Example #1
0
bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
{
	return alloc_cpumask_var(mask, flags | __GFP_ZERO);
}
Example #2
0
File: cpu.c Project: Ca1ne/Enoch316
static int __init alloc_frozen_cpus(void)
{
	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
		return -ENOMEM;
	return 0;
}
Example #3
0
static void __init init_irq_default_affinity(void)
{
    alloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
    cpumask_setall(irq_default_affinity);
}
int rtas_ibm_suspend_me(struct rtas_args *args)
{
	long state;
	long rc;
	unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
	struct rtas_suspend_me_data data;
	DECLARE_COMPLETION_ONSTACK(done);
	cpumask_var_t offline_mask;
	int cpuret;

	if (!rtas_service_present("ibm,suspend-me"))
		return -ENOSYS;

	/* Make sure the state is valid */
	rc = plpar_hcall(H_VASI_STATE, retbuf,
			 ((u64)args->args[0] << 32) | args->args[1]);

	state = retbuf[0];

	if (rc) {
		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc);
		return rc;
	} else if (state == H_VASI_ENABLED) {
		args->args[args->nargs] = RTAS_NOT_SUSPENDABLE;
		return 0;
	} else if (state != H_VASI_SUSPENDING) {
		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n",
		       state);
		args->args[args->nargs] = -1;
		return 0;
	}

	if (!alloc_cpumask_var(&offline_mask, GFP_TEMPORARY))
		return -ENOMEM;

	atomic_set(&data.working, 0);
	atomic_set(&data.done, 0);
	atomic_set(&data.error, 0);
	data.token = rtas_token("ibm,suspend-me");
	data.complete = &done;

	/* All present CPUs must be online */
	cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask);
	cpuret = rtas_online_cpus_mask(offline_mask);
	if (cpuret) {
		pr_err("%s: Could not bring present CPUs online.\n", __func__);
		atomic_set(&data.error, cpuret);
		goto out;
	}

	stop_topology_update();

	/* Call function on all CPUs.  One of us will make the
	 * rtas call
	 */
	if (on_each_cpu(rtas_percpu_suspend_me, &data, 0))
		atomic_set(&data.error, -EINVAL);

	wait_for_completion(&done);

	if (atomic_read(&data.error) != 0)
		printk(KERN_ERR "Error doing global join\n");

	start_topology_update();

	/* Take down CPUs not online prior to suspend */
	cpuret = rtas_offline_cpus_mask(offline_mask);
	if (cpuret)
		pr_warn("%s: Could not restore CPUs to offline state.\n",
				__func__);

out:
	free_cpumask_var(offline_mask);
	return atomic_read(&data.error);
}
Example #5
0
/**
 * kthread_create_on_node - create a kthread.
 * @threadfn: the function to run until signal_pending(current).
 * @data: data ptr for @threadfn.
 * @node: memory node number.
 * @namefmt: printf-style name for the thread.
 *
 * Description: This helper function creates and names a kernel
 * thread.  The thread will be stopped: use wake_up_process() to start
 * it.  See also kthread_run().
 *
 * If thread is going to be bound on a particular cpu, give its node
 * in @node, to get NUMA affinity for kthread stack, or else give -1.
 * When woken, the thread will run @threadfn() with @data as its
 * argument. @threadfn() can either call do_exit() directly if it is a
 * standalone thread for which no one will call kthread_stop(), or
 * return when 'kthread_should_stop()' is true (which means
 * kthread_stop() has been called).  The return value should be zero
 * or a negative error number; it will be passed to kthread_stop().
 *
 * Returns a task_struct or ERR_PTR(-ENOMEM).
 */
struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
					   void *data, int node,
					   const char namefmt[],
					   ...)
{
	struct kthread_create_info create;

	create.threadfn = threadfn;
	create.data = data;
	create.node = node;
	init_completion(&create.done);

	spin_lock(&kthread_create_lock);
	list_add_tail(&create.list, &kthread_create_list);
	spin_unlock(&kthread_create_lock);

	wake_up_process(kthreadd_task);
	wait_for_completion(&create.done);

	if (!IS_ERR(create.result)) {
		static const struct sched_param param = { .sched_priority = 0 };
		va_list args;

