Example #1
0
int plot_fit_curve(float *a, int ncoeff, float tmin, float tmax)
{
  int i,j;            /* Looping variables */
  int nstep=500;      /* Number of steps used to compute curve */
  float xtmp,ytmp;    /* Values of x,y used in constructing the curve */
  float *polyx=NULL;  /* Polynomial in x */

  cpgsci(2);
  cpgslw(5);

  /*
   * Allocate memory for container for polynomial values
   */

  if(!(polyx = new_array(ncoeff,1))) {
    fprintf(stderr,"ERROR: plot_fit_curve\n");
    return 1;
  }

  /*
   * Loop through range of x values in step sizes determined by nstep.
   * At each value of x, compute the value of y by first calling poly
   *  to compute the values of the various powers of x at that step, and
   *  then multiplying by the coefficients contained in a.
   */

  for(i=0; i<nstep; i++) {

    /*
     * Compute the values of x and y at this step
     */

    xtmp = tmin + i*(tmax - tmin)/(1.0 * nstep);
    sinpoly(xtmp,polyx-1,ncoeff);
    ytmp = 0;
    for(j=0; j<ncoeff; j++)
      ytmp += a[j] * polyx[j];

    /*
     * Now connect this point to the previous one with a cpgdraw call
     */

    if(i == 0)
      cpgmove(xtmp,ytmp);
    else
      cpgdraw(xtmp,ytmp);
  }

  /*
   * Clean up and exit
   */

  cpgslw(1);
  cpgsci(1);
  polyx = del_array(polyx);

  return 0;
}
Example #2
0
void markcatobj(Secat object)
{
  cpgsci(2);
  cpgsfs(2);
  cpgslw(3);
  cpgcirc(object.x,object.y,3.0*object.fwhm);
  cpgsci(1);
  cpgslw(1);
}
Example #3
0
void plot_profile(int proflen, float *profile, const char *title,
                  const char *probtxt, const char *foldtxt,
                  int showerr, float *errors, int showid)
{
    int ii;
    float *x, overy, ymin, ymax;
    float errmin = 0.0, errmax = 0.0, offset, avg = 0.0, av[2];

    find_min_max_arr(proflen, profile, &ymin, &ymax);
    if (showerr)
        find_min_max_arr(proflen, errors, &errmin, &errmax);
    overy = 0.1 * (ymax + errmax - ymin - errmin);
    ymax = ymax + overy + errmax;
    ymin = ymin - overy - errmin;
    x = gen_fvect(proflen);
    for (ii = 0; ii < proflen; ii++)
        x[ii] = (float) ii / (float) proflen;
    cpgenv(0.0, 1.00001, ymin, ymax, 0, 0);
    cpgscf(2);
    cpglab("Pulse Phase", "Counts", "");
    if (showid)
        cpgiden();
    cpgslw(5);
    if (showerr) {
        cpgbin(proflen, x, profile, 0);
    } else {
        cpgline(proflen, x, profile);
    }
    cpgslw(1);
    if (showerr) {
        offset = 0.5 / (float) proflen;
        for (ii = 0; ii < proflen; ii++)
            x[ii] += offset;
        cpgerrb(6, proflen, x, profile, errors, 2);
        cpgpt(proflen, x, profile, 5);
    }
    for (ii = 0; ii < proflen; ii++)
        avg += profile[ii];
    avg /= proflen;
    cpgsls(4);
    x[0] = 0.0;
    x[1] = 1.0;
    av[0] = avg;
    av[1] = avg;
    cpgline(2, x, av);
    cpgsls(1);
    cpgsch(1.3);
    cpgmtxt("T", +2.0, 0.5, 0.5, title);
    cpgsch(1.0);
    cpgmtxt("T", +0.8, 0.5, 0.5, foldtxt);
    cpgmtxt("T", -1.5, 0.5, 0.5, probtxt);
    vect_free(x);
}
Example #4
0
static void demo2()
{
  static int nx = 40, ny = 40;
  int i, j, k, lw, ci, ls;
  float f[1600], fmin, fmax, alev;
  double x, y;
  static float tr[6] = {0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
  
  /* Compute a suitable function. A C array is used to emulate
     a 2D fortran array f(nx,ny). */

  fmin = fmax = 0.0;
  for (j=1; j<=ny; j++) {
    for (i=1; i<=ny; i++) {
      k = (j-1)*nx + (i-1);	/* Fortran convention */
      x = tr[0] + tr[1]*i + tr[2]*j;
      y = tr[3] + tr[4]*i + tr[5]*j;
      f[k] = cos(0.3*sqrt(x*2)-0.13333*y)*cos(0.13333*x)+
	(x-y)/(double)nx;
      if (f[k] < fmin) fmin = f[k];
      if (f[k] > fmax) fmax = f[k];
    }
  }
  
  /* Clear the screen. Set up window and viewport. */
  
  cpgpage();
  cpgsvp(0.05, 0.95, 0.05, 0.95);
  cpgswin(1.0, (float) nx, 1.0, (float) ny);
  cpgbox("bcts", 0.0, 0, "bcts", 0.0, 0);
  cpgmtxt("t", 1.0, 0.0, 0.0, "Contouring using cpgcont()");
  
  /* Draw the map. cpgcont is called once for each contour, using
     different line attributes to distinguish contour levels. */
  
  cpgbbuf();
  for (i=1; i<21; i++) {
    alev = fmin + i*(fmax-fmin)/20.0;
    lw = (i%5 == 0) ? 3 : 1;
    ci = (i < 10)   ? 2 : 3;
    ls = (i < 10)   ? 2 : 1;
    cpgslw(lw);
    cpgsci(ci);
    cpgsls(ls);
    cpgcont(f, nx, ny, 1, nx, 1, ny, &alev, -1, tr);
  }
  cpgslw(1);
  cpgsls(1);
  cpgsci(1);
  cpgebuf();
  return;
}
void aitoffGrid(void) {

  int i,j;
  double phi[MM], lam[MM], x[MM], y[MM];
  double rr, dd;

  cpgsci(DARKGRAY);
  cpgslw(1);

  for(i=0; i<MM; i++) phi[i] = i*M_PI/(double)(MM-1) - M_PI/2.0;

  // make meridians for each ra in (-180,180)
  for(i=0; i<NM; i++) {
    rr = i*2.0*M_PI/(double)(NM-1) - M_PI;

    // steps in dec on (-90,90)
    for(j=0; j<MM; j++) {
      project(rr,phi[j],&x[j],&y[j]);
    }
    for(j=1; j<MM; j++) {
      cpgmove(x[j-1],y[j-1]);
      cpgdraw(x[j],y[j]);
    }
  }

  // make parallels
  // steps in dec on (-90,90)
  for(i=0; i<MM; i++) phi[i] *= 2.0;
  for(i=0; i<NP; i++) {
    dd = i*M_PI/(double)(NP-1) - M_PI/2.0;

    // steps in RA from (-180,180)
    for(j=0; j<MM; j++) {
      project(phi[j],dd,&x[j],&y[j]);
    }
    for(j=1; j<MM; j++) {
      cpgmove(x[j-1],y[j-1]);
      cpgdraw(x[j],y[j]);
    }
  }

  cpgsci(1);
  cpgslw(1);

}
Example #6
0
void Plotter2::resetAttributes(const Plotter2ViewportInfo& vi) {
    cpgstbg(0); // reset background colour to the initial one (white)
    cpgsci(1);  // reset foreground colour to the initial one (black)
    cpgsls(1);  // reset line style to solid
    cpgslw(1);  // reset line width to 1
    cpgscf(1);  // reset font style to normal
    cpgsch(vi.fontSizeDef);// reset font size
    cpgsfs(1);  // reset fill style (solid)
}
Example #7
0
static void plot_harmonics(double rr, int zoomlevel, fftpart * fp)
{
   int ii, hh;
   double offsetf;
   char label[20];
   fftview *harmview;

   cpgsubp(4, 4);
   for (ii = 0, hh = 2; ii < 8; ii++, hh++) {
      cpgpanl(ii % 4 + 1, ii / 4 + 1);
      harmview = get_harmonic(hh * rr, zoomlevel, fp);
      if (harmview != NULL) {
         offsetf = plot_fftview(harmview, 0.0, 2.0, hh * rr, 2);
         snprintf(label, 20, "Harmonic %d", hh);
         cpgsave();
         cpgsch(2.0);
         cpgmtxt("T", -1.8, 0.05, 0.0, label);
         cpgunsa();
         free(harmview);
      }
   }
   for (ii = 8, hh = 2; ii < 16; ii++, hh++) {
      cpgpanl(ii % 4 + 1, ii / 4 + 1);
      harmview = get_harmonic(rr / (double) hh, zoomlevel, fp);
      if (harmview != NULL) {
         offsetf = plot_fftview(harmview, 0.0, 2.0, rr / (double) hh, 2);
         snprintf(label, 20, "Harmonic 1/%d", hh);
         cpgsave();
         cpgsch(2.0);
         cpgmtxt("T", -1.8, 0.05, 0.0, label);
         cpgunsa();
         free(harmview);
      }
   }
   cpgsubp(1, 1);
   cpgpanl(1, 1);
   cpgsvp(0.0, 1.0, 0.0, 1.0);
   cpgswin(2.0, 6.0, -2.0, 2.0);
   cpgmove(2.0, 0.0);
   cpgslw(3);
   cpgdraw(6.0, 0.0);
   cpgslw(1);
}
Example #8
0
void plotsection(SET *p, GRAPHCONTROL *gr, int mode) {
	float *x = (mode == LAT) ? p->y : p->x;
	float *y = p->d;
	int i;

	float x1, x2, y1, y2;

	/* Check we have data */
	if (p->n ==0) {
		cpgsvp(0.07, 0.52, 0.07, 0.30);
		cpgswin(0.0, 1.0, 0.0, 1.0);
		cpgmtxt("T",-3, 0.5, 0.5, "-- Sem Dados -- ");
		return;
	}

	x1 = x2 = x[0];
	y1 = y2 = y[0];
	for(i=0;i<p->n; i++) {
		if (x[i] < x1) x1 = x[i];
		if (x[i] > x2) x2 = x[i];
		if (y[i] < y1) y1 = y[i];
		if (y[i] > y2) y2 = y[i];
	}

	y2 = (( (int)y2 / 50 ) + 1) * 50.0;

	// Plot
	cpgsvp(0.07, 0.52, 0.07, 0.30);
	cpgswin(x1, x2, y2, 0.0);
	cpgbox("BCNST", 0.0, 0, "BCNST", 0.0, 0);
	cpgsch(0.7);
	cpgmtxt("R", 1.0, 0.0, 0.0, "[L] Trocar Lat/Lon");
	cpgmtxt("B", 3.0, 0.5, 0.5, (mode == LAT) ? "Latitude\\m94" : "Longitude\\m94");
	cpgmtxt("L", 3.0, 0.5, 0.5, "Profundidade (km)");
	(gr->printout) ? cpgsch(1.5) : (p->n > 50) ? cpgsch(FS) : cpgsch(1.0);
	cpgbbuf();

	for(i = 0; i< p->n; i++) {
		if (gr->colormode == COLORDEPTH)
			cpgsci(depthcolor(y[i]));
		else if (gr->colormode == COLORMAG)
			cpgsci(magcolor(p->m[i]));
		cpgpt1(x[i], y[i], 1);
	}
	cpgebuf();



