Example #1
0
STATIC int
xfs_open_by_handle(
	xfs_mount_t		*mp,
	void			__user *arg,
	struct file		*parfilp,
	struct inode		*parinode)
{
	int			error;
	int			new_fd;
	int			permflag;
	struct file		*filp;
	struct inode		*inode;
	struct dentry		*dentry;
	xfs_fsop_handlereq_t	hreq;

	if (!capable(CAP_SYS_ADMIN))
		return -XFS_ERROR(EPERM);
	if (copy_from_user(&hreq, arg, sizeof(xfs_fsop_handlereq_t)))
		return -XFS_ERROR(EFAULT);

	error = xfs_vget_fsop_handlereq(mp, parinode, &hreq, &inode);
	if (error)
		return -error;

	/* Restrict xfs_open_by_handle to directories & regular files. */
	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) {
		iput(inode);
		return -XFS_ERROR(EINVAL);
	}

#if BITS_PER_LONG != 32
	hreq.oflags |= O_LARGEFILE;
#endif
	/* Put open permission in namei format. */
	permflag = hreq.oflags;
	if ((permflag+1) & O_ACCMODE)
		permflag++;
	if (permflag & O_TRUNC)
		permflag |= 2;

	if ((!(permflag & O_APPEND) || (permflag & O_TRUNC)) &&
	    (permflag & FMODE_WRITE) && IS_APPEND(inode)) {
		iput(inode);
		return -XFS_ERROR(EPERM);
	}

	if ((permflag & FMODE_WRITE) && IS_IMMUTABLE(inode)) {
		iput(inode);
		return -XFS_ERROR(EACCES);
	}

	/* Can't write directories. */
	if ( S_ISDIR(inode->i_mode) && (permflag & FMODE_WRITE)) {
		iput(inode);
		return -XFS_ERROR(EISDIR);
	}

	if ((new_fd = get_unused_fd()) < 0) {
		iput(inode);
		return new_fd;
	}

	dentry = d_obtain_alias(inode);
	if (IS_ERR(dentry)) {
		put_unused_fd(new_fd);
		return PTR_ERR(dentry);
	}

	/* Ensure umount returns EBUSY on umounts while this file is open. */
	mntget(parfilp->f_path.mnt);

	/* Create file pointer. */
	filp = dentry_open(dentry, parfilp->f_path.mnt, hreq.oflags);
	if (IS_ERR(filp)) {
		put_unused_fd(new_fd);
		return -XFS_ERROR(-PTR_ERR(filp));
	}
	if (inode->i_mode & S_IFREG) {
		/* invisible operation should not change atime */
		filp->f_flags |= O_NOATIME;
		filp->f_op = &xfs_invis_file_operations;
	}

	fd_install(new_fd, filp);
	return new_fd;
}
Example #2
0
static int
#ifdef HAVE_ENCODE_FH_WITH_INODE
zpl_encode_fh(struct inode *ip, __u32 *fh, int *max_len, struct inode *parent)
{
#else
zpl_encode_fh(struct dentry *dentry, __u32 *fh, int *max_len, int connectable)
{
	struct inode *ip = dentry->d_inode;
#endif /* HAVE_ENCODE_FH_WITH_INODE */
	fstrans_cookie_t cookie;
	fid_t *fid = (fid_t *)fh;
	int len_bytes, rc;

	len_bytes = *max_len * sizeof (__u32);

	if (len_bytes < offsetof(fid_t, fid_data))
		return (255);

	fid->fid_len = len_bytes - offsetof(fid_t, fid_data);
	cookie = spl_fstrans_mark();

	if (zfsctl_is_node(ip))
		rc = zfsctl_fid(ip, fid);
	else
		rc = zfs_fid(ip, fid);

	spl_fstrans_unmark(cookie);
	len_bytes = offsetof(fid_t, fid_data) + fid->fid_len;
	*max_len = roundup(len_bytes, sizeof (__u32)) / sizeof (__u32);

	return (rc == 0 ? FILEID_INO32_GEN : 255);
}

static struct dentry *
zpl_dentry_obtain_alias(struct inode *ip)
{
	struct dentry *result;

#ifdef HAVE_D_OBTAIN_ALIAS
	result = d_obtain_alias(ip);
#else
	result = d_alloc_anon(ip);

	if (result == NULL) {
		VN_RELE(ip);
		result = ERR_PTR(-ENOMEM);
	}
#endif /* HAVE_D_OBTAIN_ALIAS */

	return (result);
}

static struct dentry *
zpl_fh_to_dentry(struct super_block *sb, struct fid *fh,
    int fh_len, int fh_type)
{
	fid_t *fid = (fid_t *)fh;
	fstrans_cookie_t cookie;
	struct inode *ip;
	int len_bytes, rc;

	len_bytes = fh_len * sizeof (__u32);

	if (fh_type != FILEID_INO32_GEN ||
	    len_bytes < offsetof(fid_t, fid_data) ||
	    len_bytes < offsetof(fid_t, fid_data) + fid->fid_len)
		return (ERR_PTR(-EINVAL));

	cookie = spl_fstrans_mark();
	rc = zfs_vget(sb, &ip, fid);
	spl_fstrans_unmark(cookie);

	if (rc) {
		/*
		 * If we see ENOENT it might mean that an NFSv4 * client
		 * is using a cached inode value in a file handle and
		 * that the sought after file has had its inode changed
		 * by a third party.  So change the error to ESTALE
		 * which will trigger a full lookup by the client and
		 * will find the new filename/inode pair if it still
		 * exists.
		 */
		if (rc == ENOENT)
			rc = ESTALE;

		return (ERR_PTR(-rc));
	}

	ASSERT((ip != NULL) && !IS_ERR(ip));

	return (zpl_dentry_obtain_alias(ip));
}
Example #3
0
static struct dentry *ocfs2_get_dentry(struct super_block *sb,
		struct ocfs2_inode_handle *handle)
{
	struct inode *inode;
	struct ocfs2_super *osb = OCFS2_SB(sb);
	u64 blkno = handle->ih_blkno;
	int status, set;
	struct dentry *result;

	trace_ocfs2_get_dentry_begin(sb, handle, (unsigned long long)blkno);

	if (blkno == 0) {
		result = ERR_PTR(-ESTALE);
		goto bail;
	}

	inode = ocfs2_ilookup(sb, blkno);
	/*
	 * If the inode exists in memory, we only need to check it's
	 * generation number
	 */
	if (inode)
		goto check_gen;

	/*
	 * This will synchronize us against ocfs2_delete_inode() on
	 * all nodes
	 */
	status = ocfs2_nfs_sync_lock(osb, 1);
	if (status < 0) {
		mlog(ML_ERROR, "getting nfs sync lock(EX) failed %d\n", status);
		goto check_err;
	}

	status = ocfs2_test_inode_bit(osb, blkno, &set);
	if (status < 0) {
		if (status == -EINVAL) {
			/*
			 * The blkno NFS gave us doesn't even show up
			 * as an inode, we return -ESTALE to be
			 * nice
			 */
			status = -ESTALE;
		} else
			mlog(ML_ERROR, "test inode bit failed %d\n", status);
		goto unlock_nfs_sync;
	}

	trace_ocfs2_get_dentry_test_bit(status, set);
	/* If the inode allocator bit is clear, this inode must be stale */
	if (!set) {
		status = -ESTALE;
		goto unlock_nfs_sync;
	}

	inode = ocfs2_iget(osb, blkno, 0, 0);

unlock_nfs_sync:
	ocfs2_nfs_sync_unlock(osb, 1);

check_err:
	if (status < 0) {
		if (status == -ESTALE) {
			trace_ocfs2_get_dentry_stale((unsigned long long)blkno,
						     handle->ih_generation);
		}
		result = ERR_PTR(status);
		goto bail;
	}

	if (IS_ERR(inode)) {
		mlog_errno(PTR_ERR(inode));
		result = (void *)inode;
		goto bail;
	}

check_gen:
	if (handle->ih_generation != inode->i_generation) {
		iput(inode);
		trace_ocfs2_get_dentry_generation((unsigned long long)blkno,
						  handle->ih_generation,
						  inode->i_generation);
		result = ERR_PTR(-ESTALE);
		goto bail;
	}

	result = d_obtain_alias(inode);
	if (IS_ERR(result))
		mlog_errno(PTR_ERR(result));

bail:
	trace_ocfs2_get_dentry_end(result);
	return result;
}
struct dentry *f2fs_get_parent(struct dentry *child)
{
	struct qstr dotdot = {.len = 2, .name = ".."};
	unsigned long ino = f2fs_inode_by_name(child->d_inode, &dotdot);
	if (!ino)
		return ERR_PTR(-ENOENT);
	return d_obtain_alias(f2fs_iget(child->d_inode->i_sb, ino));
}

static int __recover_dot_dentries(struct inode *dir, nid_t pino)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct qstr dot = {.len = 1, .name = "."};
	struct qstr dotdot = {.len = 2, .name = ".."};
	struct f2fs_dir_entry *de;
	struct page *page;
	int err = 0;

	f2fs_lock_op(sbi);

	de = f2fs_find_entry(dir, &dot, &page, 0);
	if (de) {
		f2fs_dentry_kunmap(dir, page);
		f2fs_put_page(page, 0);
	} else {
		err = __f2fs_add_link(dir, &dot, NULL, dir->i_ino, S_IFDIR);
		if (err)
			goto out;
	}

	de = f2fs_find_entry(dir, &dotdot, &page, 0);
	if (de) {
		f2fs_dentry_kunmap(dir, page);
		f2fs_put_page(page, 0);
	} else {
		err = __f2fs_add_link(dir, &dotdot, NULL, pino, S_IFDIR);
	}
out:
	if (!err) {
		clear_inode_flag(F2FS_I(dir), FI_INLINE_DOTS);
		mark_inode_dirty(dir);
	}

	f2fs_unlock_op(sbi);
	return err;
}

static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry,
					struct nameidata *nd)
{
	struct inode *inode = NULL;
	struct f2fs_dir_entry *de;
	struct page *page;
	nid_t ino;
	int err = 0;

	if (dentry->d_name.len > F2FS_NAME_LEN)
		return ERR_PTR(-ENAMETOOLONG);

	de = f2fs_find_entry(dir, &dentry->d_name, &page, nd ? nd->flags : 0);
	if (!de)
		return d_splice_alias(inode, dentry);

	ino = le32_to_cpu(de->ino);
	f2fs_dentry_kunmap(dir, page);
	f2fs_put_page(page, 0);

	inode = f2fs_iget(dir->i_sb, ino);
	if (IS_ERR(inode))
		return ERR_CAST(inode);

	if (f2fs_has_inline_dots(inode)) {
		err = __recover_dot_dentries(inode, dir->i_ino);
		if (err)
			goto err_out;
	}
	return d_splice_alias(inode, dentry);

err_out:
	iget_failed(inode);
	return ERR_PTR(err);
}

static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode = dentry->d_inode;
	struct f2fs_dir_entry *de;
	struct page *page;
	int err = -ENOENT;

	trace_f2fs_unlink_enter(dir, dentry);
	f2fs_balance_fs(sbi);

	de = f2fs_find_entry(dir, &dentry->d_name, &page, 0);
	if (!de)
		goto fail;

	f2fs_lock_op(sbi);
	err = acquire_orphan_inode(sbi);
	if (err) {
		f2fs_unlock_op(sbi);
		f2fs_dentry_kunmap(dir, page);
		f2fs_put_page(page, 0);
		goto fail;
	}
	f2fs_delete_entry(de, page, dir, inode);
	f2fs_unlock_op(sbi);

	/* In order to evict this inode, we set it dirty */
	mark_inode_dirty(inode);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
fail:
	trace_f2fs_unlink_exit(inode, err);
	return err;
}

static void *f2fs_follow_link(struct dentry *dentry, struct nameidata *nd)
{
	struct page *page;

	page = page_follow_link_light(dentry, nd);
	if (IS_ERR(page))
		return page;

	/* this is broken symlink case */
	if (*nd_get_link(nd) == 0) {
		kunmap(page);
		page_cache_release(page);
		return ERR_PTR(-ENOENT);
	}
	return page;
}

static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
					const char *symname)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode;
	size_t len = strlen(symname);
	size_t p_len;
	char *p_str;
	struct f2fs_str disk_link = FSTR_INIT(NULL, 0);
	struct f2fs_encrypted_symlink_data *sd = NULL;
	int err;

	if (len > dir->i_sb->s_blocksize)
		return -ENAMETOOLONG;

	f2fs_balance_fs(sbi);

	inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	if (f2fs_encrypted_inode(inode))
		inode->i_op = &f2fs_encrypted_symlink_inode_operations;
	else
		inode->i_op = &f2fs_symlink_inode_operations;
	inode->i_mapping->a_ops = &f2fs_dblock_aops;