		va_start(args, namefmt);
		vsnprintf(create.result->comm, sizeof(create.result->comm),
			  namefmt, args);
		va_end(args);
		/*
		 * root may have changed our (kthreadd's) priority or CPU mask.
		 * The kernel thread should not inherit these properties.
		 */
		sched_setscheduler_nocheck(create.result, SCHED_NORMAL, &param);
		
		cpumask_var_t in_mask;
		alloc_cpumask_var(&in_mask, GFP_KERNEL);
		
		set_cpus_allowed_ptr(create.result, in_mask);
		free_cpumask_var(in_mask);
	}
	return create.result;
}
EXPORT_SYMBOL(kthread_create_on_node);

static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
{
	/* Must have done schedule() in kthread() before we set_task_cpu */
	if (!wait_task_inactive(p, state)) {
		WARN_ON(1);
		return;
	}
	/* It's safe because the task is inactive. */
	do_set_cpus_allowed(p, cpumask_of(cpu));
	p->flags |= PF_NO_SETAFFINITY;
}

/**
 * kthread_bind - bind a just-created kthread to a cpu.
 * @p: thread created by kthread_create().
 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 *
 * Description: This function is equivalent to set_cpus_allowed(),
 * except that @cpu doesn't need to be online, and the thread must be
 * stopped (i.e., just returned from kthread_create()).
 */
void kthread_bind(struct task_struct *p, unsigned int cpu)
{
	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
}
/*
 * mipsmt_sys_sched_setaffinity - set the cpu affinity of a process
 */
asmlinkage long mipsmt_sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_var_t cpus_allowed, new_mask, effective_mask;
	struct thread_info *ti;
	struct task_struct *p;
	int retval;

	if (len < sizeof(new_mask))
		return -EINVAL;

	if (copy_from_user(&new_mask, user_mask_ptr, sizeof(new_mask)))
		return -EFAULT;

	get_online_cpus();
	rcu_read_lock();

	p = find_process_by_pid(pid);
	if (!p) {
		rcu_read_unlock();
		put_online_cpus();
		return -ESRCH;
	}

	/* Prevent p going away */
	get_task_struct(p);
	rcu_read_unlock();

	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
	if (!alloc_cpumask_var(&effective_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_new_mask;
	}
	retval = -EPERM;
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
		goto out_unlock;

	retval = security_task_setscheduler(p);
	if (retval)
		goto out_unlock;

	/* Record new user-specified CPU set for future reference */
	cpumask_copy(&p->thread.user_cpus_allowed, new_mask);

 again:
	/* Compute new global allowed CPU set if necessary */
	ti = task_thread_info(p);
	if (test_ti_thread_flag(ti, TIF_FPUBOUND) &&
	    cpus_intersects(*new_mask, mt_fpu_cpumask)) {
		cpus_and(*effective_mask, *new_mask, mt_fpu_cpumask);
		retval = set_cpus_allowed_ptr(p, effective_mask);
	} else {
		cpumask_copy(effective_mask, new_mask);
		clear_ti_thread_flag(ti, TIF_FPUBOUND);
		retval = set_cpus_allowed_ptr(p, new_mask);
	}

	if (!retval) {
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(effective_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			cpumask_copy(new_mask, cpus_allowed);
			goto again;
		}
	}
out_unlock:
	free_cpumask_var(effective_mask);
out_free_new_mask:
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
	put_task_struct(p);
	put_online_cpus();
	return retval;
}
Example #7
0
/* Requires cpu_add_remove_lock to be held */
static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
{
	int mycpu, err, nr_calls = 0;
	void *hcpu = (void *)(long)cpu;
	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
	struct take_cpu_down_param tcd_param = {
		.mod = mod,
		.hcpu = hcpu,
	};
	cpumask_var_t cpumask;

	if (num_online_cpus() == 1)
		return -EBUSY;

	if (!cpu_online(cpu))
		return -EINVAL;