	// Terminate
	cpgsch(FS);
	cpgsci(1);
	cpgslw(1);

	return;
}
// make a single Aitoff sky projection plot
//   using the data in ravec[field], decvec[field], and value[filter][field],
//   using the min and max data values in valmin[filter] and valmax[filter]
//   with filter=0
void plotOne(double nfields, double *value,
             double *ravec, double *decvec,
             double valmin, double valmax,
             char *label, char *title, char *plotName) {
  int nf;
  double xmin, xmax, ymin, ymax;

  // set up the plot
  openPlot(plotName);
  cpgbbuf();

  cpgpap(PLOTSIZE/0.7,0.7);

  cpgsvp(0.02,0.98,0.02,0.98);

  xmax = M_PI;      xmin = -xmax;
  ymax = 0.67*M_PI; ymin = -ymax;
  ymin -= 0.1*ymax; ymax -= 0.1*ymax;

  setupImplot(0.0, 1.0);
  cpgswin(xmin,xmax,ymin,ymax);

  // make a projected field circle for each field
  cpgsch(1.0);
  for(nf=0; nf<nfields; nf++) {
    projCircle(ravec[nf], decvec[nf], FIELD_RADIUS, 
               (value[nf]-valmin)/(valmax-valmin));
  }
  // the grids and galactic exclusion
  aitoffGrid();
  galaxy(peakL, taperL, taperB);

  cpgslw(2);
  cpgsch(2.0);
  cpgswin(0,1,0,1);
  mywedg(0.21, 0.15, 1.0, 12.0, valmin, valmax, label);
  cpgptxt(0.5,0.95,0.0,0.5,title);
  cpgslw(1);

  cpgebuf();
  closePlot();
}
Example #10
0
void plothistogram(SET *p, float w, int mode, float lm, float hm) {
	float *x = (mode == MAG) ? p->m : p->d;
	int i;
	char t[1024];

	float x1, x2, y1, y2;

	float *bins = NULL;
	float *freq = NULL;
	int nb;

	float a, b;
	float rms = -1;

	cpgsvp(0.63, 0.93, 0.07, 0.30);

	/* Check we have data */
	if (p->n ==0) {
		cpgswin(0.0, 1.0, 0.0, 1.0);
		cpgmtxt("T",-3, 0.5, 0.5, "-- Sem Dados -- ");
		return;
	}

	if (mode == MAG) {
		nb = gomag(x, p->n, w, &bins, &freq);
		rms = linefit(bins, freq, nb, lm, hm, &a, &b);
	} else {
		nb = godep(x, p->n, w, &bins, &freq);
	}

	/*
	 * Plot
	 */

	minmax(x, p->n, &x1, &x2);
	minmax(freq, nb, &y1, &y2);
	cpgswin(x1, x2, y1 - (y2-y1)*0.1, y2 * 1.2);
	cpgbox("BCNST", 0.0, 0, "BCMST", 0.0, 0);

	/*
	 * Labels
	 */
	cpgsch(0.7);
	cpgmtxt("L", 2.2, 0.0, 0.0, "[H] Trocar Mag/Dep");
	cpgmtxt("L", 1.0, 0.0, 0.0, "[B] Ajustar largura do bin");

	if (mode == MAG) {
		cpgmtxt("R", 3.0, 0.5, 0.5, "Log(n) Acumulado");
		cpgmtxt("B", 3.0, 0.5, 0.5, "Magnitude");

	} else {
		cpgmtxt("R", 3.0, 0.5, 0.5, "Log(n)");
		cpgmtxt("B", 3.0, 0.5, 0.5, "Profundidade (km)");
	}
	sprintf(t,"Min: %.1f Max: %.1f",x1,x2);
	if (mode == MAG) {
		cpgmtxt("B", -1.0, 0.05, 0.0,t);
	} else {
		cpgmtxt("T", -2.0, 0.95, 1.0,t);
	}
	cpgsch(FS);

	/*
	 * Plots
	 */
	cpgbin(nb, bins, freq, 1);

	if (mode == MAG) {
		cpgmove(x1, a*x1 + b);
		cpgdraw(x2, a*x2 + b);
		if ( lm >= 0.0 ) {
			float temp;
			
			cpgsci(2);
			cpgsch(1.2);
			temp = fabs((a*x1+b) - (a*x2+b));
			cpgpt1(lm, a*lm+b -temp * 0.06, 30);
			cpgpt1(hm, a*hm+b -temp * 0.06, 30);
			cpgsci(1);
			cpgsch(FS);
		}
	}

	if (mode == MAG) {
		cpgsch(0.7);
		sprintf(t,"f(x)=%.2f\\.x+%.2f",a,b);
		cpgmtxt("T",-2.0, 0.9, 1.0,t);

		sprintf(t,"b=%.2f",fabs(a));
		cpgmtxt("T",-3.2, 0.9, 1.0,t);
		cpgsch(FS);
	}

	cpgbbuf();

	/*
	 * Terminate
	 */
	cpgsci(1);
	cpgslw(1);

	cpgebuf();

	if (bins != NULL) free(bins);
	if (freq != NULL) free(freq);

	bins = NULL;
	freq = NULL;

	return;
}
/*
 * Class:     pulsarhunter_PgplotInterface
 * Method:    pgslw
 * Signature: (I)V
 */
JNIEXPORT void JNICALL Java_pulsarhunter_PgplotInterface_pgslw
  (JNIEnv *env, jclass cl , jint w){
	cpgslw(w);
}
Example #12
0
int main()

{
  char   text[80];
  int    ci, crval1, crval2, ilat, ilng, j, k, latpole, lonpole, stat[361],
         status;
  float  xr[512], yr[512];
  double lat[181], lng[361], phi[361], theta[361], x[361], y[361];
  struct celprm native, celestial;


  printf(
  "Testing WCSLIB celestial coordinate transformation routines (tcel1.c)\n"
  "---------------------------------------------------------------------\n");

  /* List status return messages. */
  printf("\nList of cel status return values:\n");
  for (status = 1; status <= 6; status++) {
    printf("%4d: %s.\n", status, cel_errmsg[status]);
  }

  printf("\n");


  /* Initialize. */
  celini(&native);

  /* Reference angles for the native graticule (in fact, the defaults). */
  native.ref[0] = 0.0;
  native.ref[1] = 0.0;

  /* Set up Bonne's projection with conformal latitude at +35. */
  strcpy(native.prj.code, "BON");
  native.prj.pv[1] = 35.0;


  /* Celestial graticule. */
  celini(&celestial);
  celestial.prj = native.prj;


  /* PGPLOT initialization. */
  strcpy(text, "/xwindow");
  cpgbeg(0, text, 1, 1);

  /* Define pen colours. */
  cpgscr(0, 0.0f, 0.0f, 0.0f);
  cpgscr(1, 1.0f, 1.0f, 0.0f);
  cpgscr(2, 1.0f, 1.0f, 1.0f);
  cpgscr(3, 0.5f, 0.5f, 0.8f);
  cpgscr(4, 0.8f, 0.5f, 0.5f);
  cpgscr(5, 0.8f, 0.8f, 0.8f);
  cpgscr(6, 0.5f, 0.5f, 0.8f);
  cpgscr(7, 0.8f, 0.5f, 0.5f);
  cpgscr(8, 0.3f, 0.5f, 0.3f);

  /* Define PGPLOT viewport. */
  cpgenv(-180.0f, 180.0f, -90.0f, 140.0f, 1, -2);

  /* Loop over CRVAL2, LONPOLE, and LATPOLE with CRVAL1 incrementing by */
  /* 15 degrees each time (it has an uninteresting effect).             */
  crval1 = -180;
  for (crval2 = -90; crval2 <=  90; crval2 += 30) {
    for (lonpole = -180; lonpole <= 180; lonpole += 30) {
      for (latpole = -1; latpole <= 1; latpole += 2) {
        /* For the celestial graticule, set the celestial coordinates of
         * the reference point of the projection (which for Bonne's
         * projection is at the intersection of the native equator and
         * prime meridian), the native longitude of the celestial pole,
         * and extra information needed to determine the celestial
         * latitude of the native pole.  These correspond to FITS keywords
         * CRVAL1, CRVAL2, LONPOLE, and LATPOLE.
         */
        celestial.ref[0] = (double)crval1;
        celestial.ref[1] = (double)crval2;
        celestial.ref[2] = (double)lonpole;
        celestial.ref[3] = (double)latpole;

        /* Skip invalid values of LONPOLE. */
        if (celset(&celestial)) {
          continue;
        }

        /* Skip redundant values of LATPOLE. */
        if (latpole == 1 && fabs(celestial.ref[3]) < 0.1) {
          continue;
        }

        /* Buffer PGPLOT output. */
        cpgbbuf();
        cpgeras();

        /* Write a descriptive title. */
        sprintf(text, "Bonne's projection (BON) - 15 degree graticule");
        printf("\n%s\n", text);
        cpgtext(-180.0f, -100.0f, text);

        sprintf(text, "centred on celestial coordinates (%7.2f,%6.2f)",
          celestial.ref[0], celestial.ref[1]);
        printf("%s\n", text);
        cpgtext (-180.0f, -110.0f, text);

        sprintf(text, "with north celestial pole at native coordinates "
          "(%7.2f,%7.2f)", celestial.ref[2], celestial.ref[3]);
        printf("%s\n", text);
        cpgtext(-180.0f, -120.0f, text);


        /* Draw the native graticule faintly in the background. */
        cpgsci(8);

        /* Draw native meridians of longitude. */
        for (j = 0, ilat = -90; ilat <= 90; ilat++, j++) {
          lat[j] = (double)ilat;
        }

        for (ilng = -180; ilng <= 180; ilng += 15) {
          lng[0] = (double)ilng;
          if (ilng == -180) lng[0] = -179.99;
          if (ilng ==  180) lng[0] =  179.99;

          /* Dash the longitude of the celestial pole. */
          if ((ilng-lonpole)%360 == 0) {
            cpgsls(2);
            cpgslw(5);
          }

          cels2x(&native, 1, 181, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 181; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
          cpgsls(1);
          cpgslw(1);
        }

        /* Draw native parallels of latitude. */
        lng[0]   = -179.99;
        lng[360] =  179.99;
        for (j = 1, ilng = -179; ilng < 180; ilng++, j++) {
          lng[j] = (double)ilng;
        }

        for (ilat = -90; ilat <= 90; ilat += 15) {
          lat[0] = (double)ilat;

          cels2x(&native, 361, 1, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 361; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
        }


