Example #1
0
/**
  * @brief  System Clock Configuration
  *         The system Clock is configured as follow : 
  *            System Clock source            = PLL (HSE)
  *            SYSCLK(Hz)                     = 180000000
  *            HCLK(Hz)                       = 180000000
  *            AHB Prescaler                  = 1
  *            APB1 Prescaler                 = 4
  *            APB2 Prescaler                 = 2
  *            HSE Frequency(Hz)              = 25000000
  *            PLL_M                          = 25
  *            PLL_N                          = 360
  *            PLL_P                          = 2
  *            PLL_Q                          = 7
  *            VDD(V)                         = 3.3
  *            Main regulator output voltage  = Scale1 mode
  *            Flash Latency(WS)              = 5
  * @param  None
  * @retval None
  */
static void SystemClock_Config(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;

  /* Enable Power Control clock */
  __HAL_RCC_PWR_CLK_ENABLE();

  /* The voltage scaling allows optimizing the power consumption when the device is 
     clocked below the maximum system frequency, to update the voltage scaling value 
     regarding system frequency refer to product datasheet.  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /* Enable HSE Oscillator and activate PLL with HSE as source */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 360;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  HAL_RCC_OscConfig(&RCC_OscInitStruct);
  
  /* Activate the Over-Drive mode */
  HAL_PWREx_EnableOverDrive();
  
  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 
     clocks dividers */
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;  
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;  
  HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
}
/**
  * @brief  Initializes the NOR MSP.
  * @retval None
  */
static void NOR_MspInit(void)
{
  GPIO_InitTypeDef gpioinitstruct = {0};
  
  /* Enable FMC clock */
  __HAL_RCC_FMC_CLK_ENABLE();
  
  /* Enable GPIOs clock */
  __HAL_RCC_GPIOD_CLK_ENABLE();
  __HAL_RCC_GPIOE_CLK_ENABLE();
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOG_CLK_ENABLE();
  __HAL_RCC_PWR_CLK_ENABLE();
  HAL_PWREx_EnableVddIO2();
  
  /* Common GPIO configuration */
  gpioinitstruct.Mode      = GPIO_MODE_AF_PP;
  gpioinitstruct.Pull      = GPIO_PULLUP;
  gpioinitstruct.Speed     = GPIO_SPEED_FREQ_VERY_HIGH;
  gpioinitstruct.Alternate = GPIO_AF12_FMC;
  
  /*## Data Bus #######*/
  /* GPIOD configuration */
  gpioinitstruct.Pin   = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_8 | GPIO_PIN_9 |
                              GPIO_PIN_10 | GPIO_PIN_14 | GPIO_PIN_15;
   
  HAL_GPIO_Init(GPIOD, &gpioinitstruct);

  /* GPIOE configuration */  
  gpioinitstruct.Pin   = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 |
                              GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 |
                              GPIO_PIN_14 | GPIO_PIN_15;
  HAL_GPIO_Init(GPIOE, &gpioinitstruct);
  
  /*## Address Bus #######*/
  /* GPIOF configuration */  
  gpioinitstruct.Pin   = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 |
                              GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_12 | GPIO_PIN_13 |
                              GPIO_PIN_14 | GPIO_PIN_15;
  HAL_GPIO_Init(GPIOF, &gpioinitstruct);
  
  /* GPIOG configuration */  
  gpioinitstruct.Pin   = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 |
                              GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5;
  HAL_GPIO_Init(GPIOG, &gpioinitstruct);
  
  /* GPIOD configuration */
  gpioinitstruct.Pin   = GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13;
  HAL_GPIO_Init(GPIOD, &gpioinitstruct);

  /* GPIOE configuration */  
  gpioinitstruct.Pin   = GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6;
  HAL_GPIO_Init(GPIOE, &gpioinitstruct);

  /*## NOE and NWE configuration ######*/
  gpioinitstruct.Pin = GPIO_PIN_4 | GPIO_PIN_5;
  HAL_GPIO_Init(GPIOD, &gpioinitstruct);

  /*## NE2/NCE3 configuration ######*/
  gpioinitstruct.Pin = GPIO_PIN_9;
  HAL_GPIO_Init(GPIOG, &gpioinitstruct);

#if defined(USE_STM32L476G_EVAL_REVB)
  /*## LCD NE3 configuration #######*/
  gpioinitstruct.Pin = GPIO_PIN_10;
  HAL_GPIO_Init(GPIOG, &gpioinitstruct);
#endif /* USE_STM32L476G_EVAL_REVB */
  
  /*## Configure PD6 for NOR memory Ready/Busy signal ######*/
  gpioinitstruct.Pin       = GPIO_PIN_6;
  HAL_GPIO_Init(GPIOD, &gpioinitstruct);
}
Example #3
0
/**
  * @brief  System Power Configuration
  *         The system Power is configured as follow : 
  *            + VREFINT OFF, with fast wakeup enabled
  *            + No IWDG
  *            + Wakeup using PWR_WAKEUP_PIN1
  * @param None
  * @retval None
  */
static void SystemPower_Config(void)
{
  /* Enable Power Control clock */
  __HAL_RCC_PWR_CLK_ENABLE();
}
uint32_t TM_RTC_Init(TM_RTC_ClockSource_t source) {
	uint32_t status;
	TM_RTC_t datatime;
	
	/* Set instance */
	hRTC.Instance = RTC;
	hRTC.Init.AsynchPrediv = RTC_ASYNC_PREDIV;
	hRTC.Init.SynchPrediv = RTC_SYNC_PREDIV;
	hRTC.Init.HourFormat = RTC_HOURFORMAT_24;
	hRTC.Init.OutPut = RTC_OUTPUT_DISABLE;
	hRTC.Init.OutPutType = RTC_OUTPUT_TYPE_PUSHPULL;
	hRTC.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
	
	/* Enable PWR peripheral clock */
	__HAL_RCC_PWR_CLK_ENABLE();

	/* Allow access to BKP Domain */
	HAL_PWR_EnableBkUpAccess();
	
	/* Get RTC status */
	status = HAL_RTCEx_BKUPRead(&hRTC, RTC_STATUS_REG);
	
	/* Check if RTC already initialized */
	if (status == RTC_STATUS_TIME_OK) {
		/* Start internal clock if we choose internal clock */
		if (source == TM_RTC_ClockSource_Internal) {
			TM_RTC_Config(TM_RTC_ClockSource_Internal);
		}
		
		/* Wait for RTC APB registers synchronisation (needed after start-up from Reset) */
		HAL_RTC_WaitForSynchro(&hRTC);
		
		/* Get date and time */
		TM_RTC_GetDateTime(&datatime, TM_RTC_Format_BIN);
		
		/* Clear reset flags */
		__HAL_RCC_CLEAR_RESET_FLAGS();
		
		/* Return OK */
		return 1;
	} else {
		/* Start RTC clock */
		TM_RTC_Config(source);
		
		/* Set date */
		RTC_DateStruct.Year = 0;
		RTC_DateStruct.Month = 1;
		RTC_DateStruct.Date = 1;
		RTC_DateStruct.WeekDay = RTC_WEEKDAY_TUESDAY;

		/* Set date */
		HAL_RTC_SetDate(&hRTC, &RTC_DateStruct, RTC_FORMAT_BIN);

		/* Set time */
		RTC_TimeStruct.Hours = 0x00;
		RTC_TimeStruct.Minutes = 0x00;
		RTC_TimeStruct.Seconds = 0x00;
		RTC_TimeStruct.TimeFormat = RTC_HOURFORMAT_24;
		RTC_TimeStruct.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
		RTC_TimeStruct.StoreOperation = RTC_STOREOPERATION_RESET;

		/* Set time */
		HAL_RTC_SetTime(&hRTC, &RTC_TimeStruct, RTC_FORMAT_BCD);
		
		/* Init RTC */
		HAL_RTC_Init(&hRTC);

		/* Save data to backup regiser */
		HAL_RTCEx_BKUPWrite(&hRTC, RTC_STATUS_REG, RTC_STATUS_TIME_OK); 
		
		/* RTC was initialized now */
		return 0;
	}
}
Example #5
0
/**
  * @brief  Configure the system for power optimization
  *
  * @note	This API configures the system to be ready for low power mode
  * 		- Unused GPIO in Analog mode
  * 		- Fast Wakeup
  * 		- Verefint disabled in low power mode
  * 		- FLASH in low power mode
  *
  * @param  None
  * @retval None
  */
void SystemPower_Config(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;
  
  /**
  * Disable FLASH in SLEEP Mode
  */
  __HAL_FLASH_SLEEP_POWERDOWN_ENABLE();

  //SO: TO BE VERIFIED FOR L4
  /* Enable Power Clock */
  __HAL_RCC_PWR_CLK_ENABLE();
  
  /**
  * Enable Ultra low power and Fast wakeup as vrefint is not used in that project
  */
  //SO: TO BE VERIFIED FOR L4 (these APIs are not available for L4)
  //HAL_PWREx_EnableUltraLowPower();
  //HAL_PWREx_EnableFastWakeUp();

  /*
  * Select HSI as system clock source after Wake Up from Stop mode
  */
    //__HAL_RCC_WAKEUPSTOP_CLK_CONFIG(RCC_StopWakeUpClock_MSI); //SO: TO BE VERIFIED FOR L4 (why not this?)
  __HAL_RCC_WAKEUPSTOP_CLK_CONFIG(RCC_StopWakeUpClock_HSI);
  
  /*
  * Disable all GPIOs clock in SLEEP mode
  */
#if (JTAG_SUPPORTED == 0)
  __GPIOA_CLK_SLEEP_DISABLE();
#endif
  __GPIOB_CLK_SLEEP_DISABLE();
  __GPIOC_CLK_SLEEP_DISABLE();
  __GPIOD_CLK_SLEEP_DISABLE();
  __GPIOE_CLK_SLEEP_DISABLE(); //SO: TO BE VERIFIED FOR L4
  __GPIOF_CLK_SLEEP_DISABLE(); //SO: TO BE VERIFIED FOR L4
  __GPIOG_CLK_SLEEP_DISABLE(); //SO: TO BE VERIFIED FOR L4
  __GPIOH_CLK_SLEEP_DISABLE();
  
  /*
  * Enable GPIOs clock
  */
  __GPIOA_CLK_ENABLE();
  __GPIOB_CLK_ENABLE();
  __GPIOC_CLK_ENABLE();
  __GPIOD_CLK_ENABLE();
  __GPIOE_CLK_ENABLE(); //SO: TO BE VERIFIED FOR L4
  __GPIOF_CLK_ENABLE(); //SO: TO BE VERIFIED FOR L4
  __GPIOG_CLK_ENABLE(); //SO: TO BE VERIFIED FOR L4
  __GPIOH_CLK_ENABLE();

  /*
  * Configure all GPIO port pins in Analog mode with no pull
  */
  GPIO_InitStructure.Mode = GPIO_MODE_ANALOG;
  GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; //SO: TO BE VERIFIED FOR L4
  GPIO_InitStructure.Pull = GPIO_NOPULL;
  GPIO_InitStructure.Pin = GPIO_PIN_All;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
  HAL_GPIO_Init(GPIOC, &GPIO_InitStructure);
  HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
  HAL_GPIO_Init(GPIOE, &GPIO_InitStructure); //SO: TO BE VERIFIED FOR L4
  HAL_GPIO_Init(GPIOF, &GPIO_InitStructure); //SO: TO BE VERIFIED FOR L4
  HAL_GPIO_Init(GPIOG, &GPIO_InitStructure); //SO: TO BE VERIFIED FOR L4
  HAL_GPIO_Init(GPIOH, &GPIO_InitStructure);
  
#if (JTAG_SUPPORTED == 1)
  GPIO_InitStructure.Pin = (GPIO_PIN_All ^ (GPIO_PIN_13 | GPIO_PIN_14));
#endif
  HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); 
  
  /*
  * Disable GPIOs clock
  */
  __GPIOA_CLK_DISABLE();
  __GPIOB_CLK_DISABLE();
  __GPIOC_CLK_DISABLE();
  __GPIOD_CLK_DISABLE();
  __GPIOE_CLK_DISABLE(); //SO: TO BE VERIFIED FOR L4
  __GPIOF_CLK_DISABLE(); //SO: TO BE VERIFIED FOR L4
  __GPIOG_CLK_DISABLE(); //SO: TO BE VERIFIED FOR L4
  __GPIOH_CLK_DISABLE();
  
  return;
}
Example #6
0
/**
  * @brief  System Clock Configuration
  *         The system Clock is configured as follow : 
  *            System Clock source            = PLL (HSE_CRYSTAL or HSE_BYPASS) 
  *            SYSCLK(Hz)                     = 180000000
  *            HCLK(Hz)                       = 180000000
  *            AHB Prescaler                  = 1
  *            APB1 Prescaler                 = 4
  *            APB2 Prescaler                 = 2
  *            HSE Frequency(Hz)              = 8000000
  *            PLL_M                          = 8
  *            PLL_N                          = 360
  *            PLL_P                          = 2
  *            PLL_Q                          = 7
  *            VDD(V)                         = 3.3
  *            Main regulator output voltage  = Scale1 mode
  *            Flash Latency(WS)              = 5
  * @param  None
  * @retval None
  */
void SystemClockHSE_Config(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;
  HAL_StatusTypeDef ret = HAL_OK;
    
