STATIC int xfs_open_by_handle( xfs_mount_t *mp, void __user *arg, struct file *parfilp, struct inode *parinode) { int error; int new_fd; int permflag; struct file *filp; struct inode *inode; struct dentry *dentry; xfs_fsop_handlereq_t hreq; if (!capable(CAP_SYS_ADMIN)) return -XFS_ERROR(EPERM); if (copy_from_user(&hreq, arg, sizeof(xfs_fsop_handlereq_t))) return -XFS_ERROR(EFAULT); error = xfs_vget_fsop_handlereq(mp, parinode, &hreq, &inode); if (error) return -error; /* Restrict xfs_open_by_handle to directories & regular files. */ if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) { iput(inode); return -XFS_ERROR(EINVAL); } #if BITS_PER_LONG != 32 hreq.oflags |= O_LARGEFILE; #endif /* Put open permission in namei format. */ permflag = hreq.oflags; if ((permflag+1) & O_ACCMODE) permflag++; if (permflag & O_TRUNC) permflag |= 2; if ((!(permflag & O_APPEND) || (permflag & O_TRUNC)) && (permflag & FMODE_WRITE) && IS_APPEND(inode)) { iput(inode); return -XFS_ERROR(EPERM); } if ((permflag & FMODE_WRITE) && IS_IMMUTABLE(inode)) { iput(inode); return -XFS_ERROR(EACCES); } /* Can't write directories. */ if ( S_ISDIR(inode->i_mode) && (permflag & FMODE_WRITE)) { iput(inode); return -XFS_ERROR(EISDIR); } if ((new_fd = get_unused_fd()) < 0) { iput(inode); return new_fd; } dentry = d_obtain_alias(inode); if (IS_ERR(dentry)) { put_unused_fd(new_fd); return PTR_ERR(dentry); } /* Ensure umount returns EBUSY on umounts while this file is open. */ mntget(parfilp->f_path.mnt); /* Create file pointer. */ filp = dentry_open(dentry, parfilp->f_path.mnt, hreq.oflags); if (IS_ERR(filp)) { put_unused_fd(new_fd); return -XFS_ERROR(-PTR_ERR(filp)); } if (inode->i_mode & S_IFREG) { /* invisible operation should not change atime */ filp->f_flags |= O_NOATIME; filp->f_op = &xfs_invis_file_operations; } fd_install(new_fd, filp); return new_fd; }
static int #ifdef HAVE_ENCODE_FH_WITH_INODE zpl_encode_fh(struct inode *ip, __u32 *fh, int *max_len, struct inode *parent) { #else zpl_encode_fh(struct dentry *dentry, __u32 *fh, int *max_len, int connectable) { struct inode *ip = dentry->d_inode; #endif /* HAVE_ENCODE_FH_WITH_INODE */ fstrans_cookie_t cookie; fid_t *fid = (fid_t *)fh; int len_bytes, rc; len_bytes = *max_len * sizeof (__u32); if (len_bytes < offsetof(fid_t, fid_data)) return (255); fid->fid_len = len_bytes - offsetof(fid_t, fid_data); cookie = spl_fstrans_mark(); if (zfsctl_is_node(ip)) rc = zfsctl_fid(ip, fid); else rc = zfs_fid(ip, fid); spl_fstrans_unmark(cookie); len_bytes = offsetof(fid_t, fid_data) + fid->fid_len; *max_len = roundup(len_bytes, sizeof (__u32)) / sizeof (__u32); return (rc == 0 ? FILEID_INO32_GEN : 255); } static struct dentry * zpl_dentry_obtain_alias(struct inode *ip) { struct dentry *result; #ifdef HAVE_D_OBTAIN_ALIAS result = d_obtain_alias(ip); #else result = d_alloc_anon(ip); if (result == NULL) { VN_RELE(ip); result = ERR_PTR(-ENOMEM); } #endif /* HAVE_D_OBTAIN_ALIAS */ return (result); } static struct dentry * zpl_fh_to_dentry(struct super_block *sb, struct fid *fh, int fh_len, int fh_type) { fid_t *fid = (fid_t *)fh; fstrans_cookie_t cookie; struct inode *ip; int len_bytes, rc; len_bytes = fh_len * sizeof (__u32); if (fh_type != FILEID_INO32_GEN || len_bytes < offsetof(fid_t, fid_data) || len_bytes < offsetof(fid_t, fid_data) + fid->fid_len) return (ERR_PTR(-EINVAL)); cookie = spl_fstrans_mark(); rc = zfs_vget(sb, &ip, fid); spl_fstrans_unmark(cookie); if (rc) { /* * If we see ENOENT it might mean that an NFSv4 * client * is using a cached inode value in a file handle and * that the sought after file has had its inode changed * by a third party. So change the error to ESTALE * which will trigger a full lookup by the client and * will find the new filename/inode pair if it still * exists. */ if (rc == ENOENT) rc = ESTALE; return (ERR_PTR(-rc)); } ASSERT((ip != NULL) && !IS_ERR(ip)); return (zpl_dentry_obtain_alias(ip)); }
static struct dentry *ocfs2_get_dentry(struct super_block *sb, struct ocfs2_inode_handle *handle) { struct inode *inode; struct ocfs2_super *osb = OCFS2_SB(sb); u64 blkno = handle->ih_blkno; int status, set; struct dentry *result; trace_ocfs2_get_dentry_begin(sb, handle, (unsigned long long)blkno); if (blkno == 0) { result = ERR_PTR(-ESTALE); goto bail; } inode = ocfs2_ilookup(sb, blkno); /* * If the inode exists in memory, we only need to check it's * generation number */ if (inode) goto check_gen; /* * This will synchronize us against ocfs2_delete_inode() on * all nodes */ status = ocfs2_nfs_sync_lock(osb, 1); if (status < 0) { mlog(ML_ERROR, "getting nfs sync lock(EX) failed %d\n", status); goto check_err; } status = ocfs2_test_inode_bit(osb, blkno, &set); if (status < 0) { if (status == -EINVAL) { /* * The blkno NFS gave us doesn't even show up * as an inode, we return -ESTALE to be * nice */ status = -ESTALE; } else mlog(ML_ERROR, "test inode bit failed %d\n", status); goto unlock_nfs_sync; } trace_ocfs2_get_dentry_test_bit(status, set); /* If the inode allocator bit is clear, this inode must be stale */ if (!set) { status = -ESTALE; goto unlock_nfs_sync; } inode = ocfs2_iget(osb, blkno, 0, 0); unlock_nfs_sync: ocfs2_nfs_sync_unlock(osb, 1); check_err: if (status < 0) { if (status == -ESTALE) { trace_ocfs2_get_dentry_stale((unsigned long long)blkno, handle->ih_generation); } result = ERR_PTR(status); goto bail; } if (IS_ERR(inode)) { mlog_errno(PTR_ERR(inode)); result = (void *)inode; goto bail; } check_gen: if (handle->ih_generation != inode->i_generation) { iput(inode); trace_ocfs2_get_dentry_generation((unsigned long long)blkno, handle->ih_generation, inode->i_generation); result = ERR_PTR(-ESTALE); goto bail; } result = d_obtain_alias(inode); if (IS_ERR(result)) mlog_errno(PTR_ERR(result)); bail: trace_ocfs2_get_dentry_end(result); return result; }
struct dentry *f2fs_get_parent(struct dentry *child) { struct qstr dotdot = {.len = 2, .name = ".."}; unsigned long ino = f2fs_inode_by_name(child->d_inode, &dotdot); if (!ino) return ERR_PTR(-ENOENT); return d_obtain_alias(f2fs_iget(child->d_inode->i_sb, ino)); } static int __recover_dot_dentries(struct inode *dir, nid_t pino) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct qstr dot = {.len = 1, .name = "."}; struct qstr dotdot = {.len = 2, .name = ".."}; struct f2fs_dir_entry *de; struct page *page; int err = 0; f2fs_lock_op(sbi); de = f2fs_find_entry(dir, &dot, &page, 0); if (de) { f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); } else { err = __f2fs_add_link(dir, &dot, NULL, dir->i_ino, S_IFDIR); if (err) goto out; } de = f2fs_find_entry(dir, &dotdot, &page, 0); if (de) { f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); } else { err = __f2fs_add_link(dir, &dotdot, NULL, pino, S_IFDIR); } out: if (!err) { clear_inode_flag(F2FS_I(dir), FI_INLINE_DOTS); mark_inode_dirty(dir); } f2fs_unlock_op(sbi); return err; } static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) { struct inode *inode = NULL; struct f2fs_dir_entry *de; struct page *page; nid_t ino; int err = 0; if (dentry->d_name.len > F2FS_NAME_LEN) return ERR_PTR(-ENAMETOOLONG); de = f2fs_find_entry(dir, &dentry->d_name, &page, nd ? nd->flags : 0); if (!de) return d_splice_alias(inode, dentry); ino = le32_to_cpu(de->ino); f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); inode = f2fs_iget(dir->i_sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); if (f2fs_has_inline_dots(inode)) { err = __recover_dot_dentries(inode, dir->i_ino); if (err) goto err_out; } return d_splice_alias(inode, dentry); err_out: iget_failed(inode); return ERR_PTR(err); } static int f2fs_unlink(struct inode *dir, struct dentry *dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode = dentry->d_inode; struct f2fs_dir_entry *de; struct page *page; int err = -ENOENT; trace_f2fs_unlink_enter(dir, dentry); f2fs_balance_fs(sbi); de = f2fs_find_entry(dir, &dentry->d_name, &page, 0); if (!de) goto fail; f2fs_lock_op(sbi); err = acquire_orphan_inode(sbi); if (err) { f2fs_unlock_op(sbi); f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); goto fail; } f2fs_delete_entry(de, page, dir, inode); f2fs_unlock_op(sbi); /* In order to evict this inode, we set it dirty */ mark_inode_dirty(inode); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); fail: trace_f2fs_unlink_exit(inode, err); return err; } static void *f2fs_follow_link(struct dentry *dentry, struct nameidata *nd) { struct page *page; page = page_follow_link_light(dentry, nd); if (IS_ERR(page)) return page; /* this is broken symlink case */ if (*nd_get_link(nd) == 0) { kunmap(page); page_cache_release(page); return ERR_PTR(-ENOENT); } return page; } static int f2fs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; size_t len = strlen(symname); size_t p_len; char *p_str; struct f2fs_str disk_link = FSTR_INIT(NULL, 0); struct f2fs_encrypted_symlink_data *sd = NULL; int err; if (len > dir->i_sb->s_blocksize) return -ENAMETOOLONG; f2fs_balance_fs(sbi); inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO); if (IS_ERR(inode)) return PTR_ERR(inode); if (f2fs_encrypted_inode(inode)) inode->i_op = &f2fs_encrypted_symlink_inode_operations; else inode->i_op = &f2fs_symlink_inode_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out; f2fs_unlock_op(sbi); alloc_nid_done(sbi, inode->i_ino); if (f2fs_encrypted_inode(dir)) { struct qstr istr = QSTR_INIT(symname, len); err = f2fs_get_encryption_info(inode); if (err) goto err_out; err = f2fs_fname_crypto_alloc_buffer(inode, len, &disk_link); if (err) goto err_out; err = f2fs_fname_usr_to_disk(inode, &istr, &disk_link); if (err < 0) goto err_out; p_len = encrypted_symlink_data_len(disk_link.len) + 1; if (p_len > dir->i_sb->s_blocksize) { err = -ENAMETOOLONG; goto err_out; } sd = kzalloc(p_len, GFP_NOFS); if (!sd) { err = -ENOMEM; goto err_out; } memcpy(sd->encrypted_path, disk_link.name, disk_link.len); sd->len = cpu_to_le16(disk_link.len); p_str = (char *)sd; } else { p_len = len + 1; p_str = (char *)symname; } err = page_symlink(inode, p_str, p_len); err_out: d_instantiate(dentry, inode); unlock_new_inode(inode); /* * Let's flush symlink data in order to avoid broken symlink as much as * possible. Nevertheless, fsyncing is the best way, but there is no * way to get a file descriptor in order to flush that. * * Note that, it needs to do dir->fsync to make this recoverable. * If the symlink path is stored into inline_data, there is no * performance regression. */ if (!err) filemap_write_and_wait_range(inode->i_mapping, 0, p_len - 1); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); kfree(sd); f2fs_fname_crypto_free_buffer(&disk_link); return err; out: handle_failed_inode(inode); return err; } static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, int mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err; f2fs_balance_fs(sbi); inode = f2fs_new_inode(dir, S_IFDIR | mode); if (IS_ERR(inode)) return PTR_ERR(inode); inode->i_op = &f2fs_dir_inode_operations; inode->i_fop = &f2fs_dir_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO); set_inode_flag(F2FS_I(inode), FI_INC_LINK); f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out_fail; f2fs_unlock_op(sbi); alloc_nid_done(sbi, inode->i_ino); d_instantiate(dentry, inode); unlock_new_inode(inode); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); return 0; out_fail: clear_inode_flag(F2FS_I(inode), FI_INC_LINK); handle_failed_inode(inode); return err; } static int f2fs_rmdir(struct inode *dir, struct dentry *dentry) { struct inode *inode = dentry->d_inode; if (f2fs_empty_dir(inode)) return f2fs_unlink(dir, dentry); return -ENOTEMPTY; } static int f2fs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err = 0; if (!new_valid_dev(rdev)) return -EINVAL; f2fs_balance_fs(sbi); inode = f2fs_new_inode(dir, mode); if (IS_ERR(inode)) return PTR_ERR(inode); init_special_inode(inode, inode->i_mode, rdev); inode->i_op = &f2fs_special_inode_operations; f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out; f2fs_unlock_op(sbi); alloc_nid_done(sbi, inode->i_ino); d_instantiate(dentry, inode); unlock_new_inode(inode); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); return 0; out: handle_failed_inode(inode); return err; } static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir); struct inode *old_inode = old_dentry->d_inode; struct inode *new_inode = new_dentry->d_inode; struct page *old_dir_page; struct page *old_page, *new_page; struct f2fs_dir_entry *old_dir_entry = NULL; struct f2fs_dir_entry *old_entry; struct f2fs_dir_entry *new_entry; int err = -ENOENT; if ((old_dir != new_dir) && f2fs_encrypted_inode(new_dir) && !f2fs_is_child_context_consistent_with_parent(new_dir, old_inode)) { err = -EPERM; goto out; } f2fs_balance_fs(sbi); old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page, 0); if (!old_entry) goto out; if (S_ISDIR(old_inode->i_mode)) { err = -EIO; old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page); if (!old_dir_entry) goto out_old; } if (new_inode) { err = -ENOTEMPTY; if (old_dir_entry && !f2fs_empty_dir(new_inode)) goto out_dir; err = -ENOENT; new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page, 0); if (!new_entry) goto out_dir; f2fs_lock_op(sbi); err = acquire_orphan_inode(sbi); if (err) goto put_out_dir; if (update_dent_inode(old_inode, new_inode, &new_dentry->d_name)) { release_orphan_inode(sbi); goto put_out_dir; } f2fs_set_link(new_dir, new_entry, new_page, old_inode); new_inode->i_ctime = CURRENT_TIME; down_write(&F2FS_I(new_inode)->i_sem); if (old_dir_entry) drop_nlink(new_inode); drop_nlink(new_inode); up_write(&F2FS_I(new_inode)->i_sem); mark_inode_dirty(new_inode); if (!new_inode->i_nlink) add_orphan_inode(sbi, new_inode->i_ino); else release_orphan_inode(sbi); update_inode_page(old_inode); update_inode_page(new_inode); } else { f2fs_lock_op(sbi); err = f2fs_add_link(new_dentry, old_inode); if (err) { f2fs_unlock_op(sbi); goto out_dir; } if (old_dir_entry) { inc_nlink(new_dir); update_inode_page(new_dir); } } down_write(&F2FS_I(old_inode)->i_sem); file_lost_pino(old_inode); if (new_inode && file_enc_name(new_inode)) file_set_enc_name(old_inode); up_write(&F2FS_I(old_inode)->i_sem); old_inode->i_ctime = CURRENT_TIME; mark_inode_dirty(old_inode); f2fs_delete_entry(old_entry, old_page, old_dir, NULL); if (old_dir_entry) { if (old_dir != new_dir) { f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir); update_inode_page(old_inode); } else { f2fs_dentry_kunmap(old_inode, old_dir_page); f2fs_put_page(old_dir_page, 0); } drop_nlink(old_dir); mark_inode_dirty(old_dir); update_inode_page(old_dir); } f2fs_unlock_op(sbi); if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir)) f2fs_sync_fs(sbi->sb, 1); return 0; put_out_dir: f2fs_unlock_op(sbi); f2fs_dentry_kunmap(new_dir, new_page); f2fs_put_page(new_page, 0); out_dir: if (old_dir_entry) { f2fs_dentry_kunmap(old_inode, old_dir_page); f2fs_put_page(old_dir_page, 0); } out_old: f2fs_dentry_kunmap(old_dir, old_page); f2fs_put_page(old_page, 0); out: return err; } #ifdef CONFIG_F2FS_FS_ENCRYPTION static void *f2fs_encrypted_follow_link(struct dentry *dentry, struct nameidata *nd) { struct page *cpage = NULL; char *caddr, *paddr = NULL; struct f2fs_str cstr; struct f2fs_str pstr = FSTR_INIT(NULL, 0); struct inode *inode = dentry->d_inode; struct f2fs_encrypted_symlink_data *sd; loff_t size = min_t(loff_t, i_size_read(inode), PAGE_SIZE - 1); u32 max_size = inode->i_sb->s_blocksize; int res; res = f2fs_get_encryption_info(inode); if (res) return ERR_PTR(res); cpage = read_mapping_page(inode->i_mapping, 0, NULL); if (IS_ERR(cpage)) return cpage; caddr = kmap(cpage); caddr[size] = 0; /* Symlink is encrypted */ sd = (struct f2fs_encrypted_symlink_data *)caddr; cstr.name = sd->encrypted_path; cstr.len = le16_to_cpu(sd->len); /* this is broken symlink case */ if (cstr.name[0] == 0 && cstr.len == 0) { res = -ENOENT; goto errout; } if ((cstr.len + sizeof(struct f2fs_encrypted_symlink_data) - 1) > max_size) { /* Symlink data on the disk is corrupted */ res = -EIO; goto errout; } res = f2fs_fname_crypto_alloc_buffer(inode, cstr.len, &pstr); if (res) goto errout; res = f2fs_fname_disk_to_usr(inode, NULL, &cstr, &pstr); if (res < 0) goto errout; paddr = pstr.name; /* Null-terminate the name */ paddr[res] = '\0'; nd_set_link(nd, paddr); kunmap(cpage); page_cache_release(cpage); return NULL; errout: f2fs_fname_crypto_free_buffer(&pstr); kunmap(cpage); page_cache_release(cpage); return ERR_PTR(res); } void kfree_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) { char *s = nd_get_link(nd); if (!IS_ERR(s)) kfree(s); } const struct inode_operations f2fs_encrypted_symlink_inode_operations = { .readlink = generic_readlink, .follow_link = f2fs_encrypted_follow_link, .put_link = kfree_put_link, .getattr = f2fs_getattr, .setattr = f2fs_setattr, .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = f2fs_listxattr, .removexattr = generic_removexattr, }; #endif const struct inode_operations f2fs_dir_inode_operations = { .create = f2fs_create, .lookup = f2fs_lookup, .link = f2fs_link, .unlink = f2fs_unlink, .symlink = f2fs_symlink, .mkdir = f2fs_mkdir, .rmdir = f2fs_rmdir, .mknod = f2fs_mknod, .rename = f2fs_rename, .getattr = f2fs_getattr, .setattr = f2fs_setattr, .check_acl = f2fs_check_acl, #ifdef CONFIG_F2FS_FS_XATTR .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = f2fs_listxattr, .removexattr = generic_removexattr, #endif }; const struct inode_operations f2fs_symlink_inode_operations = { .readlink = generic_readlink, .follow_link = f2fs_follow_link, .put_link = page_put_link, .getattr = f2fs_getattr, .setattr = f2fs_setattr, #ifdef CONFIG_F2FS_FS_XATTR .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = f2fs_listxattr, .removexattr = generic_removexattr, #endif }; const struct inode_operations f2fs_special_inode_operations = { .getattr = f2fs_getattr, .setattr = f2fs_setattr, .check_acl = f2fs_check_acl, #ifdef CONFIG_F2FS_FS_XATTR .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = f2fs_listxattr, .removexattr = generic_removexattr, #endif };