        /* Draw a colour-coded celestial coordinate graticule. */
        ci = 1;

        /* Draw celestial meridians of longitude. */
        for (j = 0, ilat = -90; ilat <= 90; ilat++, j++) {
          lat[j] = (double)ilat;
        }

        for (ilng = -180; ilng <= 180; ilng += 15) {
          lng[0] = (double)ilng;

          if (++ci > 7) ci = 2;
          cpgsci(ilng?ci:1);

          /* Dash the reference longitude. */
          if ((ilng-crval1)%360 == 0) {
            cpgsls(2);
            cpgslw(5);
          }

          cels2x(&celestial, 1, 181, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 181; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            /* Test for discontinuities. */
            if (j > 0) {
              if (fabs(x[j]-x[j-1]) > 4.0 || fabs(y[j]-y[j-1]) > 4.0) {
                if (k > 1) cpgline(k, xr, yr);
                k = 0;
              }
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
          cpgsls(1);
          cpgslw(1);
        }

        /* Draw celestial parallels of latitude. */
        for (j = 0, ilng = -180; ilng <= 180; ilng++, j++) {
          lng[j] = (double)ilng;
        }

        ci = 1;
        for (ilat = -90; ilat <= 90; ilat += 15) {
          lat[0] = (double)ilat;

          if (++ci > 7) ci = 2;
          cpgsci(ilat?ci:1);

          /* Dash the reference latitude. */
          if (ilat == crval2) {
            cpgsls(2);
            cpgslw(5);
          }

          cels2x(&celestial, 361, 1, 1, 1, lng, lat, phi, theta, x, y, stat);

          k = 0;
          for (j = 0; j < 361; j++) {
            if (stat[j]) {
              if (k > 1) cpgline(k, xr, yr);
              k = 0;
              continue;
            }

            /* Test for discontinuities. */
            if (j > 0) {
              if (fabs(x[j]-x[j-1]) > 4.0 || fabs(y[j]-y[j-1]) > 4.0) {
                if (k > 1) cpgline(k, xr, yr);
                k = 0;
              }
            }

            xr[k] = -x[j];
            yr[k] =  y[j];
            k++;
          }

          cpgline(k, xr, yr);
          cpgsls(1);
          cpgslw(1);
        }

        /* Flush PGPLOT buffer. */
        cpgebuf();
        printf(" Type <RETURN> for next page: ");
        getc(stdin);

        /* Cycle through celestial longitudes. */
        if ((crval1 += 15) > 180) crval1 = -180;

        /* Skip boring celestial latitudes. */
        if (crval2 == 0) break;
      }

      if (crval2 == 0) break;
    }
  }

  cpgask(0);
  cpgend();

  return 0;
}
Example #13
0
void doPlot(pulsar *psr,int npsr,float *scale,int nScale,char *grDev,int plotUs,float fontSize,float centreMJD,int ptStyle,float ptSize,int error,float minyv,float maxyv,float minxv,float maxxv,int nOverlay,float labelsize,float fracX)
{
  int i,j,fitFlag=2,exitFlag=0,scale1=0,scale2,count[MAX_PSR],p,xautoscale=0,k,graphics=1;
  int yautoscale=0,plotpre=1;
  int ps,pe,pi;
  int time=0;
  char xstr[1000],ystr[1000];
  float px[2],py[2],pye1[2],pye2[2];
  float x[MAX_PSR][MAX_OBSN],y[MAX_PSR][MAX_OBSN],yerr1[MAX_PSR][MAX_OBSN],yerr2[MAX_PSR][MAX_OBSN],tmax,tmin,tmaxy1,tminy1,tmaxy2,tminy2;
  float sminy[MAX_PSR],smaxy[MAX_PSR];
  float minx[MAX_PSR],maxx[MAX_PSR],miny[MAX_PSR],maxy[MAX_PSR],plotx1,plotx2,ploty1,ploty2,mean;
  float fx[2],fy[2];
  float mouseX,mouseY;
  char key;
  //  float widthPap=0.0,aspectPap=0.618;
  float widthPap=0.0,aspectPap=1;
  float xx[MAX_OBSN],yy[MAX_OBSN],yyerr1[MAX_OBSN],yyerr2[MAX_OBSN];
  int num=0,colour;

  /* Obtain a graphical PGPLOT window */
  cpgbeg(0,grDev,1,1);
  //    cpgpap(widthPap,aspectPap);
  cpgsch(fontSize);
  cpgscf(2);
  cpgslw(2);
  cpgask(0);

  for (p=0;p<npsr;p++)
    {
      scale2 = psr[p].nobs;
      
      /*      sprintf(xstr,"MJD-%.1Lf",psr[0].param[param_pepoch].val[0]); */
      if (centreMJD == -1)
	sprintf(xstr,"Year"); 
      else
	sprintf(xstr,"MJD-%.1f",centreMJD); 

      sprintf(ystr,"Residual (\\gmsec)");
      
      count[p]=0;
      printf("points = %d\n",psr[p].nobs);
      for (i=0;i<psr[p].nobs;i++)
	{	  
	  if (psr[p].obsn[i].deleted == 0 &&
	      (psr[p].param[param_start].paramSet[0]!=1 || psr[p].param[param_start].fitFlag[0]!=1 ||
	       psr[p].param[param_start].val[0] < psr[p].obsn[i].bat) &&
	      (psr[p].param[param_finish].paramSet[0]!=1 || psr[p].param[param_finish].fitFlag[0]!=1 ||
	       psr[p].param[param_finish].val[0] > psr[p].obsn[i].bat))
	    {
	      /* x[p][count[p]] = (double)(psr[p].obsn[i].bat-psr[0].param[param_pepoch].val[0]);	     	       */
	      if (centreMJD == -1)
		x[p][count[p]] = calcYr(psr[p].obsn[i].bat);
	      else
		x[p][count[p]] = (double)(psr[p].obsn[i].bat-centreMJD); 
	      y[p][count[p]] = (double)psr[p].obsn[i].residual*1.0e6;
	      if (nScale>0)
		y[p][count[p]] *= scale[p];
	      count[p]++;
	    }
	}
      /* Remove mean from the residuals and calculate error bars */
      mean = findMean(y[p],psr,p,scale1,count[p]);
      count[p]=0;
      for (i=0;i<psr[p].nobs;i++)
	{
	  if (psr[p].obsn[i].deleted==0   &&
	      (psr[p].param[param_start].paramSet[0]!=1 || psr[p].param[param_start].fitFlag[0]!=1 ||
	       psr[p].param[param_start].val[0] < psr[p].obsn[i].bat) &&
	      (psr[p].param[param_finish].paramSet[0]!=1 || psr[p].param[param_finish].fitFlag[0]!=1 ||
	       psr[p].param[param_finish].val[0] > psr[p].obsn[i].bat))
	    {
	      psr[p].obsn[i].residual-=mean/1.0e6;
	      y[p][count[p]]-=mean;
	      yerr1[p][count[p]] = y[p][count[p]]-(float)psr[p].obsn[i].toaErr;
	      yerr2[p][count[p]] = y[p][count[p]]+(float)psr[p].obsn[i].toaErr;
	      count[p]++;
	    }
	}
    	  
      /* Get scaling for graph */
      if (minxv == maxxv) {
	minx[p] = findMin(x[p],psr,p,scale1,count[p]);
	maxx[p] = findMax(x[p],psr,p,scale1,count[p]);
      }
      else {
	minx[p] = minxv;
	maxx[p] = maxxv;
      }
      if (minyv == maxyv){
	miny[p] = findMin(y[p],psr,p,scale1,count[p]);
	maxy[p] = findMax(y[p],psr,p,scale1,count[p]);
      }
      else {
	miny[p] = minyv;
	maxy[p] = maxyv;
      }
      sminy[p] = miny[p]/1e6;
      smaxy[p] = maxy[p]/1e6;
    }
  for (p=0;p<npsr;p++)
    {
      for (i=0;i<count[p];i++)
	{
	  y[p][i] = (y[p][i]-miny[p])/(maxy[p]-miny[p]);
	  yerr1[p][i] = (yerr1[p][i]-miny[p])/(maxy[p]-miny[p]);
	  yerr2[p][i] = (yerr2[p][i]-miny[p])/(maxy[p]-miny[p]);
	}
      //      maxy[p] = 1.0;
      //      miny[p] = 0.0;
    }
  

  tmin = findMinVal(minx,npsr);
  tmax = findMaxVal(maxx,npsr);

  tminy2 = 0.0; //findMinVal(miny,npsr);
  tmaxy2 = 1.0; //findMaxVal(maxy,npsr);

  plotx1 = tmin-(tmax-tmin)*0.1;
  plotx2 = tmax+(tmax-tmin)*0.1;
  
  //  ploty1 = tminy2-(tmaxy2-tminy2)*0.1;
  //  ploty2 = tmaxy2+(tmaxy2-tminy2)*0.1;
	
  ploty1 = 0.1;
  ploty2 = 0.9;

  for (p=0;p<npsr;p++)
    {
      for (i=0;i<count[p];i++)
	{
	  y[p][i]=(p)+ploty1+y[p][i]*(ploty2-ploty1);
	  yerr1[p][i]=(p)+ploty1+yerr1[p][i]*(ploty2-ploty1);
	  yerr2[p][i]=(p)+ploty1+yerr2[p][i]*(ploty2-ploty1);
	}
    } 
  
  printf("ytick = %g\n",ploty2-ploty1);
      /*  cpgenv(plotx1,plotx2,ploty1,ploty2+(ploty2-ploty1)*(npsr-1),0,0); */
  //  cpgenv(plotx1,plotx2,0,npsr+1,0,-1);

  if (labelsize!=-1)
    cpgsch(labelsize);
  cpgsvp(fracX,1.0,0.1,1.0);
  cpgswin(0,1,0,npsr);
  cpgbox("ABC",0.0,0,"C",0.0,0);
  cpgsch(fontSize);
  char str[1000];
  for (p=0;p<npsr;p++)
    {
      cpgsch(fontSize);
      //      cpgtext(tmax+(tmax-tmin)*0.05,p+1.5-0.5,psr[p].name);
      cpgtext(0,p+0.6,psr[p].name);
      //      cpgsch(fontSize);
      if (plotUs==0)
	{
	  sprintf(str,"%.2f",(double)((smaxy[p]-sminy[p])*psr[p].param[param_f].val[0]));
	  cpgtext(0,p+0.4,str);
	  //	  cpgtext(tmax+(tmax-tmin)*0.05,p+1.1-0.5,str);
	}
      else
	{
	  sprintf(str,"%.2f\\gms",(double)((smaxy[p]-sminy[p])/1e-6));
	  //	  cpgtext(tmax+(tmax-tmin)*0.05,p+1.1-0.5,str);
	  cpgtext(0,p+0.1,str);
	}
      cpgsch(1);
      px[0] = 0;
      //      px[1] = tmax; //+(tmax-tmin)*0.03;
	px[1] = 1;
      py[0] = p;
      py[1] = p;
      cpgline(2,px,py);
      
