SIMD_INLINE __m256i BinomialSum16(const __m256i & ab, const __m256i & cd)
        {
#ifdef SIMD_MADDUBS_ERROR
            return _mm256_add_epi16(_mm256_maddubs_epi16(_mm256_or_si256(K_ZERO, ab), K8_01_03), _mm256_maddubs_epi16(_mm256_or_si256(K_ZERO, cd), K8_03_01));
#else
            return _mm256_add_epi16(_mm256_maddubs_epi16(ab, K8_01_03), _mm256_maddubs_epi16(cd, K8_03_01));
#endif        
        }
static INLINE unsigned int masked_sad32xh_avx2(
    const uint8_t *src_ptr, int src_stride, const uint8_t *a_ptr, int a_stride,
    const uint8_t *b_ptr, int b_stride, const uint8_t *m_ptr, int m_stride,
    int width, int height) {
  int x, y;
  __m256i res = _mm256_setzero_si256();
  const __m256i mask_max = _mm256_set1_epi8((1 << AOM_BLEND_A64_ROUND_BITS));
  const __m256i round_scale =
      _mm256_set1_epi16(1 << (15 - AOM_BLEND_A64_ROUND_BITS));
  for (y = 0; y < height; y++) {
    for (x = 0; x < width; x += 32) {
      const __m256i src = _mm256_lddqu_si256((const __m256i *)&src_ptr[x]);
      const __m256i a = _mm256_lddqu_si256((const __m256i *)&a_ptr[x]);
      const __m256i b = _mm256_lddqu_si256((const __m256i *)&b_ptr[x]);
      const __m256i m = _mm256_lddqu_si256((const __m256i *)&m_ptr[x]);
      const __m256i m_inv = _mm256_sub_epi8(mask_max, m);

      // Calculate 16 predicted pixels.
      // Note that the maximum value of any entry of 'pred_l' or 'pred_r'
      // is 64 * 255, so we have plenty of space to add rounding constants.
      const __m256i data_l = _mm256_unpacklo_epi8(a, b);
      const __m256i mask_l = _mm256_unpacklo_epi8(m, m_inv);
      __m256i pred_l = _mm256_maddubs_epi16(data_l, mask_l);
      pred_l = _mm256_mulhrs_epi16(pred_l, round_scale);

      const __m256i data_r = _mm256_unpackhi_epi8(a, b);
      const __m256i mask_r = _mm256_unpackhi_epi8(m, m_inv);
      __m256i pred_r = _mm256_maddubs_epi16(data_r, mask_r);
      pred_r = _mm256_mulhrs_epi16(pred_r, round_scale);

      const __m256i pred = _mm256_packus_epi16(pred_l, pred_r);
      res = _mm256_add_epi32(res, _mm256_sad_epu8(pred, src));
    }

    src_ptr += src_stride;
    a_ptr += a_stride;
    b_ptr += b_stride;
    m_ptr += m_stride;
  }
  // At this point, we have two 32-bit partial SADs in lanes 0 and 2 of 'res'.
  res = _mm256_shuffle_epi32(res, 0xd8);
  res = _mm256_permute4x64_epi64(res, 0xd8);
  res = _mm256_hadd_epi32(res, res);
  res = _mm256_hadd_epi32(res, res);
  int32_t sad = _mm256_extract_epi32(res, 0);
  return (sad + 31) >> 6;
}
Example #3
0
        template <> SIMD_INLINE void InterpolateX<1>(const __m256i * alpha, __m256i * buffer)
        {
#if defined(_MSC_VER) // Workaround for Visual Studio 2012 compiler bug in release mode:
            __m256i _buffer = _mm256_or_si256(K_ZERO, _mm256_load_si256(buffer));
#else
            __m256i _buffer = _mm256_load_si256(buffer);
#endif
            _mm256_store_si256(buffer, _mm256_maddubs_epi16(_buffer, _mm256_load_si256(alpha)));
        }
Example #4
0
static INLINE void variance_kernel_avx2(const __m256i src, const __m256i ref,
                                        __m256i *const sse,
                                        __m256i *const sum) {
  const __m256i adj_sub = _mm256_set1_epi16(0xff01);  // (1,-1)