  /* Enable Power Control clock */
  __HAL_RCC_PWR_CLK_ENABLE();
  
  /* The voltage scaling allows optimizing the power consumption when the device is 
     clocked below the maximum system frequency, to update the voltage scaling value 
     regarding system frequency refer to product datasheet.  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /* -1- Select HSI as system clock source to allow modification of the PLL configuration */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
  if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
  
  /* -2- Enable HSE Oscillator, select it as PLL source and finally activate the PLL */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  
#ifdef HSE_CRYSTAL  
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
#elif defined (HSE_BYPASS)
  RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
#endif /* HSE_CRYSTAL */
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 360;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  RCC_OscInitStruct.PLL.PLLR = 6;
  if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
  
   /* Activate the OverDrive to reach the 180 MHz Frequency */  
  ret = HAL_PWREx_EnableOverDrive();
  if(ret != HAL_OK)
  {
    while(1) { ; }
  }
  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 
     clocks dividers */
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;  
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;  
  if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
  
  /* -4- Optional: Disable HSI Oscillator (if the HSI is no more needed by the application) */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_OFF;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
}
Example #7
0
/**
  * @brief  System Clock Configuration
  *         The system Clock is configured as follow :
  *            System Clock source            = PLL (HSE)
  *            SYSCLK(Hz)                     = 180000000
  *            HCLK(Hz)                       = 180000000
  *            AHB Prescaler                  = 1
  *            APB1 Prescaler                 = 4
  *            APB2 Prescaler                 = 2
  *            HSE Frequency(Hz)              = 8000000
  *            PLL_M                          = 8
  *            PLL_N                          = 360
  *            PLL_P                          = 2
  *            PLL_Q                          = 7
  *            PLL_R                          = 2
  *            VDD(V)                         = 3.3
  *            Main regulator output voltage  = Scale1 mode
  *            Flash Latency(WS)              = 5
  *         The USB clock configuration from Main PLL:
  *            PLLQ                           = 7
  * @param  None
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  RCC_OscInitTypeDef RCC_OscInitStruct;
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct;
  HAL_StatusTypeDef ret = HAL_OK;

  /* Enable Power Control clock */
  __HAL_RCC_PWR_CLK_ENABLE();

  /* The voltage scaling allows optimizing the power consumption when the device is
     clocked below the maximum system frequency, to update the voltage scaling value
     regarding system frequency refer to product datasheet.  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /* Enable HSE Oscillator and activate PLL with HSE as source */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 360;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  RCC_OscInitStruct.PLL.PLLR = 2;
  ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);

  if(ret != HAL_OK)
  {
    Error_Handler();
  }
  /* activate the OverDrive to reach the 180 Mhz Frequency */
  ret = HAL_PWREx_EnableOverDrive();
  if(ret != HAL_OK)
  {
    Error_Handler();
  }

  /* Select PLLSAI output as USB clock source */
  PeriphClkInitStruct.PLLSAI.PLLSAIM = 8;
  PeriphClkInitStruct.PLLSAI.PLLSAIN = 384;
  PeriphClkInitStruct.PLLSAI.PLLSAIP = RCC_PLLSAIP_DIV8;
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_CK48;
  PeriphClkInitStruct.Clk48ClockSelection = RCC_CK48CLKSOURCE_PLLSAIP;
  ret = HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);
  if(ret != HAL_OK)
  {
    Error_Handler();
  }

  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
     clocks dividers */
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);
  if(ret != HAL_OK)
  {
    Error_Handler();
  }
}
/**
  * @brief RTC MSP Initialization 
  *        This function configures the hardware resources used in this example
  * @param hrtc: RTC handle pointer
  * 
  * @note  Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to select 
  *        the RTC clock source; in this case the Backup domain will be reset in  
  *        order to modify the RTC Clock source, as consequence RTC registers (including 
  *        the backup registers) and RCC_BDCR register are set to their reset values.
  *             
  * @retval None
  */
void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
{
  RCC_OscInitTypeDef        RCC_OscInitStruct;
  RCC_PeriphCLKInitTypeDef  PeriphClkInitStruct;
  
  /*##-1- Enables the PWR Clock and Enables access to the backup domain ###################################*/
  /* To change the source clock of the RTC feature (LSE, LSI), You have to:
     - Enable the power clock using __HAL_RCC_PWR_CLK_ENABLE()
     - Enable write access using HAL_PWR_EnableBkUpAccess() function before to 
       configure the RTC clock source (to be done once after reset).
     - Reset the Back up Domain using __HAL_RCC_BACKUPRESET_FORCE() and 
       __HAL_RCC_BACKUPRESET_RELEASE().
     - Configure the needed RTC clock source */
  __HAL_RCC_PWR_CLK_ENABLE();
  HAL_PWR_EnableBkUpAccess();

  /*##-2- Configure LSE/LSI as RTC clock source ###############################*/
#ifdef RTC_CLOCK_SOURCE_LSE
  
  RCC_OscInitStruct.OscillatorType =  RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.LSEState = RCC_LSE_ON;
  RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
  if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  { 
    Error_Handler();
  }
  
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
  PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;
  if(HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  { 
    Error_Handler();
  }
#elif defined (RTC_CLOCK_SOURCE_LSI)  
  RCC_OscInitStruct.OscillatorType =  RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
  if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  { 
    Error_Handler();
  }

  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC;
  PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
  if(HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  { 
    Error_Handler();
  }
#else
#error Please select the RTC Clock source inside the main.h file
#endif /*RTC_CLOCK_SOURCE_LSE*/
  
  /*##-3- Enable RTC peripheral Clocks #######################################*/ 
  /* Enable RTC Clock */ 
  __HAL_RCC_RTC_ENABLE(); 
  
  /*##-4- Configure the NVIC for RTC Tamper ###################################*/
  HAL_NVIC_SetPriority(TAMP_STAMP_IRQn, 0x0F, 0);
  HAL_NVIC_EnableIRQ(TAMP_STAMP_IRQn);
}
Example #9
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F3xx HAL library initialization:
       - Configure the Flash prefetch
       - Systick timer is configured by default as source of time base, but user 
         can eventually implement his proper time base source (a general purpose 
         timer for example or other time source), keeping in mind that Time base 
         duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
         handled in milliseconds basis.
       - Set NVIC Group Priority to 4
       - Low Level Initialization
     */
  HAL_Init();

  /* Configure LED3, LED4 */
  BSP_LED_Init(LED3);
  BSP_LED_Init(LED4);

  /* Configure the system clock to 72 MHz */
  SystemClock_Config();

  /* Enable Power Clock */
  __HAL_RCC_PWR_CLK_ENABLE();
  
  /* Check if the system was resumed from StandBy mode */
  if (__HAL_PWR_GET_FLAG(PWR_FLAG_SB) != RESET)
  {
    /* Wait that user release the User push-button */
    BSP_PB_Init(BUTTON_USER, BUTTON_MODE_GPIO);
    while(BSP_PB_GetState(BUTTON_USER) == SET){}
  }

  /* Initialize the User push-button to generate external interrupts */
  BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI);

  /* RTC configuration */
  RTC_Config();

  /* Turn on LED3 */
  BSP_LED_On(LED3);

  /*The Following Wakeup sequence is highly recommended prior to each Standby mode entry
    mainly  when using more than one wakeup source this is to not miss any wakeup event.
     - Disable all used wakeup sources,
     - Clear all related wakeup flags, 
     - Re-enable all used wakeup sources,
     - Enter the Standby mode.
  */
  /*Disable all used wakeup sources: Pin1(PA.0)*/
  HAL_PWR_DisableWakeUpPin(PWR_WAKEUP_PIN1);
  
  /*Clear all related wakeup flags*/
  __HAL_PWR_CLEAR_FLAG(PWR_FLAG_WU);
  
  /*Re-enable all used wakeup sources: Pin1(PA.0)*/
  HAL_PWR_EnableWakeUpPin(PWR_WAKEUP_PIN1);

  while (1)
  {
  }
}
Example #10
0
// Enable GPIO clock and return GPIO base address
GPIO_TypeDef *Set_GPIO_Clock(uint32_t port_idx) {
    uint32_t gpio_add = 0;
    switch (port_idx) {
        case PortA:
            gpio_add = GPIOA_BASE;
            __GPIOA_CLK_ENABLE();
            break;
        case PortB:
            gpio_add = GPIOB_BASE;
            __GPIOB_CLK_ENABLE();
            break;
#if defined(GPIOC_BASE)
        case PortC:
            gpio_add = GPIOC_BASE;
            __GPIOC_CLK_ENABLE();
            break;
#endif
#if defined GPIOD_BASE
        case PortD:
            gpio_add = GPIOD_BASE;
            __GPIOD_CLK_ENABLE();
            break;
#endif
#if defined GPIOE_BASE
        case PortE:
            gpio_add = GPIOE_BASE;
            __GPIOE_CLK_ENABLE();
            break;
#endif
#if defined GPIOF_BASE
        case PortF:
            gpio_add = GPIOF_BASE;
            __GPIOF_CLK_ENABLE();
            break;
#endif
#if defined GPIOG_BASE
        case PortG:
#if defined TARGET_STM32L4
            __HAL_RCC_PWR_CLK_ENABLE();
            HAL_PWREx_EnableVddIO2();
#endif
            gpio_add = GPIOG_BASE;
            __GPIOG_CLK_ENABLE();
            break;
#endif
#if defined GPIOH_BASE
        case PortH:
            gpio_add = GPIOH_BASE;
            __GPIOH_CLK_ENABLE();
            break;
#endif
#if defined GPIOI_BASE
        case PortI:
            gpio_add = GPIOI_BASE;
            __GPIOI_CLK_ENABLE();
            break;
#endif
#if defined GPIOJ_BASE
        case PortJ:
            gpio_add = GPIOJ_BASE;
            __GPIOJ_CLK_ENABLE();
            break;
#endif
#if defined GPIOK_BASE
        case PortK:
            gpio_add = GPIOK_BASE;
            __GPIOK_CLK_ENABLE();
            break;
#endif
        default:
            error("Pinmap error: wrong port number.");
            break;
    }
    return (GPIO_TypeDef *) gpio_add;
}
Example #11
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* Enable the CPU Cache */
  CPU_CACHE_Enable();
  
  /* STM32F7xx HAL library initialization:
       - Configure the Flash ART accelerator on ITCM interface
       - Systick timer is configured by default as source of time base, but user 
         can eventually implement his proper time base source (a general purpose 
         timer for example or other time source), keeping in mind that Time base 
         duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
         handled in milliseconds basis.
       - Set NVIC Group Priority to 4
       - Low Level Initialization
     */
  HAL_Init();

  /* Configure the system clock to 216 MHz */
  SystemClock_Config();

  /* Since MFX is used, LED init is done after clock config */
  /* Configure LED1, LED2, LED3 and LED4 */
  BSP_LED_Init(LED1);
  BSP_LED_Init(LED2);
  BSP_LED_Init(LED3);
  BSP_LED_Init(LED4);

  /* Tamper push-button (EXTI15_10) will be used to wakeup the system from STOP mode */
  BSP_PB_Init(BUTTON_TAMPER, BUTTON_MODE_EXTI);

  /*## Configure the RTC peripheral #######################################*/
  /* Enable Power Clock */
  __HAL_RCC_PWR_CLK_ENABLE();

  /* Allow Access to RTC Backup domaine */
  HAL_PWR_EnableBkUpAccess();

  RTCHandle.Instance = RTC;
  /* Configure RTC prescaler and RTC data registers as follows:
  - Hour Format = Format 24
  - Asynch Prediv = Value according to source clock
  - Synch Prediv = Value according to source clock
  - OutPut = Output Disable
  - OutPutPolarity = High Polarity
  - OutPutType = Open Drain */
  RTCHandle.Init.HourFormat = RTC_HOURFORMAT_24;
  RTCHandle.Init.AsynchPrediv = RTC_ASYNCH_PREDIV;
  RTCHandle.Init.SynchPrediv = RTC_SYNCH_PREDIV;
  RTCHandle.Init.OutPut = RTC_OUTPUT_DISABLE;
  RTCHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
  RTCHandle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
  if (HAL_RTC_Init(&RTCHandle) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }

  while (1)
  {
    /* Turn On LED4 */
    BSP_LED_On(LED4);

    /* Insert 5 second delay */
    HAL_Delay(5000);

    /*## Configure the Wake up timer ###########################################*/
    /*  RTC Wakeup Interrupt Generation:
        Wakeup Time Base = (RTC_WAKEUPCLOCK_RTCCLK_DIV /(LSI))
        Wakeup Time = Wakeup Time Base * WakeUpCounter 
                    = (RTC_WAKEUPCLOCK_RTCCLK_DIV /(LSI)) * WakeUpCounter
        ==> WakeUpCounter = Wakeup Time / Wakeup Time Base
  