	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out;
	f2fs_unlock_op(sbi);
	alloc_nid_done(sbi, inode->i_ino);

	if (f2fs_encrypted_inode(dir)) {
		struct qstr istr = QSTR_INIT(symname, len);

		err = f2fs_get_encryption_info(inode);
		if (err)
			goto err_out;

		err = f2fs_fname_crypto_alloc_buffer(inode, len, &disk_link);
		if (err)
			goto err_out;

		err = f2fs_fname_usr_to_disk(inode, &istr, &disk_link);
		if (err < 0)
			goto err_out;

		p_len = encrypted_symlink_data_len(disk_link.len) + 1;

		if (p_len > dir->i_sb->s_blocksize) {
			err = -ENAMETOOLONG;
			goto err_out;
		}

		sd = kzalloc(p_len, GFP_NOFS);
		if (!sd) {
			err = -ENOMEM;
			goto err_out;
		}
		memcpy(sd->encrypted_path, disk_link.name, disk_link.len);
		sd->len = cpu_to_le16(disk_link.len);
		p_str = (char *)sd;
	} else {
		p_len = len + 1;
		p_str = (char *)symname;
	}

	err = page_symlink(inode, p_str, p_len);

err_out:
	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	/*
	 * Let's flush symlink data in order to avoid broken symlink as much as
	 * possible. Nevertheless, fsyncing is the best way, but there is no
	 * way to get a file descriptor in order to flush that.
	 *
	 * Note that, it needs to do dir->fsync to make this recoverable.
	 * If the symlink path is stored into inline_data, there is no
	 * performance regression.
	 */
	if (!err)
		filemap_write_and_wait_range(inode->i_mapping, 0, p_len - 1);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);

	kfree(sd);
	f2fs_fname_crypto_free_buffer(&disk_link);
	return err;
out:
	handle_failed_inode(inode);
	return err;
}

static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode;
	int err;

	f2fs_balance_fs(sbi);

	inode = f2fs_new_inode(dir, S_IFDIR | mode);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	inode->i_op = &f2fs_dir_inode_operations;
	inode->i_fop = &f2fs_dir_operations;
	inode->i_mapping->a_ops = &f2fs_dblock_aops;
	mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);

	set_inode_flag(F2FS_I(inode), FI_INC_LINK);
	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out_fail;
	f2fs_unlock_op(sbi);

	alloc_nid_done(sbi, inode->i_ino);

	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
	return 0;

out_fail:
	clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
	handle_failed_inode(inode);
	return err;
}

static int f2fs_rmdir(struct inode *dir, struct dentry *dentry)
{
	struct inode *inode = dentry->d_inode;
	if (f2fs_empty_dir(inode))
		return f2fs_unlink(dir, dentry);
	return -ENOTEMPTY;
}

static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
				int mode, dev_t rdev)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode;
	int err = 0;

	if (!new_valid_dev(rdev))
		return -EINVAL;

	f2fs_balance_fs(sbi);

	inode = f2fs_new_inode(dir, mode);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	init_special_inode(inode, inode->i_mode, rdev);
	inode->i_op = &f2fs_special_inode_operations;

	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out;
	f2fs_unlock_op(sbi);

	alloc_nid_done(sbi, inode->i_ino);

	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
	return 0;
out:
	handle_failed_inode(inode);
	return err;
}

static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
			struct inode *new_dir, struct dentry *new_dentry)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
	struct inode *old_inode = old_dentry->d_inode;
	struct inode *new_inode = new_dentry->d_inode;
	struct page *old_dir_page;
	struct page *old_page, *new_page;
	struct f2fs_dir_entry *old_dir_entry = NULL;
	struct f2fs_dir_entry *old_entry;
	struct f2fs_dir_entry *new_entry;
	int err = -ENOENT;

	if ((old_dir != new_dir) && f2fs_encrypted_inode(new_dir) &&
		!f2fs_is_child_context_consistent_with_parent(new_dir,
							old_inode)) {
		err = -EPERM;
		goto out;
	}

	f2fs_balance_fs(sbi);

	old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page, 0);
	if (!old_entry)
		goto out;

	if (S_ISDIR(old_inode->i_mode)) {
		err = -EIO;
		old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
		if (!old_dir_entry)
			goto out_old;
	}

	if (new_inode) {

		err = -ENOTEMPTY;
		if (old_dir_entry && !f2fs_empty_dir(new_inode))
			goto out_dir;

		err = -ENOENT;
		new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
						&new_page, 0);
		if (!new_entry)
			goto out_dir;

		f2fs_lock_op(sbi);

		err = acquire_orphan_inode(sbi);
		if (err)
			goto put_out_dir;

		if (update_dent_inode(old_inode, new_inode,
						&new_dentry->d_name)) {
			release_orphan_inode(sbi);
			goto put_out_dir;
		}

		f2fs_set_link(new_dir, new_entry, new_page, old_inode);

		new_inode->i_ctime = CURRENT_TIME;
		down_write(&F2FS_I(new_inode)->i_sem);
		if (old_dir_entry)
			drop_nlink(new_inode);
		drop_nlink(new_inode);
		up_write(&F2FS_I(new_inode)->i_sem);

		mark_inode_dirty(new_inode);

		if (!new_inode->i_nlink)
			add_orphan_inode(sbi, new_inode->i_ino);
		else
			release_orphan_inode(sbi);

		update_inode_page(old_inode);
		update_inode_page(new_inode);
	} else {
		f2fs_lock_op(sbi);

		err = f2fs_add_link(new_dentry, old_inode);
		if (err) {
			f2fs_unlock_op(sbi);
			goto out_dir;
		}

		if (old_dir_entry) {
			inc_nlink(new_dir);
			update_inode_page(new_dir);
		}
	}

	down_write(&F2FS_I(old_inode)->i_sem);
	file_lost_pino(old_inode);
	if (new_inode && file_enc_name(new_inode))
		file_set_enc_name(old_inode);
	up_write(&F2FS_I(old_inode)->i_sem);

	old_inode->i_ctime = CURRENT_TIME;
	mark_inode_dirty(old_inode);

	f2fs_delete_entry(old_entry, old_page, old_dir, NULL);

	if (old_dir_entry) {
		if (old_dir != new_dir) {
			f2fs_set_link(old_inode, old_dir_entry,
						old_dir_page, new_dir);
			update_inode_page(old_inode);
		} else {
			f2fs_dentry_kunmap(old_inode, old_dir_page);
			f2fs_put_page(old_dir_page, 0);
		}
		drop_nlink(old_dir);
		mark_inode_dirty(old_dir);
		update_inode_page(old_dir);
	}

	f2fs_unlock_op(sbi);

	if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
		f2fs_sync_fs(sbi->sb, 1);
	return 0;

put_out_dir:
	f2fs_unlock_op(sbi);
	f2fs_dentry_kunmap(new_dir, new_page);
	f2fs_put_page(new_page, 0);
out_dir:
	if (old_dir_entry) {
		f2fs_dentry_kunmap(old_inode, old_dir_page);
		f2fs_put_page(old_dir_page, 0);
	}
out_old:
	f2fs_dentry_kunmap(old_dir, old_page);
	f2fs_put_page(old_page, 0);
out:
	return err;
}

#ifdef CONFIG_F2FS_FS_ENCRYPTION
static void *f2fs_encrypted_follow_link(struct dentry *dentry,
						struct nameidata *nd)
{
	struct page *cpage = NULL;
	char *caddr, *paddr = NULL;
	struct f2fs_str cstr;
	struct f2fs_str pstr = FSTR_INIT(NULL, 0);
	struct inode *inode = dentry->d_inode;
	struct f2fs_encrypted_symlink_data *sd;
	loff_t size = min_t(loff_t, i_size_read(inode), PAGE_SIZE - 1);
	u32 max_size = inode->i_sb->s_blocksize;
	int res;

	res = f2fs_get_encryption_info(inode);
	if (res)
		return ERR_PTR(res);

	cpage = read_mapping_page(inode->i_mapping, 0, NULL);
	if (IS_ERR(cpage))
		return cpage;
	caddr = kmap(cpage);
	caddr[size] = 0;

	/* Symlink is encrypted */
	sd = (struct f2fs_encrypted_symlink_data *)caddr;
	cstr.name = sd->encrypted_path;
	cstr.len = le16_to_cpu(sd->len);

	/* this is broken symlink case */
	if (cstr.name[0] == 0 && cstr.len == 0) {
		res = -ENOENT;
		goto errout;
	}

	if ((cstr.len + sizeof(struct f2fs_encrypted_symlink_data) - 1) >
								max_size) {
		/* Symlink data on the disk is corrupted */
		res = -EIO;
		goto errout;
	}
	res = f2fs_fname_crypto_alloc_buffer(inode, cstr.len, &pstr);
	if (res)
		goto errout;

	res = f2fs_fname_disk_to_usr(inode, NULL, &cstr, &pstr);
	if (res < 0)
		goto errout;

	paddr = pstr.name;

	/* Null-terminate the name */
	paddr[res] = '\0';
	nd_set_link(nd, paddr);

	kunmap(cpage);
	page_cache_release(cpage);
	return NULL;
errout:
	f2fs_fname_crypto_free_buffer(&pstr);
	kunmap(cpage);
	page_cache_release(cpage);
	return ERR_PTR(res);
}

void kfree_put_link(struct dentry *dentry, struct nameidata *nd,
		void *cookie)
{
	char *s = nd_get_link(nd);
	if (!IS_ERR(s))
		kfree(s);
}

const struct inode_operations f2fs_encrypted_symlink_inode_operations = {
	.readlink       = generic_readlink,
	.follow_link    = f2fs_encrypted_follow_link,
	.put_link       = kfree_put_link,
	.getattr	= f2fs_getattr,
	.setattr	= f2fs_setattr,
	.setxattr	= generic_setxattr,
	.getxattr	= generic_getxattr,
	.listxattr	= f2fs_listxattr,
	.removexattr	= generic_removexattr,
};
#endif

const struct inode_operations f2fs_dir_inode_operations = {
	.create		= f2fs_create,
	.lookup		= f2fs_lookup,
	.link		= f2fs_link,
	.unlink		= f2fs_unlink,
	.symlink	= f2fs_symlink,
	.mkdir		= f2fs_mkdir,
	.rmdir		= f2fs_rmdir,
	.mknod		= f2fs_mknod,
	.rename		= f2fs_rename,
	.getattr	= f2fs_getattr,
	.setattr	= f2fs_setattr,
	.check_acl	= f2fs_check_acl,
#ifdef CONFIG_F2FS_FS_XATTR
	.setxattr	= generic_setxattr,
	.getxattr	= generic_getxattr,
	.listxattr	= f2fs_listxattr,
	.removexattr	= generic_removexattr,
#endif
};

const struct inode_operations f2fs_symlink_inode_operations = {
	.readlink       = generic_readlink,
	.follow_link    = f2fs_follow_link,
	.put_link       = page_put_link,
	.getattr	= f2fs_getattr,
	.setattr	= f2fs_setattr,
#ifdef CONFIG_F2FS_FS_XATTR
	.setxattr	= generic_setxattr,
	.getxattr	= generic_getxattr,
	.listxattr	= f2fs_listxattr,
	.removexattr	= generic_removexattr,
#endif
};

const struct inode_operations f2fs_special_inode_operations = {
	.getattr	= f2fs_getattr,
	.setattr        = f2fs_setattr,
	.check_acl	= f2fs_check_acl,
#ifdef CONFIG_F2FS_FS_XATTR
	.setxattr       = generic_setxattr,
	.getxattr       = generic_getxattr,
	.listxattr	= f2fs_listxattr,
	.removexattr    = generic_removexattr,
#endif
};
Example #5
0
/* This function is surprisingly simple.  The trick is understanding
 * that "child" is always a directory. So, to find its parent, you
 * simply need to find its ".." entry, normalize its block and offset,
 * and return the underlying inode.  See the comments for
 * isofs_normalize_block_and_offset(). */
static struct dentry *isofs_export_get_parent(struct dentry *child)
{
	unsigned long parent_block = 0;
	unsigned long parent_offset = 0;
	struct inode *child_inode = child->d_inode;
	struct iso_inode_info *e_child_inode = ISOFS_I(child_inode);
	struct iso_directory_record *de = NULL;
	struct buffer_head * bh = NULL;
	struct dentry *rv = NULL;