	/* Move the downtaker off the unplug cpu */
	if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
		return -ENOMEM;
	cpumask_andnot(cpumask, cpu_online_mask, cpumask_of(cpu));
	set_cpus_allowed_ptr(current, cpumask);
	free_cpumask_var(cpumask);
	migrate_disable();
	mycpu = smp_processor_id();
	if (mycpu == cpu) {
		printk(KERN_ERR "Yuck! Still on unplug CPU\n!");
		migrate_enable();
		return -EBUSY;
	}

	cpu_hotplug_begin();
	err = cpu_unplug_begin(cpu);
	if (err) {
		printk("cpu_unplug_begin(%d) failed\n", cpu);
		goto out_cancel;
	}

	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
	if (err) {
		nr_calls--;
		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
		printk("%s: attempt to take down CPU %u failed\n",
				__func__, cpu);
		goto out_release;
	}

	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
	if (err) {
		/* CPU didn't die: tell everyone.  Can't complain. */
		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);

		goto out_release;
	}
	BUG_ON(cpu_online(cpu));

	/*
	 * The migration_call() CPU_DYING callback will have removed all
	 * runnable tasks from the cpu, there's only the idle task left now
	 * that the migration thread is done doing the stop_machine thing.
	 *
	 * Wait for the stop thread to go away.
	 */
	while (!idle_cpu(cpu))
		cpu_relax();

	/* This actually kills the CPU. */
	__cpu_die(cpu);

	/* CPU is completely dead: tell everyone.  Too late to complain. */
	cpu_notify_nofail(CPU_DEAD | mod, hcpu);

	check_for_tasks(cpu);

out_release:
	cpu_unplug_done(cpu);
out_cancel:
	migrate_enable();
	cpu_hotplug_done();
	if (!err)
		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
	return err;
}
Example #8
0
File: vm.c Project: joelagnel/ktap
/* ktap mainthread initization, main entry for ktap */
ktap_state *kp_newstate(struct ktap_parm *parm, struct dentry *dir, char **argv)
{
	ktap_state *ks;
	pid_t pid;
	int cpu;

	ks = kzalloc(sizeof(ktap_state) + sizeof(ktap_global_state),
		     GFP_KERNEL);
	if (!ks)
		return NULL;

	ks->stack = kp_malloc(ks, KTAP_STACK_SIZE);
	G(ks) = (ktap_global_state *)(ks + 1);
	G(ks)->mainthread = ks;
	G(ks)->seed = 201236; /* todo: make more random in future */
	G(ks)->task = current;
	G(ks)->verbose = parm->verbose; /* for debug use */
	G(ks)->print_timestamp = parm->print_timestamp;
	G(ks)->workload = parm->workload;
	INIT_LIST_HEAD(&(G(ks)->timers));
	INIT_LIST_HEAD(&(G(ks)->probe_events_head));
	G(ks)->exit = 0;

	if (kp_transport_init(ks, dir))
		goto out;

	pid = (pid_t)parm->trace_pid;
	if (pid != -1) {
		struct task_struct *task;

		rcu_read_lock();
		task = pid_task(find_vpid(pid), PIDTYPE_PID);
		if (!task) {
			kp_error(ks, "cannot find pid %d\n", pid);
			rcu_read_unlock();
			goto out;
		}
		G(ks)->trace_task = task;
		get_task_struct(task);
		rcu_read_unlock();
	}

	if( !alloc_cpumask_var(&G(ks)->cpumask, GFP_KERNEL))
		goto out;

	cpumask_copy(G(ks)->cpumask, cpu_online_mask);

	cpu = parm->trace_cpu;
	if (cpu != -1) {
		if (!cpu_online(cpu)) {
			printk(KERN_INFO "ktap: cpu %d is not online\n", cpu);
			goto out;
		}

		cpumask_clear(G(ks)->cpumask);
		cpumask_set_cpu(cpu, G(ks)->cpumask);
	}

	if (cfunction_cache_init(ks))
		goto out;

	kp_tstring_resize(ks, 512); /* set inital string hashtable size */

	ktap_init_state(ks);
	ktap_init_registry(ks);
	ktap_init_arguments(ks, parm->argc, argv);