  // unpack into pairs of source and reference values
  const __m256i src_ref0 = _mm256_unpacklo_epi8(src, ref);
  const __m256i src_ref1 = _mm256_unpackhi_epi8(src, ref);

  // subtract adjacent elements using src*1 + ref*-1
  const __m256i diff0 = _mm256_maddubs_epi16(src_ref0, adj_sub);
  const __m256i diff1 = _mm256_maddubs_epi16(src_ref1, adj_sub);
  const __m256i madd0 = _mm256_madd_epi16(diff0, diff0);
  const __m256i madd1 = _mm256_madd_epi16(diff1, diff1);

  // add to the running totals
  *sum = _mm256_add_epi16(*sum, _mm256_add_epi16(diff0, diff1));
  *sse = _mm256_add_epi32(*sse, _mm256_add_epi32(madd0, madd1));
}
Example #5
0
static INLINE void comp_mask_pred_line_avx2(const __m256i s0, const __m256i s1,
                                            const __m256i a,
                                            uint8_t *comp_pred) {
  const __m256i alpha_max = _mm256_set1_epi8(AOM_BLEND_A64_MAX_ALPHA);
  const int16_t round_bits = 15 - AOM_BLEND_A64_ROUND_BITS;
  const __m256i round_offset = _mm256_set1_epi16(1 << (round_bits));

  const __m256i ma = _mm256_sub_epi8(alpha_max, a);

  const __m256i ssAL = _mm256_unpacklo_epi8(s0, s1);
  const __m256i aaAL = _mm256_unpacklo_epi8(a, ma);
  const __m256i ssAH = _mm256_unpackhi_epi8(s0, s1);
  const __m256i aaAH = _mm256_unpackhi_epi8(a, ma);

  const __m256i blendAL = _mm256_maddubs_epi16(ssAL, aaAL);
  const __m256i blendAH = _mm256_maddubs_epi16(ssAH, aaAH);
  const __m256i roundAL = _mm256_mulhrs_epi16(blendAL, round_offset);
  const __m256i roundAH = _mm256_mulhrs_epi16(blendAH, round_offset);

  const __m256i roundA = _mm256_packus_epi16(roundAL, roundAH);
  _mm256_storeu_si256((__m256i *)(comp_pred), roundA);
}
Example #6
0
        template <> SIMD_INLINE void InterpolateX<3>(const __m256i * alpha, __m256i * buffer)
        {
            __m256i src[3], shuffled;
            src[0] = _mm256_load_si256(buffer + 0);
            src[1] = _mm256_load_si256(buffer + 1);
            src[2] = _mm256_load_si256(buffer + 2);

            shuffled = _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[0], src[0], 0x21), K8_SHUFFLE_X3_00);
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(src[0], K8_SHUFFLE_X3_01));
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[0], src[1], 0x21), K8_SHUFFLE_X3_02));
            _mm256_store_si256(buffer + 0, _mm256_maddubs_epi16(shuffled, _mm256_load_si256(alpha + 0)));

            shuffled = _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[0], src[1], 0x21), K8_SHUFFLE_X3_10);
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(src[1], K8_SHUFFLE_X3_11));
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[1], src[2], 0x21), K8_SHUFFLE_X3_12));
            _mm256_store_si256(buffer + 1, _mm256_maddubs_epi16(shuffled, _mm256_load_si256(alpha + 1)));

            shuffled = _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[1], src[2], 0x21), K8_SHUFFLE_X3_20);
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(src[2], K8_SHUFFLE_X3_21));
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[2], src[2], 0x21), K8_SHUFFLE_X3_22));
            _mm256_store_si256(buffer + 2, _mm256_maddubs_epi16(shuffled, _mm256_load_si256(alpha + 2)));
        }        
Example #7
0
static void
avx2_test (void)
{
  union256i_w s1, s2, res;
  short res_ref[16];
  int i;
  int fail = 0;

  for (i = 0; i < 256; i += 16)
    {
      s1.x = _mm256_loadu_si256 ((__m256i *) & vals[i]);
      s2.x = _mm256_loadu_si256 ((__m256i *) & vals[i + 8]);

      res.x = _mm256_maddubs_epi16 (s1.x, s2.x);

      compute_pmaddubsw256 (s1.a, s2.a, res_ref);