	/* "child" must always be a directory. */
	if (!S_ISDIR(child_inode->i_mode)) {
		printk(KERN_ERR "isofs: isofs_export_get_parent(): "
		       "child is not a directory!\n");
		rv = ERR_PTR(-EACCES);
		goto out;
	}

	/* It is an invariant that the directory offset is zero.  If
	 * it is not zero, it means the directory failed to be
	 * normalized for some reason. */
	if (e_child_inode->i_iget5_offset != 0) {
		printk(KERN_ERR "isofs: isofs_export_get_parent(): "
		       "child directory not normalized!\n");
		rv = ERR_PTR(-EACCES);
		goto out;
	}

	/* The child inode has been normalized such that its
	 * i_iget5_block value points to the "." entry.  Fortunately,
	 * the ".." entry is located in the same block. */
	parent_block = e_child_inode->i_iget5_block;

	/* Get the block in question. */
	bh = sb_bread(child_inode->i_sb, parent_block);
	if (bh == NULL) {
		rv = ERR_PTR(-EACCES);
		goto out;
	}

	/* This is the "." entry. */
	de = (struct iso_directory_record*)bh->b_data;

	/* The ".." entry is always the second entry. */
	parent_offset = (unsigned long)isonum_711(de->length);
	de = (struct iso_directory_record*)(bh->b_data + parent_offset);

	/* Verify it is in fact the ".." entry. */
	if ((isonum_711(de->name_len) != 1) || (de->name[0] != 1)) {
		printk(KERN_ERR "isofs: Unable to find the \"..\" "
		       "directory for NFS.\n");
		rv = ERR_PTR(-EACCES);
		goto out;
	}

	/* Normalize */
	isofs_normalize_block_and_offset(de, &parent_block, &parent_offset);

	rv = d_obtain_alias(isofs_iget(child_inode->i_sb, parent_block,
				     parent_offset));
 out:
	if (bh)
		brelse(bh);
	return rv;
}
static int gfs2_get_name(struct dentry *parent, char *name,
			 struct dentry *child)
{
	struct inode *dir = parent->d_inode;
	struct inode *inode = child->d_inode;
	struct gfs2_inode *dip, *ip;
	struct get_name_filldir gnfd;
	struct gfs2_holder gh;
	u64 offset = 0;
	int error;
	struct file_ra_state f_ra = { .start = 0 };

	if (!dir)
		return -EINVAL;

	if (!S_ISDIR(dir->i_mode) || !inode)
		return -EINVAL;

	dip = GFS2_I(dir);
	ip = GFS2_I(inode);

	*name = 0;
	gnfd.inum.no_addr = ip->i_no_addr;
	gnfd.inum.no_formal_ino = ip->i_no_formal_ino;
	gnfd.name = name;

	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &gh);
	if (error)
		return error;

	error = gfs2_dir_read(dir, &offset, &gnfd, get_name_filldir, &f_ra);

	gfs2_glock_dq_uninit(&gh);

	if (!error && !*name)
		error = -ENOENT;

	return error;
}

static struct dentry *gfs2_get_parent(struct dentry *child)
{
	return d_obtain_alias(gfs2_lookupi(child->d_inode, &gfs2_qdotdot, 1));
}

static struct dentry *gfs2_get_dentry(struct super_block *sb,
				      struct gfs2_inum_host *inum)
{
	struct gfs2_sbd *sdp = sb->s_fs_info;
	struct inode *inode;

	inode = gfs2_ilookup(sb, inum->no_addr, 0);
	if (inode) {
		if (GFS2_I(inode)->i_no_formal_ino != inum->no_formal_ino) {
			iput(inode);
			return ERR_PTR(-ESTALE);
		}
		goto out_inode;
	}

	inode = gfs2_lookup_by_inum(sdp, inum->no_addr, &inum->no_formal_ino,
				    GFS2_BLKST_DINODE);
	if (IS_ERR(inode))
		return ERR_CAST(inode);

out_inode:
	return d_obtain_alias(inode);
}

static struct dentry *gfs2_fh_to_dentry(struct super_block *sb, struct fid *fid,
		int fh_len, int fh_type)
{
	struct gfs2_inum_host this;
	__be32 *fh = (__force __be32 *)fid->raw;

	switch (fh_type) {
	case GFS2_SMALL_FH_SIZE:
	case GFS2_LARGE_FH_SIZE:
	case GFS2_OLD_FH_SIZE:
		this.no_formal_ino = ((u64)be32_to_cpu(fh[0])) << 32;
		this.no_formal_ino |= be32_to_cpu(fh[1]);
		this.no_addr = ((u64)be32_to_cpu(fh[2])) << 32;
		this.no_addr |= be32_to_cpu(fh[3]);
		return gfs2_get_dentry(sb, &this);
	default:
		return NULL;
	}
}

static struct dentry *gfs2_fh_to_parent(struct super_block *sb, struct fid *fid,
		int fh_len, int fh_type)
{
	struct gfs2_inum_host parent;
	__be32 *fh = (__force __be32 *)fid->raw;

	switch (fh_type) {
	case GFS2_LARGE_FH_SIZE:
	case GFS2_OLD_FH_SIZE:
		parent.no_formal_ino = ((u64)be32_to_cpu(fh[4])) << 32;
		parent.no_formal_ino |= be32_to_cpu(fh[5]);
		parent.no_addr = ((u64)be32_to_cpu(fh[6])) << 32;
		parent.no_addr |= be32_to_cpu(fh[7]);
		return gfs2_get_dentry(sb, &parent);
	default:
		return NULL;
	}
}

const struct export_operations gfs2_export_ops = {
	.encode_fh = gfs2_encode_fh,
	.fh_to_dentry = gfs2_fh_to_dentry,
	.fh_to_parent = gfs2_fh_to_parent,
	.get_name = gfs2_get_name,
	.get_parent = gfs2_get_parent,
};
Example #7
0
/*
 * Export operations
 */
static struct dentry *nilfs_get_parent(struct dentry *child)
{
	unsigned long ino;
	struct inode *inode;
	struct qstr dotdot = {.name = "..", .len = 2};
	struct nilfs_root *root;

	ino = nilfs_inode_by_name(child->d_inode, &dotdot);
	if (!ino)
		return ERR_PTR(-ENOENT);

	root = NILFS_I(child->d_inode)->i_root;

	inode = nilfs_iget(child->d_inode->i_sb, root, ino);
	if (IS_ERR(inode))
		return ERR_CAST(inode);

	return d_obtain_alias(inode);
}

static struct dentry *nilfs_get_dentry(struct super_block *sb, u64 cno,
				       u64 ino, u32 gen)
{
	struct nilfs_root *root;
	struct inode *inode;

	if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO)
		return ERR_PTR(-ESTALE);

	root = nilfs_lookup_root(NILFS_SB(sb)->s_nilfs, cno);
	if (!root)
		return ERR_PTR(-ESTALE);

	inode = nilfs_iget(sb, root, ino);
	nilfs_put_root(root);

	if (IS_ERR(inode))
		return ERR_CAST(inode);
	if (gen && inode->i_generation != gen) {
		iput(inode);
		return ERR_PTR(-ESTALE);
	}
	return d_obtain_alias(inode);
}

static struct dentry *nilfs_fh_to_dentry(struct super_block *sb, struct fid *fh,
					 int fh_len, int fh_type)
{
	struct nilfs_fid *fid = (struct nilfs_fid *)fh;

	if ((fh_len != NILFS_FID_SIZE_NON_CONNECTABLE &&
	     fh_len != NILFS_FID_SIZE_CONNECTABLE) ||
	    (fh_type != FILEID_NILFS_WITH_PARENT &&
	     fh_type != FILEID_NILFS_WITHOUT_PARENT))
		return NULL;

	return nilfs_get_dentry(sb, fid->cno, fid->ino, fid->gen);
}

static struct dentry *nilfs_fh_to_parent(struct super_block *sb, struct fid *fh,
					 int fh_len, int fh_type)
{
	struct nilfs_fid *fid = (struct nilfs_fid *)fh;

	if (fh_len != NILFS_FID_SIZE_CONNECTABLE ||
	    fh_type != FILEID_NILFS_WITH_PARENT)
		return NULL;

	return nilfs_get_dentry(sb, fid->cno, fid->parent_ino, fid->parent_gen);
}

static int nilfs_encode_fh(struct dentry *dentry, __u32 *fh, int *lenp,
			   int connectable)
{
	struct nilfs_fid *fid = (struct nilfs_fid *)fh;
	struct inode *inode = dentry->d_inode;
	struct nilfs_root *root = NILFS_I(inode)->i_root;
	int type;

	if (*lenp < NILFS_FID_SIZE_NON_CONNECTABLE ||
	    (connectable && *lenp < NILFS_FID_SIZE_CONNECTABLE))
		return 255;

	fid->cno = root->cno;
	fid->ino = inode->i_ino;
	fid->gen = inode->i_generation;

	if (connectable && !S_ISDIR(inode->i_mode)) {
		struct inode *parent;

		spin_lock(&dentry->d_lock);
		parent = dentry->d_parent->d_inode;
		fid->parent_ino = parent->i_ino;
		fid->parent_gen = parent->i_generation;
		spin_unlock(&dentry->d_lock);

		type = FILEID_NILFS_WITH_PARENT;
		*lenp = NILFS_FID_SIZE_CONNECTABLE;
	} else {
		type = FILEID_NILFS_WITHOUT_PARENT;
		*lenp = NILFS_FID_SIZE_NON_CONNECTABLE;
	}

	return type;
}

const struct inode_operations nilfs_dir_inode_operations = {
	.create		= nilfs_create,
	.lookup		= nilfs_lookup,
	.link		= nilfs_link,
	.unlink		= nilfs_unlink,
	.symlink	= nilfs_symlink,
	.mkdir		= nilfs_mkdir,
	.rmdir		= nilfs_rmdir,
	.mknod		= nilfs_mknod,
	.rename		= nilfs_rename,
	.setattr	= nilfs_setattr,
	.permission	= nilfs_permission,
	.fiemap		= nilfs_fiemap,
};

const struct inode_operations nilfs_special_inode_operations = {
	.setattr	= nilfs_setattr,
	.permission	= nilfs_permission,
};

const struct inode_operations nilfs_symlink_inode_operations = {
	.readlink	= generic_readlink,
	.follow_link	= page_follow_link_light,
	.put_link	= page_put_link,
	.permission     = nilfs_permission,
};

const struct export_operations nilfs_export_ops = {
	.encode_fh = nilfs_encode_fh,
	.fh_to_dentry = nilfs_fh_to_dentry,
	.fh_to_parent = nilfs_fh_to_parent,
	.get_parent = nilfs_get_parent,
};
Example #8
0
/*
 * get an NFS4 root dentry from the root filehandle
 */
struct dentry *nfs4_get_root(struct super_block *sb, struct nfs_fh *mntfh)
{
	struct nfs_server *server = NFS_SB(sb);
	struct nfs_fattr *fattr = NULL;
	struct dentry *ret;
	struct inode *inode;
	int error;

	dprintk("--> nfs4_get_root()\n");

	/* get the info about the server and filesystem */
	error = nfs4_server_capabilities(server, mntfh);
	if (error < 0) {
		dprintk("nfs_get_root: getcaps error = %d\n",
			-error);
		return ERR_PTR(error);
	}

	fattr = nfs_alloc_fattr();
	if (fattr == NULL)
		return ERR_PTR(-ENOMEM);;

	/* get the actual root for this mount */
	error = server->nfs_client->rpc_ops->getattr(server, mntfh, fattr);
	if (error < 0) {
		dprintk("nfs_get_root: getattr error = %d\n", -error);
		ret = ERR_PTR(error);
		goto out;
	}

	inode = nfs_fhget(sb, mntfh, fattr);
	if (IS_ERR(inode)) {
		dprintk("nfs_get_root: get root inode failed\n");
		ret = ERR_CAST(inode);
		goto out;
	}

	error = nfs_superblock_set_dummy_root(sb, inode);
	if (error != 0) {
		ret = ERR_PTR(error);
		goto out;
	}