	/* init library */
	kp_init_baselib(ks);
	kp_init_kdebuglib(ks);
	kp_init_timerlib(ks);
	kp_init_ansilib(ks);

	if (alloc_kp_percpu_data())
		goto out;

	if (kp_probe_init(ks))
		goto out;

	return ks;

 out:
	G(ks)->exit = 1;
	kp_final_exit(ks);
	return NULL;
}
Example #9
0
static int rps_sock_flow_sysctl(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp, loff_t *ppos)
{
	unsigned int orig_size, size;
	int ret, i;
	struct ctl_table tmp = {
		.data = &size,
		.maxlen = sizeof(size),
		.mode = table->mode
	};
	struct rps_sock_flow_table *orig_sock_table, *sock_table;
	static DEFINE_MUTEX(sock_flow_mutex);

	mutex_lock(&sock_flow_mutex);

	orig_sock_table = rcu_dereference_protected(rps_sock_flow_table,
					lockdep_is_held(&sock_flow_mutex));
	size = orig_size = orig_sock_table ? orig_sock_table->mask + 1 : 0;

	ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);

	if (write) {
		if (size) {
			if (size > 1<<29) {
				/* Enforce limit to prevent overflow */
				mutex_unlock(&sock_flow_mutex);
				return -EINVAL;
			}
			size = roundup_pow_of_two(size);
			if (size != orig_size) {
				sock_table =
				    vmalloc(RPS_SOCK_FLOW_TABLE_SIZE(size));
				if (!sock_table) {
					mutex_unlock(&sock_flow_mutex);
					return -ENOMEM;
				}
				rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1;
				sock_table->mask = size - 1;
			} else
				sock_table = orig_sock_table;

			for (i = 0; i < size; i++)
				sock_table->ents[i] = RPS_NO_CPU;
		} else
			sock_table = NULL;

		if (sock_table != orig_sock_table) {
			rcu_assign_pointer(rps_sock_flow_table, sock_table);
			if (sock_table) {
				static_key_slow_inc(&rps_needed);
				static_key_slow_inc(&rfs_needed);
			}
			if (orig_sock_table) {
				static_key_slow_dec(&rps_needed);
				static_key_slow_dec(&rfs_needed);
				synchronize_rcu();
				vfree(orig_sock_table);
			}
		}
	}

	mutex_unlock(&sock_flow_mutex);

	return ret;
}
#endif /* CONFIG_RPS */

#ifdef CONFIG_NET_FLOW_LIMIT
static DEFINE_MUTEX(flow_limit_update_mutex);

static int flow_limit_cpu_sysctl(struct ctl_table *table, int write,
				 void __user *buffer, size_t *lenp,
				 loff_t *ppos)
{
	struct sd_flow_limit *cur;
	struct softnet_data *sd;
	cpumask_var_t mask;
	int i, len, ret = 0;

	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;

	if (write) {
		ret = cpumask_parse_user(buffer, *lenp, mask);
		if (ret)
			goto done;

		mutex_lock(&flow_limit_update_mutex);
		len = sizeof(*cur) + netdev_flow_limit_table_len;
		for_each_possible_cpu(i) {
			sd = &per_cpu(softnet_data, i);
			cur = rcu_dereference_protected(sd->flow_limit,
				     lockdep_is_held(&flow_limit_update_mutex));
			if (cur && !cpumask_test_cpu(i, mask)) {
				RCU_INIT_POINTER(sd->flow_limit, NULL);
				synchronize_rcu();
				kfree(cur);
			} else if (!cur && cpumask_test_cpu(i, mask)) {
				cur = kzalloc_node(len, GFP_KERNEL,
						   cpu_to_node(i));
				if (!cur) {
					/* not unwinding previous changes */
					ret = -ENOMEM;
					goto write_unlock;
				}
				cur->num_buckets = netdev_flow_limit_table_len;
				rcu_assign_pointer(sd->flow_limit, cur);
			}
		}
write_unlock:
		mutex_unlock(&flow_limit_update_mutex);
	} else {
		char kbuf[128];

		if (*ppos || !*lenp) {
			*lenp = 0;
			goto done;
		}

		cpumask_clear(mask);
		rcu_read_lock();
		for_each_possible_cpu(i) {
			sd = &per_cpu(softnet_data, i);
			if (rcu_dereference(sd->flow_limit))
				cpumask_set_cpu(i, mask);
		}
		rcu_read_unlock();