    }
  if (labelsize!=-1)
    cpgsch(labelsize);

  cpgsvp(0.1,fracX,0.1,1.0);
  cpgswin(plotx1,plotx2,0,npsr);
  cpgbox("ATNSBC",0.0,0,"B",0.0,0);
  cpglab(xstr,"","");	    
  cpgsch(fontSize);

  for (p=0;p<npsr;p++)
    {
      cpgsls(1);
      px[0] = plotx1;
      //      px[1] = tmax; //+(tmax-tmin)*0.03;
      px[1] = plotx2;
      py[0] = p;
      py[1] = p;
      cpgline(2,px,py);
      cpgsls(4);
      px[0] = tmin;
      px[1] = tmax+(tmax-tmin)*0.03;

      py[0]=py[1] =(p)+ploty1+(-miny[p]/(maxy[p]-miny[p]))*(ploty2-ploty1);
      //      py[0]=py[1] = (p)+ploty1;
      //      py[0] = py[1] = (0-miny[p])/(maxy[p]-miny[p])/(ploty2-ploty1)+p;
      cpgline(2,px,py);

      px[0] = plotx1+0.005*(plotx2-plotx1);
      py[0] = p;
      pye1[0] = p + 5/(ploty2-ploty1);
      pye2[0] = p - 5/(ploty2-ploty1);
      cpgsls(1);
      cpgsch(3);
      //      cpgerry(1,px,pye1,pye2,1); 
      cpgsch(1);

      for (colour=0;colour<5;colour++)
	{
	  num=0;
	  for (i=0;i<count[p];i++)
	    {
	      if ((colour==0 && psr[p].obsn[i].freq<=500) ||
		  (colour==1 && psr[p].obsn[i].freq>500 && psr[p].obsn[i].freq<=1000) ||
		  (colour==2 && psr[p].obsn[i].freq>1000 && psr[p].obsn[i].freq<=1500) ||
		  (colour==3 && psr[p].obsn[i].freq>1500 && psr[p].obsn[i].freq<=3300) ||
		  (colour==4 && psr[p].obsn[i].freq>3300))
		{
		  xx[num]=x[p][i];
		  yy[num]=y[p][i];
		  yyerr1[num]=yerr1[p][i];
		  yyerr2[num]=yerr2[p][i];
		  //		  printf("plotting: %g\n",yy[num]);

		  num++;
		}
	    }
	  cpgsci(colour+1);
	  cpgsch(ptSize);
	  cpgpt(num,xx,yy,ptStyle);
	  if (error==1)
	    cpgerry(num,xx,yyerr1,yyerr2,1);
	  cpgsch(fontSize);
	  // Plot arrow giving one period
	  fx[0] = fx[1] = tmin-(tmax-tmin)*0.05;
	  //	  fy[0] = (p+1)+0.5-(float)(1.0/psr[p].param[param_f].val[0])/2.0/(ploty2-ploty1);
	  //	  fy[1] = (p+1)+0.5+(float)(1.0/psr[p].param[param_f].val[0])/2.0/(ploty2-ploty1);

	  //	  fy[0] = (-(float)(1.0/psr[p].param[param_f].val[0])/2.0/1.0e6 - miny[p])/(maxy[p]-miny[p])/(ploty2-ploty1) + (p+1)+0.5;
	  //	  fy[1] = ((float)(1.0/psr[p].param[param_f].val[0])/2.0/1.0e6 - miny[p])/(maxy[p]-miny[p])/(ploty2-ploty1) + (p+1)+0.5;
	  fy[0] = (p+1)+0.5+(float)(1.0/psr[p].param[param_f].val[0])/2.0/(maxy[p]-miny[p])*1e6;
	  fy[1] = (p+1)+0.5-(float)(1.0/psr[p].param[param_f].val[0])/2.0/(maxy[p]-miny[p])*1e6;
	  if (fy[0] > (p+1)+1) fy[0] = (p+1)+1;
	  if (fy[1] < (p+1)) fy[1] = (p+1);
	  
	  //	  cpgsls(1); cpgline(2,fx,fy); cpgsls(1);
	}
      cpgsci(1);
    }

  
  cpgend();
}
Example #14
0
int plot_shifts(Secat *shiftcat, int nshift)
{
  int i;                     /* Looping variable */
  int no_error=1;            /* Flag set to 0 on error */
  float x1,x2,y1,y2;         /* Limits on plot */
  float *fdx=NULL;           /* float version of x offsets */
  float *fdy=NULL;           /* float version of y offsets */
  float *fxptr,*fyptr;       /* Navigation pointers */
  double *dx=NULL;           /* x offsets */
  double *dy=NULL;           /* y offsets */
  double *xptr,*yptr;        /* Navigation pointers */
  double xmean, xsig, xmed;  /* Statistics on dx */
  double ymean, ysig, ymed;  /* Statistics on dx */
  Secat *sptr;               /* Pointer to navigate shiftcat */
  FILE *ofp=NULL;            /* Output file pointer */

  /*
   * Allocate memory for dx and dy arrays
   */

  if(!(dx = new_doubarray(nshift))) {
    fprintf(stderr,"ERROR: calc_shift_stats\n");
    return 1;
  }
  if(!(dy = new_doubarray(nshift)))
    no_error = 0;
  if(!(fdx = new_array(nshift,1)))
    no_error = 0;
  if(!(fdy = new_array(nshift,1)))
    no_error = 0;

  if(no_error) {

    /*
     * Transfer info to new arrays
     */

    for(i=0,sptr=shiftcat,xptr=dx,yptr=dy,fxptr=fdx,fyptr=fdy; 
	i<nshift; i++,sptr++,xptr++,yptr++,fxptr++,fyptr++) {
      *xptr = sptr->dx;
      *yptr = sptr->dy;
      *fxptr = (float) sptr->dx;
      *fyptr = (float) sptr->dy;
    }

    /*
     * Calculate statistics on dx and dy
     */

    doubstats(dx,nshift,&xmean,&xsig,&xmed);
    doubstats(dy,nshift,&ymean,&ysig,&ymed);

    /*
     * Give output values
     */

    printf("\nStatistics on x shift:\n");
    printf("  mean = %f\n",xmean);
    printf("  rms = %f\n",xsig);
    printf("  median = %f\n",xmed);
    printf("Statistics on y shift:\n");
    printf("  mean = %f\n",ymean);
    printf("  rms = %f\n",ysig);
    printf("  median = %f\n",ymed);

    /*
     * Set the limits and median
     */


    x1 = xmed - 5.0 * xsig;
    x2 = xmed + 5.0 * xsig;
    y1 = ymed - 5.0 * ysig;
    y2 = ymed + 5.0 * ysig;

    /*
     * Plot distribution
     */

    cpgslct(2);
    cpgenv(x1,x2,y1,y2,0,1);
    cpglab("x shift","y shift","Calculated Shifts");
    cpgpt(nshift,fdx,fdy,9);

    /*
     * Plot median
     */

    cpgsci(2);
    cpgslw(5);
    fdx[0] = fdx[1] = xmed;
    fdy[0] = y1;
    fdy[1] = y2;
    cpgline(2,fdx,fdy);
    fdy[0] = fdy[1] = ymed;
    fdx[0] = x1;
    fdx[1] = x2;
    cpgline(2,fdx,fdy);
    cpgsci(1);
    cpgslw(1);
  }

  /*
   * Write median shifts to output file -- NB: for these to be the
   *  proper shifts for an iraf imcombine offsets file, the value
   *  need to be the negative of what the above calculation gives.
   */

  if(!(ofp = open_writefile("tmp.offsets")))
    no_error = 0;
  else
    fprintf(ofp,"%8.2f %8.2f\n",-xmed,-ymed);

  /*
   * Clean up and exit
   */

  dx = del_doubarray(dx);
  dy = del_doubarray(dy);
  fdx = del_array(fdx);
  fdy = del_array(fdy);
  if(ofp)
    fclose(ofp);
  if(no_error)
    return 0;
  else {
    fprintf(stderr,"ERROR: calc_shift_stats\n");
    return 1;
  }
}
Example #15
0
int main()

{
  /* Set up a 2 x 2 lookup table. */
  const int M = 2;
  const int K[] = {K1, K2};
  const int map[] = {0, 1};
  const double crval[] = {0.0, 0.0};

  char text[80];
  int i, j, k, l, l1, l2, l3, lstep, m, stat[NP*NP], status;
  float array[NP][NP], clev[31], v0, v1, w;
  const float scl = 2.0f/(NP-1);
  float ltm[6];
  double x[NP][NP][2], world[NP][NP][2];
  struct tabprm tab;

  printf("Testing WCSLIB coordinate lookup table routines (ttab2.c)\n"
         "---------------------------------------------------------\n");

  /* List status return messages. */
  printf("\nList of tab status return values:\n");
  for (status = 1; status <= 5; status++) {
    printf("%4d: %s.\n", status, tab_errmsg[status]);
  }

  printf("\n");


  /* PGPLOT initialization. */
  strcpy(text, "/xwindow");
  cpgbeg(0, text, 1, 1);
  cpgvstd();
  cpgsch(0.7f);

  /* The viewport is slightly oversized. */
  cpgwnad(-0.65f, 1.65f, -0.65f, 1.65f);

  for (l = 0; l <= 30; l++) {
    clev[l] = 0.2f*(l-10);
  }

  ltm[0] = -scl*(1.0f + (NP-1)/4.0f);
  ltm[1] =  scl;
  ltm[2] =  0.0f;
  ltm[3] = -scl*(1.0f + (NP-1)/4.0f);
  ltm[4] =  0.0f;
  ltm[5] =  scl;


  /* Set up the lookup table. */
  tab.flag = -1;
  if ((status = tabini(1, M, K, &tab))) {
    printf("tabini ERROR %d: %s.\n", status, tab_errmsg[status]);
    return 1;
  }

  tab.M = M;
  for (m = 0; m < tab.M; m++) {
    tab.K[m] = K[m];
    tab.map[m] = map[m];
    tab.crval[m] = crval[m];

    for (k = 0; k < tab.K[m]; k++) {
      tab.index[m][k] = (double)k;
    }
  }

  /* Subdivide the interpolation element. */
  for (i = 0; i < NP; i++) {
    for (j = 0; j < NP; j++) {
      x[i][j][0] = j*(K1-1.0)*scl - 0.5 - crval[0];
      x[i][j][1] = i*(K2-1.0)*scl - 0.5 - crval[1];
    }
  }

  /* The first coordinate element is static. */
  tab.coord[0] = 0.0;
  tab.coord[2] = 0.0;
  tab.coord[4] = 0.0;
  tab.coord[6] = 0.0;