	/* root dentries normally start off anonymous and get spliced in later
	 * if the dentry tree reaches them; however if the dentry already
	 * exists, we'll pick it up at this point and use it as the root
	 */
	ret = d_obtain_alias(inode);
	if (IS_ERR(ret)) {
		dprintk("nfs_get_root: get root dentry failed\n");
		goto out;
	}

	security_d_instantiate(ret, inode);

	if (ret->d_op == NULL)
		ret->d_op = server->nfs_client->rpc_ops->dentry_ops;

out:
	nfs_free_fattr(fattr);
	dprintk("<-- nfs4_get_root()\n");
	return ret;
}
Example #9
0
static struct dentry *gfs2_get_dentry(struct super_block *sb,
				      struct gfs2_inum_host *inum)
{
	struct gfs2_sbd *sdp = sb->s_fs_info;
	struct gfs2_holder i_gh;
	struct inode *inode;
	struct dentry *dentry;
	int error;

	inode = gfs2_ilookup(sb, inum->no_addr);
	if (inode) {
		if (GFS2_I(inode)->i_no_formal_ino != inum->no_formal_ino) {
			iput(inode);
			return ERR_PTR(-ESTALE);
		}
		goto out_inode;
	}

	error = gfs2_glock_nq_num(sdp, inum->no_addr, &gfs2_inode_glops,
				  LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
	if (error)
		return ERR_PTR(error);

	error = gfs2_check_blk_type(sdp, inum->no_addr, GFS2_BLKST_DINODE);
	if (error)
		goto fail;

	inode = gfs2_inode_lookup(sb, DT_UNKNOWN, inum->no_addr, 0);
	if (IS_ERR(inode)) {
		error = PTR_ERR(inode);
		goto fail;
	}

	error = gfs2_inode_refresh(GFS2_I(inode));
	if (error) {
		iput(inode);
		goto fail;
	}

	/* Pick up the works we bypass in gfs2_inode_lookup */
	if (inode->i_state & I_NEW)
		gfs2_set_iop(inode);

	if (GFS2_I(inode)->i_no_formal_ino != inum->no_formal_ino) {
		iput(inode);
		goto fail;
	}

	error = -EIO;
	if (GFS2_I(inode)->i_diskflags & GFS2_DIF_SYSTEM) {
		iput(inode);
		goto fail;
	}

	gfs2_glock_dq_uninit(&i_gh);

out_inode:
	dentry = d_obtain_alias(inode);
	if (!IS_ERR(dentry))
		dentry->d_op = &gfs2_dops;
	return dentry;
fail:
	gfs2_glock_dq_uninit(&i_gh);
	return ERR_PTR(error);
}
Example #10
0
static int exofs_read_lookup_dev_table(struct exofs_sb_info **psbi,
				       unsigned table_count)
{
	struct exofs_sb_info *sbi = *psbi;
	struct osd_dev *fscb_od;
	struct osd_obj_id obj = {.partition = sbi->s_pid,
				 .id = EXOFS_DEVTABLE_ID};
	struct exofs_device_table *dt;
	unsigned table_bytes = table_count * sizeof(dt->dt_dev_table[0]) +
					     sizeof(*dt);
	unsigned numdevs, i;
	int ret;

	dt = kmalloc(table_bytes, GFP_KERNEL);
	if (unlikely(!dt)) {
		EXOFS_ERR("ERROR: allocating %x bytes for device table\n",
			  table_bytes);
		return -ENOMEM;
	}

	fscb_od = sbi->s_ods[0];
	sbi->s_ods[0] = NULL;
	sbi->s_numdevs = 0;
	ret = exofs_read_kern(fscb_od, sbi->s_cred, &obj, 0, dt, table_bytes);
	if (unlikely(ret)) {
		EXOFS_ERR("ERROR: reading device table\n");
		goto out;
	}

	numdevs = le64_to_cpu(dt->dt_num_devices);
	if (unlikely(!numdevs)) {
		ret = -EINVAL;
		goto out;
	}
	WARN_ON(table_count != numdevs);

	ret = _read_and_match_data_map(sbi, numdevs, dt);
	if (unlikely(ret))
		goto out;

	if (likely(numdevs > 1)) {
		unsigned size = numdevs * sizeof(sbi->s_ods[0]);

		sbi = krealloc(sbi, sizeof(*sbi) + size, GFP_KERNEL);
		if (unlikely(!sbi)) {
			ret = -ENOMEM;
			goto out;
		}
		memset(&sbi->s_ods[1], 0, size - sizeof(sbi->s_ods[0]));
		*psbi = sbi;
	}

	for (i = 0; i < numdevs; i++) {
		struct exofs_fscb fscb;
		struct osd_dev_info odi;
		struct osd_dev *od;

		if (exofs_devs_2_odi(&dt->dt_dev_table[i], &odi)) {
			EXOFS_ERR("ERROR: Read all-zeros device entry\n");
			ret = -EINVAL;
			goto out;
		}

		printk(KERN_NOTICE "Add device[%d]: osd_name-%s\n",
		       i, odi.osdname);

		/* On all devices the device table is identical. The user can
		 * specify any one of the participating devices on the command
		 * line. We always keep them in device-table order.
		 */
		if (fscb_od && osduld_device_same(fscb_od, &odi)) {
			sbi->s_ods[i] = fscb_od;
			++sbi->s_numdevs;
			fscb_od = NULL;
			continue;
		}

		od = osduld_info_lookup(&odi);
		if (unlikely(IS_ERR(od))) {
			ret = PTR_ERR(od);
			EXOFS_ERR("ERROR: device requested is not found "
				  "osd_name-%s =>%d\n", odi.osdname, ret);
			goto out;
		}

		sbi->s_ods[i] = od;
		++sbi->s_numdevs;

		/* Read the fscb of the other devices to make sure the FS
		 * partition is there.
		 */
		ret = exofs_read_kern(od, sbi->s_cred, &obj, 0, &fscb,
				      sizeof(fscb));
		if (unlikely(ret)) {
			EXOFS_ERR("ERROR: Malformed participating device "
				  "error reading fscb osd_name-%s\n",
				  odi.osdname);
			goto out;
		}

		/* TODO: verify other information is correct and FS-uuid
		 *	 matches. Benny what did you say about device table
		 *	 generation and old devices?
		 */
	}

out:
	kfree(dt);
	if (unlikely(!ret && fscb_od)) {
		EXOFS_ERR(
		      "ERROR: Bad device-table container device not present\n");
		osduld_put_device(fscb_od);
		ret = -EINVAL;
	}

	return ret;
}

/*
 * Read the superblock from the OSD and fill in the fields
 */
static int exofs_fill_super(struct super_block *sb, void *data, int silent)
{
	struct inode *root;
	struct exofs_mountopt *opts = data;
	struct exofs_sb_info *sbi;	/*extended info                  */
	struct osd_dev *od;		/* Master device                 */
	struct exofs_fscb fscb;		/*on-disk superblock info        */
	struct osd_obj_id obj;
	unsigned table_count;
	int ret;

	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
	if (!sbi)
		return -ENOMEM;

	/* use mount options to fill superblock */
	od = osduld_path_lookup(opts->dev_name);
	if (IS_ERR(od)) {
		ret = PTR_ERR(od);
		goto free_sbi;
	}

	sbi->s_ods[0] = od;
	sbi->s_numdevs = 1;
	sbi->s_pid = opts->pid;
	sbi->s_timeout = opts->timeout;

	/* fill in some other data by hand */
	memset(sb->s_id, 0, sizeof(sb->s_id));
	strcpy(sb->s_id, "exofs");
	sb->s_blocksize = EXOFS_BLKSIZE;
	sb->s_blocksize_bits = EXOFS_BLKSHIFT;
	sb->s_maxbytes = MAX_LFS_FILESIZE;
	atomic_set(&sbi->s_curr_pending, 0);
	sb->s_bdev = NULL;
	sb->s_dev = 0;

	obj.partition = sbi->s_pid;
	obj.id = EXOFS_SUPER_ID;
	exofs_make_credential(sbi->s_cred, &obj);

	ret = exofs_read_kern(od, sbi->s_cred, &obj, 0, &fscb, sizeof(fscb));
	if (unlikely(ret))
		goto free_sbi;

	sb->s_magic = le16_to_cpu(fscb.s_magic);
	sbi->s_nextid = le64_to_cpu(fscb.s_nextid);
	sbi->s_numfiles = le32_to_cpu(fscb.s_numfiles);

	/* make sure what we read from the object store is correct */
	if (sb->s_magic != EXOFS_SUPER_MAGIC) {
		if (!silent)
			EXOFS_ERR("ERROR: Bad magic value\n");
		ret = -EINVAL;
		goto free_sbi;
	}
	if (le32_to_cpu(fscb.s_version) != EXOFS_FSCB_VER) {
		EXOFS_ERR("ERROR: Bad FSCB version expected-%d got-%d\n",
			  EXOFS_FSCB_VER, le32_to_cpu(fscb.s_version));
		ret = -EINVAL;
		goto free_sbi;
	}

	/* start generation numbers from a random point */
	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
	spin_lock_init(&sbi->s_next_gen_lock);

	table_count = le64_to_cpu(fscb.s_dev_table_count);
	if (table_count) {
		ret = exofs_read_lookup_dev_table(&sbi, table_count);
		if (unlikely(ret))
			goto free_sbi;
	}

	/* set up operation vectors */
	sb->s_fs_info = sbi;
	sb->s_op = &exofs_sops;
	sb->s_export_op = &exofs_export_ops;
	root = exofs_iget(sb, EXOFS_ROOT_ID - EXOFS_OBJ_OFF);
	if (IS_ERR(root)) {
		EXOFS_ERR("ERROR: exofs_iget failed\n");
		ret = PTR_ERR(root);
		goto free_sbi;
	}
	sb->s_root = d_alloc_root(root);
	if (!sb->s_root) {
		iput(root);
		EXOFS_ERR("ERROR: get root inode failed\n");
		ret = -ENOMEM;
		goto free_sbi;
	}

	if (!S_ISDIR(root->i_mode)) {
		dput(sb->s_root);
		sb->s_root = NULL;
		EXOFS_ERR("ERROR: corrupt root inode (mode = %hd)\n",
		       root->i_mode);
		ret = -EINVAL;
		goto free_sbi;
	}

	_exofs_print_device("Mounting", opts->dev_name, sbi->s_ods[0],
			    sbi->s_pid);
	return 0;

free_sbi:
	EXOFS_ERR("Unable to mount exofs on %s pid=0x%llx err=%d\n",
		  opts->dev_name, sbi->s_pid, ret);
	exofs_free_sbi(sbi);
	return ret;
}

/*
 * Set up the superblock (calls exofs_fill_super eventually)
 */
static int exofs_get_sb(struct file_system_type *type,
			  int flags, const char *dev_name,
			  void *data, struct vfsmount *mnt)
{
	struct exofs_mountopt opts;
	int ret;

	ret = parse_options(data, &opts);
	if (ret)
		return ret;

	opts.dev_name = dev_name;
	return get_sb_nodev(type, flags, &opts, exofs_fill_super, mnt);
}

/*
 * Return information about the file system state in the buffer.  This is used
 * by the 'df' command, for example.
 */
static int exofs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
	struct super_block *sb = dentry->d_sb;
	struct exofs_sb_info *sbi = sb->s_fs_info;
	struct exofs_io_state *ios;
	struct osd_attr attrs[] = {
		ATTR_DEF(OSD_APAGE_PARTITION_QUOTAS,
			OSD_ATTR_PQ_CAPACITY_QUOTA, sizeof(__be64)),
		ATTR_DEF(OSD_APAGE_PARTITION_INFORMATION,
			OSD_ATTR_PI_USED_CAPACITY, sizeof(__be64)),
	};
	uint64_t capacity = ULLONG_MAX;
	uint64_t used = ULLONG_MAX;
	uint8_t cred_a[OSD_CAP_LEN];
	int ret;

	ret = exofs_get_io_state(sbi, &ios);
	if (ret) {
		EXOFS_DBGMSG("exofs_get_io_state failed.\n");
		return ret;
	}

	exofs_make_credential(cred_a, &ios->obj);
	ios->cred = sbi->s_cred;
	ios->in_attr = attrs;
	ios->in_attr_len = ARRAY_SIZE(attrs);

	ret = exofs_sbi_read(ios);
	if (unlikely(ret))
		goto out;

	ret = extract_attr_from_ios(ios, &attrs[0]);
	if (likely(!ret)) {
		capacity = get_unaligned_be64(attrs[0].val_ptr);
		if (unlikely(!capacity))
			capacity = ULLONG_MAX;
	} else
		EXOFS_DBGMSG("exofs_statfs: get capacity failed.\n");

	ret = extract_attr_from_ios(ios, &attrs[1]);
	if (likely(!ret))
		used = get_unaligned_be64(attrs[1].val_ptr);
	else
		EXOFS_DBGMSG("exofs_statfs: get used-space failed.\n");