      fail += check_union256i_w (res, res_ref);
    }

  if (fail != 0)
    abort ();
}
Example #8
0
__m256i test_mm256_maddubs_epi16(__m256i a, __m256i b) {
  // CHECK: @llvm.x86.avx2.pmadd.ub.sw
  return _mm256_maddubs_epi16(a, b);
}
__m256i test_mm256_maddubs_epi16(__m256i a, __m256i b) {
  // CHECK-LABEL: test_mm256_maddubs_epi16
  // CHECK: call <16 x i16> @llvm.x86.avx2.pmadd.ub.sw(<32 x i8> %{{.*}}, <32 x i8> %{{.*}})
  return _mm256_maddubs_epi16(a, b);
}
static void vpx_filter_block1d16_h8_avx2(const uint8_t *src_ptr,
                                         ptrdiff_t src_pixels_per_line,
                                         uint8_t *output_ptr,
                                         ptrdiff_t output_pitch,
                                         uint32_t output_height,
                                         const int16_t *filter) {
  __m128i filtersReg;
  __m256i addFilterReg64, filt1Reg, filt2Reg, filt3Reg, filt4Reg;
  __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
  __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3;
  __m256i srcReg32b1, srcReg32b2, filtersReg32;
  unsigned int i;
  ptrdiff_t src_stride, dst_stride;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to 8 bit (byte) and have the same data
  // in both lanes of 128 bit register.
  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
  // have the same data in both lanes of a 256 bit register
  filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);

  // duplicate only the first 16 bits (first and second byte)
  // across 256 bit register
  firstFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x100u));
  // duplicate only the second 16 bits (third and forth byte)
  // across 256 bit register
  secondFilters = _mm256_shuffle_epi8(filtersReg32,
                  _mm256_set1_epi16(0x302u));
  // duplicate only the third 16 bits (fifth and sixth byte)
  // across 256 bit register
  thirdFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x504u));
  // duplicate only the forth 16 bits (seventh and eighth byte)
  // across 256 bit register
  forthFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x706u));

  filt1Reg = _mm256_load_si256((__m256i const *)filt1_global_avx2);
  filt2Reg = _mm256_load_si256((__m256i const *)filt2_global_avx2);
  filt3Reg = _mm256_load_si256((__m256i const *)filt3_global_avx2);
  filt4Reg = _mm256_load_si256((__m256i const *)filt4_global_avx2);

  // multiple the size of the source and destination stride by two
  src_stride = src_pixels_per_line << 1;
  dst_stride = output_pitch << 1;
  for (i = output_height; i > 1; i-=2) {
    // load the 2 strides of source
    srcReg32b1 = _mm256_castsi128_si256(
                 _mm_loadu_si128((const __m128i *)(src_ptr - 3)));
    srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
                 _mm_loadu_si128((const __m128i *)
                 (src_ptr+src_pixels_per_line-3)), 1);

    // filter the source buffer
    srcRegFilt32b1_1= _mm256_shuffle_epi8(srcReg32b1, filt1Reg);
    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt4Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters);
    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);

    // add and saturate the results together
    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2);

    // filter the source buffer
    srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b1, filt2Reg);
    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt3Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);

    // add and saturate the results together
    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
                       _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));

    // reading 2 strides of the next 16 bytes
    // (part of it was being read by earlier read)
    srcReg32b2 = _mm256_castsi128_si256(
                 _mm_loadu_si128((const __m128i *)(src_ptr + 5)));
    srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
                 _mm_loadu_si128((const __m128i *)
                 (src_ptr+src_pixels_per_line+5)), 1);

    // add and saturate the results together
    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1,
                       _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));

    // filter the source buffer
    srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg);
    srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters);
    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters);

    // add and saturate the results together
    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2);

    // filter the source buffer
    srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b2, filt2Reg);
    srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b2, filt3Reg);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters);
    srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters);

    // add and saturate the results together
    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
                       _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2));
    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1,
                       _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2));


    srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg64);

    srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg64);

    // shift by 7 bit each 16 bit
    srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 7);
    srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 7);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1,
                                           srcRegFilt32b2_1);

    src_ptr+=src_stride;

    // save 16 bytes
    _mm_store_si128((__m128i*)output_ptr,
    _mm256_castsi256_si128(srcRegFilt32b1_1));