/* This function is surprisingly simple. The trick is understanding * that "child" is always a directory. So, to find its parent, you * simply need to find its ".." entry, normalize its block and offset, * and return the underlying inode. See the comments for * isofs_normalize_block_and_offset(). */ static struct dentry *isofs_export_get_parent(struct dentry *child) { unsigned long parent_block = 0; unsigned long parent_offset = 0; struct inode *child_inode = child->d_inode; struct iso_inode_info *e_child_inode = ISOFS_I(child_inode); struct iso_directory_record *de = NULL; struct buffer_head * bh = NULL; struct dentry *rv = NULL; /* "child" must always be a directory. */ if (!S_ISDIR(child_inode->i_mode)) { printk(KERN_ERR "isofs: isofs_export_get_parent(): " "child is not a directory!\n"); rv = ERR_PTR(-EACCES); goto out; } /* It is an invariant that the directory offset is zero. If * it is not zero, it means the directory failed to be * normalized for some reason. */ if (e_child_inode->i_iget5_offset != 0) { printk(KERN_ERR "isofs: isofs_export_get_parent(): " "child directory not normalized!\n"); rv = ERR_PTR(-EACCES); goto out; } /* The child inode has been normalized such that its * i_iget5_block value points to the "." entry. Fortunately, * the ".." entry is located in the same block. */ parent_block = e_child_inode->i_iget5_block; /* Get the block in question. */ bh = sb_bread(child_inode->i_sb, parent_block); if (bh == NULL) { rv = ERR_PTR(-EACCES); goto out; } /* This is the "." entry. */ de = (struct iso_directory_record*)bh->b_data; /* The ".." entry is always the second entry. */ parent_offset = (unsigned long)isonum_711(de->length); de = (struct iso_directory_record*)(bh->b_data + parent_offset); /* Verify it is in fact the ".." entry. */ if ((isonum_711(de->name_len) != 1) || (de->name[0] != 1)) { printk(KERN_ERR "isofs: Unable to find the \"..\" " "directory for NFS.\n"); rv = ERR_PTR(-EACCES); goto out; } /* Normalize */ isofs_normalize_block_and_offset(de, &parent_block, &parent_offset); rv = d_obtain_alias(isofs_iget(child_inode->i_sb, parent_block, parent_offset)); out: if (bh) brelse(bh); return rv; }
static int gfs2_get_name(struct dentry *parent, char *name, struct dentry *child) { struct inode *dir = parent->d_inode; struct inode *inode = child->d_inode; struct gfs2_inode *dip, *ip; struct get_name_filldir gnfd; struct gfs2_holder gh; u64 offset = 0; int error; struct file_ra_state f_ra = { .start = 0 }; if (!dir) return -EINVAL; if (!S_ISDIR(dir->i_mode) || !inode) return -EINVAL; dip = GFS2_I(dir); ip = GFS2_I(inode); *name = 0; gnfd.inum.no_addr = ip->i_no_addr; gnfd.inum.no_formal_ino = ip->i_no_formal_ino; gnfd.name = name; error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &gh); if (error) return error; error = gfs2_dir_read(dir, &offset, &gnfd, get_name_filldir, &f_ra); gfs2_glock_dq_uninit(&gh); if (!error && !*name) error = -ENOENT; return error; } static struct dentry *gfs2_get_parent(struct dentry *child) { return d_obtain_alias(gfs2_lookupi(child->d_inode, &gfs2_qdotdot, 1)); } static struct dentry *gfs2_get_dentry(struct super_block *sb, struct gfs2_inum_host *inum) { struct gfs2_sbd *sdp = sb->s_fs_info; struct inode *inode; inode = gfs2_ilookup(sb, inum->no_addr, 0); if (inode) { if (GFS2_I(inode)->i_no_formal_ino != inum->no_formal_ino) { iput(inode); return ERR_PTR(-ESTALE); } goto out_inode; } inode = gfs2_lookup_by_inum(sdp, inum->no_addr, &inum->no_formal_ino, GFS2_BLKST_DINODE); if (IS_ERR(inode)) return ERR_CAST(inode); out_inode: return d_obtain_alias(inode); } static struct dentry *gfs2_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { struct gfs2_inum_host this; __be32 *fh = (__force __be32 *)fid->raw; switch (fh_type) { case GFS2_SMALL_FH_SIZE: case GFS2_LARGE_FH_SIZE: case GFS2_OLD_FH_SIZE: this.no_formal_ino = ((u64)be32_to_cpu(fh[0])) << 32; this.no_formal_ino |= be32_to_cpu(fh[1]); this.no_addr = ((u64)be32_to_cpu(fh[2])) << 32; this.no_addr |= be32_to_cpu(fh[3]); return gfs2_get_dentry(sb, &this); default: return NULL; } } static struct dentry *gfs2_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len, int fh_type) { struct gfs2_inum_host parent; __be32 *fh = (__force __be32 *)fid->raw; switch (fh_type) { case GFS2_LARGE_FH_SIZE: case GFS2_OLD_FH_SIZE: parent.no_formal_ino = ((u64)be32_to_cpu(fh[4])) << 32; parent.no_formal_ino |= be32_to_cpu(fh[5]); parent.no_addr = ((u64)be32_to_cpu(fh[6])) << 32; parent.no_addr |= be32_to_cpu(fh[7]); return gfs2_get_dentry(sb, &parent); default: return NULL; } } const struct export_operations gfs2_export_ops = { .encode_fh = gfs2_encode_fh, .fh_to_dentry = gfs2_fh_to_dentry, .fh_to_parent = gfs2_fh_to_parent, .get_name = gfs2_get_name, .get_parent = gfs2_get_parent, };
/* * Export operations */ static struct dentry *nilfs_get_parent(struct dentry *child) { unsigned long ino; struct inode *inode; struct qstr dotdot = {.name = "..", .len = 2}; struct nilfs_root *root; ino = nilfs_inode_by_name(child->d_inode, &dotdot); if (!ino) return ERR_PTR(-ENOENT); root = NILFS_I(child->d_inode)->i_root; inode = nilfs_iget(child->d_inode->i_sb, root, ino); if (IS_ERR(inode)) return ERR_CAST(inode); return d_obtain_alias(inode); } static struct dentry *nilfs_get_dentry(struct super_block *sb, u64 cno, u64 ino, u32 gen) { struct nilfs_root *root; struct inode *inode; if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO) return ERR_PTR(-ESTALE); root = nilfs_lookup_root(NILFS_SB(sb)->s_nilfs, cno); if (!root) return ERR_PTR(-ESTALE); inode = nilfs_iget(sb, root, ino); nilfs_put_root(root); if (IS_ERR(inode)) return ERR_CAST(inode); if (gen && inode->i_generation != gen) { iput(inode); return ERR_PTR(-ESTALE); } return d_obtain_alias(inode); } static struct dentry *nilfs_fh_to_dentry(struct super_block *sb, struct fid *fh, int fh_len, int fh_type) { struct nilfs_fid *fid = (struct nilfs_fid *)fh; if ((fh_len != NILFS_FID_SIZE_NON_CONNECTABLE && fh_len != NILFS_FID_SIZE_CONNECTABLE) || (fh_type != FILEID_NILFS_WITH_PARENT && fh_type != FILEID_NILFS_WITHOUT_PARENT)) return NULL; return nilfs_get_dentry(sb, fid->cno, fid->ino, fid->gen); } static struct dentry *nilfs_fh_to_parent(struct super_block *sb, struct fid *fh, int fh_len, int fh_type) { struct nilfs_fid *fid = (struct nilfs_fid *)fh; if (fh_len != NILFS_FID_SIZE_CONNECTABLE || fh_type != FILEID_NILFS_WITH_PARENT) return NULL; return nilfs_get_dentry(sb, fid->cno, fid->parent_ino, fid->parent_gen); } static int nilfs_encode_fh(struct dentry *dentry, __u32 *fh, int *lenp, int connectable) { struct nilfs_fid *fid = (struct nilfs_fid *)fh; struct inode *inode = dentry->d_inode; struct nilfs_root *root = NILFS_I(inode)->i_root; int type; if (*lenp < NILFS_FID_SIZE_NON_CONNECTABLE || (connectable && *lenp < NILFS_FID_SIZE_CONNECTABLE)) return 255; fid->cno = root->cno; fid->ino = inode->i_ino; fid->gen = inode->i_generation; if (connectable && !S_ISDIR(inode->i_mode)) { struct inode *parent; spin_lock(&dentry->d_lock); parent = dentry->d_parent->d_inode; fid->parent_ino = parent->i_ino; fid->parent_gen = parent->i_generation; spin_unlock(&dentry->d_lock); type = FILEID_NILFS_WITH_PARENT; *lenp = NILFS_FID_SIZE_CONNECTABLE; } else { type = FILEID_NILFS_WITHOUT_PARENT; *lenp = NILFS_FID_SIZE_NON_CONNECTABLE; } return type; } const struct inode_operations nilfs_dir_inode_operations = { .create = nilfs_create, .lookup = nilfs_lookup, .link = nilfs_link, .unlink = nilfs_unlink, .symlink = nilfs_symlink, .mkdir = nilfs_mkdir, .rmdir = nilfs_rmdir, .mknod = nilfs_mknod, .rename = nilfs_rename, .setattr = nilfs_setattr, .permission = nilfs_permission, .fiemap = nilfs_fiemap, }; const struct inode_operations nilfs_special_inode_operations = { .setattr = nilfs_setattr, .permission = nilfs_permission, }; const struct inode_operations nilfs_symlink_inode_operations = { .readlink = generic_readlink, .follow_link = page_follow_link_light, .put_link = page_put_link, .permission = nilfs_permission, }; const struct export_operations nilfs_export_ops = { .encode_fh = nilfs_encode_fh, .fh_to_dentry = nilfs_fh_to_dentry, .fh_to_parent = nilfs_fh_to_parent, .get_parent = nilfs_get_parent, };
/* * get an NFS4 root dentry from the root filehandle */ struct dentry *nfs4_get_root(struct super_block *sb, struct nfs_fh *mntfh) { struct nfs_server *server = NFS_SB(sb); struct nfs_fattr *fattr = NULL; struct dentry *ret; struct inode *inode; int error; dprintk("--> nfs4_get_root()\n"); /* get the info about the server and filesystem */ error = nfs4_server_capabilities(server, mntfh); if (error < 0) { dprintk("nfs_get_root: getcaps error = %d\n", -error); return ERR_PTR(error); } fattr = nfs_alloc_fattr(); if (fattr == NULL) return ERR_PTR(-ENOMEM);; /* get the actual root for this mount */ error = server->nfs_client->rpc_ops->getattr(server, mntfh, fattr); if (error < 0) { dprintk("nfs_get_root: getattr error = %d\n", -error); ret = ERR_PTR(error); goto out; } inode = nfs_fhget(sb, mntfh, fattr); if (IS_ERR(inode)) { dprintk("nfs_get_root: get root inode failed\n"); ret = ERR_CAST(inode); goto out; } error = nfs_superblock_set_dummy_root(sb, inode); if (error != 0) { ret = ERR_PTR(error); goto out; } /* root dentries normally start off anonymous and get spliced in later * if the dentry tree reaches them; however if the dentry already * exists, we'll pick it up at this point and use it as the root */ ret = d_obtain_alias(inode); if (IS_ERR(ret)) { dprintk("nfs_get_root: get root dentry failed\n"); goto out; } security_d_instantiate(ret, inode); if (ret->d_op == NULL) ret->d_op = server->nfs_client->rpc_ops->dentry_ops; out: nfs_free_fattr(fattr); dprintk("<-- nfs4_get_root()\n"); return ret; }