	/* fill in the stats buffer */
	buf->f_type = EXOFS_SUPER_MAGIC;
	buf->f_bsize = EXOFS_BLKSIZE;
	buf->f_blocks = capacity >> 9;
	buf->f_bfree = (capacity - used) >> 9;
	buf->f_bavail = buf->f_bfree;
	buf->f_files = sbi->s_numfiles;
	buf->f_ffree = EXOFS_MAX_ID - sbi->s_numfiles;
	buf->f_namelen = EXOFS_NAME_LEN;

out:
	exofs_put_io_state(ios);
	return ret;
}

static const struct super_operations exofs_sops = {
	.alloc_inode    = exofs_alloc_inode,
	.destroy_inode  = exofs_destroy_inode,
	.write_inode    = exofs_write_inode,
	.delete_inode   = exofs_delete_inode,
	.put_super      = exofs_put_super,
	.write_super    = exofs_write_super,
	.sync_fs	= exofs_sync_fs,
	.statfs         = exofs_statfs,
};

/******************************************************************************
 * EXPORT OPERATIONS
 *****************************************************************************/

struct dentry *exofs_get_parent(struct dentry *child)
{
	unsigned long ino = exofs_parent_ino(child);

	if (!ino)
		return NULL;

	return d_obtain_alias(exofs_iget(child->d_inode->i_sb, ino));
}
Example #11
0
static struct dentry *ocfs2_get_dentry(struct super_block *sb,
		struct ocfs2_inode_handle *handle)
{
	struct inode *inode;
	struct ocfs2_super *osb = OCFS2_SB(sb);
	u64 blkno = handle->ih_blkno;
	int status, set;
	struct dentry *result;

	trace_ocfs2_get_dentry_begin(sb, handle, (unsigned long long)blkno);

	if (blkno == 0) {
		result = ERR_PTR(-ESTALE);
		goto bail;
	}

	inode = ocfs2_ilookup(sb, blkno);
	/*
                                                             
                     
  */
	if (inode)
		goto check_gen;

	/*
                                                            
             
  */
	status = ocfs2_nfs_sync_lock(osb, 1);
	if (status < 0) {
		mlog(ML_ERROR, "getting nfs sync lock(EX) failed %d\n", status);
		goto check_err;
	}

	status = ocfs2_test_inode_bit(osb, blkno, &set);
	trace_ocfs2_get_dentry_test_bit(status, set);
	if (status < 0) {
		if (status == -EINVAL) {
			/*
                                                
                                          
          
    */
			status = -ESTALE;
		} else
			mlog(ML_ERROR, "test inode bit failed %d\n", status);
		goto unlock_nfs_sync;
	}

	/*                                                               */
	if (!set) {
		status = -ESTALE;
		goto unlock_nfs_sync;
	}

	inode = ocfs2_iget(osb, blkno, 0, 0);

unlock_nfs_sync:
	ocfs2_nfs_sync_unlock(osb, 1);

check_err:
	if (status < 0) {
		if (status == -ESTALE) {
			trace_ocfs2_get_dentry_stale((unsigned long long)blkno,
						     handle->ih_generation);
		}
		result = ERR_PTR(status);
		goto bail;
	}

	if (IS_ERR(inode)) {
		mlog_errno(PTR_ERR(inode));
		result = (void *)inode;
		goto bail;
	}

check_gen:
	if (handle->ih_generation != inode->i_generation) {
		iput(inode);
		trace_ocfs2_get_dentry_generation((unsigned long long)blkno,
						  handle->ih_generation,
						  inode->i_generation);
		result = ERR_PTR(-ESTALE);
		goto bail;
	}

	result = d_obtain_alias(inode);
	if (IS_ERR(result))
		mlog_errno(PTR_ERR(result));

bail:
	trace_ocfs2_get_dentry_end(result);
	return result;
}
Example #12
0
/*
 * get an NFS2/NFS3 root dentry from the root filehandle
 */
struct dentry *nfs_get_root(struct super_block *sb, struct nfs_fh *mntfh,
			    const char *devname)
{
	struct nfs_server *server = NFS_SB(sb);
	struct nfs_fsinfo fsinfo;
	struct dentry *ret;
	struct inode *inode;
	void *name = kstrdup(devname, GFP_KERNEL);
	int error;

	if (!name)
		return ERR_PTR(-ENOMEM);

	/* get the actual root for this mount */
	fsinfo.fattr = nfs_alloc_fattr();
	if (fsinfo.fattr == NULL) {
		kfree(name);
		return ERR_PTR(-ENOMEM);
	}

	error = server->nfs_client->rpc_ops->getroot(server, mntfh, &fsinfo);
	if (error < 0) {
		dprintk("nfs_get_root: getattr error = %d\n", -error);
		ret = ERR_PTR(error);
		goto out;
	}

	inode = nfs_fhget(sb, mntfh, fsinfo.fattr);
	if (IS_ERR(inode)) {
		dprintk("nfs_get_root: get root inode failed\n");
		ret = ERR_CAST(inode);
		goto out;
	}

	error = nfs_superblock_set_dummy_root(sb, inode);
	if (error != 0) {
		ret = ERR_PTR(error);
		goto out;
	}

	/* root dentries normally start off anonymous and get spliced in later
	 * if the dentry tree reaches them; however if the dentry already
	 * exists, we'll pick it up at this point and use it as the root
	 */
	ret = d_obtain_alias(inode);
	if (IS_ERR(ret)) {
		dprintk("nfs_get_root: get root dentry failed\n");
		goto out;
	}

	security_d_instantiate(ret, inode);
	spin_lock(&ret->d_lock);
	if (IS_ROOT(ret) && !(ret->d_flags & DCACHE_NFSFS_RENAMED)) {
		ret->d_fsdata = name;
		name = NULL;
	}
	spin_unlock(&ret->d_lock);
out:
	if (name)
		kfree(name);
	nfs_free_fattr(fsinfo.fattr);
	return ret;
}
Example #13
0
struct dentry *f2fs_get_parent(struct dentry *child)
{
	struct qstr dotdot = {.len = 2, .name = ".."};
	struct page *page;
	unsigned long ino = f2fs_inode_by_name(d_inode(child), &dotdot, &page);
	if (!ino) {
		if (IS_ERR(page))
			return ERR_CAST(page);
		return ERR_PTR(-ENOENT);
	}
	return d_obtain_alias(f2fs_iget(child->d_sb, ino));
}

static int __recover_dot_dentries(struct inode *dir, nid_t pino)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct qstr dot = QSTR_INIT(".", 1);
	struct qstr dotdot = QSTR_INIT("..", 2);
	struct f2fs_dir_entry *de;
	struct page *page;
	int err = 0;

	if (f2fs_readonly(sbi->sb)) {
		f2fs_msg(sbi->sb, KERN_INFO,
			"skip recovering inline_dots inode (ino:%lu, pino:%u) "
			"in readonly mountpoint", dir->i_ino, pino);
		return 0;
	}

	f2fs_balance_fs(sbi, true);

	f2fs_lock_op(sbi);

	de = f2fs_find_entry(dir, &dot, &page);
	if (de) {
		f2fs_dentry_kunmap(dir, page);
		f2fs_put_page(page, 0);
	} else if (IS_ERR(page)) {
		err = PTR_ERR(page);
		goto out;
	} else {
		err = __f2fs_add_link(dir, &dot, NULL, dir->i_ino, S_IFDIR);
		if (err)
			goto out;
	}

	de = f2fs_find_entry(dir, &dotdot, &page);
	if (de) {
		f2fs_dentry_kunmap(dir, page);
		f2fs_put_page(page, 0);
	} else if (IS_ERR(page)) {
		err = PTR_ERR(page);
	} else {
		err = __f2fs_add_link(dir, &dotdot, NULL, pino, S_IFDIR);
	}
out:
	if (!err)
		clear_inode_flag(dir, FI_INLINE_DOTS);

	f2fs_unlock_op(sbi);
	return err;
}

static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry,
					struct nameidata *nd)
{
	struct inode *inode = NULL;
	struct f2fs_dir_entry *de;
	struct page *page;
	nid_t ino;
	int err = 0;
	unsigned int root_ino = F2FS_ROOT_INO(F2FS_I_SB(dir));

	if (f2fs_encrypted_inode(dir)) {
		int res = fscrypt_get_encryption_info(dir);

		/*
		 * DCACHE_ENCRYPTED_WITH_KEY is set if the dentry is
		 * created while the directory was encrypted and we
		 * don't have access to the key.
		 */
		if (fscrypt_has_encryption_key(dir))
			fscrypt_set_encrypted_dentry(dentry);
		fscrypt_set_d_op(dentry);
		if (res && res != -ENOKEY)
			return ERR_PTR(res);
	}

	if (dentry->d_name.len > F2FS_NAME_LEN)
		return ERR_PTR(-ENAMETOOLONG);

	de = f2fs_find_entry(dir, &dentry->d_name, &page);
	if (!de) {
		if (IS_ERR(page))
			return (struct dentry *)page;
		return d_splice_alias(inode, dentry);
	}

	ino = le32_to_cpu(de->ino);
	f2fs_dentry_kunmap(dir, page);
	f2fs_put_page(page, 0);

	inode = f2fs_iget(dir->i_sb, ino);
	if (IS_ERR(inode))
		return ERR_CAST(inode);

	if ((dir->i_ino == root_ino) && f2fs_has_inline_dots(dir)) {
		err = __recover_dot_dentries(dir, root_ino);
		if (err)
			goto err_out;
	}

	if (f2fs_has_inline_dots(inode)) {
		err = __recover_dot_dentries(inode, dir->i_ino);
		if (err)
			goto err_out;
	}
	if (!IS_ERR(inode) && f2fs_encrypted_inode(dir) &&
			(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) &&
			!fscrypt_has_permitted_context(dir, inode)) {
		bool nokey = f2fs_encrypted_inode(inode) &&
			!fscrypt_has_encryption_key(inode);
		err = nokey ? -ENOKEY : -EPERM;
		goto err_out;
	}
	return d_splice_alias(inode, dentry);

err_out:
	iput(inode);
	return ERR_PTR(err);
}

static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode = d_inode(dentry);
	struct f2fs_dir_entry *de;
	struct page *page;
	int err = -ENOENT;

	trace_f2fs_unlink_enter(dir, dentry);

	de = f2fs_find_entry(dir, &dentry->d_name, &page);
	if (!de) {
		if (IS_ERR(page))
			err = PTR_ERR(page);
		goto fail;
	}

	f2fs_balance_fs(sbi, true);

	f2fs_lock_op(sbi);
	err = acquire_orphan_inode(sbi);
	if (err) {
		f2fs_unlock_op(sbi);
		f2fs_dentry_kunmap(dir, page);
		f2fs_put_page(page, 0);
		goto fail;
	}
	f2fs_delete_entry(de, page, dir, inode);
	f2fs_unlock_op(sbi);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
fail:
	trace_f2fs_unlink_exit(inode, err);
	return err;
}

static void *f2fs_follow_link(struct dentry *dentry, struct nameidata *nd)
{
	struct page *page;
	char *link;

	page = page_follow_link_light(dentry, nd);
	if (IS_ERR(page))
		return page;

	link = nd_get_link(nd);
	if (IS_ERR(link))
		return link;

	/* this is broken symlink case */
	if (*link == 0) {
		kunmap(page);
		page_cache_release(page);
		return ERR_PTR(-ENOENT);
	}
	return page;
}

static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
					const char *symname)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode;
	size_t len = strlen(symname);
	struct fscrypt_str disk_link = FSTR_INIT((char *)symname, len + 1);
	struct fscrypt_symlink_data *sd = NULL;
	int err;

	if (f2fs_encrypted_inode(dir)) {
		err = fscrypt_get_encryption_info(dir);
		if (err)
			return err;

		if (!fscrypt_has_encryption_key(dir))
			return -EPERM;

		disk_link.len = (fscrypt_fname_encrypted_size(dir, len) +
				sizeof(struct fscrypt_symlink_data));
	}

	if (disk_link.len > dir->i_sb->s_blocksize)
		return -ENAMETOOLONG;

	inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	if (f2fs_encrypted_inode(inode))
		inode->i_op = &f2fs_encrypted_symlink_inode_operations;
	else
		inode->i_op = &f2fs_symlink_inode_operations;
	inode_nohighmem(inode);
	inode->i_mapping->a_ops = &f2fs_dblock_aops;

	f2fs_balance_fs(sbi, true);

