary matrix and vectors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatGetVecs(A,&U,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Reaction options","");CHKERRQ(ierr); { ctx.k = .9; ierr = PetscOptionsScalar("-k","Reaction coefficient","",ctx.k,&ctx.k,NULL);CHKERRQ(ierr); ierr = VecDuplicate(U,&ctx.initialsolution);CHKERRQ(ierr); ierr = VecGetArray(ctx.initialsolution,&u);CHKERRQ(ierr); u[0] = 1; u[1] = .7; u[2] = 0; ierr = VecRestoreArray(ctx.initialsolution,&u);CHKERRQ(ierr); ierr = PetscOptionsVec("-initial","Initial values","",ctx.initialsolution,NULL);CHKERRQ(ierr); } ierr = PetscOptionsEnd();CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,(TSIFunction) IFunction,&ctx);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,A,A,(TSIJacobian)IJacobian,&ctx);CHKERRQ(ierr); ierr = TSSetSolutionFunction(ts,(TSSolutionFunction)Solution,&ctx);CHKERRQ(ierr); { DM dm; void *ptr; ierr = TSGetDM(ts,&dm);CHKERRQ(ierr); ierr = PetscDLSym(NULL,"IFunctionView",&ptr);CHKERRQ(ierr); ierr = PetscDLSym(NULL,"IFunctionLoad",&ptr);CHKERRQ(ierr); ierr = DMTSSetIFunctionSerialize(dm,(PetscErrorCode (*)(void*,PetscViewer))IFunctionView,(PetscErrorCode (*)(void**,PetscViewer))IFunctionLoad);CHKERRQ(ierr); ierr = DMTSSetIJacobianSerialize(dm,(PetscErrorCode (*)(void*,PetscViewer))IFunctionView,(PetscErrorCode (*)(void**,PetscViewer))IFunctionLoad);CHKERRQ(ierr); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = Solution(ts,0,U,&ctx);CHKERRQ(ierr); ierr = TSSetSolution(ts,U);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set solver options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetDuration(ts,1000,20.0);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.001);CHKERRQ(ierr); ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,U);CHKERRQ(ierr); ierr = TSView(ts,PETSC_VIEWER_BINARY_WORLD);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = VecDestroy(&ctx.initialsolution);CHKERRQ(ierr); ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = VecDestroy(&U);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = PetscFinalize(); return(0); }
/* FormFunctionGradient - Evaluates the function and corresponding gradient. Input Parameters: tao - the Tao context X - the input vector ptr - optional user-defined context, as set by TaoSetObjectiveAndGradientRoutine() Output Parameters: f - the newly evaluated function G - the newly evaluated gradient */ PetscErrorCode FormFunctionGradient(Tao tao,Vec IC,PetscReal *f,Vec G,void *ctx) { User user = (User)ctx; TS ts; PetscScalar *x_ptr,*y_ptr; PetscErrorCode ierr; PetscScalar *ic_ptr; ierr = VecCopy(IC,user->x);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetType(ts,TSRK);CHKERRQ(ierr); ierr = TSSetRHSFunction(ts,NULL,RHSFunction,user);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set time - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetTime(ts,0.0);CHKERRQ(ierr); ierr = TSSetInitialTimeStep(ts,0.0,.001);CHKERRQ(ierr); ierr = TSSetDuration(ts,2000,0.5);CHKERRQ(ierr); ierr = TSSetTolerances(ts,1e-7,NULL,1e-7,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Save trajectory of solution so that TSAdjointSolve() may be used - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); ierr = TSSolve(ts,user->x);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&user->ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&user->steps);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"mu %.6f, steps %D, ftime %g\n",(double)user->mu,user->steps,(double)user->ftime);CHKERRQ(ierr); ierr = VecGetArray(IC,&ic_ptr);CHKERRQ(ierr); ierr = VecGetArray(user->x,&x_ptr);CHKERRQ(ierr); *f = (x_ptr[0]-user->x_ob[0])*(x_ptr[0]-user->x_ob[0])+(x_ptr[1]-user->x_ob[1])*(x_ptr[1]-user->x_ob[1]); ierr = PetscPrintf(PETSC_COMM_WORLD,"Observed value y_ob=[%f; %f], ODE solution y=[%f;%f], Cost function f=%f\n",(double)user->x_ob[0],(double)user->x_ob[1],(double)x_ptr[0],(double)x_ptr[1],(double)(*f));CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Adjoint model starts here - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Redet initial conditions for the adjoint integration */ ierr = VecGetArray(user->lambda[0],&y_ptr);CHKERRQ(ierr); y_ptr[0] = 2.*(x_ptr[0]-user->x_ob[0]); y_ptr[1] = 2.*(x_ptr[1]-user->x_ob[1]); ierr = VecRestoreArray(user->lambda[0],&y_ptr);CHKERRQ(ierr); ierr = TSSetCostGradients(ts,1,user->lambda,NULL);CHKERRQ(ierr); /* Set RHS Jacobian for the adjoint integration */ ierr = TSSetRHSJacobian(ts,user->A,user->A,RHSJacobian,user);CHKERRQ(ierr); ierr = TSAdjointSolve(ts);CHKERRQ(ierr); ierr = VecCopy(user->lambda[0],G); ierr = TSDestroy(&ts);CHKERRQ(ierr); PetscFunctionReturn(0); }