        To configure the wake up timer to 4s the WakeUpCounter is set to 0x242B:
          RTC_WAKEUPCLOCK_RTCCLK_DIV = RTCCLK_Div16 = 16 
          Wakeup Time Base = 16 /(~37KHz) = ~0,432 ms
          Wakeup Time = ~4s = 0,432ms  * WakeUpCounter
          ==> WakeUpCounter = ~4s/0,432ms = 9259 = 0x242B */
    HAL_RTCEx_SetWakeUpTimer_IT(&RTCHandle, 0x242B, RTC_WAKEUPCLOCK_RTCCLK_DIV16);

    /* Turn OFF LED's */
    BSP_LED_Off(LED1);
    BSP_LED_Off(LED2);
    BSP_LED_Off(LED4);

#ifdef UNDERDRIVE_MODE
    __HAL_PWR_UNDERDRIVE_ENABLE();
#endif /* UNDERDRIVE_MODE */

    /* Enter Stop Mode */
    HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);

    /* Disable Wakeup Counter */
    HAL_RTCEx_DeactivateWakeUpTimer(&RTCHandle);

    /* Configures system clock after wake-up from STOP: enable HSE, PLL and select
    PLL as system clock source (HSE and PLL are disabled in STOP mode) */
    SYSCLKConfig_STOP();
  }
}
Example #12
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{

  /* STM32F4xx HAL library initialization:
  - Configure the Flash prefetch and Buffer caches
  - Systick timer is configured by default as source of time base, but user
  can eventually implement his proper time base source (a general purpose
  timer for example or other time source), keeping in mind that Time base
  duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
  handled in milliseconds basis.
  - Low Level Initialization
  */
  HAL_Init();

  /* Configure LED3 and LED4 */
  BSP_LED_Init(LED3);
  BSP_LED_Init(LED4);

  /* Configure the system clock to 180 MHz */
  SystemClock_Config();

  /* Enable Power Clock */
  __HAL_RCC_PWR_CLK_ENABLE();

  /* Check and handle if the system was resumed from StandBy mode */
  if(__HAL_PWR_GET_FLAG(PWR_FLAG_SB) != RESET)
  {
    __HAL_PWR_CLEAR_FLAG(PWR_FLAG_SB);

    /* Turn LED4 On */
    BSP_LED_On(LED4);
  }
  /* Configure Key Button */
  BSP_PB_Init(BUTTON_USER, BUTTON_MODE_GPIO);

  /* Wait until Key button is pressed to enter the Low Power mode */
  while(BSP_PB_GetState(BUTTON_USER) != SET)
  {
  }
  /* Loop while Key button is maintained pressed */
  while(BSP_PB_GetState(BUTTON_USER) == SET)
  {
  }
  /* Infinite loop */
  while (1)
  {
#if defined (SLEEP_MODE)
    /* Sleep Mode Entry
    - System Running at PLL (180MHz)
    - Flash 5 wait state
    - Instruction and Data caches ON
    - Prefetch ON
    - Code running from Internal FLASH
    - All peripherals disabled.
    - Wakeup using EXTI Line (Key Button PC.13)
    */
    SleepMode_Measure();
#elif defined (STOP_MODE)
    /* STOP Mode Entry
    - RTC Clocked by LSE/LSI
    - Regulator in LP mode
    - HSI, HSE OFF and LSI OFF if not used as RTC Clock source
    - No IWDG
    - FLASH in deep power down mode
    - Automatic Wakeup using RTC clocked by LSE/LSI (after ~20s)
    */
    StopMode_Measure();
#elif defined (STANDBY_MODE)
    /* STANDBY Mode Entry
    - Backup SRAM and RTC OFF
    - IWDG and LSI OFF
    - Wakeup using WakeUp Pin (PA.00)
    */
    StandbyMode_Measure();

#elif defined (STANDBY_RTC_MODE)
    /* STANDBY Mode with RTC on LSE/LSI Entry
    - RTC Clocked by LSE or LSI
    - IWDG OFF and LSI OFF if not used as RTC Clock source
    - Backup SRAM OFF
    - Automatic Wakeup using RTC clocked by LSE/LSI (after ~20s)
    */
    StandbyRTCMode_Measure();

#elif defined (STANDBY_RTC_BKPSRAM_MODE)
    /* STANDBY Mode with RTC on LSE/LSI Entry
    - RTC Clocked by LSE/LSI
    - Backup SRAM ON
    - IWDG OFF
    - Automatic Wakeup using RTC clocked by LSE/LSI (after ~20s)
    */
    StandbyRTCBKPSRAMMode_Measure();
#endif
  }
}
Example #13
0
/**
  * @brief  Initializes the RCC Oscillators according to the specified parameters in the
  *         RCC_OscInitTypeDef.
  * @param  RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
  *         contains the configuration information for the RCC Oscillators.
  * @note   The PLL is not disabled when used as system clock.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
{

   uint32_t tickstart = 0;   
 
  /* Check the parameters */
  assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
  /*------------------------------- HSE Configuration ------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
    /* When the HSE is used as system clock or clock source for PLL in these cases HSE will not disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && ((RCC->CFGR & RCC_CFGR_PLLSRC) == RCC_CFGR_PLLSRC_HSE)))
    {
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
      {
        return HAL_ERROR;
      }
    }
    else
    {
      /* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/
      __HAL_RCC_HSE_CONFIG(RCC_HSE_OFF);
      
      /* Get timeout */
      tickstart = HAL_GetTick();
    
      /* Wait till HSE is disabled */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_HSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      }
      
      /* Set the new HSE configuration ---------------------------------------*/
      __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
      
      /* Check the HSE State */
      if((RCC_OscInitStruct->HSEState) != RCC_HSE_OFF)
      {
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till HSE is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > RCC_HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        }      
      }
      else
      {
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till HSE is disabled */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
        {
           if((HAL_GetTick() - tickstart ) > RCC_HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        }
      }
    }
  }
  /*----------------------------- HSI Configuration --------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
    assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
    
    /* When the HSI is used as system clock it will not disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && ((RCC->CFGR & RCC_CFGR_PLLSRC) == RCC_CFGR_PLLSRC_HSI)))
    {
      /* When HSI is used as system clock it will not disabled */
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
      {
        return HAL_ERROR;
      }
      /* Otherwise, just the calibration is allowed */
      else
      {
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
    }
    else
    {
      /* Check the HSI State */
      if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF)
      {
        /* Enable the Internal High Speed oscillator (HSI or HSIdiv4 */
        __HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIState);
        
        /* Get Start Tick*/
        tickstart = HAL_GetTick();
      
        /* Wait till HSI is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > RCC_HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        } 
                
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
      else
      {
        /* Disable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_CONFIG(RCC_OscInitStruct->HSIState);
       
        /* Get Start Tick*/
        tickstart = HAL_GetTick();
      
        /* Wait till HSI is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > RCC_HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        } 
      }
    }
  }
   /*----------------------------- MSI Configuration --------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState));
    assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
    
        
    /* When the MSI is used as system clock it will not disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) )
    {
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != RESET) && (RCC_OscInitStruct->MSIState != RCC_MSI_ON))
      {
        return HAL_ERROR;
      }
      
       /* Otherwise, just the calibration and MSI range change are allowed */
      else
      {
       /* Selects the Multiple Speed oscillator (MSI) clock range .*/
        __HAL_RCC_MSI_RANGE_CONFIG (RCC_OscInitStruct->MSIClockRange);   
        /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
        __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
      }
    }
    else
    {
      /* Check the MSI State */
      if((RCC_OscInitStruct->MSIState)!= RCC_MSI_OFF)
      {
        /* Enable the Internal High Speed oscillator (MSI). */
        __HAL_RCC_MSI_ENABLE();
        
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till MSI is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > RCC_MSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        } 
         /* Selects the Multiple Speed oscillator (MSI) clock range .*/
        __HAL_RCC_MSI_RANGE_CONFIG (RCC_OscInitStruct->MSIClockRange);   
         /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
        __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
        
      }
      else
      {
        /* Disable the Internal High Speed oscillator (MSI). */
        __HAL_RCC_MSI_DISABLE();
        
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till MSI is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > RCC_MSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        } 
      }
    }
  }
  /*------------------------------ LSI Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
    
    /* Check the LSI State */
    if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF)
    {
      /* Enable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_ENABLE();
      
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      } 
    }
    else
    {
      /* Disable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_DISABLE();
      
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      } 
    }
  }
  
#if !defined (STM32L031xx) && !defined (STM32L041xx) && !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx)  
   /*------------------------------ HSI48 Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI48) == RCC_OSCILLATORTYPE_HSI48)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSI48(RCC_OscInitStruct->HSI48State));
    
    /* Check the HSI48 State */
    if((RCC_OscInitStruct->HSI48State)!= RCC_HSI48_OFF)
    {
      /* Enable the Internal Low Speed oscillator (HSI48). */
      __HAL_RCC_HSI48_ENABLE();
      
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till HSI48 is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_HSI48_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      } 
    }
    else
    {
      /* Disable the Internal Low Speed oscillator (HSI48). */
      __HAL_RCC_HSI48_DISABLE();
      
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till HSI48 is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSI48RDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_HSI48_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      } 
    }
  }
#endif /* !(STM32L031xx) && !(STM32L041xx) && !defined(STM32L051xx) && !defined(STM32L061xx) && !defined(STM32L071xx) && !defined(STM32L081xx)*/  
  
  /*------------------------------ LSE Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));

    /* Enable Power Clock*/
    __HAL_RCC_PWR_CLK_ENABLE();

    /* Enable write access to Backup domain */
    PWR->CR |= PWR_CR_DBP;

    /* Wait for Backup domain Write protection disable */
    tickstart = HAL_GetTick();
 
    while((PWR->CR & PWR_CR_DBP) == RESET)
    {
      if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }
    }

    /* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/
    __HAL_RCC_LSE_CONFIG(RCC_LSE_OFF);
    
    /* Get timeout */
    tickstart = HAL_GetTick();
      
    /* Wait till LSE is ready */  
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
    {
      if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }      
    } 
    
    /* Set the new LSE configuration -----------------------------------------*/
    __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
    /* Check the LSE State */
    if((RCC_OscInitStruct->LSEState) != RCC_LSE_OFF)
    {     
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      }
    }
    else
    {
      /* Get timeout */
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }      
      }
    }
  }
  /*-------------------------------- PLL Configuration -----------------------*/
  /* Check the parameters */
  assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
  if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
  {
    /* Check if the PLL is used as system clock or not */
    if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
    { 
      if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
      {
        /* Check the parameters */
        assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
        assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
        assert_param(IS_RCC_PLL_DIV(RCC_OscInitStruct->PLL.PLLDIV));
        
        
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();
        
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till PLL is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > RCC_PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        }        

        /* Configure the main PLL clock source, multiplication and division factors. */
        __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
                             RCC_OscInitStruct->PLL.PLLMUL,
                             RCC_OscInitStruct->PLL.PLLDIV);
        /* Enable the main PLL. */
        __HAL_RCC_PLL_ENABLE();

        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till PLL is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > RCC_PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        }
      }
      else
      {
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();       
        /* Get timeout */
        tickstart = HAL_GetTick();
      
        /* Wait till PLL is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > RCC_PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }      
        }
      }
    }
    else
    {
      return HAL_ERROR;
    }
  }
  return HAL_OK;
}
Example #14
0
static void initClock(void)
{
    RCC_ClkInitTypeDef RCC_ClkInitStruct;
    RCC_OscInitTypeDef RCC_OscInitStruct;

#if defined STM32F1
    __HAL_RCC_PWR_CLK_ENABLE();

    uint8_t fLatency;

    RCC_OscInitStruct.OscillatorType  = RCC_OSCILLATORTYPE_HSE;
    RCC_OscInitStruct.HSEState = RCC_HSE_ON;
    RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
    RCC_OscInitStruct.HSIState = RCC_HSI_OFF;
    RCC_OscInitStruct.HSICalibrationValue = 0;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;

# if (defined STM32F100xB) || (defined STM32F100xE)
    // 8 MHz * 3 = 24 MHz SYSCLK
    RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
    RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL3;
    fLatency = FLASH_LATENCY_0;
# elif (defined STM32F101x6) || (defined STM32F101xB) || (defined STM32F101xE) || (defined STM32F101xG)
    // 8 MHz / 2 * 9 = 36 MHz SYSCLK
    RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV2;
    RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
    fLatency = FLASH_LATENCY_1;
# elif (defined STM32F102x6) || (defined STM32F102xB)
    // 8 MHz * 6 = 48 MHz SYSCLK
    RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
    RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
    fLatency = FLASH_LATENCY_1;
# elif (defined STM32F103x6) || (defined STM32F103xB) || (defined STM32F103xE) || (defined STM32F103xG)
    // 8 MHz * 9 = 72 MHz SYSCLK
    RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
    RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
    fLatency = FLASH_LATENCY_2;
# elif (defined STM32F105xC) || (defined STM32F107xC)
    // 8 MHz * 9 = 72 MHz SYSCLK
    RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
    RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
    fLatency = FLASH_LATENCY_2;
# endif

    HAL_RCC_OscConfig(&RCC_OscInitStruct);

    RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
    RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;