  /* (k1,k2) = (0,0). */
  tab.coord[1] = 0.0;

  /* The second coordinate element varies in three of the corners. */
  for (l3 = 0; l3 <= 100; l3 += 20) {
    /* (k1,k2) = (1,1). */
    tab.coord[7] = 0.01 * l3;

    for (l2 = 0; l2 <= 100; l2 += 20) {
      /* (k1,k2) = (0,1). */
      tab.coord[5] = 0.01 * l2;

      cpgpage();
      for (l1 = 0; l1 <= 100; l1 += 2) {
        /* (k1,k2) = (1,0). */
        tab.coord[3] = 0.01 * l1;

        /* Compute coordinates within the interpolation element. */
        tab.flag = 0;
        if ((status = tabx2s(&tab, NP*NP, 2, (double *)x, (double *)world,
                             stat))) {
          printf("tabx2s ERROR %d: %s.\n", status, tab_errmsg[status]);
        }

        /* Start a new plot. */
        cpgbbuf();
        cpgeras();
        cpgsci(1);
        cpgslw(3);
        cpgbox("BCNST", 0.0f, 0, "BCNSTV", 0.0f, 0);
        cpgmtxt("T", 0.7f, 0.5f, 0.5f, "-TAB coordinates:  "
          "linear interpolation / extrapolation in 2-D");

        /* Draw the boundary of the interpolation element in red. */
        cpgsci(2);
        cpgmove(-0.5f,  0.0f);
        cpgdraw( 1.5f,  0.0f);

        cpgmove( 1.0f, -0.5f);
        cpgdraw( 1.0f,  1.5f);

        cpgmove( 1.5f,  1.0f);
        cpgdraw(-0.5f,  1.0f);

        cpgmove( 0.0f,  1.5f);
        cpgdraw( 0.0f, -0.5f);

        /* Label the value of the coordinate element in each corner. */
        sprintf(text, "%.1f", tab.coord[1]);
        cpgtext(-0.09f, -0.05f, text);
        sprintf(text, "%.2f", tab.coord[3]);
        cpgtext( 1.02f, -0.05f, text);
        sprintf(text, "%.1f", tab.coord[5]);
        cpgtext(-0.13f,  1.02f, text);
        sprintf(text, "%.1f", tab.coord[7]);
        cpgtext( 1.02f,  1.02f, text);

        cpgsci(1);
        /* Contour labelling: bottom. */
        v0 = world[0][0][1];
        v1 = world[0][NP-1][1];
        if (v0 != v1) {
          lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
          for (l = -200; l <= 300; l += lstep) {
            w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
            if (w < -0.5 || w > 1.5) continue;

            sprintf(text, "%4.1f", l*0.01f);
            cpgptxt(w+0.04f, -0.56f, 0.0f, 1.0f, text);
          }
        }

        /* Contour labelling: left. */
        v0 = world[0][0][1];
        v1 = world[NP-1][0][1];
        if (v0 != v1) {
          lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
          for (l = -200; l <= 300; l += lstep) {
            w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
            if (w < -0.5 || w > 1.5) continue;

            sprintf(text, "%4.1f", l*0.01f);
            cpgptxt(-0.52f, w-0.02f, 0.0f, 1.0f, text);
          }
        }

        /* Contour labelling: right. */
        v0 = world[0][NP-1][1];
        v1 = world[NP-1][NP-1][1];
        if (v0 != v1) {
          lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
          for (l = -200; l <= 300; l += lstep) {
            w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
            if (w < -0.5 || w > 1.5) continue;

            sprintf(text, "%.1f", l*0.01f);
            cpgptxt(1.52f, w-0.02f, 0.0f, 0.0f, text);
          }
        }

        /* Contour labelling: top. */
        v0 = world[NP-1][0][1];
        v1 = world[NP-1][NP-1][1];
        if (v0 != v1) {
          lstep = (abs((int)((v1-v0)/0.2f)) < 10) ? 20 : 40;
          for (l = -200; l <= 300; l += lstep) {
            w = -0.5f + 2.0f * (l*0.01f - v0) / (v1 - v0);
            if (w < -0.5 || w > 1.5) continue;

            sprintf(text, "%4.1f", l*0.01f);
            cpgptxt(w+0.04f, 1.52f, 0.0f, 1.0f, text);
          }
        }

        /* Draw contours for the second coordinate element. */
        for (i = 0; i < NP; i++) {
          for (j = 0; j < NP; j++) {
            array[i][j] = world[i][j][1];
          }
        }

        cpgsci(4);
        cpgslw(2);
        cpgcont(array[0], NP, NP, 1, NP, 1, NP, clev, 10, ltm);

        cpgsci(7);
        cpgcont(array[0], NP, NP, 1, NP, 1, NP, clev+10, 1, ltm);

        cpgsci(5);
        cpgcont(array[0], NP, NP, 1, NP, 1, NP, clev+11, 20, ltm);

        cpgebuf();
      }
    }
  }

  cpgend();

  tabfree(&tab);

  return 0;
}
// make six Aitoff sky projection plots
//   using the data in ravec[field], decvec[field], and value[filter][field],
//   using the min and max data values in valmin[filter] and valmax[filter]
//   with filter=0 to NFILTERS-1
void plotSix(double nfields, double **value,
             double *ravec, double *decvec,
             double *valmin, double *valmax,
             int horizontal,
             char *label, char *title, char* plotName, int mask) {

	char str[1024];
	int filt, nf;
	double xmin, xmax, ymin, ymax;

	openPlot(plotName);
	cpgbbuf();

	if(horizontal==1) 
		cpgpap(PLOTSIZE/0.5,0.5); else cpgpap(PLOTSIZE/1.0,1.0);

	cpgsvp(0.02,0.98,0.15,0.95);
	xmax = 0.9*(M_PI);      
	xmin = -xmax;
	ymax = 0.9*(0.6*M_PI);  
	ymin = -ymax;
	ymin -= 0.18*ymax;      
	ymax -= 0.18*ymax;

	setupImplot(0.0, 1.0);

	if(horizontal==1) 
		cpgsubp(3,2); 
	else 
		cpgsubp(2,3);

	cpgsch(3.0); 
	cpgslw(2);

	for(filt=0; filt<NFILTERS; filt++) {
		int thereisdata = 0;
		for(nf=0; nf<nfields; nf++) {
			if (value[filt][nf] != 0.0) {
				thereisdata = 1;
			}
		}
		
		if ( thereisdata ) {
			if(horizontal==1) 
				cpgpanl(hpanelx[filt],hpanely[filt]); 
			else 
				cpgpanl(vpanelx[filt],vpanely[filt]);

			cpgswin(xmin,xmax,ymin,ymax);
			for(nf=0; nf<nfields; nf++) {
				if ( mask == 0 ) {
					if(value[filt][nf] > 0.0)
						projCircle(ravec[nf], decvec[nf], FIELD_RADIUS, (value[filt][nf]-valmin[filt])/(valmax[filt]-valmin[filt]));
				} else if ( mask == 1) {
					if(value[filt][nf] != 0.0)
						projCircle(ravec[nf], decvec[nf], FIELD_RADIUS, (value[filt][nf]-valmin[filt])/(valmax[filt]-valmin[filt]));
				}
			}
			aitoffGrid();
			galaxy(peakL, taperL, taperB);
			sprintf(str,"%s: %s", label, filtername[filt]);
			if(valmax[filt]>valmin[filt])
				mywedg(0.2, 0.15, 1.0, 8.0, valmin[filt], valmax[filt], str);
		}
	}

	cpgsch(1.0);
	cpgsubp(1,1);
	cpgswin(0,1,0,1);
	cpgptxt(0.5,1.02,0.0,0.5,title);
	cpgslw(1);    
	cpgebuf();

	closePlot();
}
Example #17
0
void plot(GRAPHCONTROL *gr, SET *p) {
	char t[1024];

	cpgsch(FS);
	cpgsci(1);

	cpgsvp(0.07, 0.93, 0.35, 0.9);
	cpgeras();
	cpgswin(gr->xmin, gr->xmax, gr->ymin, gr->ymax);
	cpgbox("BCNST", 0.0, 0, "BCNST", 0.0, 0);

	cpgbbuf();

	cpgsch(0.8);
	float yp = 3.4;

	sprintf(t,"[n] Ano: %d/%d", p->y1, p->y2);
	cpgmtxt("T", yp, 0.0, 0.0, t);

	sprintf(t,"[m] Magnitude: %.2f/%.2f", p->m1, p->m2);
	cpgmtxt("T", yp, 0.25, 0.0, t);

	sprintf(t,"[s/0] Selecionar Regiao");
	(p->region) ? cpgsci(ON) : cpgsci(OFF);
	cpgmtxt("T", yp, 0.6, 0.0, t);
	cpgsci(1);

	cpgmtxt("T", yp, 0.85, 0.0, "[=] Salvar Print-out");


	yp -= 1.2;

	sprintf(t,"N: %ld",p->n);
	cpgmtxt("T", yp, 0.0, 0.0, t);

	sprintf(t,"[p] Profundidade(p): %.1f/%.1f",p->d1, p->d2);
	cpgmtxt("T", yp, 0.25, 0.0, t);

	sprintf(t,"Longitude: %.2f/%.2f",p->lon1, p->lon2);
	cpgmtxt("T", yp, 0.6, 0.0, t);

        cpgmtxt("T", yp, 0.85, 0.0, "[J] Definir intervalo");

	yp -= 1.2;

	sprintf(t,"Latitude: %.2f/%.2f", p->lat1, p->lat2);
	cpgmtxt("T", yp, 0.6, 0.0, t);

	sprintf(t,"[w] Zoom para todo o mapa");
	cpgmtxt("T", yp, 0.25, 0.0, t);
        
        cpgmtxt("T", yp, 0.85, 0.0, "    de ajuste");
        
	sprintf(t,"[c] Cor: %s", (gr->colormode == COLORDEPTH) ? "Profundidade" : (gr->colormode == COLORMAG) ? "Magnitude" : "Neutra");
	cpgmtxt("R", 1.0, 1.0, 1.0, t);


	(gr->hascontinents) ? cpgsci(ON) : cpgsci(OFF);
	sprintf(t,"[1] Continentes");
	cpgmtxt("R", 1.0, 0.25, 0.0, t);
	cpgsci(1);

	(gr->hasplates) ? cpgsci(ON) : cpgsci(OFF);
	sprintf(t,"[2] Placas");
	cpgmtxt("R", 1.0, 0.0, 0.0, t);
	cpgsci(1);

	// Legenda cores
	cpgsci(1);
	cpgsch(FS);