    // save the next 16 bits
    _mm_store_si128((__m128i*)(output_ptr+output_pitch),
    _mm256_extractf128_si256(srcRegFilt32b1_1, 1));
    output_ptr+=dst_stride;
  }

  // if the number of strides is odd.
  // process only 16 bytes
  if (i > 0) {
    __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1;
    __m128i srcRegFilt2, srcRegFilt3;

    srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr - 3));

    // filter the source buffer
    srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1,
                    _mm256_castsi256_si128(filt1Reg));
    srcRegFilt2 = _mm_shuffle_epi8(srcReg1,
                  _mm256_castsi256_si128(filt4Reg));

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1,
                    _mm256_castsi256_si128(firstFilters));
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
                  _mm256_castsi256_si128(forthFilters));

    // add and saturate the results together
    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2);

    // filter the source buffer
    srcRegFilt3= _mm_shuffle_epi8(srcReg1,
                 _mm256_castsi256_si128(filt2Reg));
    srcRegFilt2= _mm_shuffle_epi8(srcReg1,
                 _mm256_castsi256_si128(filt3Reg));

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
                  _mm256_castsi256_si128(secondFilters));
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
                  _mm256_castsi256_si128(thirdFilters));

    // add and saturate the results together
    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
                    _mm_min_epi16(srcRegFilt3, srcRegFilt2));

    // reading the next 16 bytes
    // (part of it was being read by earlier read)
    srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 5));

    // add and saturate the results together
    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
                    _mm_max_epi16(srcRegFilt3, srcRegFilt2));

    // filter the source buffer
    srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2,
                    _mm256_castsi256_si128(filt1Reg));
    srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
                  _mm256_castsi256_si128(filt4Reg));

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1,
                    _mm256_castsi256_si128(firstFilters));
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
                  _mm256_castsi256_si128(forthFilters));

    // add and saturate the results together
    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2);

    // filter the source buffer
    srcRegFilt3 = _mm_shuffle_epi8(srcReg2,
                  _mm256_castsi256_si128(filt2Reg));
    srcRegFilt2 = _mm_shuffle_epi8(srcReg2,
                  _mm256_castsi256_si128(filt3Reg));

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3,
                  _mm256_castsi256_si128(secondFilters));
    srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2,
                  _mm256_castsi256_si128(thirdFilters));

    // add and saturate the results together
    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
                    _mm_min_epi16(srcRegFilt3, srcRegFilt2));
    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
                    _mm_max_epi16(srcRegFilt3, srcRegFilt2));


    srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1,
                    _mm256_castsi256_si128(addFilterReg64));

    srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1,
                    _mm256_castsi256_si128(addFilterReg64));

    // shift by 7 bit each 16 bit
    srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7);
    srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1);

    // save 16 bytes
    _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1);
  }
}
static void vpx_filter_block1d16_v8_avx2(const uint8_t *src_ptr,
                                         ptrdiff_t src_pitch,
                                         uint8_t *output_ptr,
                                         ptrdiff_t out_pitch,
                                         uint32_t output_height,
                                         const int16_t *filter) {
  __m128i filtersReg;
  __m256i addFilterReg64;
  __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5;
  __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10;
  __m256i srcReg32b11, srcReg32b12, filtersReg32;
  __m256i firstFilters, secondFilters, thirdFilters, forthFilters;
  unsigned int i;
  ptrdiff_t src_stride, dst_stride;

  // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64
  addFilterReg64 = _mm256_set1_epi32((int)0x0400040u);
  filtersReg = _mm_loadu_si128((const __m128i *)filter);
  // converting the 16 bit (short) to  8 bit (byte) and have the
  // same data in both lanes of 128 bit register.
  filtersReg =_mm_packs_epi16(filtersReg, filtersReg);
  // have the same data in both lanes of a 256 bit register
  filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg);

  // duplicate only the first 16 bits (first and second byte)
  // across 256 bit register
  firstFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x100u));
  // duplicate only the second 16 bits (third and forth byte)
  // across 256 bit register
  secondFilters = _mm256_shuffle_epi8(filtersReg32,
                  _mm256_set1_epi16(0x302u));
  // duplicate only the third 16 bits (fifth and sixth byte)
  // across 256 bit register
  thirdFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x504u));
  // duplicate only the forth 16 bits (seventh and eighth byte)
  // across 256 bit register
  forthFilters = _mm256_shuffle_epi8(filtersReg32,
                 _mm256_set1_epi16(0x706u));