    HAL_RCC_ClockConfig(&RCC_ClkInitStruct, fLatency);
#elif defined STM32F2
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
    RCC_OscInitStruct.HSEState = RCC_HSE_ON;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
    RCC_OscInitStruct.PLL.PLLM = 25;
    RCC_OscInitStruct.PLL.PLLN = 240;
    RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
    RCC_OscInitStruct.PLL.PLLQ = 5;
    HAL_RCC_OscConfig(&RCC_OscInitStruct);

    /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
     clocks dividers */
    RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
    RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
    HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3);
#elif defined STM32F4
    __HAL_RCC_PWR_CLK_ENABLE();
    __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

    // 8 MHz * 336 / 8 / 2 = 168 MHz SYSCLK
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
    RCC_OscInitStruct.HSEState = RCC_HSE_ON;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
    RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
    RCC_OscInitStruct.PLL.PLLM = 8;
    RCC_OscInitStruct.PLL.PLLN = 336;
    RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
    RCC_OscInitStruct.PLL.PLLQ = 7;
    HAL_RCC_OscConfig(&RCC_OscInitStruct);

    RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
    RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
    RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV4;
    HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5);

    if (HAL_GetREVID() == 0x1001)
    {
        __HAL_FLASH_PREFETCH_BUFFER_ENABLE();
    }
#endif
}
/**
  * @brief  Initializes the RCC Oscillators according to the specified parameters in the
  *         RCC_OscInitTypeDef.
  * @param  RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
  *         contains the configuration information for the RCC Oscillators.
  * @note   The PLL is not disabled when used as system clock.
  * @note   Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
  *         supported by this macro. User should request a transition to LSE Off
  *         first and then LSE On or LSE Bypass.
  * @note   Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
  *         supported by this macro. User should request a transition to HSE Off
  *         first and then HSE On or HSE Bypass.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
{
   uint32_t tickstart = 0;
  
  /* Check the parameters */
  assert_param(RCC_OscInitStruct != NULL);
  assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
  
  /*------------------------------- HSE Configuration ------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
        
    /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) 
       || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
    {
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
      {
        return HAL_ERROR;
      }
    }
    else
    {
      /* Set the new HSE configuration ---------------------------------------*/
      __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
      

       /* Check the HSE State */
      if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
      {
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSE is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      else
      {
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSE is disabled */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
        {
           if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
  /*----------------------------- HSI Configuration --------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
    assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
    
    /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ 
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) 
       || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI)))
    {
      /* When HSI is used as system clock it will not disabled */
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
      {
        return HAL_ERROR;
      }
      /* Otherwise, just the calibration is allowed */
      else
      {
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
    }
    else
    {
      /* Check the HSI State */
      if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
      {
       /* Enable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_ENABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSI is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
                
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
      else
      {
        /* Disable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_DISABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSI is disabled */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
  /*----------------------------- MSI Configuration --------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState));
    assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
    assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange));

    /* When the MSI is used as system clock it will not be disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_CFGR_SWS_MSI) )
    {
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != RESET) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF))
      {
        return HAL_ERROR;
      }

       /* Otherwise, just the calibration and MSI range change are allowed */
      else
      {
        /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
           must be correctly programmed according to the frequency of the CPU clock
           (HCLK) and the supply voltage of the device. */
        if(RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE())
        {
          /* First increase number of wait states update if necessary */
          if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
          {
            return HAL_ERROR;
          }

          /* Selects the Multiple Speed oscillator (MSI) clock range .*/
          __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
          /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
          __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
        }
        else
        {
          /* Else, keep current flash latency while decreasing applies */
          /* Selects the Multiple Speed oscillator (MSI) clock range .*/
          __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
          /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
          __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);

          /* Decrease number of wait states update if necessary */
          if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
          {
            return HAL_ERROR;
          }          
        }

        /* Configure the source of time base considering new system clocks settings*/
        HAL_InitTick (TICK_INT_PRIORITY);
      }
    }
    else
    {
      /* Check the MSI State */
      if(RCC_OscInitStruct->MSIState != RCC_MSI_OFF)
      {
        /* Enable the Multi Speed oscillator (MSI). */
        __HAL_RCC_MSI_ENABLE();

        /* Get Start Tick */
        tickstart = HAL_GetTick();

        /* Wait till MSI is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
         /* Selects the Multiple Speed oscillator (MSI) clock range .*/
        __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
         /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
        __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);

      }
      else
      {
        /* Disable the Multi Speed oscillator (MSI). */
        __HAL_RCC_MSI_DISABLE();

        /* Get Start Tick */
        tickstart = HAL_GetTick();

        /* Wait till MSI is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }  
  /*------------------------------ LSI Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
    
    /* Check the LSI State */
    if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
    {
      /* Enable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_ENABLE();
      
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else
    {
      /* Disable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_DISABLE();
      
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is disabled */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
  }
  /*------------------------------ LSE Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
    
    /* Enable Power Clock*/
    __HAL_RCC_PWR_CLK_ENABLE();
    
    /* Enable write access to Backup domain */
    SET_BIT(PWR->CR, PWR_CR_DBP);

    /* Wait for Backup domain Write protection disable */
    tickstart = HAL_GetTick();
    
    while((PWR->CR & PWR_CR_DBP) == RESET)
    {
      if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }      
    }
    
    /* Set the new LSE configuration -----------------------------------------*/
    __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
    /* Check the LSE State */
    if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
    {
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else
    {
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is disabled */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
  }

  /*-------------------------------- PLL Configuration -----------------------*/
  /* Check the parameters */
  assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
  if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
  {
    /* Check if the PLL is used as system clock or not */
    if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
    { 
      if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
      {
        /* Check the parameters */
        assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
        assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
        assert_param(IS_RCC_PLL_DIV(RCC_OscInitStruct->PLL.PLLDIV));
  
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is disabled */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }

        /* Configure the main PLL clock source, multiplication and division factors. */
        __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
                             RCC_OscInitStruct->PLL.PLLMUL,
                             RCC_OscInitStruct->PLL.PLLDIV);
        /* Enable the main PLL. */
        __HAL_RCC_PLL_ENABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  == RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      else
      {
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();
 
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is disabled */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
    else
    {
      return HAL_ERROR;
    }
  }
  
  return HAL_OK;
}
Example #16
0
/**
  * @brief  Configures the RTC.
  * @param  None
  * @retval None
  */
static void RTC_Config(void)
{ 
  /* Enable Power Clock*/
  __HAL_RCC_PWR_CLK_ENABLE();
  
  /* Allow Access to RTC Backup domaine */
  HAL_PWR_EnableBkUpAccess();
  
  RTCHandle.Instance = RTC;

  /* Check if the system was resumed from StandBy mode */
  if(__HAL_PWR_GET_FLAG(PWR_FLAG_SB) != RESET)
  {
    /* Clear StandBy flag */
    __HAL_PWR_CLEAR_FLAG(PWR_FLAG_SB);

    /* Disable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_DISABLE(&RTCHandle);

    /* Wait for RTC APB registers synchronisation (needed after start-up from Reset)*/
    if (HAL_RTC_WaitForSynchro(&RTCHandle) != HAL_OK)
    {
      /* Initialization Error */
      Error_Handler();
    }

    /* Enable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_ENABLE(&RTCHandle);
    /* No need to configure the RTC as the RTC config(clock source, enable,
    prescaler,...) are kept after wake-up from STANDBY */
  }
  else
  {
    /* Reset Backup Domaine */
    __HAL_RCC_BACKUPRESET_FORCE();
    __HAL_RCC_BACKUPRESET_RELEASE();

    /* Set the RTC time base to 1s */
    /* Configure RTC prescaler and RTC data registers as follows:
    - Hour Format = Format 24
    - Asynch Prediv = Value according to source clock
    - Synch Prediv = Value according to source clock
    - OutPut = Output Disable
    - OutPutPolarity = High Polarity
    - OutPutType = Open Drain */
    RTCHandle.Init.HourFormat = RTC_HOURFORMAT_24;
    RTCHandle.Init.AsynchPrediv = RTC_ASYNCH_PREDIV;
    RTCHandle.Init.SynchPrediv = RTC_SYNCH_PREDIV;
    RTCHandle.Init.OutPut = RTC_OUTPUT_DISABLE;
    RTCHandle.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
    RTCHandle.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
    if (HAL_RTC_Init(&RTCHandle) != HAL_OK)
    {
      /* Initialization Error */
      Error_Handler();
    }

    /* Set the time to 01h 00mn 00s AM */
    RTC_TimeStructure.TimeFormat = RTC_HOURFORMAT12_AM;
    RTC_TimeStructure.Hours = 0x01;
    RTC_TimeStructure.Minutes = 0x00;
    RTC_TimeStructure.Seconds = 0x00;
    if (HAL_RTC_SetTime(&RTCHandle, &RTC_TimeStructure, RTC_FORMAT_BCD) == HAL_ERROR)
    {
      /* Initialization Error */
      Error_Handler();
    }
  }
}
Example #17
0
void rtc_init_finalise() {
    if (!rtc_need_init_finalise) {
        return;
    }

    rtc_info = 0x20000000;
    if (PYB_RTC_Init(&RTCHandle) != HAL_OK) {
        if (rtc_use_lse) {
            // fall back to LSI...
            rtc_use_lse = false;
            rtc_startup_tick = HAL_GetTick();
            PYB_RTC_MspInit_Kick(&RTCHandle, rtc_use_lse);
            HAL_PWR_EnableBkUpAccess();
            RTCHandle.State = HAL_RTC_STATE_RESET;
            if (PYB_RTC_Init(&RTCHandle) != HAL_OK) {
                rtc_info = 0x0100ffff; // indicate error
                return;
            }
        } else {
            // init error
            rtc_info = 0xffff; // indicate error
            return;
        }
    }

    // record if LSE or LSI is used
    rtc_info |= (rtc_use_lse << 28);

    // record how long it took for the RTC to start up
    rtc_info |= (HAL_GetTick() - rtc_startup_tick) & 0xffff;

    // fresh reset; configure RTC Calendar
    RTC_CalendarConfig();
    #if defined(STM32L4)
    if(__HAL_RCC_GET_FLAG(RCC_FLAG_BORRST) != RESET) {
    #else
    if(__HAL_RCC_GET_FLAG(RCC_FLAG_PORRST) != RESET) {
    #endif
        // power on reset occurred
        rtc_info |= 0x10000;
    }
    if(__HAL_RCC_GET_FLAG(RCC_FLAG_PINRST) != RESET) {
        // external reset occurred
        rtc_info |= 0x20000;
    }
    // Clear source Reset Flag
    __HAL_RCC_CLEAR_RESET_FLAGS();
    rtc_need_init_finalise = false;
}

STATIC HAL_StatusTypeDef PYB_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct) {
    /*------------------------------ LSI Configuration -------------------------*/
    if ((RCC_OscInitStruct->OscillatorType & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) {
        // Check the LSI State
        if (RCC_OscInitStruct->LSIState != RCC_LSI_OFF) {
            // Enable the Internal Low Speed oscillator (LSI).
            __HAL_RCC_LSI_ENABLE();
        } else {
            // Disable the Internal Low Speed oscillator (LSI).
            __HAL_RCC_LSI_DISABLE();
        }
    }

    /*------------------------------ LSE Configuration -------------------------*/
    if ((RCC_OscInitStruct->OscillatorType & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) {
        #if !defined(STM32H7)
        // Enable Power Clock
        __HAL_RCC_PWR_CLK_ENABLE();
        #endif

        // Enable access to the backup domain
        HAL_PWR_EnableBkUpAccess();
        uint32_t tickstart = HAL_GetTick();

        #if defined(STM32F7) || defined(STM32L4) || defined(STM32H7)
        //__HAL_RCC_PWR_CLK_ENABLE();
        // Enable write access to Backup domain
        //PWR->CR1 |= PWR_CR1_DBP;
        // Wait for Backup domain Write protection disable
        while ((PWR->CR1 & PWR_CR1_DBP) == RESET) {
            if (HAL_GetTick() - tickstart > RCC_DBP_TIMEOUT_VALUE) {
                return HAL_TIMEOUT;
            }
        }
        #else
        // Enable write access to Backup domain
        //PWR->CR |= PWR_CR_DBP;
        // Wait for Backup domain Write protection disable
        while ((PWR->CR & PWR_CR_DBP) == RESET) {
            if (HAL_GetTick() - tickstart > RCC_DBP_TIMEOUT_VALUE) {
                return HAL_TIMEOUT;
            }
        }
        #endif

        // Set the new LSE configuration
        __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
    }

    return HAL_OK;
}

STATIC HAL_StatusTypeDef PYB_RTC_Init(RTC_HandleTypeDef *hrtc) {
    // Check the RTC peripheral state
    if (hrtc == NULL) {
        return HAL_ERROR;
    }
    if (hrtc->State == HAL_RTC_STATE_RESET) {
        // Allocate lock resource and initialize it
        hrtc->Lock = HAL_UNLOCKED;
        // Initialize RTC MSP
        if (PYB_RTC_MspInit_Finalise(hrtc) != HAL_OK) {
            return HAL_ERROR;
        }
    }

    // Set RTC state
    hrtc->State = HAL_RTC_STATE_BUSY;

    // Disable the write protection for RTC registers
    __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