		/* Graphs */
	int i;
	if (gr->haspoints && p->n > 0) {

		int symbol = 17;
		(p->n > 50) ?  cpgsch(0.4) : cpgsch(FS);

		if (gr->colormode == COLORDEPTH)
			for(i = 0; i< p->n; i++) {
				cpgsci(depthcolor(p->d[i]));
				cpgpt1(p->x[i], p->y[i], symbol);
			}
		else if (gr->colormode == COLORMAG)
			for(i = 0; i< p->n; i++) {
				cpgsci(magcolor(p->m[i]));
				cpgpt1(p->x[i], p->y[i], symbol);
			}
		else
			cpgpt(p->n, p->x, p->y, symbol);

		cpgsci(1);
		cpgsch(FS);
	}

	if (gr->hascontinents >= 1) {
		cpgsci(1);
		cpgslw(2);
		for(i=0; i < ncontinentes; i++) {
			if (continentes[i][0] == -999 && continentes[i][1] == 999 ) {
				i++;
				cpgmove(continentes[i][0], continentes[i][1]);
				continue;
			}
			cpgdraw(continentes[i][0], continentes[i][1]);
		}

		if (gr->hascontinents >=2) {
			cpgslw(1);
			cpgsci(15);
			for(i=0; i < nborders; i++) {
				if (borders[i][0] == -999 && borders[i][1] == 999 ) {
					i++;
					cpgmove(borders[i][0], borders[i][1]);
					continue;
				}
				cpgdraw(borders[i][0], borders[i][1]);
			}
		}
	}

	if (gr->hasplates == 1) {
		cpgsci(3);
		cpgslw(3);
		for(i=0; i < nplates; i++) {
			if (plates[i][0] == -999 && plates[i][1] == 999 ) {
				i++;
				cpgmove(plates[i][0], plates[i][1]);
				continue;
			}
			if (fabs(plates[i][0] - plates[i-1][0]) > 180) {
				cpgmove(plates[i][0], plates[i][1]);
			}
			cpgdraw(plates[i][0], plates[i][1]);
		}
	}

	if (gr->colormode == COLORMAG)
		scalemag();
	else if (gr->colormode == COLORDEPTH)
		scaledep();

	cpgsci(1);
	cpgslw(1);

	cpgebuf();

	cpgsvp(0.07, 0.93, 0.35, 0.9);
	cpgswin(gr->xmin, gr->xmax, gr->ymin, gr->ymax);

	return;
}
Example #18
0
File: RGPMain.C Project: rjs80/RGIS
int main (int argc,char **argv)

	{
	int argPos, argNum = argc;
	char charBuffer [RGPBufferSIZE], panelTitle [RGPBufferSIZE], *outFile = (char *) "rgisplot";
	int panelRow, panelCol, panelRowNum,panelColNum, defaultLW;
	DBInt dataNum, entryNum = 0;
	DBInt ret, mode = 0, device = 0, format = 0, layout = 0;
	float x0, y0, x1, y1, pWidth = -1.0, pHeight = -1.0;
	DBObjData *dbData;

	for (argPos = 1;argPos < argNum; )
		{
		if (CMargTest (argv [argPos],"-m","--mode"))
			{
			const char *modes [] = { "interactive", "batch", (char *) NULL };

			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing mode!");    return (CMfailed); }
			if ((mode = CMoptLookup (modes,argv [argPos],true)) == DBFault)
				{ CMmsgPrint (CMmsgUsrError,"Invalid mode %s",argv [argPos]); goto Usage; }
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-d","--device"))
			{
			const char *devices [] = { "screen", "file", (char *) NULL };

			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing device!");  return (CMfailed); }
			if ((device = CMoptLookup (devices,argv [argPos],true)) == DBFault)
				{ CMmsgPrint (CMmsgUsrError,"Invalid device %s",argv [argPos]); goto Usage; }
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-p","--psize"))
			{
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing psize!");   return (CMfailed); }
			if ((argv [argPos] == (char *) NULL) || (sscanf (argv [argPos],"%f,%f",&pWidth,&pHeight) != 2))
				{ CMmsgPrint (CMmsgUsrError,"Invalid page size %s",argv [argPos]); goto Usage; }
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-f","--format"))
			{
			const char *formats [] = { "eps", "gif", "ppm", (char *) NULL };

			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing format!");  return (CMfailed); }
			if ((format = CMoptLookup (formats,argv [argPos],true)) == DBFault)
				{ CMmsgPrint (CMmsgUsrError,"Invalid format %s",argv [argPos]); goto Usage; }
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-l","--layout"))
			{
			const char *layouts [] = { "portrait","landscape", (char *) NULL };

			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing layout!");  return (CMfailed); }
			if ((layout = CMoptLookup (layouts,argv [argPos],true)) == DBFault)
				{ CMmsgPrint (CMmsgUsrError,"Invalid layout %s",argv [argPos]); goto Usage; }
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-o","--output"))
			{
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos)
				{ CMmsgPrint (CMmsgUsrError,"Missing output!");  return (CMfailed); }
			if (argv [argPos] == (char *) NULL)
				{ CMmsgPrint (CMmsgUsrError,"Invalid output file"); goto Usage; }
			outFile = argv [argPos];
			if ((argNum = CMargShiftLeft (argPos,argv,argNum)) <= argPos) break;
			continue;
			}
		if (CMargTest (argv [argPos],"-h","--help"))
			{
			Usage:
			CMmsgPrint (CMmsgUsrError,"Usage: rgisPlot [-m <>] [-d <>] [-f <>] [-l <>] [-o <>] -h");
			CMmsgPrint (CMmsgUsrError,"                 -m, --mode <interactive | batch>");
			CMmsgPrint (CMmsgUsrError,"                 -d, --device <screen | file>");
			CMmsgPrint (CMmsgUsrError,"                 -p, --psize width,height");
			CMmsgPrint (CMmsgUsrError,"                 -f, --format <eps | gif>");
			CMmsgPrint (CMmsgUsrError,"                 -l, --layout <landscape | portrait>");
			CMmsgPrint (CMmsgUsrError,"                 -o, --output <filename>");
			argNum = CMargShiftLeft (argPos,argv,argNum);
			return (DBSuccess);
			}
		if ((argv [argPos][0] == '-') && (strlen (argv [argPos]) > 1))
			{ CMmsgPrint (CMmsgUsrError,"Unknown option: %s!",argv [argPos]); return (CMfailed); }
		argPos++;

		}

	switch (device)
		{
		case 0: cpgopen ("/XWINDOW");	break;
		case 1:
			{
			char *formatStrings [] = { (char *) "CPS", (char *) "GIF", (char *) "PPM" };
			sprintf (charBuffer,layout == 0 ? "%s/V%s" : "%s/%s", outFile, formatStrings [format]);
			cpgopen (charBuffer);
			} break;
		default: return (CMfailed);
		}
	cpgscrn (0,"WHITE",&ret);
	if ((pWidth > 0.0) && (pHeight > 0.0)) cpgpap (pWidth, pHeight / pWidth);

	do	{
		RGPPrintMessage (mode,&entryNum,"Panel Layout [horizontal,vertical]:");
		while (fgets (charBuffer,sizeof (charBuffer) - 1,stdin) == (char *) NULL);
		if (sscanf (charBuffer,"%d,%d",&panelColNum,&panelRowNum) == 2) break;
		else
			if (RGPPrintError (mode,entryNum,"Panel layout input error")) goto Stop;
		} while (true);

	RGPInitPenColors ();
	cpgsubp (panelColNum,panelRowNum);
	cpgqlw (&defaultLW);

	ret = DBSuccess;
	for (panelRow = 0;panelRow < panelRowNum;++panelRow)
		for (panelCol = 0;panelCol < panelColNum; ++panelCol)

			{
			cpgpanl (panelCol + 1,panelRow + 1);
			cpgsch (1.8);
			cpgvstd ();
			do	{
				sprintf (charBuffer,"Panel Title [%d,%d]:",panelRow,panelCol);
				RGPPrintMessage (mode,&entryNum,charBuffer);
				if (fgets (panelTitle,sizeof (panelTitle) - 1,stdin) != (char *) NULL)
					{
					if (panelTitle [strlen (panelTitle) - 1] == '\n')
						panelTitle [strlen (panelTitle) - 1] = '\0';
					if (strlen (panelTitle) > 0) break;
					}
				RGPPrintError (mode,entryNum,"Panel Title input error"); goto Stop;
				} while (true);

			dataNum = 0;
			do {
				RGPPrintMessage (mode,&entryNum,"Mapextent [X0,Y0,X1,Y1]:");
				if (fgets (charBuffer,sizeof (charBuffer) - 1,stdin) == (char *) NULL) continue;
				if (sscanf (charBuffer,"%f,%f,%f,%f",&x0,&y0,&x1,&y1) == 4)	break;
				else	if (RGPPrintError (mode,entryNum,"Mapextent input error")) goto Stop;
				} while (true);
			cpgwnad (x0,x1,y0,y1);

			do	{
				sprintf (charBuffer,"RiverGIS data file [%d]:",++dataNum);
				RGPPrintMessage (mode,&entryNum, charBuffer);
				if ((fgets (charBuffer,sizeof (charBuffer) - 1,stdin) != (char *) NULL) &&
					 (strlen (charBuffer) > 0) && charBuffer [0] != '\n')
					{
					if (charBuffer [strlen (charBuffer) - 1] == '\n') charBuffer [strlen (charBuffer) - 1] = '\0';
					dbData = new DBObjData ();
					if (dbData->Read (charBuffer) != DBSuccess) { dataNum--; continue; }
					switch (dbData->Type ())
						{
						case DBTypeVectorPoint:
							if ((ret = RGPDrawVecPoint (mode, &entryNum, dbData)) == DBFault) goto Stop;
							break;
						case DBTypeVectorLine:
							if ((ret = RGPDrawVecLine (mode, &entryNum, dbData)) == DBFault) goto Stop;
							break;
						case DBTypeVectorPolygon:
							break;
						case DBTypeGridContinuous:
								if ((ret = RGPDrawGridContinuous (mode,&entryNum,dbData)) == DBFault)	goto Stop;
							break;
						case DBTypeGridDiscrete:
							break;
						case DBTypeNetwork:
							if ((ret = RGPDrawNetwork (mode, &entryNum, dbData)) == DBFault) goto Stop;
							break;
						default: CMmsgPrint (CMmsgUsrError,"Invalid data type"); dataNum--; break;
						}
					delete dbData;
					}
				else	break;
				} while (true);
			cpgbox ("BCMTS",0.0,0,"BCNMTS",0.0,0);
			cpgslw (2);
			cpgsch (2.5);
			cpgmtxt ("T",1.5,0.5,0.5,panelTitle);
			cpgslw (defaultLW);
			}
Stop:
	cpgend ();
	return (ret);
	}
Example #19
0
int plot_resid(Fluxrec *flux, int npoints, float *a, int ncoeff,
	       float *meanrms)
{
  int i,j;              /* Looping variables */
  int no_error=1;       /* Flag set to 0 on error */
  float ytmp;           /* Value of fitted function at a given day */
  float mean;           /* Mean of residual curve */
  float *polyx=NULL;    /* Polynomial in x */
  Fluxrec *resid=NULL;  /* Residual curve */
  Fluxrec *rptr;        /* Pointer to navigate resid */
  Fluxrec *fptr;        /* Pointer to navigate flux */