static struct dentry *gfs2_get_dentry(struct super_block *sb, struct gfs2_inum_host *inum) { struct gfs2_sbd *sdp = sb->s_fs_info; struct gfs2_holder i_gh; struct inode *inode; struct dentry *dentry; int error; inode = gfs2_ilookup(sb, inum->no_addr); if (inode) { if (GFS2_I(inode)->i_no_formal_ino != inum->no_formal_ino) { iput(inode); return ERR_PTR(-ESTALE); } goto out_inode; } error = gfs2_glock_nq_num(sdp, inum->no_addr, &gfs2_inode_glops, LM_ST_SHARED, LM_FLAG_ANY, &i_gh); if (error) return ERR_PTR(error); error = gfs2_check_blk_type(sdp, inum->no_addr, GFS2_BLKST_DINODE); if (error) goto fail; inode = gfs2_inode_lookup(sb, DT_UNKNOWN, inum->no_addr, 0); if (IS_ERR(inode)) { error = PTR_ERR(inode); goto fail; } error = gfs2_inode_refresh(GFS2_I(inode)); if (error) { iput(inode); goto fail; } /* Pick up the works we bypass in gfs2_inode_lookup */ if (inode->i_state & I_NEW) gfs2_set_iop(inode); if (GFS2_I(inode)->i_no_formal_ino != inum->no_formal_ino) { iput(inode); goto fail; } error = -EIO; if (GFS2_I(inode)->i_diskflags & GFS2_DIF_SYSTEM) { iput(inode); goto fail; } gfs2_glock_dq_uninit(&i_gh); out_inode: dentry = d_obtain_alias(inode); if (!IS_ERR(dentry)) dentry->d_op = &gfs2_dops; return dentry; fail: gfs2_glock_dq_uninit(&i_gh); return ERR_PTR(error); }
static int exofs_read_lookup_dev_table(struct exofs_sb_info **psbi, unsigned table_count) { struct exofs_sb_info *sbi = *psbi; struct osd_dev *fscb_od; struct osd_obj_id obj = {.partition = sbi->s_pid, .id = EXOFS_DEVTABLE_ID}; struct exofs_device_table *dt; unsigned table_bytes = table_count * sizeof(dt->dt_dev_table[0]) + sizeof(*dt); unsigned numdevs, i; int ret; dt = kmalloc(table_bytes, GFP_KERNEL); if (unlikely(!dt)) { EXOFS_ERR("ERROR: allocating %x bytes for device table\n", table_bytes); return -ENOMEM; } fscb_od = sbi->s_ods[0]; sbi->s_ods[0] = NULL; sbi->s_numdevs = 0; ret = exofs_read_kern(fscb_od, sbi->s_cred, &obj, 0, dt, table_bytes); if (unlikely(ret)) { EXOFS_ERR("ERROR: reading device table\n"); goto out; } numdevs = le64_to_cpu(dt->dt_num_devices); if (unlikely(!numdevs)) { ret = -EINVAL; goto out; } WARN_ON(table_count != numdevs); ret = _read_and_match_data_map(sbi, numdevs, dt); if (unlikely(ret)) goto out; if (likely(numdevs > 1)) { unsigned size = numdevs * sizeof(sbi->s_ods[0]); sbi = krealloc(sbi, sizeof(*sbi) + size, GFP_KERNEL); if (unlikely(!sbi)) { ret = -ENOMEM; goto out; } memset(&sbi->s_ods[1], 0, size - sizeof(sbi->s_ods[0])); *psbi = sbi; } for (i = 0; i < numdevs; i++) { struct exofs_fscb fscb; struct osd_dev_info odi; struct osd_dev *od; if (exofs_devs_2_odi(&dt->dt_dev_table[i], &odi)) { EXOFS_ERR("ERROR: Read all-zeros device entry\n"); ret = -EINVAL; goto out; } printk(KERN_NOTICE "Add device[%d]: osd_name-%s\n", i, odi.osdname); /* On all devices the device table is identical. The user can * specify any one of the participating devices on the command * line. We always keep them in device-table order. */ if (fscb_od && osduld_device_same(fscb_od, &odi)) { sbi->s_ods[i] = fscb_od; ++sbi->s_numdevs; fscb_od = NULL; continue; } od = osduld_info_lookup(&odi); if (unlikely(IS_ERR(od))) { ret = PTR_ERR(od); EXOFS_ERR("ERROR: device requested is not found " "osd_name-%s =>%d\n", odi.osdname, ret); goto out; } sbi->s_ods[i] = od; ++sbi->s_numdevs; /* Read the fscb of the other devices to make sure the FS * partition is there. */ ret = exofs_read_kern(od, sbi->s_cred, &obj, 0, &fscb, sizeof(fscb)); if (unlikely(ret)) { EXOFS_ERR("ERROR: Malformed participating device " "error reading fscb osd_name-%s\n", odi.osdname); goto out; } /* TODO: verify other information is correct and FS-uuid * matches. Benny what did you say about device table * generation and old devices? */ } out: kfree(dt); if (unlikely(!ret && fscb_od)) { EXOFS_ERR( "ERROR: Bad device-table container device not present\n"); osduld_put_device(fscb_od); ret = -EINVAL; } return ret; } /* * Read the superblock from the OSD and fill in the fields */ static int exofs_fill_super(struct super_block *sb, void *data, int silent) { struct inode *root; struct exofs_mountopt *opts = data; struct exofs_sb_info *sbi; /*extended info */ struct osd_dev *od; /* Master device */ struct exofs_fscb fscb; /*on-disk superblock info */ struct osd_obj_id obj; unsigned table_count; int ret; sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); if (!sbi) return -ENOMEM; /* use mount options to fill superblock */ od = osduld_path_lookup(opts->dev_name); if (IS_ERR(od)) { ret = PTR_ERR(od); goto free_sbi; } sbi->s_ods[0] = od; sbi->s_numdevs = 1; sbi->s_pid = opts->pid; sbi->s_timeout = opts->timeout; /* fill in some other data by hand */ memset(sb->s_id, 0, sizeof(sb->s_id)); strcpy(sb->s_id, "exofs"); sb->s_blocksize = EXOFS_BLKSIZE; sb->s_blocksize_bits = EXOFS_BLKSHIFT; sb->s_maxbytes = MAX_LFS_FILESIZE; atomic_set(&sbi->s_curr_pending, 0); sb->s_bdev = NULL; sb->s_dev = 0; obj.partition = sbi->s_pid; obj.id = EXOFS_SUPER_ID; exofs_make_credential(sbi->s_cred, &obj); ret = exofs_read_kern(od, sbi->s_cred, &obj, 0, &fscb, sizeof(fscb)); if (unlikely(ret)) goto free_sbi; sb->s_magic = le16_to_cpu(fscb.s_magic); sbi->s_nextid = le64_to_cpu(fscb.s_nextid); sbi->s_numfiles = le32_to_cpu(fscb.s_numfiles); /* make sure what we read from the object store is correct */ if (sb->s_magic != EXOFS_SUPER_MAGIC) { if (!silent) EXOFS_ERR("ERROR: Bad magic value\n"); ret = -EINVAL; goto free_sbi; } if (le32_to_cpu(fscb.s_version) != EXOFS_FSCB_VER) { EXOFS_ERR("ERROR: Bad FSCB version expected-%d got-%d\n", EXOFS_FSCB_VER, le32_to_cpu(fscb.s_version)); ret = -EINVAL; goto free_sbi; } /* start generation numbers from a random point */ get_random_bytes(&sbi->s_next_generation, sizeof(u32)); spin_lock_init(&sbi->s_next_gen_lock); table_count = le64_to_cpu(fscb.s_dev_table_count); if (table_count) { ret = exofs_read_lookup_dev_table(&sbi, table_count); if (unlikely(ret)) goto free_sbi; } /* set up operation vectors */ sb->s_fs_info = sbi; sb->s_op = &exofs_sops; sb->s_export_op = &exofs_export_ops; root = exofs_iget(sb, EXOFS_ROOT_ID - EXOFS_OBJ_OFF); if (IS_ERR(root)) { EXOFS_ERR("ERROR: exofs_iget failed\n"); ret = PTR_ERR(root); goto free_sbi; } sb->s_root = d_alloc_root(root); if (!sb->s_root) { iput(root); EXOFS_ERR("ERROR: get root inode failed\n"); ret = -ENOMEM; goto free_sbi; } if (!S_ISDIR(root->i_mode)) { dput(sb->s_root); sb->s_root = NULL; EXOFS_ERR("ERROR: corrupt root inode (mode = %hd)\n", root->i_mode); ret = -EINVAL; goto free_sbi; } _exofs_print_device("Mounting", opts->dev_name, sbi->s_ods[0], sbi->s_pid); return 0; free_sbi: EXOFS_ERR("Unable to mount exofs on %s pid=0x%llx err=%d\n", opts->dev_name, sbi->s_pid, ret); exofs_free_sbi(sbi); return ret; } /* * Set up the superblock (calls exofs_fill_super eventually) */ static int exofs_get_sb(struct file_system_type *type, int flags, const char *dev_name, void *data, struct vfsmount *mnt) { struct exofs_mountopt opts; int ret; ret = parse_options(data, &opts); if (ret) return ret; opts.dev_name = dev_name; return get_sb_nodev(type, flags, &opts, exofs_fill_super, mnt); } /* * Return information about the file system state in the buffer. This is used * by the 'df' command, for example. */ static int exofs_statfs(struct dentry *dentry, struct kstatfs *buf) { struct super_block *sb = dentry->d_sb; struct exofs_sb_info *sbi = sb->s_fs_info; struct exofs_io_state *ios; struct osd_attr attrs[] = { ATTR_DEF(OSD_APAGE_PARTITION_QUOTAS, OSD_ATTR_PQ_CAPACITY_QUOTA, sizeof(__be64)), ATTR_DEF(OSD_APAGE_PARTITION_INFORMATION, OSD_ATTR_PI_USED_CAPACITY, sizeof(__be64)), }; uint64_t capacity = ULLONG_MAX; uint64_t used = ULLONG_MAX; uint8_t cred_a[OSD_CAP_LEN]; int ret; ret = exofs_get_io_state(sbi, &ios); if (ret) { EXOFS_DBGMSG("exofs_get_io_state failed.\n"); return ret; } exofs_make_credential(cred_a, &ios->obj); ios->cred = sbi->s_cred; ios->in_attr = attrs; ios->in_attr_len = ARRAY_SIZE(attrs); ret = exofs_sbi_read(ios); if (unlikely(ret)) goto out; ret = extract_attr_from_ios(ios, &attrs[0]); if (likely(!ret)) { capacity = get_unaligned_be64(attrs[0].val_ptr); if (unlikely(!capacity)) capacity = ULLONG_MAX; } else EXOFS_DBGMSG("exofs_statfs: get capacity failed.\n"); ret = extract_attr_from_ios(ios, &attrs[1]); if (likely(!ret)) used = get_unaligned_be64(attrs[1].val_ptr); else EXOFS_DBGMSG("exofs_statfs: get used-space failed.\n"); /* fill in the stats buffer */ buf->f_type = EXOFS_SUPER_MAGIC; buf->f_bsize = EXOFS_BLKSIZE; buf->f_blocks = capacity >> 9; buf->f_bfree = (capacity - used) >> 9; buf->f_bavail = buf->f_bfree; buf->f_files = sbi->s_numfiles; buf->f_ffree = EXOFS_MAX_ID - sbi->s_numfiles; buf->f_namelen = EXOFS_NAME_LEN; out: exofs_put_io_state(ios); return ret; } static const struct super_operations exofs_sops = { .alloc_inode = exofs_alloc_inode, .destroy_inode = exofs_destroy_inode, .write_inode = exofs_write_inode, .delete_inode = exofs_delete_inode, .put_super = exofs_put_super, .write_super = exofs_write_super, .sync_fs = exofs_sync_fs, .statfs = exofs_statfs, }; /****************************************************************************** * EXPORT OPERATIONS *****************************************************************************/ struct dentry *exofs_get_parent(struct dentry *child) { unsigned long ino = exofs_parent_ino(child); if (!ino) return NULL; return d_obtain_alias(exofs_iget(child->d_inode->i_sb, ino)); }