    // Set Initialization mode
    if (RTC_EnterInitMode(hrtc) != HAL_OK) {
        // Enable the write protection for RTC registers
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        // Set RTC state
        hrtc->State = HAL_RTC_STATE_ERROR;

        return HAL_ERROR;
    } else {
        // Clear RTC_CR FMT, OSEL and POL Bits
        hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
        // Set RTC_CR register
        hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);

        // Configure the RTC PRER
        hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
        hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16);

        // Exit Initialization mode
        hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;

        #if defined(STM32L4) || defined(STM32H7)
        hrtc->Instance->OR &= (uint32_t)~RTC_OR_ALARMOUTTYPE;
        hrtc->Instance->OR |= (uint32_t)(hrtc->Init.OutPutType);
        #elif defined(STM32F7)
        hrtc->Instance->OR &= (uint32_t)~RTC_OR_ALARMTYPE;
        hrtc->Instance->OR |= (uint32_t)(hrtc->Init.OutPutType);
        #else
        hrtc->Instance->TAFCR &= (uint32_t)~RTC_TAFCR_ALARMOUTTYPE;
        hrtc->Instance->TAFCR |= (uint32_t)(hrtc->Init.OutPutType);
        #endif

        // Enable the write protection for RTC registers
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        // Set RTC state
        hrtc->State = HAL_RTC_STATE_READY;

        return HAL_OK;
    }
}

STATIC void PYB_RTC_MspInit_Kick(RTC_HandleTypeDef *hrtc, bool rtc_use_lse) {
    /* To change the source clock of the RTC feature (LSE, LSI), You have to:
       - Enable the power clock using __PWR_CLK_ENABLE()
       - Enable write access using HAL_PWR_EnableBkUpAccess() function before to
         configure the RTC clock source (to be done once after reset).
       - Reset the Back up Domain using __HAL_RCC_BACKUPRESET_FORCE() and
         __HAL_RCC_BACKUPRESET_RELEASE().
       - Configure the needed RTc clock source */

    // RTC clock source uses LSE (external crystal) only if relevant
    // configuration variable is set.  Otherwise it uses LSI (internal osc).

    RCC_OscInitTypeDef RCC_OscInitStruct;
    RCC_OscInitStruct.OscillatorType =  RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_LSE;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
    if (rtc_use_lse) {
        #if MICROPY_HW_RTC_USE_BYPASS
        RCC_OscInitStruct.LSEState = RCC_LSE_BYPASS;
        #else
        RCC_OscInitStruct.LSEState = RCC_LSE_ON;
        #endif
        RCC_OscInitStruct.LSIState = RCC_LSI_OFF;
    } else {
        RCC_OscInitStruct.LSEState = RCC_LSE_OFF;
        RCC_OscInitStruct.LSIState = RCC_LSI_ON;
    }
    PYB_RCC_OscConfig(&RCC_OscInitStruct);

    // now ramp up osc. in background and flag calendear init needed
    rtc_need_init_finalise = true;
}
Example #18
0
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

  /**Configure LSE Drive Capability 
  */
  HAL_PWR_EnableBkUpAccess();
  /**Configure the main internal regulator output voltage 
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /**Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 432;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /**Activate the Over-Drive mode 
  */
  if (HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    Error_Handler();
  }
  /**Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC|RCC_PERIPHCLK_USART1
                              |RCC_PERIPHCLK_SDMMC1|RCC_PERIPHCLK_CLK48;
  PeriphClkInitStruct.PLLSAI.PLLSAIN = 192;
  PeriphClkInitStruct.PLLSAI.PLLSAIR = 5;
  PeriphClkInitStruct.PLLSAI.PLLSAIQ = 2;
  PeriphClkInitStruct.PLLSAI.PLLSAIP = RCC_PLLSAIP_DIV2;
  PeriphClkInitStruct.PLLSAIDivQ = 1;
  PeriphClkInitStruct.PLLSAIDivR = RCC_PLLSAIDIVR_4;
  PeriphClkInitStruct.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
  PeriphClkInitStruct.Clk48ClockSelection = RCC_CLK48SOURCE_PLL;
  PeriphClkInitStruct.Sdmmc1ClockSelection = RCC_SDMMC1CLKSOURCE_CLK48;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
}
Example #19
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F4xx HAL library initialization:
       - Configure the Flash prefetch, instruction and Data caches
       - Configure the Systick to generate an interrupt each 1 msec
       - Set NVIC Group Priority to 4
       - Global MSP (MCU Support Package) initialization
     */
  HAL_Init();

  /* Configure LED3 and LED4 */
  BSP_LED_Init(LED3);
  BSP_LED_Init(LED4);
  
  /* Initialize User button, will be used to trigger an interrupt each time it's pressed.
    In the ISR the PLL source will be changed from HSE to HSI, and vice versa. */
  BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_EXTI);  

    /* Enable Power Control clock */
  __HAL_RCC_PWR_CLK_ENABLE();

  /* The voltage scaling allows optimizing the power consumption when the device is 
     clocked below the maximum system frequency, to update the voltage scaling value 
     regarding system frequency refer to product datasheet.  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /* Enable HSE oscillator and configure the PLL to reach the max system frequency (180MHz)
     when using HSE oscillator as PLL clock source. */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 360;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }

  /* Activate the Over Drive feature (available only for STM32F42xxx/43xxx devices)*/
  if(HAL_PWREx_EnableOverDrive() != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }

  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers.
     The SysTick 1 msec interrupt is required for the HAL process (Timeout management); by default
     the configuration is done using the HAL_Init() API, and when the system clock configuration
     is updated the SysTick configuration will be adjusted by the HAL_RCC_ClockConfig() API. */
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;  
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
  if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();
  }
  
  /* Output SYSCLK divided by 2 on MCO2 pin(PC9) */ 
  HAL_RCC_MCOConfig(RCC_MCO2, RCC_MCO2SOURCE_SYSCLK, RCC_MCODIV_2);
  
  /* Toggle LED3 and LED4 in an infinite loop */  
  while (1)
  {
    /* Toggle LED3 */
    BSP_LED_Toggle(LED3);
    HAL_Delay(1000);
    /* Toggle LED4 */
    BSP_LED_Toggle(LED4);
    HAL_Delay(100);
  }
}
/**
  * @brief  Initializes the RCC extended peripherals clocks according to the specified
  *         parameters in the RCC_PeriphCLKInitTypeDef.
  * @param  PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
  *         contains the configuration information for the Extended Peripherals clocks(RTC/LCD clock).
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
{
  uint32_t tickstart = 0;
  uint32_t temp_reg = 0;
  
  /* Check the parameters */
  assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
  
  /*------------------------------- RTC/LCD Configuration ------------------------*/ 
  if ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC) 
#if defined(STM32L100xB) || defined(STM32L100xBA) || defined(STM32L100xC)\
 || defined(STM32L152xB) || defined(STM32L152xBA) || defined(STM32L152xC)\
 || defined(STM32L162xC) || defined(STM32L152xCA) || defined(STM32L152xD)\
 || defined(STM32L162xCA) || defined(STM32L162xD) || defined(STM32L152xE) || defined(STM32L152xDX)\
 || defined(STM32L162xE) || defined(STM32L162xDX)
      || (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LCD) == RCC_PERIPHCLK_LCD)
#endif /* STM32L100xB || STM32L152xBA || ... || STM32L152xE || STM32L152xDX || STM32L162xE || STM32L162xDX */
    )
  {
    /* check for RTC Parameters used to output RTCCLK */
    if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)
    {
      assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
    }

#if defined(STM32L100xB) || defined(STM32L100xBA) || defined(STM32L100xC)\
 || defined(STM32L152xB) || defined(STM32L152xBA) || defined(STM32L152xC)\
 || defined(STM32L162xC) || defined(STM32L152xCA) || defined(STM32L152xD)\
 || defined(STM32L162xCA) || defined(STM32L162xD) || defined(STM32L152xE) || defined(STM32L152xDX)\
 || defined(STM32L162xE) || defined(STM32L162xDX)
    if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LCD) == RCC_PERIPHCLK_LCD)
    {
      assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->LCDClockSelection));
    }
#endif /* STM32L100xB || STM32L152xBA || ... || STM32L152xE || STM32L152xDX || STM32L162xE || STM32L162xDX */

    /* Enable Power Clock*/
    __HAL_RCC_PWR_CLK_ENABLE();
    
    /* Enable write access to Backup domain */
    SET_BIT(PWR->CR, PWR_CR_DBP);
    
    /* Wait for Backup domain Write protection disable */
    tickstart = HAL_GetTick();
    
    while((PWR->CR & PWR_CR_DBP) == RESET)
    {
      if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }
    }
    
    /* Reset the Backup domain only if the RTC Clock source selection is modified */ 
    temp_reg = (RCC->CSR & RCC_CSR_RTCSEL);
    
    if(((temp_reg != (PeriphClkInit->RTCClockSelection & RCC_CSR_RTCSEL)) \
      && (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC))
#if defined(STM32L100xB) || defined(STM32L100xBA) || defined(STM32L100xC)\
 || defined(STM32L152xB) || defined(STM32L152xBA) || defined(STM32L152xC)\
 || defined(STM32L162xC) || defined(STM32L152xCA) || defined(STM32L152xD)\
 || defined(STM32L162xCA) || defined(STM32L162xD) || defined(STM32L152xE) || defined(STM32L152xDX)\
 || defined(STM32L162xE) || defined(STM32L162xDX)
      || ((temp_reg != (PeriphClkInit->LCDClockSelection & RCC_CSR_RTCSEL)) \
       && (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LCD) == RCC_PERIPHCLK_LCD))
#endif /* STM32L100xB || STM32L152xBA || ... || STM32L152xE || STM32L152xDX || STM32L162xE || STM32L162xDX */
     )
    {
      /* Store the content of CSR register before the reset of Backup Domain */
      temp_reg = (RCC->CSR & ~(RCC_CSR_RTCSEL));
      
      /* RTC Clock selection can be changed only if the Backup Domain is reset */
      __HAL_RCC_BACKUPRESET_FORCE();
      __HAL_RCC_BACKUPRESET_RELEASE();
      
      /* Restore the Content of CSR register */
      RCC->CSR = temp_reg;
      
       /* Wait for LSERDY if LSE was enabled */
      if (HAL_IS_BIT_SET(temp_reg, RCC_CSR_LSERDY))
      {
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till LSE is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      
      __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
    }
  }
  
  return HAL_OK;
}
Example #21
0
/**
  * @brief  Initializes the PCD MSP.
  * @param  hpcd: PCD handle
  * @retval None
  */
void HAL_PCD_MspInit(PCD_HandleTypeDef *hpcd)
{
  GPIO_InitTypeDef  GPIO_InitStruct;
  
  if(hpcd->Instance == USB_OTG_FS)
  {
    /* Configure USB FS GPIOs */
    __GPIOA_CLK_ENABLE();
    
    GPIO_InitStruct.Pin = (GPIO_PIN_11 | GPIO_PIN_12);
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF10_OTG_FS;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); 
    
	/* Configure VBUS Pin */
#if defined(MICROPY_HW_USB_VBUS_DETECT_PIN)
    // USB VBUS detect pin is always A9
    GPIO_InitStruct.Pin = GPIO_PIN_9;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
#endif
	
#if defined(MICROPY_HW_USB_OTG_ID_PIN)
    // USB ID pin is always A10
    GPIO_InitStruct.Pin = GPIO_PIN_10;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
    GPIO_InitStruct.Pull = GPIO_PULLUP;
    GPIO_InitStruct.Alternate = GPIO_AF10_OTG_FS;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); 
#endif

    /* Enable USB FS Clocks */ 
    __USB_OTG_FS_CLK_ENABLE();
    
#if defined (MCU_SERIES_L4)
    /* Enable VDDUSB */
    if(__HAL_RCC_PWR_IS_CLK_DISABLED())
    {
      __HAL_RCC_PWR_CLK_ENABLE();
      HAL_PWREx_EnableVddUSB();
      __HAL_RCC_PWR_CLK_DISABLE();
    }
    else
    {
      HAL_PWREx_EnableVddUSB();
    }
#endif

    /* Set USBFS Interrupt priority */
    HAL_NVIC_SetPriority(OTG_FS_IRQn, IRQ_PRI_OTG_FS, IRQ_SUBPRI_OTG_FS);
    
    /* Enable USBFS Interrupt */
    HAL_NVIC_EnableIRQ(OTG_FS_IRQn);
  } 
#if defined(USE_USB_HS)
  else if(hpcd->Instance == USB_OTG_HS)
  {
#if defined(USE_USB_HS_IN_FS)

    /* Configure USB FS GPIOs */
    __GPIOB_CLK_ENABLE();

    /* Configure DM DP Pins */
    GPIO_InitStruct.Pin = (GPIO_PIN_14 | GPIO_PIN_15);
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF12_OTG_HS_FS;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

#if defined(MICROPY_HW_USB_VBUS_DETECT_PIN)
    /* Configure VBUS Pin */
    GPIO_InitStruct.Pin = GPIO_PIN_13;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF12_OTG_HS_FS;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
#endif