  // multiple the size of the source and destination stride by two
  src_stride = src_pitch << 1;
  dst_stride = out_pitch << 1;

  // load 16 bytes 7 times in stride of src_pitch
  srcReg32b1 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr)));
  srcReg32b2 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch)));
  srcReg32b3 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2)));
  srcReg32b4 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3)));
  srcReg32b5 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4)));
  srcReg32b6 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5)));
  srcReg32b7 = _mm256_castsi128_si256(
               _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6)));

  // have each consecutive loads on the same 256 register
  srcReg32b1 = _mm256_inserti128_si256(srcReg32b1,
               _mm256_castsi256_si128(srcReg32b2), 1);
  srcReg32b2 = _mm256_inserti128_si256(srcReg32b2,
               _mm256_castsi256_si128(srcReg32b3), 1);
  srcReg32b3 = _mm256_inserti128_si256(srcReg32b3,
               _mm256_castsi256_si128(srcReg32b4), 1);
  srcReg32b4 = _mm256_inserti128_si256(srcReg32b4,
               _mm256_castsi256_si128(srcReg32b5), 1);
  srcReg32b5 = _mm256_inserti128_si256(srcReg32b5,
               _mm256_castsi256_si128(srcReg32b6), 1);
  srcReg32b6 = _mm256_inserti128_si256(srcReg32b6,
               _mm256_castsi256_si128(srcReg32b7), 1);

  // merge every two consecutive registers except the last one
  srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2);
  srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2);

  // save
  srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4);

  // save
  srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4);

  // save
  srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6);

  // save
  srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6);


  for (i = output_height; i > 1; i-=2) {
     // load the last 2 loads of 16 bytes and have every two
     // consecutive loads in the same 256 bit register
     srcReg32b8 = _mm256_castsi128_si256(
     _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)));
     srcReg32b7 = _mm256_inserti128_si256(srcReg32b7,
     _mm256_castsi256_si128(srcReg32b8), 1);
     srcReg32b9 = _mm256_castsi128_si256(
     _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8)));
     srcReg32b8 = _mm256_inserti128_si256(srcReg32b8,
     _mm256_castsi256_si128(srcReg32b9), 1);

     // merge every two consecutive registers
     // save
     srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8);
     srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8);

     // multiply 2 adjacent elements with the filter and add the result
     srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters);
     srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters);

     // add and saturate the results together
     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6);

     // multiply 2 adjacent elements with the filter and add the result
     srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters);
     srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters);

     // add and saturate the results together
     srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
                   _mm256_min_epi16(srcReg32b8, srcReg32b12));
     srcReg32b10 = _mm256_adds_epi16(srcReg32b10,
                   _mm256_max_epi16(srcReg32b8, srcReg32b12));

     // multiply 2 adjacent elements with the filter and add the result
     srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters);
     srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters);

     srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6);

     // multiply 2 adjacent elements with the filter and add the result
     srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters);
     srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters);

     // add and saturate the results together
     srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
                  _mm256_min_epi16(srcReg32b8, srcReg32b12));
     srcReg32b1 = _mm256_adds_epi16(srcReg32b1,
                  _mm256_max_epi16(srcReg32b8, srcReg32b12));

     srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg64);
     srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg64);

     // shift by 7 bit each 16 bit
     srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 7);
     srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 7);

     // shrink to 8 bit each 16 bits, the first lane contain the first
     // convolve result and the second lane contain the second convolve
     // result
     srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1);

     src_ptr+=src_stride;

     // save 16 bytes
     _mm_store_si128((__m128i*)output_ptr,
     _mm256_castsi256_si128(srcReg32b1));

     // save the next 16 bits
     _mm_store_si128((__m128i*)(output_ptr+out_pitch),
     _mm256_extractf128_si256(srcReg32b1, 1));

     output_ptr+=dst_stride;