	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out;
	f2fs_unlock_op(sbi);
	alloc_nid_done(sbi, inode->i_ino);

	if (f2fs_encrypted_inode(inode)) {
		struct qstr istr = QSTR_INIT(symname, len);
		struct fscrypt_str ostr;

		sd = kzalloc(disk_link.len, GFP_NOFS);
		if (!sd) {
			err = -ENOMEM;
			goto err_out;
		}

		err = fscrypt_get_encryption_info(inode);
		if (err)
			goto err_out;

		if (!fscrypt_has_encryption_key(inode)) {
			err = -EPERM;
			goto err_out;
		}

		ostr.name = sd->encrypted_path;
		ostr.len = disk_link.len;
		err = fscrypt_fname_usr_to_disk(inode, &istr, &ostr);
		if (err < 0)
			goto err_out;

		sd->len = cpu_to_le16(ostr.len);
		disk_link.name = (char *)sd;
	}

	err = page_symlink(inode, disk_link.name, disk_link.len);

err_out:
	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	/*
	 * Let's flush symlink data in order to avoid broken symlink as much as
	 * possible. Nevertheless, fsyncing is the best way, but there is no
	 * way to get a file descriptor in order to flush that.
	 *
	 * Note that, it needs to do dir->fsync to make this recoverable.
	 * If the symlink path is stored into inline_data, there is no
	 * performance regression.
	 */
	if (!err) {
		filemap_write_and_wait_range(inode->i_mapping, 0,
							disk_link.len - 1);

		if (IS_DIRSYNC(dir))
			f2fs_sync_fs(sbi->sb, 1);
	} else {
		f2fs_unlink(dir, dentry);
	}

	kfree(sd);
	return err;
out:
	handle_failed_inode(inode);
	return err;
}

static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode;
	int err;

	inode = f2fs_new_inode(dir, S_IFDIR | mode);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	inode->i_op = &f2fs_dir_inode_operations;
	inode->i_fop = &f2fs_dir_operations;
	inode->i_mapping->a_ops = &f2fs_dblock_aops;
	mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO);

	f2fs_balance_fs(sbi, true);

	set_inode_flag(inode, FI_INC_LINK);
	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out_fail;
	f2fs_unlock_op(sbi);

	alloc_nid_done(sbi, inode->i_ino);

	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
	return 0;

out_fail:
	clear_inode_flag(inode, FI_INC_LINK);
	handle_failed_inode(inode);
	return err;
}

static int f2fs_rmdir(struct inode *dir, struct dentry *dentry)
{
	struct inode *inode = d_inode(dentry);
	if (f2fs_empty_dir(inode))
		return f2fs_unlink(dir, dentry);
	return -ENOTEMPTY;
}

static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
				umode_t mode, dev_t rdev)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
	struct inode *inode;
	int err = 0;

	if (!new_valid_dev(rdev))
		return -EINVAL;

	inode = f2fs_new_inode(dir, mode);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	init_special_inode(inode, inode->i_mode, rdev);
	inode->i_op = &f2fs_special_inode_operations;

	f2fs_balance_fs(sbi, true);

	f2fs_lock_op(sbi);
	err = f2fs_add_link(dentry, inode);
	if (err)
		goto out;
	f2fs_unlock_op(sbi);

	alloc_nid_done(sbi, inode->i_ino);

	d_instantiate(dentry, inode);
	unlock_new_inode(inode);

	if (IS_DIRSYNC(dir))
		f2fs_sync_fs(sbi->sb, 1);
	return 0;
out:
	handle_failed_inode(inode);
	return err;
}

static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
			struct inode *new_dir, struct dentry *new_dentry)
{
	struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
	struct inode *old_inode = d_inode(old_dentry);
	struct inode *new_inode = d_inode(new_dentry);
	struct page *old_dir_page;
	struct page *old_page, *new_page;
	struct f2fs_dir_entry *old_dir_entry = NULL;
	struct f2fs_dir_entry *old_entry;
	struct f2fs_dir_entry *new_entry;
	bool is_old_inline = f2fs_has_inline_dentry(old_dir);
	int err = -ENOENT;

	if ((old_dir != new_dir) && f2fs_encrypted_inode(new_dir) &&
			!fscrypt_has_permitted_context(new_dir, old_inode)) {
		err = -EPERM;
		goto out;
	}

	old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
	if (!old_entry) {
		if (IS_ERR(old_page))
			err = PTR_ERR(old_page);
		goto out;
	}

	if (S_ISDIR(old_inode->i_mode)) {
		old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
		if (!old_dir_entry) {
			if (IS_ERR(old_dir_page))
				err = PTR_ERR(old_dir_page);
			goto out_old;
		}
	}

	if (new_inode) {

		err = -ENOTEMPTY;
		if (old_dir_entry && !f2fs_empty_dir(new_inode))
			goto out_dir;

		err = -ENOENT;
		new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
						&new_page);
		if (!new_entry) {
			if (IS_ERR(new_page))
				err = PTR_ERR(new_page);
			goto out_dir;
		}

		f2fs_balance_fs(sbi, true);

		f2fs_lock_op(sbi);

		err = acquire_orphan_inode(sbi);
		if (err)
			goto put_out_dir;

		err = update_dent_inode(old_inode, new_inode,
						&new_dentry->d_name);
		if (err) {
			release_orphan_inode(sbi);
			goto put_out_dir;
		}

		f2fs_set_link(new_dir, new_entry, new_page, old_inode);

		new_inode->i_ctime = CURRENT_TIME;
		down_write(&F2FS_I(new_inode)->i_sem);
		if (old_dir_entry)
			f2fs_i_links_write(new_inode, false);
		f2fs_i_links_write(new_inode, false);
		up_write(&F2FS_I(new_inode)->i_sem);

		if (!new_inode->i_nlink)
			add_orphan_inode(new_inode);
		else
			release_orphan_inode(sbi);
	} else {
		f2fs_balance_fs(sbi, true);

		f2fs_lock_op(sbi);

		err = f2fs_add_link(new_dentry, old_inode);
		if (err) {
			f2fs_unlock_op(sbi);
			goto out_dir;
		}

		if (old_dir_entry)
			f2fs_i_links_write(new_dir, true);

		/*
		 * old entry and new entry can locate in the same inline
		 * dentry in inode, when attaching new entry in inline dentry,
		 * it could force inline dentry conversion, after that,
		 * old_entry and old_page will point to wrong address, in
		 * order to avoid this, let's do the check and update here.
		 */
		if (is_old_inline && !f2fs_has_inline_dentry(old_dir)) {
			f2fs_put_page(old_page, 0);
			old_page = NULL;

			old_entry = f2fs_find_entry(old_dir,
						&old_dentry->d_name, &old_page);
			if (!old_entry) {
				err = -ENOENT;
				if (IS_ERR(old_page))
					err = PTR_ERR(old_page);
				f2fs_unlock_op(sbi);
				goto out_dir;
			}
		}
	}

	down_write(&F2FS_I(old_inode)->i_sem);
	file_lost_pino(old_inode);
	if (new_inode && file_enc_name(new_inode))
		file_set_enc_name(old_inode);
	up_write(&F2FS_I(old_inode)->i_sem);

	old_inode->i_ctime = CURRENT_TIME;
	f2fs_mark_inode_dirty_sync(old_inode);

	f2fs_delete_entry(old_entry, old_page, old_dir, NULL);

	if (old_dir_entry) {
		if (old_dir != new_dir) {
			f2fs_set_link(old_inode, old_dir_entry,
						old_dir_page, new_dir);
		} else {
			f2fs_dentry_kunmap(old_inode, old_dir_page);
			f2fs_put_page(old_dir_page, 0);
		}
		f2fs_i_links_write(old_dir, false);
	}

	f2fs_unlock_op(sbi);

	if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir))
		f2fs_sync_fs(sbi->sb, 1);
	return 0;

put_out_dir:
	f2fs_unlock_op(sbi);
	f2fs_dentry_kunmap(new_dir, new_page);
	f2fs_put_page(new_page, 0);
out_dir:
	if (old_dir_entry) {
		f2fs_dentry_kunmap(old_inode, old_dir_page);
		f2fs_put_page(old_dir_page, 0);
	}
out_old:
	f2fs_dentry_kunmap(old_dir, old_page);
	f2fs_put_page(old_page, 0);
out:
	return err;
}

static void *f2fs_encrypted_follow_link(struct dentry *dentry,
						struct nameidata *nd)
{
	struct page *cpage = NULL;
	char *caddr, *paddr = NULL;
	struct fscrypt_str cstr = FSTR_INIT(NULL, 0);
	struct fscrypt_str pstr = FSTR_INIT(NULL, 0);
	struct fscrypt_symlink_data *sd;
	struct inode *inode = d_inode(dentry);
	loff_t size = min_t(loff_t, i_size_read(inode), PAGE_SIZE - 1);
	u32 max_size = inode->i_sb->s_blocksize;
	int res;

	res = fscrypt_get_encryption_info(inode);
	if (res)
		return ERR_PTR(res);

	cpage = read_mapping_page(inode->i_mapping, 0, NULL);
	if (IS_ERR(cpage))
		return cpage;
	caddr = kmap(cpage);
	caddr[size] = 0;

	/* Symlink is encrypted */
	sd = (struct fscrypt_symlink_data *)caddr;
	cstr.name = sd->encrypted_path;
	cstr.len = le16_to_cpu(sd->len);

	/* this is broken symlink case */
	if (unlikely(cstr.len == 0)) {
		res = -ENOENT;
		goto errout;
	}

	if ((cstr.len + sizeof(struct fscrypt_symlink_data) - 1) > max_size) {
		/* Symlink data on the disk is corrupted */
		res = -EIO;
		goto errout;
	}
	res = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
	if (res)
		goto errout;

	res = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
	if (res < 0)
		goto errout;

	/* this is broken symlink case */
	if (unlikely(pstr.name[0] == 0)) {
		res = -ENOENT;
		goto errout;
	}

	paddr = pstr.name;

	/* Null-terminate the name */
	paddr[res] = '\0';
	nd_set_link(nd, paddr);

	kunmap(cpage);
	page_cache_release(cpage);
	return NULL;
errout:
	fscrypt_fname_free_buffer(&pstr);
	kunmap(cpage);
	page_cache_release(cpage);
	return ERR_PTR(res);
}

void kfree_put_link(struct dentry *dentry, struct nameidata *nd,
		void *cookie)
{
	char *s = nd_get_link(nd);
	if (!IS_ERR(s))
		kfree(s);
}
static struct dentry *ufs_get_parent(struct dentry *child)
{
	struct qstr dot_dot = {
		.name	= "..",
		.len	= 2,
	};
	ino_t ino;

	ino = ufs_inode_by_name(child->d_inode, &dot_dot);
	if (!ino)
		return ERR_PTR(-ENOENT);
	return d_obtain_alias(ufs_iget(child->d_inode->i_sb, ino));
}

static const struct export_operations ufs_export_ops = {
	.fh_to_dentry	= ufs_fh_to_dentry,
	.fh_to_parent	= ufs_fh_to_parent,
	.get_parent	= ufs_get_parent,
};