#if defined(MICROPY_HW_USB_OTG_ID_PIN)
    /* Configure ID pin */
    GPIO_InitStruct.Pin = GPIO_PIN_12;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
    GPIO_InitStruct.Pull = GPIO_PULLUP;
    GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF12_OTG_HS_FS;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
#endif
    /*
     * Enable calling WFI and correct
     * function of the embedded USB_FS_IN_HS phy
     */
    __OTGHSULPI_CLK_SLEEP_DISABLE();
    __OTGHS_CLK_SLEEP_ENABLE();
    /* Enable USB HS Clocks */
    __USB_OTG_HS_CLK_ENABLE();

#else // !USE_USB_HS_IN_FS

    /* Configure USB HS GPIOs */
    __GPIOA_CLK_ENABLE();
    __GPIOB_CLK_ENABLE();
    __GPIOC_CLK_ENABLE();
    __GPIOH_CLK_ENABLE();
    __GPIOI_CLK_ENABLE();
    
    /* CLK */
    GPIO_InitStruct.Pin = GPIO_PIN_5;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); 
    
    /* D0 */
    GPIO_InitStruct.Pin = GPIO_PIN_3;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); 
    
    /* D1 D2 D3 D4 D5 D6 D7 */
    GPIO_InitStruct.Pin = GPIO_PIN_0  | GPIO_PIN_1  | GPIO_PIN_5 |\
                          GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); 
    
    /* STP */    
    GPIO_InitStruct.Pin = GPIO_PIN_0;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
    HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); 
    
    /* NXT */ 
    GPIO_InitStruct.Pin = GPIO_PIN_4;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
    HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);   
    
    /* DIR */
    GPIO_InitStruct.Pin = GPIO_PIN_11;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Alternate = GPIO_AF10_OTG_HS;
    HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
    
    /* Enable USB HS Clocks */
    __USB_OTG_HS_CLK_ENABLE();
    __USB_OTG_HS_ULPI_CLK_ENABLE();
#endif // !USE_USB_HS_IN_FS
    
    /* Set USBHS Interrupt to the lowest priority */
    HAL_NVIC_SetPriority(OTG_HS_IRQn, IRQ_PRI_OTG_HS, IRQ_SUBPRI_OTG_HS);
    
    /* Enable USBHS Interrupt */
    HAL_NVIC_EnableIRQ(OTG_HS_IRQn);
  }   
#endif  // USE_USB_HS
}
/**
  * @brief  Initializes the RCC extended peripherals clocks according to the specified
  *         parameters in the RCC_PeriphCLKInitTypeDef.
  * @param  PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
  *         contains the configuration information for the Extended Peripherals clocks(RTC/LCD clock).
  * @retval HAL status
  * @note   If HAL_ERROR returned, first switch-OFF HSE clock oscillator with @ref HAL_RCC_OscConfig()
  *         to possibly update HSE divider.
  */
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
{
    uint32_t tickstart = 0;
    uint32_t temp_reg = 0;

    /* Check the parameters */
    assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));

    /*------------------------------- RTC/LCD Configuration ------------------------*/
    if ((((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)
#if defined(LCD)
            || (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LCD) == RCC_PERIPHCLK_LCD)
#endif /* LCD */
       )
    {
        /* check for RTC Parameters used to output RTCCLK */
        if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC)
        {
            assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
        }

#if defined(LCD)
        if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LCD) == RCC_PERIPHCLK_LCD)
        {
            assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->LCDClockSelection));
        }
#endif /* LCD */

        /* As soon as function is called to change RTC clock source, activation of the
           power domain is done. */
        /* Enable Power Clock*/
        __HAL_RCC_PWR_CLK_ENABLE();

        /* Enable write access to Backup domain */
        SET_BIT(PWR->CR, PWR_CR_DBP);

        /* Wait for Backup domain Write protection disable */
        tickstart = HAL_GetTick();

        while((PWR->CR & PWR_CR_DBP) == RESET)
        {
            if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
            {
                return HAL_TIMEOUT;
            }
        }

        /* Check if user wants to change HSE RTC prescaler whereas HSE is enabled */
        temp_reg = (RCC->CR & RCC_CR_RTCPRE);
        if ((temp_reg != (PeriphClkInit->RTCClockSelection & RCC_CR_RTCPRE))
#if defined (LCD)
                || (temp_reg != (PeriphClkInit->LCDClockSelection & RCC_CR_RTCPRE))
#endif /* LCD */
           )
        {   /* Check HSE State */
            if (((PeriphClkInit->RTCClockSelection & RCC_CSR_RTCSEL) == RCC_CSR_RTCSEL_HSE) && HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY))
            {
                /* To update HSE divider, first switch-OFF HSE clock oscillator*/
                return HAL_ERROR;
            }
        }

        /* Reset the Backup domain only if the RTC Clock source selection is modified from reset value */
        temp_reg = (RCC->CSR & RCC_CSR_RTCSEL);

        if((temp_reg != 0x00000000U) && (((temp_reg != (PeriphClkInit->RTCClockSelection & RCC_CSR_RTCSEL)) \
                                          && (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == RCC_PERIPHCLK_RTC))
#if defined(LCD)
                                         || ((temp_reg != (PeriphClkInit->LCDClockSelection & RCC_CSR_RTCSEL)) \
                                             && (((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_LCD) == RCC_PERIPHCLK_LCD))
#endif /* LCD */
                                        ))
        {
            /* Store the content of CSR register before the reset of Backup Domain */
            temp_reg = (RCC->CSR & ~(RCC_CSR_RTCSEL));

            /* RTC Clock selection can be changed only if the Backup Domain is reset */
            __HAL_RCC_BACKUPRESET_FORCE();
            __HAL_RCC_BACKUPRESET_RELEASE();

            /* Restore the Content of CSR register */
            RCC->CSR = temp_reg;

            /* Wait for LSERDY if LSE was enabled */
            if (HAL_IS_BIT_SET(temp_reg, RCC_CSR_LSERDY))
            {
                /* Get Start Tick */
                tickstart = HAL_GetTick();

                /* Wait till LSE is ready */
                while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
                {
                    if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
                    {
                        return HAL_TIMEOUT;
                    }
                }
            }

        }
        __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
    }

    return HAL_OK;
}
Example #23
0
/**
  * @brief  Initializes the RCC extended peripherals clocks according to the specified parameters in the
  *         RCC_PeriphCLKInitTypeDef.
  * @param  PeriphClkInit: pointer to an RCC_PeriphCLKInitTypeDef structure that
  *         contains the configuration information for the Extended Peripherals clocks(I2S and RTC clocks).
  *         
  * @note   A caution to be taken when HAL_RCCEx_PeriphCLKConfig() is used to select RTC clock selection, in this case 
  *         the Reset of Backup domain will be applied in order to modify the RTC Clock source as consequence all backup 
  *        domain (RTC and RCC_BDCR register expect BKPSRAM) will be reset
  *              
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
{
  uint32_t tickstart = 0;
  uint32_t tmpreg1 = 0;
    
  /* Check the parameters */
  assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
  
  /*---------------------------- I2S configuration ---------------------------*/
  if(((PeriphClkInit->PeriphClockSelection & RCC_PERIPHCLK_I2S) == (RCC_PERIPHCLK_I2S))|| \
     (PeriphClkInit->PeriphClockSelection == RCC_PERIPHCLK_PLLI2S))
  {
    /* check for Parameters */
    assert_param(IS_RCC_PLLI2SR_VALUE(PeriphClkInit->PLLI2S.PLLI2SR));
    assert_param(IS_RCC_PLLI2SN_VALUE(PeriphClkInit->PLLI2S.PLLI2SN));
      
    /* Disable the PLLI2S */
    __HAL_RCC_PLLI2S_DISABLE();
    /* Get tick */
    tickstart = HAL_GetTick();
    /* Wait till PLLI2S is disabled */
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY)  != RESET)
    {
      if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
      {
        /* return in case of Timeout detected */
        return HAL_TIMEOUT;
      } 
    }
    /* Configure the PLLI2S division factors */
    /* PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) * (PLLI2SN/PLLM) */
    /* I2SCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SR */
    __HAL_RCC_PLLI2S_CONFIG(PeriphClkInit->PLLI2S.PLLI2SN , PeriphClkInit->PLLI2S.PLLI2SR);
    
    /* Enable the PLLI2S */
    __HAL_RCC_PLLI2S_ENABLE();
    /* Get tick */
    tickstart = HAL_GetTick();
    /* Wait till PLLI2S is ready */
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLI2SRDY)  == RESET)
    {
      if((HAL_GetTick() - tickstart ) > PLLI2S_TIMEOUT_VALUE)
      {
        /* return in case of Timeout detected */
        return HAL_TIMEOUT;
      }
    }
  }
  /*--------------------------------------------------------------------------*/
  
  /*----------------------------- RTC configuration --------------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC))
  {    
    /* Enable Power Clock*/
    __HAL_RCC_PWR_CLK_ENABLE();
    
    /* Enable write access to Backup domain */
    PWR->CR |= PWR_CR_DBP;
    
    /* Get tick */
    tickstart = HAL_GetTick();
    
    while((PWR->CR & PWR_CR_DBP) == RESET)
    {
      if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }      
    }
    /* Reset the Backup domain only if the RTC Clock source selection is modified */
    if((RCC->BDCR & RCC_BDCR_RTCSEL) != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL))
    {
      /* Store the content of BDCR register before the reset of Backup Domain */
      tmpreg1 = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
      /* RTC Clock selection can be changed only if the Backup Domain is reset */
      __HAL_RCC_BACKUPRESET_FORCE();
      __HAL_RCC_BACKUPRESET_RELEASE();
      /* Restore the Content of BDCR register */
      RCC->BDCR = tmpreg1;
      /* Wait for LSERDY if LSE was enabled */
      if(HAL_IS_BIT_SET(tmpreg1, RCC_BDCR_LSERDY))
      {
        /* Get tick */
        tickstart = HAL_GetTick();
        
        /* Wait till LSE is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
    }
  }
  /*--------------------------------------------------------------------------*/

  return HAL_OK;
}
TM_RCC_Result_t TM_RCC_InitSystem(void) {
	RCC_ClkInitTypeDef RCC_ClkInitStruct;
	RCC_OscInitTypeDef RCC_OscInitStruct;

#if defined(STM32F7xx)
	/* Invalidate I-Cache : ICIALLU register */
	SCB_InvalidateICache();

	/* Enable branch prediction */
	SCB->CCR |= (1 <<18);
	__DSB();

	/* Enable I-Cache */
	SCB_EnableICache();

	/* Invalidate I-Cache */
	SCB_InvalidateDCache();
	
	/* Enable D-Cache */
	SCB_EnableDCache();
#endif
	
	/* Enable Power Control clock */
	__HAL_RCC_PWR_CLK_ENABLE();

#if !defined(STM32F0xx)
	/* Set voltage scaling */
	__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
#endif
	
	/* Enable HSE Oscillator and activate PLL with HSE as source */
	RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE;
	
	/* Select proper PLL input clock */
	if (RCC_OSCILLATORTYPE == RCC_OSCILLATORTYPE_HSE) {	
		RCC_OscInitStruct.HSEState = RCC_HSE_ON;
		RCC_OscInitStruct.HSIState = RCC_HSI_OFF;
		RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
#if defined(STM32F0xx)
		RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV1;
		RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
#endif
	} else {
		RCC_OscInitStruct.HSEState = RCC_HSE_OFF;
		RCC_OscInitStruct.HSIState = RCC_HSI_ON;
		RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
#if defined(STM32F0xx)
		RCC_OscInitStruct.PLL.PREDIV = RCC_PREDIV_DIV1;
		RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL6;
#endif
	}
	
	/* Set PLL parameters */
	RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
	
#if !defined(STM32F0xx)
	RCC_OscInitStruct.PLL.PLLM = RCC_PLLM;
	RCC_OscInitStruct.PLL.PLLN = RCC_PLLN;
	RCC_OscInitStruct.PLL.PLLP = RCC_PLLP;
	RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ;
#endif
	
#if defined(STM32F446xx)
#if defined(RCC_PLLR)
	RCC_OscInitStruct.PLL.PLLR = RCC_PLLR;
#else
	RCC_OscInitStruct.PLL.PLLR = 7;
#endif
#endif
	
	/* Try to init */
	if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
		return TM_RCC_Result_Error;
	}

#if defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) || defined(STM32F446xx) || defined(STM32F7xx)
	/* Activate the Over-Drive mode */
	HAL_PWREx_EnableOverDrive();
#endif

	/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
	RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
	RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
	RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1);
#if !defined(STM32F0xx)
	RCC_ClkInitStruct.ClockType |= RCC_CLOCKTYPE_PCLK2;
#endif
	
#if defined(STM32F405xx) || \
	defined(STM32F415xx) || \
	defined(STM32F407xx) || \
	defined(STM32F417xx) || \
	defined(STM32F427xx) || \
	defined(STM32F437xx) || \
	defined(STM32F429xx) || \
	defined(STM32F439xx) || \
	defined(STM32F446xx) || \
	defined(STM32F7xx) 
	
	RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;  
	RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
#elif defined(STM32F0xx)
	RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
#else
	RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;  
	RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;  
#endif
	
