Example #1
0
// loiter_init - initialise loiter controller
bool Copter::ModeLoiter::init(bool ignore_checks)
{
    if (!copter.failsafe.radio) {
        float target_roll, target_pitch;
        // apply SIMPLE mode transform to pilot inputs
        update_simple_mode();

        // convert pilot input to lean angles
        get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());

        // process pilot's roll and pitch input
        loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt);
    } else {
        // clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason
        loiter_nav->clear_pilot_desired_acceleration();
    }
    loiter_nav->init_target();

    // initialise position and desired velocity
    if (!pos_control->is_active_z()) {
        pos_control->set_alt_target_to_current_alt();
        pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
    }

    return true;
}
Example #2
0
// drift_run - runs the drift controller
// should be called at 100hz or more
void Copter::drift_run()
{
    static float breaker = 0.0f;
    static float roll_input = 0.0f;
    float target_roll, target_pitch;
    float target_yaw_rate;
    int16_t pilot_throttle_scaled;

    // if not armed or motor interlock not enabled or landed and throttle at zero, set throttle to zero and exit immediately
    if(!motors.armed() || !motors.get_interlock() || (ap.land_complete && ap.throttle_zero)) {
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        return;
    }

    // convert pilot input to lean angles
    get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch, aparm.angle_max);

    // get pilot's desired throttle
    pilot_throttle_scaled = get_pilot_desired_throttle(channel_throttle->control_in);

    // Grab inertial velocity
    const Vector3f& vel = inertial_nav.get_velocity();

    // rotate roll, pitch input from north facing to vehicle's perspective
    float roll_vel =  vel.y * ahrs.cos_yaw() - vel.x * ahrs.sin_yaw(); // body roll vel
    float pitch_vel = vel.y * ahrs.sin_yaw() + vel.x * ahrs.cos_yaw(); // body pitch vel

    // gain sceduling for Yaw
    float pitch_vel2 = min(fabsf(pitch_vel), 2000);
    target_yaw_rate = ((float)target_roll/1.0f) * (1.0f - (pitch_vel2 / 5000.0f)) * g.acro_yaw_p;

    roll_vel = constrain_float(roll_vel, -DRIFT_SPEEDLIMIT, DRIFT_SPEEDLIMIT);
    pitch_vel = constrain_float(pitch_vel, -DRIFT_SPEEDLIMIT, DRIFT_SPEEDLIMIT);

    roll_input = roll_input * .96f + (float)channel_yaw->control_in * .04f;

    //convert user input into desired roll velocity
    float roll_vel_error = roll_vel - (roll_input / DRIFT_SPEEDGAIN);

    // Roll velocity is feed into roll acceleration to minimize slip
    target_roll = roll_vel_error * -DRIFT_SPEEDGAIN;
    target_roll = constrain_int16(target_roll, -4500, 4500);

    // If we let go of sticks, bring us to a stop
    if(is_zero(target_pitch)) {
        // .14/ (.03 * 100) = 4.6 seconds till full breaking
        breaker += .03f;
        breaker = min(breaker, DRIFT_SPEEDGAIN);
        target_pitch = pitch_vel * breaker;
    } else {
        breaker = 0.0f;
    }

    // call attitude controller
    attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

    // output pilot's throttle with angle boost
    attitude_control.set_throttle_out(get_throttle_assist(vel.z, pilot_throttle_scaled), true, g.throttle_filt);
}
Example #3
0
// land_nogps_run - runs the land controller
//      pilot controls roll and pitch angles
//      should be called at 100hz or more
void Copter::ModeLand::nogps_run()
{
    float target_roll = 0.0f, target_pitch = 0.0f;
    float target_yaw_rate = 0;

    // process pilot inputs
    if (!copter.failsafe.radio) {
        if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && copter.rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
            Log_Write_Event(DATA_LAND_CANCELLED_BY_PILOT);
            // exit land if throttle is high
            copter.set_mode(ALT_HOLD, MODE_REASON_THROTTLE_LAND_ESCAPE);
        }

        if (g.land_repositioning) {
            // apply SIMPLE mode transform to pilot inputs
            update_simple_mode();