static struct dentry *ocfs2_get_dentry(struct super_block *sb, struct ocfs2_inode_handle *handle) { struct inode *inode; struct ocfs2_super *osb = OCFS2_SB(sb); u64 blkno = handle->ih_blkno; int status, set; struct dentry *result; trace_ocfs2_get_dentry_begin(sb, handle, (unsigned long long)blkno); if (blkno == 0) { result = ERR_PTR(-ESTALE); goto bail; } inode = ocfs2_ilookup(sb, blkno); /* */ if (inode) goto check_gen; /* */ status = ocfs2_nfs_sync_lock(osb, 1); if (status < 0) { mlog(ML_ERROR, "getting nfs sync lock(EX) failed %d\n", status); goto check_err; } status = ocfs2_test_inode_bit(osb, blkno, &set); trace_ocfs2_get_dentry_test_bit(status, set); if (status < 0) { if (status == -EINVAL) { /* */ status = -ESTALE; } else mlog(ML_ERROR, "test inode bit failed %d\n", status); goto unlock_nfs_sync; } /* */ if (!set) { status = -ESTALE; goto unlock_nfs_sync; } inode = ocfs2_iget(osb, blkno, 0, 0); unlock_nfs_sync: ocfs2_nfs_sync_unlock(osb, 1); check_err: if (status < 0) { if (status == -ESTALE) { trace_ocfs2_get_dentry_stale((unsigned long long)blkno, handle->ih_generation); } result = ERR_PTR(status); goto bail; } if (IS_ERR(inode)) { mlog_errno(PTR_ERR(inode)); result = (void *)inode; goto bail; } check_gen: if (handle->ih_generation != inode->i_generation) { iput(inode); trace_ocfs2_get_dentry_generation((unsigned long long)blkno, handle->ih_generation, inode->i_generation); result = ERR_PTR(-ESTALE); goto bail; } result = d_obtain_alias(inode); if (IS_ERR(result)) mlog_errno(PTR_ERR(result)); bail: trace_ocfs2_get_dentry_end(result); return result; }
/* * get an NFS2/NFS3 root dentry from the root filehandle */ struct dentry *nfs_get_root(struct super_block *sb, struct nfs_fh *mntfh, const char *devname) { struct nfs_server *server = NFS_SB(sb); struct nfs_fsinfo fsinfo; struct dentry *ret; struct inode *inode; void *name = kstrdup(devname, GFP_KERNEL); int error; if (!name) return ERR_PTR(-ENOMEM); /* get the actual root for this mount */ fsinfo.fattr = nfs_alloc_fattr(); if (fsinfo.fattr == NULL) { kfree(name); return ERR_PTR(-ENOMEM); } error = server->nfs_client->rpc_ops->getroot(server, mntfh, &fsinfo); if (error < 0) { dprintk("nfs_get_root: getattr error = %d\n", -error); ret = ERR_PTR(error); goto out; } inode = nfs_fhget(sb, mntfh, fsinfo.fattr); if (IS_ERR(inode)) { dprintk("nfs_get_root: get root inode failed\n"); ret = ERR_CAST(inode); goto out; } error = nfs_superblock_set_dummy_root(sb, inode); if (error != 0) { ret = ERR_PTR(error); goto out; } /* root dentries normally start off anonymous and get spliced in later * if the dentry tree reaches them; however if the dentry already * exists, we'll pick it up at this point and use it as the root */ ret = d_obtain_alias(inode); if (IS_ERR(ret)) { dprintk("nfs_get_root: get root dentry failed\n"); goto out; } security_d_instantiate(ret, inode); spin_lock(&ret->d_lock); if (IS_ROOT(ret) && !(ret->d_flags & DCACHE_NFSFS_RENAMED)) { ret->d_fsdata = name; name = NULL; } spin_unlock(&ret->d_lock); out: if (name) kfree(name); nfs_free_fattr(fsinfo.fattr); return ret; }
struct dentry *f2fs_get_parent(struct dentry *child) { struct qstr dotdot = {.len = 2, .name = ".."}; struct page *page; unsigned long ino = f2fs_inode_by_name(d_inode(child), &dotdot, &page); if (!ino) { if (IS_ERR(page)) return ERR_CAST(page); return ERR_PTR(-ENOENT); } return d_obtain_alias(f2fs_iget(child->d_sb, ino)); } static int __recover_dot_dentries(struct inode *dir, nid_t pino) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct qstr dot = QSTR_INIT(".", 1); struct qstr dotdot = QSTR_INIT("..", 2); struct f2fs_dir_entry *de; struct page *page; int err = 0; if (f2fs_readonly(sbi->sb)) { f2fs_msg(sbi->sb, KERN_INFO, "skip recovering inline_dots inode (ino:%lu, pino:%u) " "in readonly mountpoint", dir->i_ino, pino); return 0; } f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); de = f2fs_find_entry(dir, &dot, &page); if (de) { f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); } else if (IS_ERR(page)) { err = PTR_ERR(page); goto out; } else { err = __f2fs_add_link(dir, &dot, NULL, dir->i_ino, S_IFDIR); if (err) goto out; } de = f2fs_find_entry(dir, &dotdot, &page); if (de) { f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); } else if (IS_ERR(page)) { err = PTR_ERR(page); } else { err = __f2fs_add_link(dir, &dotdot, NULL, pino, S_IFDIR); } out: if (!err) clear_inode_flag(dir, FI_INLINE_DOTS); f2fs_unlock_op(sbi); return err; } static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) { struct inode *inode = NULL; struct f2fs_dir_entry *de; struct page *page; nid_t ino; int err = 0; unsigned int root_ino = F2FS_ROOT_INO(F2FS_I_SB(dir)); if (f2fs_encrypted_inode(dir)) { int res = fscrypt_get_encryption_info(dir); /* * DCACHE_ENCRYPTED_WITH_KEY is set if the dentry is * created while the directory was encrypted and we * don't have access to the key. */ if (fscrypt_has_encryption_key(dir)) fscrypt_set_encrypted_dentry(dentry); fscrypt_set_d_op(dentry); if (res && res != -ENOKEY) return ERR_PTR(res); } if (dentry->d_name.len > F2FS_NAME_LEN) return ERR_PTR(-ENAMETOOLONG); de = f2fs_find_entry(dir, &dentry->d_name, &page); if (!de) { if (IS_ERR(page)) return (struct dentry *)page; return d_splice_alias(inode, dentry); } ino = le32_to_cpu(de->ino); f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); inode = f2fs_iget(dir->i_sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); if ((dir->i_ino == root_ino) && f2fs_has_inline_dots(dir)) { err = __recover_dot_dentries(dir, root_ino); if (err) goto err_out; } if (f2fs_has_inline_dots(inode)) { err = __recover_dot_dentries(inode, dir->i_ino); if (err) goto err_out; } if (!IS_ERR(inode) && f2fs_encrypted_inode(dir) && (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) && !fscrypt_has_permitted_context(dir, inode)) { bool nokey = f2fs_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode); err = nokey ? -ENOKEY : -EPERM; goto err_out; } return d_splice_alias(inode, dentry); err_out: iput(inode); return ERR_PTR(err); } static int f2fs_unlink(struct inode *dir, struct dentry *dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode = d_inode(dentry); struct f2fs_dir_entry *de; struct page *page; int err = -ENOENT; trace_f2fs_unlink_enter(dir, dentry); de = f2fs_find_entry(dir, &dentry->d_name, &page); if (!de) { if (IS_ERR(page)) err = PTR_ERR(page); goto fail; } f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = acquire_orphan_inode(sbi); if (err) { f2fs_unlock_op(sbi); f2fs_dentry_kunmap(dir, page); f2fs_put_page(page, 0); goto fail; } f2fs_delete_entry(de, page, dir, inode); f2fs_unlock_op(sbi); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); fail: trace_f2fs_unlink_exit(inode, err); return err; } static void *f2fs_follow_link(struct dentry *dentry, struct nameidata *nd) { struct page *page; char *link; page = page_follow_link_light(dentry, nd); if (IS_ERR(page)) return page; link = nd_get_link(nd); if (IS_ERR(link)) return link; /* this is broken symlink case */ if (*link == 0) { kunmap(page); page_cache_release(page); return ERR_PTR(-ENOENT); } return page; } static int f2fs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; size_t len = strlen(symname); struct fscrypt_str disk_link = FSTR_INIT((char *)symname, len + 1); struct fscrypt_symlink_data *sd = NULL; int err; if (f2fs_encrypted_inode(dir)) { err = fscrypt_get_encryption_info(dir); if (err) return err; if (!fscrypt_has_encryption_key(dir)) return -EPERM; disk_link.len = (fscrypt_fname_encrypted_size(dir, len) + sizeof(struct fscrypt_symlink_data)); } if (disk_link.len > dir->i_sb->s_blocksize) return -ENAMETOOLONG; inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO); if (IS_ERR(inode)) return PTR_ERR(inode); if (f2fs_encrypted_inode(inode)) inode->i_op = &f2fs_encrypted_symlink_inode_operations; else inode->i_op = &f2fs_symlink_inode_operations; inode_nohighmem(inode); inode->i_mapping->a_ops = &f2fs_dblock_aops; f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out; f2fs_unlock_op(sbi); alloc_nid_done(sbi, inode->i_ino); if (f2fs_encrypted_inode(inode)) { struct qstr istr = QSTR_INIT(symname, len); struct fscrypt_str ostr; sd = kzalloc(disk_link.len, GFP_NOFS); if (!sd) { err = -ENOMEM; goto err_out; } err = fscrypt_get_encryption_info(inode); if (err) goto err_out; if (!fscrypt_has_encryption_key(inode)) { err = -EPERM; goto err_out; } ostr.name = sd->encrypted_path; ostr.len = disk_link.len; err = fscrypt_fname_usr_to_disk(inode, &istr, &ostr); if (err < 0) goto err_out; sd->len = cpu_to_le16(ostr.len); disk_link.name = (char *)sd; } err = page_symlink(inode, disk_link.name, disk_link.len); err_out: d_instantiate(dentry, inode); unlock_new_inode(inode); /* * Let's flush symlink data in order to avoid broken symlink as much as * possible. Nevertheless, fsyncing is the best way, but there is no * way to get a file descriptor in order to flush that. * * Note that, it needs to do dir->fsync to make this recoverable. * If the symlink path is stored into inline_data, there is no * performance regression. */ if (!err) { filemap_write_and_wait_range(inode->i_mapping, 0, disk_link.len - 1); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); } else { f2fs_unlink(dir, dentry); } kfree(sd); return err; out: handle_failed_inode(inode); return err; } static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err; inode = f2fs_new_inode(dir, S_IFDIR | mode); if (IS_ERR(inode)) return PTR_ERR(inode); inode->i_op = &f2fs_dir_inode_operations; inode->i_fop = &f2fs_dir_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_HIGH_ZERO); f2fs_balance_fs(sbi, true); set_inode_flag(inode, FI_INC_LINK); f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out_fail; f2fs_unlock_op(sbi); alloc_nid_done(sbi, inode->i_ino); d_instantiate(dentry, inode); unlock_new_inode(inode); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); return 0; out_fail: clear_inode_flag(inode, FI_INC_LINK); handle_failed_inode(inode); return err; } static int f2fs_rmdir(struct inode *dir, struct dentry *dentry) { struct inode *inode = d_inode(dentry); if (f2fs_empty_dir(inode)) return f2fs_unlink(dir, dentry); return -ENOTEMPTY; } static int f2fs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err = 0; if (!new_valid_dev(rdev)) return -EINVAL; inode = f2fs_new_inode(dir, mode); if (IS_ERR(inode)) return PTR_ERR(inode); init_special_inode(inode, inode->i_mode, rdev); inode->i_op = &f2fs_special_inode_operations; f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); if (err) goto out; f2fs_unlock_op(sbi); alloc_nid_done(sbi, inode->i_ino); d_instantiate(dentry, inode); unlock_new_inode(inode); if (IS_DIRSYNC(dir)) f2fs_sync_fs(sbi->sb, 1); return 0; out: handle_failed_inode(inode); return err; } static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir); struct inode *old_inode = d_inode(old_dentry); struct inode *new_inode = d_inode(new_dentry); struct page *old_dir_page; struct page *old_page, *new_page; struct f2fs_dir_entry *old_dir_entry = NULL; struct f2fs_dir_entry *old_entry; struct f2fs_dir_entry *new_entry; bool is_old_inline = f2fs_has_inline_dentry(old_dir); int err = -ENOENT; if ((old_dir != new_dir) && f2fs_encrypted_inode(new_dir) && !fscrypt_has_permitted_context(new_dir, old_inode)) { err = -EPERM; goto out; } old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page); if (!old_entry) { if (IS_ERR(old_page)) err = PTR_ERR(old_page); goto out; } if (S_ISDIR(old_inode->i_mode)) { old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page); if (!old_dir_entry) { if (IS_ERR(old_dir_page)) err = PTR_ERR(old_dir_page); goto out_old; } } if (new_inode) { err = -ENOTEMPTY; if (old_dir_entry && !f2fs_empty_dir(new_inode)) goto out_dir; err = -ENOENT; new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page); if (!new_entry) { if (IS_ERR(new_page)) err = PTR_ERR(new_page); goto out_dir; } f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = acquire_orphan_inode(sbi); if (err) goto put_out_dir; err = update_dent_inode(old_inode, new_inode, &new_dentry->d_name); if (err) { release_orphan_inode(sbi); goto put_out_dir; } f2fs_set_link(new_dir, new_entry, new_page, old_inode); new_inode->i_ctime = CURRENT_TIME; down_write(&F2FS_I(new_inode)->i_sem); if (old_dir_entry) f2fs_i_links_write(new_inode, false); f2fs_i_links_write(new_inode, false); up_write(&F2FS_I(new_inode)->i_sem); if (!new_inode->i_nlink) add_orphan_inode(new_inode); else release_orphan_inode(sbi); } else { f2fs_balance_fs(sbi, true); f2fs_lock_op(sbi); err = f2fs_add_link(new_dentry, old_inode); if (err) { f2fs_unlock_op(sbi); goto out_dir; } if (old_dir_entry) f2fs_i_links_write(new_dir, true); /* * old entry and new entry can locate in the same inline * dentry in inode, when attaching new entry in inline dentry, * it could force inline dentry conversion, after that, * old_entry and old_page will point to wrong address, in * order to avoid this, let's do the check and update here. */ if (is_old_inline && !f2fs_has_inline_dentry(old_dir)) { f2fs_put_page(old_page, 0); old_page = NULL; old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page); if (!old_entry) { err = -ENOENT; if (IS_ERR(old_page)) err = PTR_ERR(old_page); f2fs_unlock_op(sbi); goto out_dir; } } } down_write(&F2FS_I(old_inode)->i_sem); file_lost_pino(old_inode); if (new_inode && file_enc_name(new_inode)) file_set_enc_name(old_inode); up_write(&F2FS_I(old_inode)->i_sem); old_inode->i_ctime = CURRENT_TIME; f2fs_mark_inode_dirty_sync(old_inode); f2fs_delete_entry(old_entry, old_page, old_dir, NULL); if (old_dir_entry) { if (old_dir != new_dir) { f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir); } else { f2fs_dentry_kunmap(old_inode, old_dir_page); f2fs_put_page(old_dir_page, 0); } f2fs_i_links_write(old_dir, false); } f2fs_unlock_op(sbi); if (IS_DIRSYNC(old_dir) || IS_DIRSYNC(new_dir)) f2fs_sync_fs(sbi->sb, 1); return 0; put_out_dir: f2fs_unlock_op(sbi); f2fs_dentry_kunmap(new_dir, new_page); f2fs_put_page(new_page, 0); out_dir: if (old_dir_entry) { f2fs_dentry_kunmap(old_inode, old_dir_page); f2fs_put_page(old_dir_page, 0); } out_old: f2fs_dentry_kunmap(old_dir, old_page); f2fs_put_page(old_page, 0); out: return err; } static void *f2fs_encrypted_follow_link(struct dentry *dentry, struct nameidata *nd) { struct page *cpage = NULL; char *caddr, *paddr = NULL; struct fscrypt_str cstr = FSTR_INIT(NULL, 0); struct fscrypt_str pstr = FSTR_INIT(NULL, 0); struct fscrypt_symlink_data *sd; struct inode *inode = d_inode(dentry); loff_t size = min_t(loff_t, i_size_read(inode), PAGE_SIZE - 1); u32 max_size = inode->i_sb->s_blocksize; int res; res = fscrypt_get_encryption_info(inode); if (res) return ERR_PTR(res); cpage = read_mapping_page(inode->i_mapping, 0, NULL); if (IS_ERR(cpage)) return cpage; caddr = kmap(cpage); caddr[size] = 0; /* Symlink is encrypted */ sd = (struct fscrypt_symlink_data *)caddr; cstr.name = sd->encrypted_path; cstr.len = le16_to_cpu(sd->len); /* this is broken symlink case */ if (unlikely(cstr.len == 0)) { res = -ENOENT; goto errout; } if ((cstr.len + sizeof(struct fscrypt_symlink_data) - 1) > max_size) { /* Symlink data on the disk is corrupted */ res = -EIO; goto errout; } res = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr); if (res) goto errout; res = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr); if (res < 0) goto errout; /* this is broken symlink case */ if (unlikely(pstr.name[0] == 0)) { res = -ENOENT; goto errout; } paddr = pstr.name; /* Null-terminate the name */ paddr[res] = '\0'; nd_set_link(nd, paddr); kunmap(cpage); page_cache_release(cpage); return NULL; errout: fscrypt_fname_free_buffer(&pstr); kunmap(cpage); page_cache_release(cpage); return ERR_PTR(res); } void kfree_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) { char *s = nd_get_link(nd); if (!IS_ERR(s)) kfree(s); }
static struct dentry *ufs_get_parent(struct dentry *child) { struct qstr dot_dot = { .name = "..", .len = 2, }; ino_t ino; ino = ufs_inode_by_name(child->d_inode, &dot_dot); if (!ino) return ERR_PTR(-ENOENT); return d_obtain_alias(ufs_iget(child->d_inode->i_sb, ino)); } static const struct export_operations ufs_export_ops = { .fh_to_dentry = ufs_fh_to_dentry, .fh_to_parent = ufs_fh_to_parent, .get_parent = ufs_get_parent, }; #ifdef CONFIG_UFS_DEBUG static void ufs_print_super_stuff(struct super_block *sb, struct ufs_super_block_first *usb1, struct ufs_super_block_second *usb2, struct ufs_super_block_third *usb3) { u32 magic = fs32_to_cpu(sb, usb3->fs_magic); printk("ufs_print_super_stuff\n"); printk(" magic: 0x%x\n", magic); if (fs32_to_cpu(sb, usb3->fs_magic) == UFS2_MAGIC) { printk(" fs_size: %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_size)); printk(" fs_dsize: %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.fs_dsize)); printk(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize)); printk(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize)); printk(" fs_volname: %s\n", usb2->fs_un.fs_u2.fs_volname); printk(" fs_sblockloc: %llu\n", (unsigned long long) fs64_to_cpu(sb, usb2->fs_un.fs_u2.fs_sblockloc)); printk(" cs_ndir(No of dirs): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_ndir)); printk(" cs_nbfree(No of free