	/* Try to init */
#if defined(STM32F0xx)
	if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
#else
	if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
#endif
		return TM_RCC_Result_Error;
	}
	
	/* Return OK */
	return TM_RCC_Result_Ok;
}
Example #25
0
File: main.c Project: z80/stm32f429
/**
* @brief  Main program
* @param  None
* @retval int
*/
int main(void)
{     
  /* STM32F4xx HAL library initialization:
  - Configure the Flash ART accelerator on ITCM interface
  - Configure the Systick to generate an interrupt each 1 msec
  - Set NVIC Group Priority to 4
  - Global MSP (MCU Support Package) initialization
  */
#ifdef INCLUDE_THIRD_PARTY_MODULE 
   /* Code Need to handle third party module */  
  __HAL_RCC_RTC_ENABLE();
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_RCC_BKPSRAM_CLK_ENABLE(); 
  
  HAL_PWR_EnableBkUpAccess();

  if(*(__IO uint32_t *)(0x40024000) == GFX_DEMO_SIGNATURE_A)
  {
    *(__IO uint32_t *)(0x40024000) = 0;
    
    /* Reinitialize the Stack pointer*/
    __set_MSP(*(__IO uint32_t*) GFX_DEMO_ADDRESS);
    /* jump to application address */  
    ((pFunc) (*(__IO uint32_t*) (GFX_DEMO_ADDRESS + 4)))();
  }
#endif  
  HAL_Init();
  
  /* Configure the system clock @ 180 Mhz */
  SystemClock_Config();

  k_BspInit(); 
  
  /* Initialize RTC */
  k_CalendarBkupInit();    
  
  /* Create GUI task */
  osThreadDef(GUI_Thread, GUIThread, osPriorityNormal, 0, 2048);
  osThreadCreate (osThread(GUI_Thread), NULL); 
  
  /* Add Modules*/
  k_ModuleInit();
  
  /* Link modules */ 
  k_ModuleAdd(&audio_player_board);       
  k_ModuleAdd(&video_player_board);  
  k_ModuleAdd(&games_board);
  k_ModuleAdd(&audio_recorder_board);  
#ifdef INCLUDE_THIRD_PARTY_MODULE
  k_ModuleAdd(&third_party_board);
#else
  k_ModuleAdd(&gardening_control_board);   
#endif     
  k_ModuleAdd(&home_alarm_board); 
  k_ModuleAdd(&settings_board);

  /* Initialize GUI */
  GUI_Init();   
  
  WM_MULTIBUF_Enable(1);
  GUI_SetLayerVisEx (1, 0);
  GUI_SelectLayer(0);
  
  GUI_SetBkColor(GUI_WHITE);
  GUI_Clear();  
 
  /* Start scheduler */
  osKernelStart ();

  /* We should never get here as control is now taken by the scheduler */
  for( ;; );
}
Example #26
0
  /**
  * @brief  System Clock Configuration
  *         The system Clock is configured as follow :
  *            System Clock source            = PLL (HSE or HSI)
  *            SYSCLK(Hz)                     = XPLL
  *            HCLK(Hz)                       = XPLL
  *            AHB Prescaler                  = 1
  *            APB1 Prescaler                 = 4
  *            APB2 Prescaler                 = 2
  *            HSE Frequency(Hz)              = XHSI
  *            PLL_M                          = 8
  *            PLL_N                          = XPLL * 2
  *            PLL_P                          = 2
  *            PLL_Q                          = 7
  *            PLL_R                          = 6
  *            VDD(V)                         = 3.3
  *            Main regulator output voltage  = Scale1 mode
  *            Flash Latency(WS)              = 7
  * @param  None
  * @retval None
  */
static void SystemClock_Config(unsigned long int_osc_freq, unsigned long ext_osc_freq, unsigned long core_freq)
{
  RCC_ClkInitTypeDef RCC_ClkInitStruct;
  memset(&RCC_ClkInitStruct, 0, sizeof(RCC_ClkInitTypeDef));
  RCC_OscInitTypeDef RCC_OscInitStruct;
  memset(&RCC_OscInitStruct, 0, sizeof(RCC_OscInitTypeDef));
  HAL_StatusTypeDef ret = HAL_OK;

  /* Enable Power Control clock */
	__HAL_RCC_PWR_CLK_ENABLE();

  /* The voltage scaling allows optimizing the power consumption when the device is
     clocked below the maximum system frequency, to update the voltage scaling value
     regarding system frequency refer to product datasheet.  */
	__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /* Enable HSE Oscillator and activate PLL with HSE as source */
	if(EXTERNAL_CLOCK_VALUE == 0)
	{
		if(ext_osc_freq == 0)
		{
			RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
			RCC_OscInitStruct.HSIState = RCC_HSI_ON;
			RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
			RCC_OscInitStruct.PLL.PLLM = int_osc_freq /1000000;
		}
		else
		{
			RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
			RCC_OscInitStruct.HSEState = RCC_HSE_ON;
			RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
#if defined(USE_STM32469I_DISCO_REVA)
			RCC_OscInitStruct.PLL.PLLM = 25;
#else
			RCC_OscInitStruct.PLL.PLLM = ext_osc_freq /1000000;
#endif /* USE_STM32469I_DISCO_REVA */
		}
	}
	else
	{
		RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
		RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
		RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
		RCC_OscInitStruct.PLL.PLLM = EXTERNAL_CLOCK_VALUE /1000000;
	}
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLN = (core_freq * 2) / 1000000;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 9;
  RCC_OscInitStruct.PLL.PLLR = 7;

  ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
  if(ret != HAL_OK)
  {
    while(1) { ; }
  }

//#if defined(STM32F469xx) || defined(STM32F479xx)
  /* Activate the OverDrive to reach the 180 MHz Frequency */
  ret = HAL_PWREx_EnableOverDrive();
  if(ret != HAL_OK)
  {
    while(1) { ; }
  }
//#endif

  /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
  RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7);
  if(ret != HAL_OK)
  {
    while(1) { ; }
  }
  PLL_REF_CLK =	RCC_OscInitStruct.PLL.PLLM * 1000000;
#if (defined(STM32F769xx) || defined(STM32F779xx)) && defined(STM32F769I_DISCO)
  RCC_PeriphCLKInitTypeDef  PeriphClkInitStruct;
  memset(&PeriphClkInitStruct, 0, sizeof(RCC_PeriphCLKInitTypeDef));
  PeriphClkInitStruct.PeriphClockSelection = PLL_REF_CLK / 1000000;
  PeriphClkInitStruct.PLLSAI.PLLSAIN = 384;
  PeriphClkInitStruct.PLLSAI.PLLSAIR = 7;
  PeriphClkInitStruct.PLLSAI.PLLSAIP = RCC_PLLSAIP_DIV8;
  PeriphClkInitStruct.PLLSAIDivR = RCC_PLLSAIDIVR_2;
  //PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_CK48;
  //PeriphClkInitStruct.Clk48ClockSelection = RCC_CK48CLKSOURCE_PLLSAIP;
  HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);
#elif defined(STM32F429xx) || defined(STM32F439xx)|| defined(STM32F469xx) || defined(STM32F479xx)
  /* LCD clock configuration */
  /* PLLSAI_VCO Input = HSE_VALUE/PLL_M = 1 Mhz */
  /* PLLSAI_VCO Output = PLLSAI_VCO Input * PLLSAIN = 192 Mhz */
  /* PLLLCDCLK = PLLSAI_VCO Output/PLLSAIR = 192/4 = 48 Mhz */
  /* LTDC clock frequency = PLLLCDCLK / LTDC_PLLSAI_DIVR_8 = 48/4 = 6Mhz */
  RCC_PeriphCLKInitTypeDef  PeriphClkInitStruct;
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LTDC;
  PeriphClkInitStruct.PLLSAI.PLLSAIN = 192;
  PeriphClkInitStruct.PLLSAI.PLLSAIR = 4;
  PeriphClkInitStruct.PLLSAIDivR = RCC_PLLSAIDIVR_8;
  HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct);

#endif
}
Example #27
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
  /* STM32F0xx HAL library initialization:
       - Configure the Flash prefetch
       - Systick timer is configured by default as source of time base, but user 
         can eventually implement his proper time base source (a general purpose 
         timer for example or other time source), keeping in mind that Time base 
         duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and 
         handled in milliseconds basis.
       - Low Level Initialization
     */
  HAL_Init();

  /* Configure LED */
  BSP_LED_Init(LED2); 

  /* Configure the system clock to 48 MHz */
  SystemClock_Config();

  /* Enable Power Clock */
  __HAL_RCC_PWR_CLK_ENABLE();

  /* Check and handle if the system was resumed from StandBy mode */
  if (__HAL_PWR_GET_FLAG(PWR_FLAG_SB) != RESET)
  {
    __HAL_PWR_CLEAR_FLAG(PWR_FLAG_SB);

    /* Configure User push-button */
    BSP_PB_Init(BUTTON_USER, BUTTON_MODE_GPIO);

    /* Turn on the LED2 and keep 
       it on for 2 sec. to indicate
       exit from stand-by mode */
    BSP_LED_On(LED2);
    while(BSP_PB_GetState(BUTTON_USER) == GPIO_PIN_RESET){}
    HAL_Delay(2000);

    uwStandByOutFlag = 1;

  }

  /* Infinite loop */
  while(1)
  {
    /* Configure User push-button as external interrupt generator */
    BSP_PB_Init(BUTTON_USER, BUTTON_MODE_EXTI);
    UserButtonStatus = 0;
    
    /* Wait until User push-button is pressed to enter the Low Power mode.
       In the meantime, LED2 is blinks */
    while (UserButtonStatus == 0)
    {
      /* Toggle LED2 */
      BSP_LED_Toggle(LED2); 
      HAL_Delay(100);

    }

    /* Make sure LED2 is turned off to 
       reduce low power mode consumption */
    BSP_LED_Off(LED2);

#if defined (SLEEP_MODE)
    /* Sleep Mode Entry
        - System Running at PLL (48 MHz)
        - Flash 2 wait state
        - Instruction and Data caches ON
        - Prefetch ON
        - Code running from Internal FLASH
        - All peripherals disabled.
        - Wakeup using EXTI Line (User push-button PC.13)
    */
    SleepMode_Measure();
#elif defined (STOP_RTC_MODE)
    /* STOP Mode Entry 
    - RTC Clocked by LSI or LSE
    - Regulator in LP mode
    - HSI, HSE OFF and LSI OFF if not used as RTC Clock source  
    - No IWDG
    - Automatic Wakeup using RTC clocked by LSI (after ~20s)
    - Wakeup using EXTI Line (User push-button PC.13)
    */
    StopRTCMode_Measure();
#elif defined (STANDBY_MODE)
    /* STANDBY Mode Entry
        - RTC OFF
        - IWDG and LSI OFF
        - Wakeup using WakeUp Pin PWR_WAKEUP_PIN2 connected to PC.13
    */
    StandbyMode_Measure();
#elif defined (STANDBY_RTC_MODE)
    /* STANDBY Mode with RTC on LSE/LSI Entry
        - RTC Clocked by LSE or LSI
        - IWDG OFF and LSI OFF if not used as RTC Clock source
        - Automatic Wakeup using RTC clocked by LSE/LSI (after ~20s)
    */
    StandbyRTCMode_Measure();
#endif
  }
}
/**
  * @brief  Initializes the RCC Oscillators according to the specified parameters in the
  *         RCC_OscInitTypeDef.
  * @param  RCC_OscInitStruct: pointer to an RCC_OscInitTypeDef structure that
  *         contains the configuration information for the RCC Oscillators.
  * @note   The PLL is not disabled when used as system clock.
  * @note   The PLL is not disabled when USB OTG FS clock is enabled (specific to devices with USB FS)
  * @retval HAL status
  */
__weak HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
{
   uint32_t tickstart = 0;
  
  /* Check the parameters */
  assert_param(RCC_OscInitStruct != NULL);
  assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
  
  /*------------------------------- HSE Configuration ------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
        
    /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) 
       || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
    {
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState != RCC_HSE_ON) && (RCC_OscInitStruct->HSEState != RCC_HSE_BYPASS))
      {
        return HAL_ERROR;
      }
    }
    else
    {
      /* Reset HSEON and HSEBYP bits before configuring the HSE --------------*/
      __HAL_RCC_HSE_CONFIG(RCC_HSE_OFF);
      
      /* Get Start Tick*/
      tickstart = HAL_GetTick();
      
      /* Wait till HSE is disabled */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
      
      /* Set the new HSE configuration ---------------------------------------*/
      __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
      
      /* Check the HSE State */
      if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
      {
        /* Get Start Tick*/
        tickstart = HAL_GetTick();
        
        /* Wait till HSE is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      else
      {
        /* Get Start Tick*/
        tickstart = HAL_GetTick();
        
        /* Wait till HSE is disabled */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
        {
           if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
  /*----------------------------- HSI Configuration --------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
    assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
    
    /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ 
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) 
       || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI_DIV2)))
    {
      /* When HSI is used as system clock it will not disabled */
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
      {
        return HAL_ERROR;
      }
      /* Otherwise, just the calibration is allowed */
      else
      {
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
    }
    else
    {
      /* Check the HSI State */
      if((RCC_OscInitStruct->HSIState)!= RCC_HSI_OFF)
      {
        /* Enable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_ENABLE();
        