  /*
   * Allocate memory
   */

  if(!(polyx = new_array(ncoeff,1))) {
    fprintf(stderr,"ERROR: plot_resid\n");
    return 1;
  }

  if(!(resid = new_fluxrec(npoints)))
    no_error = 0;

  /*
   * Loop through flux, at each step compute the value of the function
   *  and then subtract it from the flux.
   */

  if(no_error) {
    for(i=0,fptr=flux,rptr=resid; i<npoints; i++,fptr++,rptr++) {

    /*
     * Compute the function value at this step
     */

    sinpoly(fptr->day,polyx-1,ncoeff);
    ytmp = 0;
    for(j=0; j<ncoeff; j++)
      ytmp += a[j] * polyx[j];

    /*
     * Now set resid->flux to be the difference between flux->flux and the
     *  fitted function
     */

    *rptr = *fptr;
    rptr->flux -= ytmp;
    }
  }

  /*
   * Now plot the points
   */

  if(no_error)
    if(plot_lcurve(resid,npoints,"Days","Residual Flux Density",""))
      no_error = 0;

  /*
   * Draw a line at 0.0 residual
   */

  if(no_error) {
    cpgsci(2);
    cpgslw(5);
    cpgmove(-999,0.0);
    cpgdraw(999,0.0);
    cpgslw(1);
    cpgsci(1);
  }

  /*
   * Calculate mean and rms
   */

  if(no_error) {
    if(calc_mean(resid,npoints,&mean,meanrms))
      no_error = 0;
    else {
      *meanrms /= sqrt(npoints);
      printf("\nplot_resid: Mean of residuals = %8.4f. ",mean);
      printf("RMS uncertainty in mean = %6.4f\n",*meanrms);
    }
  }

  /*
   * Clean up and exit
   */

  cpgslw(1);
  cpgsci(1);
  polyx = del_array(polyx);
  resid = del_fluxrec(resid);

  if(no_error)
    return 0;
  else {
    fprintf(stderr,"ERROR: plot_resid\n");
    return 1;
  }
}
Example #20
0
void Plotter2::plot() {
    open();

    if ((width > 0.0) && (aspect > 0.0)) {
        cpgpap(width, aspect);
    }

    cpgscr(0, 1.0, 1.0, 1.0); // set background color white
    cpgscr(1, 0.0, 0.0, 0.0); // set foreground color black

    for (unsigned int i = 0; i < vInfo.size(); ++i) {
        Plotter2ViewportInfo vi = vInfo[i];

	if (vi.showViewport) {
	    resetAttributes(vi);

	    // setup viewport
            cpgsvp(vi.vpPosXMin, vi.vpPosXMax, vi.vpPosYMin, vi.vpPosYMax);
	    cpgswin(vi.vpRangeXMin, vi.vpRangeXMax, vi.vpRangeYMin, vi.vpRangeYMax);

	    // background color (default is transparent)
	    if (vi.vpBColor >= 0) {
	        cpgsci(vi.vpBColor);
	        cpgrect(vi.vpRangeXMin, vi.vpRangeXMax, vi.vpRangeYMin, vi.vpRangeYMax);
	        cpgsci(1);  // reset foreground colour to the initial one (black)
	    }

	    // data
	    for (unsigned int j = 0; j < vi.vData.size(); ++j) {
	        resetAttributes(vi);

	        Plotter2DataInfo di = vi.vData[j];
	        std::vector<float> vxdata = di.xData;
                int ndata = vxdata.size();
	        float* pxdata = new float[ndata];
	        float* pydata = new float[ndata];
	        for (int k = 0; k < ndata; ++k) {
	            pxdata[k] = di.xData[k];
	            pydata[k] = di.yData[k];
	        }

	        if (di.drawLine) {
  	            cpgsls(di.lineStyle);
	            cpgslw(di.lineWidth);
		    int colorIdx = di.lineColor;
		    if (colorIdx < 0) {
		        colorIdx = (j + 1) % 15 + 1;
		    }
	            cpgsci(colorIdx);
	            cpgline(ndata, pxdata, pydata);
	        }

	        if (di.drawMarker) {
	            cpgsch(di.markerSize);
	            cpgsci(di.markerColor);
	            cpgpt(ndata, pxdata, pydata, di.markerType);
	        }

	        delete [] pxdata;
	        delete [] pydata;
	    }

	    //calculate y-range of xmasks
	    std::vector<float> yrange = vi.getRangeY();
	    float yexcess = 0.1*(yrange[1] - yrange[0]);
	    float xmaskymin = yrange[0] - yexcess;
	    float xmaskymax = yrange[1] + yexcess;

	    // masks
	    for (unsigned int j = 0; j < vi.vRect.size(); ++j) {
	        resetAttributes(vi);

	        Plotter2RectInfo ri = vi.vRect[j];
                cpgsci(ri.color);
	        cpgsfs(ri.fill);
	        cpgslw(ri.width);
	        cpgshs(45.0, ri.hsep, 0.0);
	        float* mxdata = new float[4];
	        float* mydata = new float[4];
	        mxdata[0] = ri.xmin;
	        mxdata[1] = ri.xmax;
	        mxdata[2] = ri.xmax;
	        mxdata[3] = ri.xmin;
	        mydata[0] = xmaskymin;
	        mydata[1] = xmaskymin;
	        mydata[2] = xmaskymax;
	        mydata[3] = xmaskymax;
                cpgpoly(4, mxdata, mydata);
	    }

	    // arrows
	    for (unsigned int j = 0; j < vi.vArro.size(); ++j) {
  	        resetAttributes(vi);

		Plotter2ArrowInfo ai = vi.vArro[j];
		cpgsci(ai.color);
		cpgslw(ai.width);
                cpgsls(ai.lineStyle);
		cpgsch(ai.headSize);
		cpgsah(ai.headFillStyle, ai.headAngle, ai.headVent);
		cpgarro(ai.xtail, ai.ytail, ai.xhead, ai.yhead);
	    }

	    // arbitrary texts
	    for (unsigned int j = 0; j < vi.vText.size(); ++j) {
  	        resetAttributes(vi);

		Plotter2TextInfo ti = vi.vText[j];
		cpgsch(ti.size);
		cpgsci(ti.color);
		cpgstbg(ti.bgcolor);
		cpgptxt(ti.posx, ti.posy, ti.angle, ti.fjust, ti.text.c_str());
	    }

	    // viewport outline and ticks
	    resetAttributes(vi);

            cpgbox("BCTS",  vi.majorTickIntervalX, vi.nMinorTickWithinMajorTicksX, 
	           "BCTSV", vi.majorTickIntervalY, vi.nMinorTickWithinMajorTicksY);

	    // viewport numberings
	    std::string numformatx, numformaty;
	    if (vi.numLocationX == "b") {
	        numformatx = "N";
	    } else if (vi.numLocationX == "t") {
	        numformatx = "M";
	    } else if (vi.numLocationX == "") {
	        numformatx = "";
	    }
	    if (vi.numLocationY == "l") {
	        numformaty = "NV";
	    } else if (vi.numLocationY == "r") {
	        numformaty = "MV";
	    } else if (vi.numLocationY == "") {
	        numformaty = "";
	    }

            cpgbox(numformatx.c_str(), vi.majorTickIntervalX * vi.nMajorTickWithinTickNumsX, 0, 
	           numformaty.c_str(), vi.majorTickIntervalY * vi.nMajorTickWithinTickNumsY, 0);

	    float xpos, ypos;

	    // x-label
	    vi.getWorldCoordByWindowCoord(vi.labelXPosX, vi.labelXPosY, &xpos, &ypos);
	    cpgsch(vi.labelXSize);
            cpgsci(vi.labelXColor);
            cpgstbg(vi.labelXBColor); //outside viewports, works ONLY with /xwindow
            cpgptxt(xpos, ypos, vi.labelXAngle, vi.labelXFJust, vi.labelXString.c_str());

	    // y-label
	    vi.getWorldCoordByWindowCoord(vi.labelYPosX, vi.labelYPosY, &xpos, &ypos);
	    cpgsch(vi.labelYSize);
            cpgsci(vi.labelYColor);
            cpgstbg(vi.labelYBColor); //outside viewports, works ONLY with /xwindow
            cpgptxt(xpos, ypos, vi.labelYAngle, vi.labelYFJust, vi.labelYString.c_str());

	    // title
	    vi.getWorldCoordByWindowCoord(vi.titlePosX, vi.titlePosY, &xpos, &ypos);
	    cpgsch(vi.titleSize);
            cpgsci(vi.titleColor);
            cpgstbg(vi.titleBColor); //outside viewports, works ONLY with /xwindow
            cpgptxt(xpos, ypos, vi.titleAngle, vi.titleFJust, vi.titleString.c_str());
	}

    }

    close();
}
Example #21
0
static double plot_fftview(fftview * fv, float maxpow, float charhgt,
                           float vertline, int vertline_color)
/* The return value is offsetf */
{
   int ii;
   double lor, lof, hir, hif, offsetf = 0.0;
   float *freqs;

   cpgsave();
   cpgbbuf();

   /* Set the "Normal" plotting attributes */

   cpgsls(1);
   cpgslw(1);
   cpgsch(charhgt);
   cpgsci(1);
   cpgvstd();

   if (maxpow == 0.0)           /* Autoscale for the maximum value */
      maxpow = 1.1 * fv->maxpow;

   lor = fv->lor;
   lof = lor / T;
   hir = lor + fv->dr * DISPLAYNUM;
   hif = hir / T;
   offsetf = 0.0;

   /* Period Labels */

   if (fv->zoomlevel >= 0 && lof > 1.0) {
      double lop, hip, offsetp = 0.0;
      lop = 1.0 / lof;
      hip = 1.0 / hif;
      offsetp = 0.0;

      if ((lop - hip) / hip < 0.001) {
         int numchar;
         char label[50];

         offsetp = 0.5 * (hip + lop);
         numchar = snprintf(label, 50, "Period - %.15g (s)", offsetp);
         cpgmtxt("T", 2.5, 0.5, 0.5, label);
      } else {
         cpgmtxt("T", 2.5, 0.5, 0.5, "Period (s)");
      }
      cpgswin(lop - offsetp, hip - offsetp, 0.0, maxpow);
      cpgbox("CIMST", 0.0, 0, "", 0.0, 0);
   }

   /* Frequency Labels */

   if ((hif - lof) / hif < 0.001) {
      int numchar;
      char label[50];

      offsetf = 0.5 * (hif + lof);
      numchar = snprintf(label, 50, "Frequency - %.15g (Hz)", offsetf);
      cpgmtxt("B", 2.8, 0.5, 0.5, label);
   } else {
      cpgmtxt("B", 2.8, 0.5, 0.5, "Frequency (Hz)");
   }
   cpgswin(lof - offsetf, hif - offsetf, 0.0, maxpow);