#ifdef CONFIG_UFS_DEBUG
static void ufs_print_super_stuff(struct super_block *sb,
				  struct ufs_super_block_first *usb1,
				  struct ufs_super_block_second *usb2,
				  struct ufs_super_block_third *usb3)
{
	u32 magic = fs32_to_cpu(sb, usb3->fs_magic);

	printk("ufs_print_super_stuff\n");
	printk("  magic:     0x%x\n", magic);
	if (fs32_to_cpu(sb, usb3->fs_magic) == UFS2_MAGIC) {
		printk("  fs_size:   %llu\n", (unsigned long long)
		       fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size));
		printk("  fs_dsize:  %llu\n", (unsigned long long)
		       fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize));
		printk("  bsize:         %u\n",
		       fs32_to_cpu(sb, usb1->fs_bsize));
		printk("  fsize:         %u\n",
		       fs32_to_cpu(sb, usb1->fs_fsize));
		printk("  fs_volname:  %s\n", usb2->fs_un.fs_u2.fs_volname);
		printk("  fs_sblockloc: %llu\n", (unsigned long long)
		       fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc));
		printk("  cs_ndir(No of dirs):  %llu\n", (unsigned long long)
		       fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir));
		printk("  cs_nbfree(No of free blocks):  %llu\n",
		       (unsigned long long)
		       fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree));
		printk(KERN_INFO"  cs_nifree(Num of free inodes): %llu\n",
		       (unsigned long long)
		       fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree));
		printk(KERN_INFO"  cs_nffree(Num of free frags): %llu\n",
		       (unsigned long long)
		       fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree));
		printk(KERN_INFO"  fs_maxsymlinklen: %u\n",
		       fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen));
	} else {
		printk(" sblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_sblkno));
		printk(" cblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_cblkno));
		printk(" iblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_iblkno));
		printk(" dblkno:      %u\n", fs32_to_cpu(sb, usb1->fs_dblkno));
		printk(" cgoffset:    %u\n",
		       fs32_to_cpu(sb, usb1->fs_cgoffset));
		printk(" ~cgmask:     0x%x\n",
		       ~fs32_to_cpu(sb, usb1->fs_cgmask));
		printk(" size:        %u\n", fs32_to_cpu(sb, usb1->fs_size));
		printk(" dsize:       %u\n", fs32_to_cpu(sb, usb1->fs_dsize));
		printk(" ncg:         %u\n", fs32_to_cpu(sb, usb1->fs_ncg));
		printk(" bsize:       %u\n", fs32_to_cpu(sb, usb1->fs_bsize));
		printk(" fsize:       %u\n", fs32_to_cpu(sb, usb1->fs_fsize));
		printk(" frag:        %u\n", fs32_to_cpu(sb, usb1->fs_frag));
		printk(" fragshift:   %u\n",
		       fs32_to_cpu(sb, usb1->fs_fragshift));
		printk(" ~fmask:      %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask));
		printk(" fshift:      %u\n", fs32_to_cpu(sb, usb1->fs_fshift));
		printk(" sbsize:      %u\n", fs32_to_cpu(sb, usb1->fs_sbsize));
		printk(" spc:         %u\n", fs32_to_cpu(sb, usb1->fs_spc));
		printk(" cpg:         %u\n", fs32_to_cpu(sb, usb1->fs_cpg));
		printk(" ipg:         %u\n", fs32_to_cpu(sb, usb1->fs_ipg));
		printk(" fpg:         %u\n", fs32_to_cpu(sb, usb1->fs_fpg));
		printk(" csaddr:      %u\n", fs32_to_cpu(sb, usb1->fs_csaddr));
		printk(" cssize:      %u\n", fs32_to_cpu(sb, usb1->fs_cssize));
		printk(" cgsize:      %u\n", fs32_to_cpu(sb, usb1->fs_cgsize));
		printk(" fstodb:      %u\n",
		       fs32_to_cpu(sb, usb1->fs_fsbtodb));
		printk(" nrpos:       %u\n", fs32_to_cpu(sb, usb3->fs_nrpos));
		printk(" ndir         %u\n",
		       fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir));
		printk(" nifree       %u\n",
		       fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree));
		printk(" nbfree       %u\n",
		       fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree));
		printk(" nffree       %u\n",
		       fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree));
	}
	printk("\n");
}
Example #15
0
struct dentry *ext2_get_parent(struct dentry *child)
{
	struct qstr dotdot = {.name = "..", .len = 2};
	unsigned long ino = ext2_inode_by_name(child->d_inode, &dotdot);
	if (!ino)
		return ERR_PTR(-ENOENT);
	return d_obtain_alias(ext2_iget(child->d_inode->i_sb, ino));
} 

/*
 * By the time this is called, we already have created
 * the directory cache entry for the new file, but it
 * is so far negative - it has no inode.
 *
 * If the create succeeds, we fill in the inode information
 * with d_instantiate(). 
 */
static int ext2_create (struct inode * dir, struct dentry * dentry, int mode, struct nameidata *nd)
{
	struct inode *inode;

	dquot_initialize(dir);

	inode = ext2_new_inode(dir, mode);
	if (IS_ERR(inode))
		return PTR_ERR(inode);

	inode->i_op = &ext2_file_inode_operations;
	if (ext2_use_xip(inode->i_sb)) {
		inode->i_mapping->a_ops = &ext2_aops_xip;
		inode->i_fop = &ext2_xip_file_operations;
	} else if (test_opt(inode->i_sb, NOBH)) {
		inode->i_mapping->a_ops = &ext2_nobh_aops;
		inode->i_fop = &ext2_file_operations;
	} else {
		inode->i_mapping->a_ops = &ext2_aops;
		inode->i_fop = &ext2_file_operations;
	}
	mark_inode_dirty(inode);
	return ext2_add_nondir(dentry, inode);
}

static int ext2_mknod (struct inode * dir, struct dentry *dentry, int mode, dev_t rdev)
{
	struct inode * inode;
	int err;

	if (!new_valid_dev(rdev))
		return -EINVAL;

	dquot_initialize(dir);

	inode = ext2_new_inode (dir, mode);
	err = PTR_ERR(inode);
	if (!IS_ERR(inode)) {
		init_special_inode(inode, inode->i_mode, rdev);
#ifdef CONFIG_EXT2_FS_XATTR
		inode->i_op = &ext2_special_inode_operations;
#endif
		mark_inode_dirty(inode);
		err = ext2_add_nondir(dentry, inode);
	}
	return err;
}

static int ext2_symlink (struct inode * dir, struct dentry * dentry,
	const char * symname)
{
	struct super_block * sb = dir->i_sb;
	int err = -ENAMETOOLONG;
	unsigned l = strlen(symname)+1;
	struct inode * inode;

	if (l > sb->s_blocksize)
		goto out;

	dquot_initialize(dir);

	inode = ext2_new_inode (dir, S_IFLNK | S_IRWXUGO);
	err = PTR_ERR(inode);
	if (IS_ERR(inode))
		goto out;

	if (l > sizeof (EXT2_I(inode)->i_data)) {
		/* slow symlink */
		inode->i_op = &ext2_symlink_inode_operations;
		if (test_opt(inode->i_sb, NOBH))
			inode->i_mapping->a_ops = &ext2_nobh_aops;
		else
			inode->i_mapping->a_ops = &ext2_aops;
		err = page_symlink(inode, symname, l);
		if (err)
			goto out_fail;
	} else {
		/* fast symlink */
		inode->i_op = &ext2_fast_symlink_inode_operations;
		memcpy((char*)(EXT2_I(inode)->i_data),symname,l);
		inode->i_size = l-1;
	}
	mark_inode_dirty(inode);

	err = ext2_add_nondir(dentry, inode);
out:
	return err;

out_fail:
	inode_dec_link_count(inode);
	unlock_new_inode(inode);
	iput (inode);
	goto out;
}

static int ext2_link (struct dentry * old_dentry, struct inode * dir,
	struct dentry *dentry)
{
	struct inode *inode = old_dentry->d_inode;
	int err;

	if (inode->i_nlink >= EXT2_LINK_MAX)
		return -EMLINK;

	dquot_initialize(dir);

	inode->i_ctime = CURRENT_TIME_SEC;
	inode_inc_link_count(inode);
	ihold(inode);

	err = ext2_add_link(dentry, inode);
	if (!err) {
		d_instantiate(dentry, inode);
		return 0;
	}
	inode_dec_link_count(inode);
	iput(inode);
	return err;
}

static int ext2_mkdir(struct inode * dir, struct dentry * dentry, int mode)
{
	struct inode * inode;
	int err = -EMLINK;

	if (dir->i_nlink >= EXT2_LINK_MAX)
		goto out;

	dquot_initialize(dir);

	inode_inc_link_count(dir);

	inode = ext2_new_inode (dir, S_IFDIR | mode);
	err = PTR_ERR(inode);
	if (IS_ERR(inode))
		goto out_dir;

	inode->i_op = &ext2_dir_inode_operations;
	inode->i_fop = &ext2_dir_operations;
	if (test_opt(inode->i_sb, NOBH))
		inode->i_mapping->a_ops = &ext2_nobh_aops;
	else
		inode->i_mapping->a_ops = &ext2_aops;

	inode_inc_link_count(inode);

	err = ext2_make_empty(inode, dir);
	if (err)
		goto out_fail;

	err = ext2_add_link(dentry, inode);
	if (err)
		goto out_fail;

	d_instantiate(dentry, inode);
	unlock_new_inode(inode);
out:
	return err;

out_fail:
	inode_dec_link_count(inode);
	inode_dec_link_count(inode);
	unlock_new_inode(inode);
	iput(inode);
out_dir:
	inode_dec_link_count(dir);
	goto out;
}

static int ext2_unlink(struct inode * dir, struct dentry *dentry)
{
	struct inode * inode = dentry->d_inode;
	struct ext2_dir_entry_2 * de;
	struct page * page;
	int err = -ENOENT;

	dquot_initialize(dir);

	de = ext2_find_entry (dir, &dentry->d_name, &page);
	if (!de)
		goto out;

	err = ext2_delete_entry (de, page);
	if (err)
		goto out;

	inode->i_ctime = dir->i_ctime;
	inode_dec_link_count(inode);
	err = 0;
out:
	return err;
}

static int ext2_rmdir (struct inode * dir, struct dentry *dentry)
{
	struct inode * inode = dentry->d_inode;
	int err = -ENOTEMPTY;

	if (ext2_empty_dir(inode)) {
		err = ext2_unlink(dir, dentry);
		if (!err) {
			inode->i_size = 0;
			inode_dec_link_count(inode);
			inode_dec_link_count(dir);
		}
	}
	return err;
}

static int ext2_rename (struct inode * old_dir, struct dentry * old_dentry,
	struct inode * new_dir,	struct dentry * new_dentry )
{
	struct inode * old_inode = old_dentry->d_inode;
	struct inode * new_inode = new_dentry->d_inode;
	struct page * dir_page = NULL;
	struct ext2_dir_entry_2 * dir_de = NULL;
	struct page * old_page;
	struct ext2_dir_entry_2 * old_de;
	int err = -ENOENT;

	dquot_initialize(old_dir);
	dquot_initialize(new_dir);

	old_de = ext2_find_entry (old_dir, &old_dentry->d_name, &old_page);
	if (!old_de)
		goto out;

	if (S_ISDIR(old_inode->i_mode)) {
		err = -EIO;
		dir_de = ext2_dotdot(old_inode, &dir_page);
		if (!dir_de)
			goto out_old;
	}

	if (new_inode) {
		struct page *new_page;
		struct ext2_dir_entry_2 *new_de;

		err = -ENOTEMPTY;
		if (dir_de && !ext2_empty_dir (new_inode))
			goto out_dir;

		err = -ENOENT;
		new_de = ext2_find_entry (new_dir, &new_dentry->d_name, &new_page);
		if (!new_de)
			goto out_dir;
		ext2_set_link(new_dir, new_de, new_page, old_inode, 1);
		new_inode->i_ctime = CURRENT_TIME_SEC;
		if (dir_de)
			drop_nlink(new_inode);
		inode_dec_link_count(new_inode);
	} else {
		if (dir_de) {
			err = -EMLINK;
			if (new_dir->i_nlink >= EXT2_LINK_MAX)
				goto out_dir;
		}
		err = ext2_add_link(new_dentry, old_inode);
		if (err)
			goto out_dir;
		if (dir_de)
			inode_inc_link_count(new_dir);
	}