        /* Get Start Tick*/
        tickstart = HAL_GetTick();
        
        /* Wait till HSI is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
                
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
      else
      {
        /* Disable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_DISABLE();
        
        /* Get Start Tick*/
        tickstart = HAL_GetTick();
        
        /* Wait till HSI is disabled */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
  /*------------------------------ LSI Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
    
    /* Check the LSI State */
    if((RCC_OscInitStruct->LSIState)!= RCC_LSI_OFF)
    {
      /* Enable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_ENABLE();
      
      /* Get Start Tick*/
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
      /*  To have a fully stabilized clock in the specified range, a software temporization of 1ms 
          should be added.*/
      HAL_Delay(1);
    }
    else
    {
      /* Disable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_DISABLE();
      
      /* Get Start Tick*/
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is disabled */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
  }
  /*------------------------------ LSE Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
    
    /* Enable Power Clock*/
    __HAL_RCC_PWR_CLK_ENABLE();
    
    /* Enable write access to Backup domain */
    SET_BIT(PWR->CR, PWR_CR_DBP);

    /* Wait for Backup domain Write protection disable */
    tickstart = HAL_GetTick();
    
    while((PWR->CR & PWR_CR_DBP) == RESET)
    {
      if((HAL_GetTick() - tickstart ) > RCC_DBP_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }      
    }
    
    /* Reset LSEON and LSEBYP bits before configuring the LSE ----------------*/
    __HAL_RCC_LSE_CONFIG(RCC_LSE_OFF);
    
    /* Get Start Tick*/
    tickstart = HAL_GetTick();
    
    /* Wait till LSE is ready */  
    while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
    {
      if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
      {
        return HAL_TIMEOUT;
      }
    }
    
    /* Set the new LSE configuration -----------------------------------------*/
    __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
    /* Check the LSE State */
    if((RCC_OscInitStruct->LSEState) == RCC_LSE_ON)
    {
      /* Get Start Tick*/
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else
    {
      /* Get Start Tick*/
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is disabled */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
  }

  /*-------------------------------- PLL Configuration -----------------------*/
  /* Check the parameters */
  assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
  if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
  {
    /* Check if the PLL is used as system clock or not */
    if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
    { 
      if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
      {
        /* Check the parameters */
        assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
        assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));

        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();
        
        /* Get Start Tick*/
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
        
        /* Configure the HSE prediv1 factor --------------------------------*/
        /* It can be written only when the PLL is disabled. Not used in PLL source is different than HSE */
        if(RCC_OscInitStruct->PLL.PLLSource == RCC_PLLSOURCE_HSE)
        {
          /* Check the parameters */
          assert_param(IS_RCC_HSE_PREDIV(RCC_OscInitStruct->HSEPredivValue));
          
          __HAL_RCC_HSE_PREDIV_CONFIG(RCC_OscInitStruct->HSEPredivValue);
        }

        /* Configure the main PLL clock source and multiplication factors. */
        __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
                             RCC_OscInitStruct->PLL.PLLMUL);
        /* Enable the main PLL. */
        __HAL_RCC_PLL_ENABLE();
        
        /* Get Start Tick*/
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  == RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      else
      {
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();
 
        /* Get Start Tick*/
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is disabled */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
    else
    {
      return HAL_ERROR;
    }
  }
  
  return HAL_OK;
}
Example #29
0
File: main.c Project: z80/stm32f429
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{ 
  /* STM32F4xx HAL library initialization:
       - Configure the Flash prefetch, instruction and Data caches
       - Configure the Systick to generate an interrupt each 1 msec
       - Set NVIC Group Priority to 4
       - Global MSP (MCU Support Package) initialization
     */
  HAL_Init(); 

  /* Configure the system clock to 100 MHz */
  SystemClock_Config();
    
  /* Configure LED2 */
  BSP_LED_Init(LED2);

  /* Enable Power Clock */
  __HAL_RCC_PWR_CLK_ENABLE();
  
  /* Check and handle if the system was resumed from Standby mode */ 
  if(__HAL_PWR_GET_FLAG(PWR_FLAG_SB) != RESET)
  {
    __HAL_PWR_CLEAR_FLAG(PWR_FLAG_SB);
  
    /* Infinite loop */
    while (1)
    {
      /* Toggle LED2 */
      BSP_LED_Toggle(LED2);
   
      /* Insert a 100ms delay */
      HAL_Delay(100);
    }
  }
  
  /* Configure USER Button */
  BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO);

  /* Wait until USER button is pressed to enter the Low Power mode */
  while(BSP_PB_GetState(BUTTON_KEY) != RESET)
  {
    /* Toggle LED2 */
    BSP_LED_Toggle(LED2);
   
    /* Insert 1s Delay */
    HAL_Delay(1000);
  }
  /* Loop while USER Button is maintained pressed */
  while(BSP_PB_GetState(BUTTON_KEY) == RESET)
  {
  }

#if defined (SLEEP_MODE)
  /* Sleep Mode Entry 
      - System Running at PLL (168MHz)
      - Flash 5 wait state
      - Instruction and Data caches ON
      - Prefetch ON
      - Code running from Internal FLASH
      - All peripherals disabled.
      - Wake-up using EXTI Line (User Button)
   */
  SleepMode_Measure();
#elif defined (STOP_MODE)
  /* STOP Mode Entry 
      - RTC Clocked by LSI
      - Regulator in LP mode
      - HSI, HSE OFF and LSI OFF if not used as RTC Clock source  
      - No IWDG
      - FLASH in deep power down mode
      - Automatic Wake-up using RTC clocked by LSI (after ~20s)
   */
  StopMode_Measure();
#elif defined (STANDBY_MODE)
  /* STANDBY Mode Entry 
      - Backup SRAM and RTC OFF
      - IWDG and LSI OFF
      - Wake-up using WakeUp Pin (PA.00)
   */
  StandbyMode_Measure();

#elif defined (STANDBY_RTC_MODE)
  /* STANDBY Mode with RTC on LSI Entry 
      - RTC Clocked by LSI
      - IWDG OFF and LSI OFF if not used as RTC Clock source
      - Backup SRAM OFF
      - Automatic Wake-up using RTC clocked by LSI (after ~20s)
   */
  StandbyRTCMode_Measure();

#elif defined (STANDBY_RTC_BKPSRAM_MODE)
  /* STANDBY Mode with RTC on LSI Entry 
      - RTC Clocked by LSI
      - Backup SRAM ON
      - IWDG OFF
      - Automatic Wake-up using RTC clocked by LSI (after ~20s)
  */
  StandbyRTCBKPSRAMMode_Measure();
#endif

  if(uwCounter != 0)
  {
    BSP_LED_Init(LED2);
  }
  
  /* Infinite loop */
  while (1)
  {
    /* Toggle LED2 */
    BSP_LED_Toggle(LED2);
   
    /* Inserted Delay */
    HAL_Delay(100);
  }
}
Example #30
0
/**
  * @brief  Main program
  * @param  None
  * @retval None
  */
int main(void)
{
#ifdef MASTER_BOARD
  GPIO_InitTypeDef  GPIO_InitStruct;
#endif
  
  /* STM32F3xx HAL library initialization:
       - Configure the Flash prefetch
       - Configure the Systick to generate an interrupt each 1 msec
       - Set NVIC Group Priority to 4
       - Low Level Initialization
     */
  HAL_Init();
  
  /* Configure the system clock to 64 MHz */
  SystemClock_Config();
  
  /* Configure LED3 and LED3*/
  BSP_LED_Init(LED3);
  
  /*##-1- Configure the I2C peripheral ######################################*/
  I2cHandle.Instance             = I2Cx;
  
  I2cHandle.Init.Timing          = I2C_TIMING;
  I2cHandle.Init.OwnAddress1     = I2C_ADDRESS;
  I2cHandle.Init.AddressingMode  = I2C_ADDRESSINGMODE_7BIT;
  I2cHandle.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  I2cHandle.Init.OwnAddress2     = 0xFF;
  I2cHandle.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  I2cHandle.Init.NoStretchMode   = I2C_NOSTRETCH_DISABLE;  
  
  if(HAL_I2C_Init(&I2cHandle) != HAL_OK)
  {
    /* Initialization Error */
    Error_Handler();    
  }

  /* Enable the Analog I2C Filter */
  HAL_I2CEx_ConfigAnalogFilter(&I2cHandle,I2C_ANALOGFILTER_ENABLE);
  
#ifdef MASTER_BOARD
  
  /* Configure PA.12 (Arduino D2) button */
  GPIO_InitStruct.Pin = GPIO_PIN_12;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT; 
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
    
  /* Enable GPIOA clock */
  __HAL_RCC_GPIOA_CLK_ENABLE();

  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  /* Wait Until PA.12 (Arduino D2) is connected to GND */
  while(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_12) != GPIO_PIN_RESET) 
  {
  }  
  /* Wait Until PA.12 (Arduino D2) is de-connected from GND */
  while(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_12) != GPIO_PIN_SET)
  {
  } 

  /* The board sends the message and expects to receive it back */
  
  /*##-2- Start the transmission process #####################################*/  
  /* While the I2C in reception process, user can transmit data through 
     "aTxBuffer" buffer */
  while(HAL_I2C_Master_Transmit_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
  {
    /* Error_Handler() function is called when Timeout error occurs.
       When Acknowledge failure occurs (Slave don't acknowledge its address)
       Master restarts communication */
    if (HAL_I2C_GetError(&I2cHandle) != HAL_I2C_ERROR_AF)
    {
      Error_Handler();
    }
  }
  
  /*##-3- Wait for the end of the transfer ###################################*/  
  /*  Before starting a new communication transfer, you need to check the current   
      state of the peripheral; if it’s busy you need to wait for the end of current
      transfer before starting a new one.
      For simplicity reasons, this example is just waiting till the end of the 
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */  
  while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
  {
  } 
  
  HAL_Delay(1000);

  /* Wait Until PA.12 (Arduino D2) is connected to GND */
  while(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_12) != GPIO_PIN_RESET) 
  {
  }  
  /* Wait Until PA.12 (Arduino D2) is de-connected from GND */
  while(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_12) != GPIO_PIN_SET)
  {
  }  

  /*##-4- Put I2C peripheral in reception process ###########################*/  
  while(HAL_I2C_Master_Receive_IT(&I2cHandle, (uint16_t)I2C_ADDRESS, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
  {
    /* Error_Handler() function is called when Timeout error occurs.
       When Acknowledge failure occurs (Slave don't acknowledge it's address)
       Master restarts communication */
    if (HAL_I2C_GetError(&I2cHandle) != HAL_I2C_ERROR_AF)
    {
      Error_Handler();
    }
  }

#else
  /*##-2- Enable I2C peripheral in wake up from stop mode ###################*/  
  HAL_I2CEx_EnableWakeUp(&I2cHandle);
  
  /*##-3- Put I2C peripheral in reception process ###########################*/  
  if(HAL_I2C_Slave_Receive_IT(&I2cHandle, (uint8_t *)aRxBuffer, RXBUFFERSIZE) != HAL_OK)
  {
    /* Transfer error in reception process */
    Error_Handler();        
  }
 
  /* enter stop mode */

  /* Configure the WakeUp clock source */

  /* Enable Power Control clock */
  __HAL_RCC_PWR_CLK_ENABLE();

  HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);

  /* ... STOP mode ... */  


  /*##-4- Wait for the end of the transfer ###################################*/  
  /*  Before starting a new communication transfer, you need to check the current   
      state of the peripheral; if it’s busy you need to wait for the end of current
      transfer before starting a new one.
      For simplicity reasons, this example is just waiting till the end of the 
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */  
  while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
  {
  } 
  
  /*##-5- Start the transmission process #####################################*/  
  /* While the I2C in reception process, user can transmit data through 
     "aTxBuffer" buffer */
  if(HAL_I2C_Slave_Transmit_IT(&I2cHandle, (uint8_t*)aTxBuffer, TXBUFFERSIZE)!= HAL_OK)
  {
    /* Transfer error in transmission process */
    Error_Handler();    
  }

  /* enter stop mode */
  HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);

  /* ... STOP mode ... */  

  /* Disable Power Control clock */
  __HAL_RCC_PWR_CLK_DISABLE();

#endif /* MASTER_BOARD */

  /*##-6- Wait for the end of the transfer ###################################*/  
  /*  Before starting a new communication transfer, you need to check the current   
      state of the peripheral; if it’s busy you need to wait for the end of current
      transfer before starting a new one.
      For simplicity reasons, this example is just waiting till the end of the 
      transfer, but application may perform other tasks while transfer operation
      is ongoing. */  
  while (HAL_I2C_GetState(&I2cHandle) != HAL_I2C_STATE_READY)
  {
  } 
  
  /*##-7- Compare the sent and received buffers ##############################*/
  if(Buffercmp((uint8_t*)aTxBuffer,(uint8_t*)aRxBuffer,RXBUFFERSIZE))
  {
    /* Processing Error */
    Error_Handler();      
  }
 
  /* Infinite loop */  
  while (1)
  {
  }
}