   /* Add zapboxes if required */

   if (numzaplist) {
      double zaplo, zaphi;

      cpgsave();
      cpgsci(15);
      cpgsfs(1);
      for (ii = 0; ii < numzaplist; ii++) {
         zaplo = zaplist[ii].lobin;
         zaphi = zaplist[ii].hibin;
         if ((zaplo < hir && zaplo > lor) || (zaphi < hir && zaphi > lor)) {
            cpgrect(zaplo / T - offsetf, zaphi / T - offsetf, 0.0, 0.95 * maxpow);
         }
      }
      cpgunsa();
   }

   /* Add a background vertical line if requested */

   if (vertline != 0.0 && vertline_color != 0) {
      cpgsave();
      cpgsci(vertline_color);
      cpgmove(vertline / T - offsetf, 0.0);
      cpgdraw(vertline / T - offsetf, maxpow);
      cpgunsa();
   }

   if (fv->zoomlevel >= 0 && lof > 1.0)
      cpgbox("BINST", 0.0, 0, "BCNST", 0.0, 0);
   else
      cpgbox("BCINST", 0.0, 0, "BCNST", 0.0, 0);

   /* Plot the spectrum */

   freqs = gen_fvect(DISPLAYNUM);
   for (ii = 0; ii < DISPLAYNUM; ii++)
      freqs[ii] = fv->rs[ii] / T - offsetf;
   if (fv->zoomlevel > 0) {     /* Magnified power spectrum */
      cpgline(DISPLAYNUM, freqs, fv->powers);
   } else {                     /* Down-sampled power spectrum */
      for (ii = 0; ii < DISPLAYNUM; ii++) {
         cpgmove(freqs[ii], 0.0);
         cpgdraw(freqs[ii], fv->powers[ii]);
      }
   }
   vect_free(freqs);
   cpgmtxt("L", 2.5, 0.5, 0.5, "Normalized Power");
   cpgebuf();
   cpgunsa();
   return offsetf;
}
void galaxy(double peakL, double taperL, double taperB) {
  int i;
  double band;
  double galL[NG], xb[NG], ra, dec;
  double x, y;

  band = peakL - taperL;

  // (-180,180)
  for(i=0; i<NG;i++) {
    galL[i] = -M_PI + ((double)i/(double)(NG-1)) * 2.0*M_PI;
    xb[i] = peakL - band*fabs(galL[i])/taperB;
  }

  // plot galactic plane
  cpgsci(2);
  for(i=1;i<NG;i++) {
    eqgal(galL[i],0.0,&ra,&dec);
    project(ra,dec,&x,&y);
    cpgpt1(x,y,-2);
  }


  for(i=0; i<NG;i++) {
    galL[i] = 0.0 + ((double)i/(double)(NG-1)) * taperB;
    xb[i] = peakL - band*fabs(galL[i])/taperB;
  }

  // Northern boundary of exclusion zone
  cpgsci(LIGHTGRAY);
  for(i=1;i<NG;i++) {
    eqgal(galL[i],xb[i],&ra,&dec);
    project(ra,dec,&x,&y);
    cpgpt1(x,y,-2);
  }
  // Southern boundary of exclusion zone
  for(i=1;i<NG;i++) {
    eqgal(galL[i],-xb[i],&ra,&dec);
    project(ra,dec,&x,&y);
    cpgpt1(x,y,-2);
  }


  for(i=0; i<NG;i++) {
    galL[i] = 0.0 - ((double)i/(double)(NG-1)) * taperB;
    xb[i] = peakL - band*fabs(galL[i])/taperB;
  }

  // Northern boundary of exclusion zone
  cpgsci(LIGHTGRAY);
  for(i=1;i<NG;i++) {
    eqgal(galL[i],xb[i],&ra,&dec);
    project(ra,dec,&x,&y);
    cpgpt1(x,y,-2);
  }
  // Southern boundary of exclusion zone
  for(i=1;i<NG;i++) {
    eqgal(galL[i],-xb[i],&ra,&dec);
    project(ra,dec,&x,&y);
    cpgpt1(x,y,-2);
  }

  cpgsci(1);

#if 0
  // galactic center
  cpgsci(2);
  ra = 17.76*15.0/DEG_IN_RADIAN;
  FIXRA(ra);
  dec = -28.9333/DEG_IN_RADIAN;
  project(ra,dec,&x,&y);
  cpgpt1(x,y,71);
  cpgsci(2);

  // galactic anticenter
  cpgsci(2);
  ra = (180+17.76*15.0)/DEG_IN_RADIAN;
  FIXRA(ra);
  dec = 27.117/DEG_IN_RADIAN;
  project(ra,dec,&x,&y);
  cpgpt1(x,y,103);
  cpgsci(2);
#endif

  // plot ecliptic
  cpgslw(5);
  cpgsci(2);
  // (-180,180)
  for(i=0; i<NG;i++) {
    galL[i] = -M_PI + ((double)i/(double)(NG-1)) * 2.0*M_PI;
    xb[i] = peakL - band*fabs(galL[i])/taperB;
  }
  for(i=0; i<NG; i++) {
    dec = atan(sin(galL[i])*tan(23.43333*M_PI/180.0));
    project(galL[i],dec,&x,&y);
    cpgpt1(x,y,-2);
  }
  cpgslw(1);
  cpgsci(1);
}
Example #23
0
static int plot_dataview(dataview * dv, float minval, float maxval, float charhgt)
/* The return value is offsetn */
{
   int ii, lon, hin, offsetn = 0, tmpn;
   double lot, hit, offsett = 0.0;
   float ns[MAXDISPNUM], hiavg[MAXDISPNUM], loavg[MAXDISPNUM];
   float scalemin = 0.0, scalemax = 0.0, dscale;

   cpgsave();
   cpgbbuf();

   /* Set the "Normal" plotting attributes */

   cpgsls(1);
   cpgslw(1);
   cpgsch(charhgt);
   cpgsci(1);
   cpgvstd();

   /* Autoscale for the maximum value */
   if (maxval > 0.5 * LARGENUM)
      scalemax = dv->maxval;
   else
      scalemax = maxval;
   /* Autoscale for the minimum value */
   if (minval < 0.5 * SMALLNUM)
      scalemin = dv->minval;
   else
      scalemin = minval;
   dscale = 0.1 * (scalemax - scalemin);
   if (maxval > 0.5 * LARGENUM)
      maxval = scalemax + dscale;
   if (minval < 0.5 * SMALLNUM)
      minval = scalemin - dscale;

   lon = dv->lon;
   lot = lon * idata.dt;
   hin = lon + dv->numsamps;
   hit = hin * idata.dt;

   /* Time Labels (top of box) */

   if ((hit - lot) / hit < 0.001) {
      int numchar;
      char label[50];

      offsett = 0.5 * (hit + lot);
      numchar = snprintf(label, 50, "Time - %.15g (s)", offsett);
      cpgmtxt("T", 2.5, 0.5, 0.5, label);
   } else {
      cpgmtxt("T", 2.5, 0.5, 0.5, "Time (s)");
   }
   cpgswin(lot - offsett, hit - offsett, minval, maxval);
   cpgbox("CMST", 0.0, 0, "", 0.0, 0);

   /* Sample number labels */

   if (lon > 10000000 || (double) (hin - lon) / (double) hin < 0.001) {
      int numchar;
      char label[50];

      offsetn = (lon / 10000) * 10000;
      numchar = snprintf(label, 50, "Sample - %d", offsetn);
      cpgmtxt("B", 2.8, 0.5, 0.5, label);
   } else {
      cpgmtxt("B", 2.8, 0.5, 0.5, "Sample");
   }
   cpgswin(lon - offsetn, hin - offsetn, minval, maxval);
   cpgbox("BNST", 0.0, 0, "BCNST", 0.0, 0);

   /* Plot the rawdata if required */

   tmpn = lon - offsetn;
   if (plotstats == 0 || plotstats == 2) {
      if (dv->zoomlevel > 0) {
         for (ii = 0; ii < dv->dispnum; ii++)
            ns[ii] = tmpn + ii;
         cpgbin(dv->dispnum, ns, dv->vals, 0);
      } else {                  /* Plot the min/max values */
         for (ii = 0; ii < dv->numchunks; ii++, tmpn += dv->chunklen) {
            cpgmove((float) tmpn, dv->mins[ii]);
            cpgdraw((float) tmpn, dv->maxs[ii]);
         }
      }
   }

   /* Plot the other statistics if requested */

   if (plotstats == 0 || plotstats == 1) {
      tmpn = lon - offsetn;
      for (ii = 0; ii < dv->numchunks; ii++, tmpn += dv->chunklen) {
         ns[ii] = tmpn;
         hiavg[ii] = dv->avgmeds[ii] + dv->stds[ii];
         loavg[ii] = dv->avgmeds[ii] - dv->stds[ii];
      }
      if (dv->numchunks > 512) {
         if (plotstats == 1) {
            cpgline(dv->numchunks, ns, dv->mins);
            cpgline(dv->numchunks, ns, dv->maxs);
         }
         cpgsci(AVGMED_COLOR);
         cpgline(dv->numchunks, ns, dv->avgmeds);
         if (usemedian)
            cpgmtxt("T", -1.4, 0.02, 0.0, "Median");
         else
            cpgmtxt("T", -1.4, 0.02, 0.0, "Average");
         cpgsci(STDDEV_COLOR);
         cpgline(dv->numchunks, ns, hiavg);
         cpgline(dv->numchunks, ns, loavg);
         cpgmtxt("T", -2.6, 0.02, 0.0, "+/- 1 Std Dev");
      } else {
         if (plotstats == 1) {
            cpgbin(dv->numchunks, ns, dv->mins, 0);
            cpgbin(dv->numchunks, ns, dv->maxs, 0);
         }
         cpgsci(AVGMED_COLOR);
         cpgbin(dv->numchunks, ns, dv->avgmeds, 0);
         if (usemedian)
            cpgmtxt("T", -1.4, 0.02, 0.0, "Median");
         else
            cpgmtxt("T", -1.4, 0.02, 0.0, "Average");
         cpgsci(STDDEV_COLOR);
         cpgbin(dv->numchunks, ns, hiavg, 0);
         cpgbin(dv->numchunks, ns, loavg, 0);
         cpgmtxt("T", -2.6, 0.02, 0.0, "+/- 1 Std Dev");
      }
   }
   cpgsci(1);
   cpgmtxt("L", 2.5, 0.5, 0.5, "Sample Value");
   cpgebuf();
   cpgunsa();
   return offsetn;
}
Example #24
0
/* set line width */
static void _pgslw (int *i)
{
   cpgslw (*i);
}