	/*
	 * Like most other Unix systems, set the ctime for inodes on a
 	 * rename.
	 */
	old_inode->i_ctime = CURRENT_TIME_SEC;
	mark_inode_dirty(old_inode);

	ext2_delete_entry (old_de, old_page);

	if (dir_de) {
		if (old_dir != new_dir)
			ext2_set_link(old_inode, dir_de, dir_page, new_dir, 0);
		else {
			kunmap(dir_page);
			page_cache_release(dir_page);
		}
		inode_dec_link_count(old_dir);
	}
	return 0;


out_dir:
	if (dir_de) {
		kunmap(dir_page);
		page_cache_release(dir_page);
	}
out_old:
	kunmap(old_page);
	page_cache_release(old_page);
out:
	return err;
}

const struct inode_operations ext2_dir_inode_operations = {
	.create		= ext2_create,
	.lookup		= ext2_lookup,
	.link		= ext2_link,
	.unlink		= ext2_unlink,
	.symlink	= ext2_symlink,
	.mkdir		= ext2_mkdir,
	.rmdir		= ext2_rmdir,
	.mknod		= ext2_mknod,
	.rename		= ext2_rename,
#ifdef CONFIG_EXT2_FS_XATTR
	.setxattr	= generic_setxattr,
	.getxattr	= generic_getxattr,
	.listxattr	= ext2_listxattr,
	.removexattr	= generic_removexattr,
#endif
	.setattr	= ext2_setattr,
	.check_acl	= ext2_check_acl,
};

const struct inode_operations ext2_special_inode_operations = {
#ifdef CONFIG_EXT2_FS_XATTR
	.setxattr	= generic_setxattr,
	.getxattr	= generic_getxattr,
	.listxattr	= ext2_listxattr,
	.removexattr	= generic_removexattr,
#endif
	.setattr	= ext2_setattr,
	.check_acl	= ext2_check_acl,
};
struct dentry *f2fs_get_parent(struct dentry *child)
{
    struct qstr dotdot = {.len = 2, .name = ".."};
    unsigned long ino = f2fs_inode_by_name(child->d_inode, &dotdot);
    if (!ino)
        return ERR_PTR(-ENOENT);
    return d_obtain_alias(f2fs_iget(child->d_inode->i_sb, ino));
}

static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry,
                                  struct nameidata *nd)
{
    struct inode *inode = NULL;
    struct f2fs_dir_entry *de;
    struct page *page;

    if (dentry->d_name.len > F2FS_NAME_LEN)
        return ERR_PTR(-ENAMETOOLONG);

    de = f2fs_find_entry(dir, &dentry->d_name, &page);
    if (de) {
        nid_t ino = le32_to_cpu(de->ino);
        kunmap(page);
        f2fs_put_page(page, 0);

        inode = f2fs_iget(dir->i_sb, ino);
        if (IS_ERR(inode))
            return ERR_CAST(inode);

        stat_inc_inline_inode(inode);
    }

    return d_splice_alias(inode, dentry);
}

static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
    struct inode *inode = dentry->d_inode;
    struct f2fs_dir_entry *de;
    struct page *page;
    int err = -ENOENT;

    trace_f2fs_unlink_enter(dir, dentry);
    f2fs_balance_fs(sbi);

    de = f2fs_find_entry(dir, &dentry->d_name, &page);
    if (!de)
        goto fail;

    f2fs_lock_op(sbi);
    err = acquire_orphan_inode(sbi);
    if (err) {
        f2fs_unlock_op(sbi);
        kunmap(page);
        f2fs_put_page(page, 0);
        goto fail;
    }
    f2fs_delete_entry(de, page, inode);
    f2fs_unlock_op(sbi);

    /* In order to evict this inode, we set it dirty */
    mark_inode_dirty(inode);
fail:
    trace_f2fs_unlink_exit(inode, err);
    return err;
}

static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
                        const char *symname)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
    struct inode *inode;
    size_t symlen = strlen(symname) + 1;
    int err;

    f2fs_balance_fs(sbi);

    inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
    if (IS_ERR(inode))
        return PTR_ERR(inode);

    inode->i_op = &f2fs_symlink_inode_operations;
    inode->i_mapping->a_ops = &f2fs_dblock_aops;

    f2fs_lock_op(sbi);
    err = f2fs_add_link(dentry, inode);
    f2fs_unlock_op(sbi);
    if (err)
        goto out;

    err = page_symlink(inode, symname, symlen);
    alloc_nid_done(sbi, inode->i_ino);

    d_instantiate(dentry, inode);
    unlock_new_inode(inode);
    return err;
out:
    clear_nlink(inode);
    iget_failed(inode);
    alloc_nid_failed(sbi, inode->i_ino);
    return err;
}

static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
    struct inode *inode;
    int err;

    f2fs_balance_fs(sbi);

    inode = f2fs_new_inode(dir, S_IFDIR | mode);
    if (IS_ERR(inode))
        return PTR_ERR(inode);

    inode->i_op = &f2fs_dir_inode_operations;
    inode->i_fop = &f2fs_dir_operations;
    inode->i_mapping->a_ops = &f2fs_dblock_aops;
    mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);

    set_inode_flag(F2FS_I(inode), FI_INC_LINK);
    f2fs_lock_op(sbi);
    err = f2fs_add_link(dentry, inode);
    f2fs_unlock_op(sbi);
    if (err)
        goto out_fail;

    alloc_nid_done(sbi, inode->i_ino);

    d_instantiate(dentry, inode);
    unlock_new_inode(inode);

    return 0;

out_fail:
    clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
    clear_nlink(inode);
    iget_failed(inode);
    alloc_nid_failed(sbi, inode->i_ino);
    return err;
}

static int f2fs_rmdir(struct inode *dir, struct dentry *dentry)
{
    struct inode *inode = dentry->d_inode;
    if (f2fs_empty_dir(inode))
        return f2fs_unlink(dir, dentry);
    return -ENOTEMPTY;
}

static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
                      umode_t mode, dev_t rdev)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
    struct inode *inode;
    int err = 0;

    if (!new_valid_dev(rdev))
        return -EINVAL;

    f2fs_balance_fs(sbi);

    inode = f2fs_new_inode(dir, mode);
    if (IS_ERR(inode))
        return PTR_ERR(inode);

    init_special_inode(inode, inode->i_mode, rdev);
    inode->i_op = &f2fs_special_inode_operations;

    f2fs_lock_op(sbi);
    err = f2fs_add_link(dentry, inode);
    f2fs_unlock_op(sbi);
    if (err)
        goto out;

    alloc_nid_done(sbi, inode->i_ino);
    d_instantiate(dentry, inode);
    unlock_new_inode(inode);
    return 0;
out:
    clear_nlink(inode);
    iget_failed(inode);
    alloc_nid_failed(sbi, inode->i_ino);
    return err;
}

static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
                       struct inode *new_dir, struct dentry *new_dentry)
{
    struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir);
    struct inode *old_inode = old_dentry->d_inode;
    struct inode *new_inode = new_dentry->d_inode;
    struct page *old_dir_page;
    struct page *old_page, *new_page;
    struct f2fs_dir_entry *old_dir_entry = NULL;
    struct f2fs_dir_entry *old_entry;
    struct f2fs_dir_entry *new_entry;
    int err = -ENOENT;

    f2fs_balance_fs(sbi);

    old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
    if (!old_entry)
        goto out;

    if (S_ISDIR(old_inode->i_mode)) {
        err = -EIO;
        old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
        if (!old_dir_entry)
            goto out_old;
    }

    if (new_inode) {

        err = -ENOTEMPTY;
        if (old_dir_entry && !f2fs_empty_dir(new_inode))
            goto out_dir;

        err = -ENOENT;
        new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
                                    &new_page);
        if (!new_entry)
            goto out_dir;

        f2fs_lock_op(sbi);

        err = acquire_orphan_inode(sbi);
        if (err)
            goto put_out_dir;

        if (update_dent_inode(old_inode, &new_dentry->d_name)) {
            release_orphan_inode(sbi);
            goto put_out_dir;
        }

        f2fs_set_link(new_dir, new_entry, new_page, old_inode);

        new_inode->i_ctime = CURRENT_TIME;
        down_write(&F2FS_I(new_inode)->i_sem);
        if (old_dir_entry)
            drop_nlink(new_inode);
        drop_nlink(new_inode);
        up_write(&F2FS_I(new_inode)->i_sem);

        mark_inode_dirty(new_inode);

        if (!new_inode->i_nlink)
            add_orphan_inode(sbi, new_inode->i_ino);
        else
            release_orphan_inode(sbi);

        update_inode_page(old_inode);
        update_inode_page(new_inode);
    } else {
        f2fs_lock_op(sbi);

        err = f2fs_add_link(new_dentry, old_inode);
        if (err) {
            f2fs_unlock_op(sbi);
            goto out_dir;
        }

        if (old_dir_entry) {
            inc_nlink(new_dir);
            update_inode_page(new_dir);
        }
    }

    down_write(&F2FS_I(old_inode)->i_sem);
    file_lost_pino(old_inode);
    up_write(&F2FS_I(old_inode)->i_sem);

    old_inode->i_ctime = CURRENT_TIME;
    mark_inode_dirty(old_inode);

    f2fs_delete_entry(old_entry, old_page, NULL);

    if (old_dir_entry) {
        if (old_dir != new_dir) {
            f2fs_set_link(old_inode, old_dir_entry,
                          old_dir_page, new_dir);
            update_inode_page(old_inode);
        } else {
            kunmap(old_dir_page);
            f2fs_put_page(old_dir_page, 0);
        }
        drop_nlink(old_dir);
        mark_inode_dirty(old_dir);
        update_inode_page(old_dir);
    }

    f2fs_unlock_op(sbi);
    return 0;

put_out_dir:
    f2fs_unlock_op(sbi);
    kunmap(new_page);
    f2fs_put_page(new_page, 0);
out_dir:
    if (old_dir_entry) {
        kunmap(old_dir_page);
        f2fs_put_page(old_dir_page, 0);
    }
out_old:
    kunmap(old_page);
    f2fs_put_page(old_page, 0);
out:
    return err;
}

const struct inode_operations f2fs_dir_inode_operations = {
    .create		= f2fs_create,
    .lookup		= f2fs_lookup,
    .link		= f2fs_link,
    .unlink		= f2fs_unlink,
    .symlink	= f2fs_symlink,
    .mkdir		= f2fs_mkdir,
    .rmdir		= f2fs_rmdir,
    .mknod		= f2fs_mknod,
    .rename		= f2fs_rename,
    .getattr	= f2fs_getattr,
    .setattr	= f2fs_setattr,
    .get_acl	= f2fs_get_acl,
#ifdef CONFIG_F2FS_FS_XATTR
    .setxattr	= generic_setxattr,
    .getxattr	= generic_getxattr,
    .listxattr	= f2fs_listxattr,
    .removexattr	= generic_removexattr,
#endif
};

const struct inode_operations f2fs_symlink_inode_operations = {
    .readlink       = generic_readlink,
    .follow_link    = page_follow_link_light,
    .put_link       = page_put_link,
    .getattr	= f2fs_getattr,
    .setattr	= f2fs_setattr,
#ifdef CONFIG_F2FS_FS_XATTR
    .setxattr	= generic_setxattr,
    .getxattr	= generic_getxattr,
    .listxattr	= f2fs_listxattr,
    .removexattr	= generic_removexattr,
#endif
};

const struct inode_operations f2fs_special_inode_operations = {
    .getattr	= f2fs_getattr,
    .setattr        = f2fs_setattr,
    .get_acl	= f2fs_get_acl,
#ifdef CONFIG_F2FS_FS_XATTR
    .setxattr       = generic_setxattr,
    .getxattr       = generic_getxattr,
    .listxattr	= f2fs_listxattr,
    .removexattr    = generic_removexattr,
#endif
};
Example #17
0
static int
#ifdef HAVE_ENCODE_FH_WITH_INODE
zpl_encode_fh(struct inode *ip, __u32 *fh, int *max_len, struct inode *parent)
{
#else
zpl_encode_fh(struct dentry *dentry, __u32 *fh, int *max_len, int connectable)
{
	struct inode *ip = dentry->d_inode;
#endif /* HAVE_ENCODE_FH_WITH_INODE */
	fid_t *fid = (fid_t *)fh;
	int len_bytes, rc;

	len_bytes = *max_len * sizeof (__u32);

	if (len_bytes < offsetof(fid_t, fid_data))
		return (255);

	fid->fid_len = len_bytes - offsetof(fid_t, fid_data);

	if (zfsctl_is_node(ip))
		rc = zfsctl_fid(ip, fid);
	else
		rc = zfs_fid(ip, fid);

	len_bytes = offsetof(fid_t, fid_data) + fid->fid_len;
	*max_len = roundup(len_bytes, sizeof (__u32)) / sizeof (__u32);

	return (rc == 0 ? FILEID_INO32_GEN : 255);
}

static struct dentry *
zpl_dentry_obtain_alias(struct inode *ip)
{
	struct dentry *result;

#ifdef HAVE_D_OBTAIN_ALIAS
	result = d_obtain_alias(ip);
#else
	result = d_alloc_anon(ip);

	if (result == NULL) {
		VN_RELE(ip);
		result = ERR_PTR(-ENOMEM);
	}
#endif /* HAVE_D_OBTAIN_ALIAS */

	return (result);
}

static struct dentry *
zpl_fh_to_dentry(struct super_block *sb, struct fid *fh,
    int fh_len, int fh_type)
{
	fid_t *fid = (fid_t *)fh;
	struct inode *ip;
	int len_bytes, rc;

	len_bytes = fh_len * sizeof (__u32);

	if (fh_type != FILEID_INO32_GEN ||
	    len_bytes < offsetof(fid_t, fid_data) ||
	    len_bytes < offsetof(fid_t, fid_data) + fid->fid_len)
		return (ERR_PTR(-EINVAL));

	rc = zfs_vget(sb, &ip, fid);

	if (rc != 0)
		return (ERR_PTR(-rc));

	ASSERT((ip != NULL) && !IS_ERR(ip));

	return (zpl_dentry_obtain_alias(ip));
}