blocks): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb2->fs_un.fs_u2.cs_nbfree)); printk(KERN_INFO" cs_nifree(Num of free inodes): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nifree)); printk(KERN_INFO" cs_nffree(Num of free frags): %llu\n", (unsigned long long) fs64_to_cpu(sb, usb3->fs_un1.fs_u2.cs_nffree)); printk(KERN_INFO" fs_maxsymlinklen: %u\n", fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_maxsymlinklen)); } else { printk(" sblkno: %u\n", fs32_to_cpu(sb, usb1->fs_sblkno)); printk(" cblkno: %u\n", fs32_to_cpu(sb, usb1->fs_cblkno)); printk(" iblkno: %u\n", fs32_to_cpu(sb, usb1->fs_iblkno)); printk(" dblkno: %u\n", fs32_to_cpu(sb, usb1->fs_dblkno)); printk(" cgoffset: %u\n", fs32_to_cpu(sb, usb1->fs_cgoffset)); printk(" ~cgmask: 0x%x\n", ~fs32_to_cpu(sb, usb1->fs_cgmask)); printk(" size: %u\n", fs32_to_cpu(sb, usb1->fs_size)); printk(" dsize: %u\n", fs32_to_cpu(sb, usb1->fs_dsize)); printk(" ncg: %u\n", fs32_to_cpu(sb, usb1->fs_ncg)); printk(" bsize: %u\n", fs32_to_cpu(sb, usb1->fs_bsize)); printk(" fsize: %u\n", fs32_to_cpu(sb, usb1->fs_fsize)); printk(" frag: %u\n", fs32_to_cpu(sb, usb1->fs_frag)); printk(" fragshift: %u\n", fs32_to_cpu(sb, usb1->fs_fragshift)); printk(" ~fmask: %u\n", ~fs32_to_cpu(sb, usb1->fs_fmask)); printk(" fshift: %u\n", fs32_to_cpu(sb, usb1->fs_fshift)); printk(" sbsize: %u\n", fs32_to_cpu(sb, usb1->fs_sbsize)); printk(" spc: %u\n", fs32_to_cpu(sb, usb1->fs_spc)); printk(" cpg: %u\n", fs32_to_cpu(sb, usb1->fs_cpg)); printk(" ipg: %u\n", fs32_to_cpu(sb, usb1->fs_ipg)); printk(" fpg: %u\n", fs32_to_cpu(sb, usb1->fs_fpg)); printk(" csaddr: %u\n", fs32_to_cpu(sb, usb1->fs_csaddr)); printk(" cssize: %u\n", fs32_to_cpu(sb, usb1->fs_cssize)); printk(" cgsize: %u\n", fs32_to_cpu(sb, usb1->fs_cgsize)); printk(" fstodb: %u\n", fs32_to_cpu(sb, usb1->fs_fsbtodb)); printk(" nrpos: %u\n", fs32_to_cpu(sb, usb3->fs_nrpos)); printk(" ndir %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_ndir)); printk(" nifree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nifree)); printk(" nbfree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nbfree)); printk(" nffree %u\n", fs32_to_cpu(sb, usb1->fs_cstotal.cs_nffree)); } printk("\n"); }
struct dentry *ext2_get_parent(struct dentry *child) { struct qstr dotdot = {.name = "..", .len = 2}; unsigned long ino = ext2_inode_by_name(child->d_inode, &dotdot); if (!ino) return ERR_PTR(-ENOENT); return d_obtain_alias(ext2_iget(child->d_inode->i_sb, ino)); } /* * By the time this is called, we already have created * the directory cache entry for the new file, but it * is so far negative - it has no inode. * * If the create succeeds, we fill in the inode information * with d_instantiate(). */ static int ext2_create (struct inode * dir, struct dentry * dentry, int mode, struct nameidata *nd) { struct inode *inode; dquot_initialize(dir); inode = ext2_new_inode(dir, mode); if (IS_ERR(inode)) return PTR_ERR(inode); inode->i_op = &ext2_file_inode_operations; if (ext2_use_xip(inode->i_sb)) { inode->i_mapping->a_ops = &ext2_aops_xip; inode->i_fop = &ext2_xip_file_operations; } else if (test_opt(inode->i_sb, NOBH)) { inode->i_mapping->a_ops = &ext2_nobh_aops; inode->i_fop = &ext2_file_operations; } else { inode->i_mapping->a_ops = &ext2_aops; inode->i_fop = &ext2_file_operations; } mark_inode_dirty(inode); return ext2_add_nondir(dentry, inode); } static int ext2_mknod (struct inode * dir, struct dentry *dentry, int mode, dev_t rdev) { struct inode * inode; int err; if (!new_valid_dev(rdev)) return -EINVAL; dquot_initialize(dir); inode = ext2_new_inode (dir, mode); err = PTR_ERR(inode); if (!IS_ERR(inode)) { init_special_inode(inode, inode->i_mode, rdev); #ifdef CONFIG_EXT2_FS_XATTR inode->i_op = &ext2_special_inode_operations; #endif mark_inode_dirty(inode); err = ext2_add_nondir(dentry, inode); } return err; } static int ext2_symlink (struct inode * dir, struct dentry * dentry, const char * symname) { struct super_block * sb = dir->i_sb; int err = -ENAMETOOLONG; unsigned l = strlen(symname)+1; struct inode * inode; if (l > sb->s_blocksize) goto out; dquot_initialize(dir); inode = ext2_new_inode (dir, S_IFLNK | S_IRWXUGO); err = PTR_ERR(inode); if (IS_ERR(inode)) goto out; if (l > sizeof (EXT2_I(inode)->i_data)) { /* slow symlink */ inode->i_op = &ext2_symlink_inode_operations; if (test_opt(inode->i_sb, NOBH)) inode->i_mapping->a_ops = &ext2_nobh_aops; else inode->i_mapping->a_ops = &ext2_aops; err = page_symlink(inode, symname, l); if (err) goto out_fail; } else { /* fast symlink */ inode->i_op = &ext2_fast_symlink_inode_operations; memcpy((char*)(EXT2_I(inode)->i_data),symname,l); inode->i_size = l-1; } mark_inode_dirty(inode); err = ext2_add_nondir(dentry, inode); out: return err; out_fail: inode_dec_link_count(inode); unlock_new_inode(inode); iput (inode); goto out; } static int ext2_link (struct dentry * old_dentry, struct inode * dir, struct dentry *dentry) { struct inode *inode = old_dentry->d_inode; int err; if (inode->i_nlink >= EXT2_LINK_MAX) return -EMLINK; dquot_initialize(dir); inode->i_ctime = CURRENT_TIME_SEC; inode_inc_link_count(inode); ihold(inode); err = ext2_add_link(dentry, inode); if (!err) { d_instantiate(dentry, inode); return 0; } inode_dec_link_count(inode); iput(inode); return err; } static int ext2_mkdir(struct inode * dir, struct dentry * dentry, int mode) { struct inode * inode; int err = -EMLINK; if (dir->i_nlink >= EXT2_LINK_MAX) goto out; dquot_initialize(dir); inode_inc_link_count(dir); inode = ext2_new_inode (dir, S_IFDIR | mode); err = PTR_ERR(inode); if (IS_ERR(inode)) goto out_dir; inode->i_op = &ext2_dir_inode_operations; inode->i_fop = &ext2_dir_operations; if (test_opt(inode->i_sb, NOBH)) inode->i_mapping->a_ops = &ext2_nobh_aops; else inode->i_mapping->a_ops = &ext2_aops; inode_inc_link_count(inode); err = ext2_make_empty(inode, dir); if (err) goto out_fail; err = ext2_add_link(dentry, inode); if (err) goto out_fail; d_instantiate(dentry, inode); unlock_new_inode(inode); out: return err; out_fail: inode_dec_link_count(inode); inode_dec_link_count(inode); unlock_new_inode(inode); iput(inode); out_dir: inode_dec_link_count(dir); goto out; } static int ext2_unlink(struct inode * dir, struct dentry *dentry) { struct inode * inode = dentry->d_inode; struct ext2_dir_entry_2 * de; struct page * page; int err = -ENOENT; dquot_initialize(dir); de = ext2_find_entry (dir, &dentry->d_name, &page); if (!de) goto out; err = ext2_delete_entry (de, page); if (err) goto out; inode->i_ctime = dir->i_ctime; inode_dec_link_count(inode); err = 0; out: return err; } static int ext2_rmdir (struct inode * dir, struct dentry *dentry) { struct inode * inode = dentry->d_inode; int err = -ENOTEMPTY; if (ext2_empty_dir(inode)) { err = ext2_unlink(dir, dentry); if (!err) { inode->i_size = 0; inode_dec_link_count(inode); inode_dec_link_count(dir); } } return err; } static int ext2_rename (struct inode * old_dir, struct dentry * old_dentry, struct inode * new_dir, struct dentry * new_dentry ) { struct inode * old_inode = old_dentry->d_inode; struct inode * new_inode = new_dentry->d_inode; struct page * dir_page = NULL; struct ext2_dir_entry_2 * dir_de = NULL; struct page * old_page; struct ext2_dir_entry_2 * old_de; int err = -ENOENT; dquot_initialize(old_dir); dquot_initialize(new_dir); old_de = ext2_find_entry (old_dir, &old_dentry->d_name, &old_page); if (!old_de) goto out; if (S_ISDIR(old_inode->i_mode)) { err = -EIO; dir_de = ext2_dotdot(old_inode, &dir_page); if (!dir_de) goto out_old; } if (new_inode) { struct page *new_page; struct ext2_dir_entry_2 *new_de; err = -ENOTEMPTY; if (dir_de && !ext2_empty_dir (new_inode)) goto out_dir; err = -ENOENT; new_de = ext2_find_entry (new_dir, &new_dentry->d_name, &new_page); if (!new_de) goto out_dir; ext2_set_link(new_dir, new_de, new_page, old_inode, 1); new_inode->i_ctime = CURRENT_TIME_SEC; if (dir_de) drop_nlink(new_inode); inode_dec_link_count(new_inode); } else { if (dir_de) { err = -EMLINK; if (new_dir->i_nlink >= EXT2_LINK_MAX) goto out_dir; } err = ext2_add_link(new_dentry, old_inode); if (err) goto out_dir; if (dir_de) inode_inc_link_count(new_dir); } /* * Like most other Unix systems, set the ctime for inodes on a * rename. */ old_inode->i_ctime = CURRENT_TIME_SEC; mark_inode_dirty(old_inode); ext2_delete_entry (old_de, old_page); if (dir_de) { if (old_dir != new_dir) ext2_set_link(old_inode, dir_de, dir_page, new_dir, 0); else { kunmap(dir_page); page_cache_release(dir_page); } inode_dec_link_count(old_dir); } return 0; out_dir: if (dir_de) { kunmap(dir_page); page_cache_release(dir_page); } out_old: kunmap(old_page); page_cache_release(old_page); out: return err; } const struct inode_operations ext2_dir_inode_operations = { .create = ext2_create, .lookup = ext2_lookup, .link = ext2_link, .unlink = ext2_unlink, .symlink = ext2_symlink, .mkdir = ext2_mkdir, .rmdir = ext2_rmdir, .mknod = ext2_mknod, .rename = ext2_rename, #ifdef CONFIG_EXT2_FS_XATTR .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = ext2_listxattr, .removexattr = generic_removexattr, #endif .setattr = ext2_setattr, .check_acl = ext2_check_acl, }; const struct inode_operations ext2_special_inode_operations = { #ifdef CONFIG_EXT2_FS_XATTR .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = ext2_listxattr, .removexattr = generic_removexattr, #endif .setattr = ext2_setattr, .check_acl = ext2_check_acl, };