     // save part of the registers for next strides
     srcReg32b10 = srcReg32b11;
     srcReg32b1 = srcReg32b3;
     srcReg32b11 = srcReg32b2;
     srcReg32b3 = srcReg32b5;
     srcReg32b2 = srcReg32b4;
     srcReg32b5 = srcReg32b7;
     srcReg32b7 = srcReg32b9;
  }
  if (i > 0) {
    __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5;
    __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8;
    // load the last 16 bytes
    srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7));

    // merge the last 2 results together
    srcRegFilt4 = _mm_unpacklo_epi8(
                  _mm256_castsi256_si128(srcReg32b7), srcRegFilt8);
    srcRegFilt7 = _mm_unpackhi_epi8(
                  _mm256_castsi256_si128(srcReg32b7), srcRegFilt8);

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10),
                  _mm256_castsi256_si128(firstFilters));
    srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4,
                  _mm256_castsi256_si128(forthFilters));
    srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1),
                  _mm256_castsi256_si128(firstFilters));
    srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7,
                  _mm256_castsi256_si128(forthFilters));

    // add and saturate the results together
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4);
    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7);


    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11),
                  _mm256_castsi256_si128(secondFilters));
    srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3),
                  _mm256_castsi256_si128(secondFilters));

    // multiply 2 adjacent elements with the filter and add the result
    srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2),
                  _mm256_castsi256_si128(thirdFilters));
    srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5),
                  _mm256_castsi256_si128(thirdFilters));

    // add and saturate the results together
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
                  _mm_min_epi16(srcRegFilt4, srcRegFilt6));
    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
                  _mm_min_epi16(srcRegFilt5, srcRegFilt7));

    // add and saturate the results together
    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
                  _mm_max_epi16(srcRegFilt4, srcRegFilt6));
    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
                  _mm_max_epi16(srcRegFilt5, srcRegFilt7));


    srcRegFilt1 = _mm_adds_epi16(srcRegFilt1,
                  _mm256_castsi256_si128(addFilterReg64));
    srcRegFilt3 = _mm_adds_epi16(srcRegFilt3,
                  _mm256_castsi256_si128(addFilterReg64));

    // shift by 7 bit each 16 bit
    srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7);
    srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 7);

    // shrink to 8 bit each 16 bits, the first lane contain the first
    // convolve result and the second lane contain the second convolve
    // result
    srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3);

    // save 16 bytes
    _mm_store_si128((__m128i*)output_ptr, srcRegFilt1);
  }
}
Example #12
0
 template<int part> SIMD_INLINE __m256i SumCol(__m256i a[3])
 {
     return _mm256_add_epi16(_mm256_maddubs_epi16(UnpackU8<part>(a[0], a[1]), K8_01), UnpackU8<part>(a[2]));
 }
Example #13
0
 SIMD_INLINE __m256i Average16(const __m256i & s0, const __m256i & s1)
 {
     return _mm256_srli_epi16(_mm256_add_epi16(_mm256_add_epi16(_mm256_maddubs_epi16(s0, K8_01), _mm256_maddubs_epi16(s1, K8_01)), K16_0002), 2); 
 }
Example #14
0
 SIMD_INLINE void InterpolateX4(const __m256i * alpha, __m256i * buffer)
 {
     __m256i src = _mm256_shuffle_epi8(_mm256_load_si256(buffer), K8_SHUFFLE_X4);
     _mm256_store_si256(buffer, _mm256_maddubs_epi16(src, _mm256_load_si256(alpha)));
 }
uns cache_block_over_inputs(const u8 *w, const u8 *inputs, const u8 *outputs, const uns w_len, const uns outputs_len) {
	assert(outputs_len > 0);
	assert(outputs_len % AVX_U8_VEC_LEN == 0);
	assert(w_len % AVX_U8_VEC_LEN == 0);