		len = min(sizeof(kbuf) - 1, *lenp);
		len = scnprintf(kbuf, len, "%*pb", cpumask_pr_args(mask));
		if (!len) {
			*lenp = 0;
			goto done;
		}
		if (len < *lenp)
			kbuf[len++] = '\n';
		if (copy_to_user(buffer, kbuf, len)) {
			ret = -EFAULT;
			goto done;
		}
		*lenp = len;
		*ppos += len;
	}

done:
	free_cpumask_var(mask);
	return ret;
}
Example #10
0
int acpi_processor_preregister_performance(
		struct acpi_processor_performance *performance)
{
	int count, count_target;
	int retval = 0;
	unsigned int i, j;
	cpumask_var_t covered_cpus;
	struct acpi_processor *pr;
	struct acpi_psd_package *pdomain;
	struct acpi_processor *match_pr;
	struct acpi_psd_package *match_pdomain;

	if (!alloc_cpumask_var(&covered_cpus, GFP_KERNEL))
		return -ENOMEM;

	mutex_lock(&performance_mutex);

	/*
	 * Check if another driver has already registered, and abort before
	 * changing pr->performance if it has. Check input data as well.
	 */
	for_each_possible_cpu(i) {
		pr = per_cpu(processors, i);
		if (!pr) {
			/* Look only at processors in ACPI namespace */
			continue;
		}

		if (pr->performance) {
			retval = -EBUSY;
			goto err_out;
		}

		if (!performance || !per_cpu_ptr(performance, i)) {
			retval = -EINVAL;
			goto err_out;
		}
	}

	/* Call _PSD for all CPUs */
	for_each_possible_cpu(i) {
		pr = per_cpu(processors, i);
		if (!pr)
			continue;

		pr->performance = per_cpu_ptr(performance, i);
		cpumask_set_cpu(i, pr->performance->shared_cpu_map);
		if (acpi_processor_get_psd(pr)) {
			retval = -EINVAL;
			continue;
		}
	}
	if (retval)
		goto err_ret;

	/*
	 * Now that we have _PSD data from all CPUs, lets setup P-state 
	 * domain info.
	 */
	cpumask_clear(covered_cpus);
	for_each_possible_cpu(i) {
		pr = per_cpu(processors, i);
		if (!pr)
			continue;

		if (cpumask_test_cpu(i, covered_cpus))
			continue;

		pdomain = &(pr->performance->domain_info);
		cpumask_set_cpu(i, pr->performance->shared_cpu_map);
		cpumask_set_cpu(i, covered_cpus);
		if (pdomain->num_processors <= 1)
			continue;

		/* Validate the Domain info */
		count_target = pdomain->num_processors;
		count = 1;
		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
			pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
			pr->performance->shared_type = CPUFREQ_SHARED_TYPE_HW;
		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
			pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ANY;

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_pr = per_cpu(processors, j);
			if (!match_pr)
				continue;

			match_pdomain = &(match_pr->performance->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			/* Here i and j are in the same domain */

			if (match_pdomain->num_processors != count_target) {
				retval = -EINVAL;
				goto err_ret;
			}

			if (pdomain->coord_type != match_pdomain->coord_type) {
				retval = -EINVAL;
				goto err_ret;
			}

			cpumask_set_cpu(j, covered_cpus);
			cpumask_set_cpu(j, pr->performance->shared_cpu_map);
			count++;
		}

		for_each_possible_cpu(j) {
			if (i == j)
				continue;

			match_pr = per_cpu(processors, j);
			if (!match_pr)
				continue;

			match_pdomain = &(match_pr->performance->domain_info);
			if (match_pdomain->domain != pdomain->domain)
				continue;

			match_pr->performance->shared_type = 
					pr->performance->shared_type;
			cpumask_copy(match_pr->performance->shared_cpu_map,
				     pr->performance->shared_cpu_map);
		}
	}

err_ret:
	for_each_possible_cpu(i) {
		pr = per_cpu(processors, i);
		if (!pr || !pr->performance)
			continue;

		/* Assume no coordination on any error parsing domain info */
		if (retval) {
			cpumask_clear(pr->performance->shared_cpu_map);
			cpumask_set_cpu(i, pr->performance->shared_cpu_map);
			pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL;
		}
		pr->performance = NULL; /* Will be set for real in register */
	}

err_out:
	mutex_unlock(&performance_mutex);
	free_cpumask_var(covered_cpus);
	return retval;
}