struct dentry *f2fs_get_parent(struct dentry *child) { struct qstr dotdot = {.len = 2, .name = ".."}; unsigned long ino = f2fs_inode_by_name(child->d_inode, &dotdot); if (!ino) return ERR_PTR(-ENOENT); return d_obtain_alias(f2fs_iget(child->d_inode->i_sb, ino)); } static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) { struct inode *inode = NULL; struct f2fs_dir_entry *de; struct page *page; if (dentry->d_name.len > F2FS_NAME_LEN) return ERR_PTR(-ENAMETOOLONG); de = f2fs_find_entry(dir, &dentry->d_name, &page); if (de) { nid_t ino = le32_to_cpu(de->ino); kunmap(page); f2fs_put_page(page, 0); inode = f2fs_iget(dir->i_sb, ino); if (IS_ERR(inode)) return ERR_CAST(inode); stat_inc_inline_inode(inode); } return d_splice_alias(inode, dentry); } static int f2fs_unlink(struct inode *dir, struct dentry *dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode = dentry->d_inode; struct f2fs_dir_entry *de; struct page *page; int err = -ENOENT; trace_f2fs_unlink_enter(dir, dentry); f2fs_balance_fs(sbi); de = f2fs_find_entry(dir, &dentry->d_name, &page); if (!de) goto fail; f2fs_lock_op(sbi); err = acquire_orphan_inode(sbi); if (err) { f2fs_unlock_op(sbi); kunmap(page); f2fs_put_page(page, 0); goto fail; } f2fs_delete_entry(de, page, inode); f2fs_unlock_op(sbi); /* In order to evict this inode, we set it dirty */ mark_inode_dirty(inode); fail: trace_f2fs_unlink_exit(inode, err); return err; } static int f2fs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; size_t symlen = strlen(symname) + 1; int err; f2fs_balance_fs(sbi); inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO); if (IS_ERR(inode)) return PTR_ERR(inode); inode->i_op = &f2fs_symlink_inode_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); f2fs_unlock_op(sbi); if (err) goto out; err = page_symlink(inode, symname, symlen); alloc_nid_done(sbi, inode->i_ino); d_instantiate(dentry, inode); unlock_new_inode(inode); return err; out: clear_nlink(inode); iget_failed(inode); alloc_nid_failed(sbi, inode->i_ino); return err; } static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err; f2fs_balance_fs(sbi); inode = f2fs_new_inode(dir, S_IFDIR | mode); if (IS_ERR(inode)) return PTR_ERR(inode); inode->i_op = &f2fs_dir_inode_operations; inode->i_fop = &f2fs_dir_operations; inode->i_mapping->a_ops = &f2fs_dblock_aops; mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO); set_inode_flag(F2FS_I(inode), FI_INC_LINK); f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); f2fs_unlock_op(sbi); if (err) goto out_fail; alloc_nid_done(sbi, inode->i_ino); d_instantiate(dentry, inode); unlock_new_inode(inode); return 0; out_fail: clear_inode_flag(F2FS_I(inode), FI_INC_LINK); clear_nlink(inode); iget_failed(inode); alloc_nid_failed(sbi, inode->i_ino); return err; } static int f2fs_rmdir(struct inode *dir, struct dentry *dentry) { struct inode *inode = dentry->d_inode; if (f2fs_empty_dir(inode)) return f2fs_unlink(dir, dentry); return -ENOTEMPTY; } static int f2fs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) { struct f2fs_sb_info *sbi = F2FS_I_SB(dir); struct inode *inode; int err = 0; if (!new_valid_dev(rdev)) return -EINVAL; f2fs_balance_fs(sbi); inode = f2fs_new_inode(dir, mode); if (IS_ERR(inode)) return PTR_ERR(inode); init_special_inode(inode, inode->i_mode, rdev); inode->i_op = &f2fs_special_inode_operations; f2fs_lock_op(sbi); err = f2fs_add_link(dentry, inode); f2fs_unlock_op(sbi); if (err) goto out; alloc_nid_done(sbi, inode->i_ino); d_instantiate(dentry, inode); unlock_new_inode(inode); return 0; out: clear_nlink(inode); iget_failed(inode); alloc_nid_failed(sbi, inode->i_ino); return err; } static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) { struct f2fs_sb_info *sbi = F2FS_I_SB(old_dir); struct inode *old_inode = old_dentry->d_inode; struct inode *new_inode = new_dentry->d_inode; struct page *old_dir_page; struct page *old_page, *new_page; struct f2fs_dir_entry *old_dir_entry = NULL; struct f2fs_dir_entry *old_entry; struct f2fs_dir_entry *new_entry; int err = -ENOENT; f2fs_balance_fs(sbi); old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page); if (!old_entry) goto out; if (S_ISDIR(old_inode->i_mode)) { err = -EIO; old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page); if (!old_dir_entry) goto out_old; } if (new_inode) { err = -ENOTEMPTY; if (old_dir_entry && !f2fs_empty_dir(new_inode)) goto out_dir; err = -ENOENT; new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name, &new_page); if (!new_entry) goto out_dir; f2fs_lock_op(sbi); err = acquire_orphan_inode(sbi); if (err) goto put_out_dir; if (update_dent_inode(old_inode, &new_dentry->d_name)) { release_orphan_inode(sbi); goto put_out_dir; } f2fs_set_link(new_dir, new_entry, new_page, old_inode); new_inode->i_ctime = CURRENT_TIME; down_write(&F2FS_I(new_inode)->i_sem); if (old_dir_entry) drop_nlink(new_inode); drop_nlink(new_inode); up_write(&F2FS_I(new_inode)->i_sem); mark_inode_dirty(new_inode); if (!new_inode->i_nlink) add_orphan_inode(sbi, new_inode->i_ino); else release_orphan_inode(sbi); update_inode_page(old_inode); update_inode_page(new_inode); } else { f2fs_lock_op(sbi); err = f2fs_add_link(new_dentry, old_inode); if (err) { f2fs_unlock_op(sbi); goto out_dir; } if (old_dir_entry) { inc_nlink(new_dir); update_inode_page(new_dir); } } down_write(&F2FS_I(old_inode)->i_sem); file_lost_pino(old_inode); up_write(&F2FS_I(old_inode)->i_sem); old_inode->i_ctime = CURRENT_TIME; mark_inode_dirty(old_inode); f2fs_delete_entry(old_entry, old_page, NULL); if (old_dir_entry) { if (old_dir != new_dir) { f2fs_set_link(old_inode, old_dir_entry, old_dir_page, new_dir); update_inode_page(old_inode); } else { kunmap(old_dir_page); f2fs_put_page(old_dir_page, 0); } drop_nlink(old_dir); mark_inode_dirty(old_dir); update_inode_page(old_dir); } f2fs_unlock_op(sbi); return 0; put_out_dir: f2fs_unlock_op(sbi); kunmap(new_page); f2fs_put_page(new_page, 0); out_dir: if (old_dir_entry) { kunmap(old_dir_page); f2fs_put_page(old_dir_page, 0); } out_old: kunmap(old_page); f2fs_put_page(old_page, 0); out: return err; } const struct inode_operations f2fs_dir_inode_operations = { .create = f2fs_create, .lookup = f2fs_lookup, .link = f2fs_link, .unlink = f2fs_unlink, .symlink = f2fs_symlink, .mkdir = f2fs_mkdir, .rmdir = f2fs_rmdir, .mknod = f2fs_mknod, .rename = f2fs_rename, .getattr = f2fs_getattr, .setattr = f2fs_setattr, .get_acl = f2fs_get_acl, #ifdef CONFIG_F2FS_FS_XATTR .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = f2fs_listxattr, .removexattr = generic_removexattr, #endif }; const struct inode_operations f2fs_symlink_inode_operations = { .readlink = generic_readlink, .follow_link = page_follow_link_light, .put_link = page_put_link, .getattr = f2fs_getattr, .setattr = f2fs_setattr, #ifdef CONFIG_F2FS_FS_XATTR .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = f2fs_listxattr, .removexattr = generic_removexattr, #endif }; const struct inode_operations f2fs_special_inode_operations = { .getattr = f2fs_getattr, .setattr = f2fs_setattr, .get_acl = f2fs_get_acl, #ifdef CONFIG_F2FS_FS_XATTR .setxattr = generic_setxattr, .getxattr = generic_getxattr, .listxattr = f2fs_listxattr, .removexattr = generic_removexattr, #endif };
static int #ifdef HAVE_ENCODE_FH_WITH_INODE zpl_encode_fh(struct inode *ip, __u32 *fh, int *max_len, struct inode *parent) { #else zpl_encode_fh(struct dentry *dentry, __u32 *fh, int *max_len, int connectable) { struct inode *ip = dentry->d_inode; #endif /* HAVE_ENCODE_FH_WITH_INODE */ fid_t *fid = (fid_t *)fh; int len_bytes, rc; len_bytes = *max_len * sizeof (__u32); if (len_bytes < offsetof(fid_t, fid_data)) return (255); fid->fid_len = len_bytes - offsetof(fid_t, fid_data); if (zfsctl_is_node(ip)) rc = zfsctl_fid(ip, fid); else rc = zfs_fid(ip, fid); len_bytes = offsetof(fid_t, fid_data) + fid->fid_len; *max_len = roundup(len_bytes, sizeof (__u32)) / sizeof (__u32); return (rc == 0 ? FILEID_INO32_GEN : 255); } static struct dentry * zpl_dentry_obtain_alias(struct inode *ip) { struct dentry *result; #ifdef HAVE_D_OBTAIN_ALIAS result = d_obtain_alias(ip); #else result = d_alloc_anon(ip); if (result == NULL) { VN_RELE(ip); result = ERR_PTR(-ENOMEM); } #endif /* HAVE_D_OBTAIN_ALIAS */ return (result); } static struct dentry * zpl_fh_to_dentry(struct super_block *sb, struct fid *fh, int fh_len, int fh_type) { fid_t *fid = (fid_t *)fh; struct inode *ip; int len_bytes, rc; len_bytes = fh_len * sizeof (__u32); if (fh_type != FILEID_INO32_GEN || len_bytes < offsetof(fid_t, fid_data) || len_bytes < offsetof(fid_t, fid_data) + fid->fid_len) return (ERR_PTR(-EINVAL)); rc = zfs_vget(sb, &ip, fid); if (rc != 0) return (ERR_PTR(-rc)); ASSERT((ip != NULL) && !IS_ERR(ip)); return (zpl_dentry_obtain_alias(ip)); }