	__m256i part_results[CACHE_BLOCKING_LEN];

	const uns cache_blocking_len = MIN(outputs_len, cache_blocking_len);

	for (uns index = 0; index < w_len; index += cache_blocking_len) {
		const uns jndex_end = MIN(w_len, index + cache_blocking_len);

		for (uns cb_index = 0; cb_index < cache_blocking_len; ++cb_index) {
			for (uns jndex = index; jndex < jndex_end; jndex += AVX_U8_VEC_LEN) {
				const __m256i *weight = (__m256i*) &w[jndex + cb_index*w_len];
				const __m256i *input = (__m256i*) &input[jndex];
				const __m256i sum = _mm256_maddubs_epi16(*weight, *input);
				__m256i *bigsum = &part_results[cb_index];
				// FIXME: When to do bit shifts?
				*bigsum = _mm256_adds_epi16(*bigsum, sum);
			}
		}
	}

	for (uns cb_index = 0; cb_index < cache_blocking_len; cb_index += cache_blocking_len) {
		// _mm256_permute2x128_si256: http://www.felixcloutier.com/x86/VPERM2I128.html
		// _mm256_shuffle_epi8: https://software.intel.com/en-us/node/582929
		// _mm256_hadds_epi16: https://software.intel.com/en-us/node/582799, http://www.felixcloutier.com/x86/PHADDSW.html
		// _mm256_blendv_epi8: https://software.intel.com/en-us/node/582820
		// _mm256_shuffle_epi8: https://software.intel.com/en-us/node/582929
		// _mm256_srli_epi16: https://software.intel.com/en-us/node/582887
		// _mm256_srai_epi16: https://software.intel.com/en-us/node/582815
		// _mm256_setr_epi64x: https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_setr_epi64x&expand=4649

		// Create 2 128bit parts with 16bit integers.
#define SUM_2x128(X, Y) \
	const __m256i x##X = part_results[cb_index + X]; \
	const __m256i x##Y = part_results[cb_index + Y]; \
	__m256i sum##X = _mm256_adds_epi16( _mm256_permute2x128_si256(x##X, x##Y, 0x20), _mm256_permute2x128_si256(x##X, x##Y, 0x31) )	
		SUM_2x128(0, 1);
		SUM_2x128(2, 3);
		SUM_2x128(4, 5);
		SUM_2x128(6, 7);
		SUM_2x128(8, 9);
		SUM_2x128(10, 11);
		SUM_2x128(12, 13);
		SUM_2x128(14, 15);
#undef SUM_2x128

		// Create 4 64bit parts with 16bit integers.
#define SUM_4x64(X, Y) \
	sum##X = _mm256_adds_epi16(_mm256_permute2x128_si256(_mm256_permute4x64_epi64(sum##X, 0x20), _mm256_permute4x64_epi64(sum##Y, 0x20), 0x20), \
				_mm256_permute2x128_si256(_mm256_permute4x64_epi64(sum##X, 0x31), _mm256_permute4x64_epi64(sum##Y, 0x31), 0x20))
		SUM_4x64(0, 2);
		SUM_4x64(4, 6);
		SUM_4x64(8, 10);
		SUM_4x64(12, 14);
#undef SUM_4x64

		// Create 8 32bit parts with 16bit integers.
#define SUM_8x32(X, Y) \
	sum##X = _mm256_adds_epi16(_mm256_permute2x128_si256(_mm256_permutevar8x32_epi32(x##X, _mm256_setr_epi32(0, 0, 0, 0, 6, 4, 2, 0)), \
							     _mm256_permutevar8x32_epi32(x##Y, _mm256_setr_epi32(0, 0, 0, 0, 6, 4, 2, 0)), 0x20), \
				   _mm256_permute2x128_si256(_mm256_permutevar8x32_epi32(x##X, _mm256_setr_epi32(0, 0, 0, 0, 7, 5, 3, 1)), \
					   		     _mm256_permutevar8x32_epi32(x##Y, _mm256_setr_epi32(0, 0, 0, 0, 7, 5, 3, 1)), 0x20))
		SUM_8x32(0, 4);
		SUM_8x32(8, 12);
#undef SUM_8x32

		// Create 16 parts with 16bit integers.
		sum0 = _mm256_hadds_epi16(sum0, sum8);

		// Final operations.
		sum0 = _mm256_max_epi16(sum0, _mm256_setzero_si256());
		sum0 = _mm256_srai_epi16(sum0, 8);

		// FIXME: Add last conversion of 16bit integers to 8bit integers.
		// stream store, type conversions seem ugly...
		_mm_stream_ps((float*)&outputs[cb_index], (__m128)_mm256_castsi256_si128(sum0));
	}

	return cache_blocking_len;
}