            // get pilot desired lean angles
            get_pilot_desired_lean_angles(target_roll, target_pitch, copter.aparm.angle_max, attitude_control->get_althold_lean_angle_max());
        }

        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
    }

    // if not auto armed or landed or motor interlock not enabled set throttle to zero and exit immediately
    if (!motors->armed() || !ap.auto_armed || ap.land_complete || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME  // Helicopters always stabilize roll/pitch/yaw
        // call attitude controller
        attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);
        attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
        motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        // multicopters do not stabilize roll/pitch/yaw when disarmed
        attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif

        // disarm when the landing detector says we've landed
        if (ap.land_complete) {
            copter.init_disarm_motors();
        }
        return;
    }

    // set motors to full range
    motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

    // call attitude controller
    attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);

    // pause before beginning land descent
    if (land_pause && millis()-land_start_time >= LAND_WITH_DELAY_MS) {
        land_pause = false;
    }

    land_run_vertical_control(land_pause);
}
Example #4
0
// land_nogps_run - runs the land controller
//      pilot controls roll and pitch angles
//      should be called at 100hz or more
void Sub::land_nogps_run()
{
    float target_roll = 0.0f, target_pitch = 0.0f;
    float target_yaw_rate = 0;

    // process pilot inputs
    if (!failsafe.radio) {
        if (g.land_repositioning) {
            // apply SIMPLE mode transform to pilot inputs
            update_simple_mode();

            // get pilot desired lean angles
            get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch, aparm.angle_max);
        }

        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);
    }

    // if not auto armed or landed or motor interlock not enabled set throttle to zero and exit immediately
    if(!ap.auto_armed || ap.at_surface || !motors.get_interlock()) {
    	// multicopters do not stabilize roll/pitch/yaw when disarmed
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);

#if LAND_REQUIRE_MIN_THROTTLE_TO_DISARM == ENABLED
        // disarm when the landing detector says we've landed and throttle is at minimum
        if (ap.land_complete && (ap.throttle_zero || failsafe.radio)) {
            init_disarm_motors();
        }
#else
        // disarm when the landing detector says we've landed
        if (ap.at_surface) {
        	set_mode(ALT_HOLD);
        }
#endif
        return;
    }

    // call attitude controller
    attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

    // pause 4 seconds before beginning land descent
    float cmb_rate;
    if(land_pause && millis()-land_start_time < LAND_WITH_DELAY_MS) {
        cmb_rate = 0;
    } else {
        land_pause = false;
        cmb_rate = get_land_descent_speed();
    }

    // record desired climb rate for logging
    desired_climb_rate = cmb_rate;

    // call position controller
    pos_control.set_alt_target_from_climb_rate(cmb_rate, G_Dt, true);
    pos_control.update_z_controller();
}
Example #5
0
// auto_spline_run - runs the auto spline controller
//      called by auto_run at 100hz or more
void Sub::auto_spline_run()
{
    // if not armed set throttle to zero and exit immediately
    if (!motors.armed()) {
        // To-Do: reset waypoint origin to current location because vehicle is probably on the ground so we don't want it lurching left or right on take-off
        //    (of course it would be better if people just used take-off)
        // Sub vehicles do not stabilize roll/pitch/yaw when disarmed
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);

        return;
    }

    // process pilot's yaw input
    float target_yaw_rate = 0;
    if (!failsafe.pilot_input) {
        // get pilot's desired yaw rat
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
        if (!is_zero(target_yaw_rate)) {
            set_auto_yaw_mode(AUTO_YAW_HOLD);
        }
    }

    // set motors to full range
    motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

    // run waypoint controller
    wp_nav.update_spline();

    float lateral_out, forward_out;
    translate_wpnav_rp(lateral_out, forward_out);

    // Send to forward/lateral outputs
    motors.set_lateral(lateral_out);
    motors.set_forward(forward_out);

    // call z-axis position controller (wpnav should have already updated it's alt target)
    pos_control.update_z_controller();

    // get pilot desired lean angles
    float target_roll, target_pitch;
    get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);

    // call attitude controller
    if (auto_yaw_mode == AUTO_YAW_HOLD) {
        // roll & pitch from waypoint controller, yaw rate from pilot
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
    } else {
        // roll, pitch from waypoint controller, yaw heading from auto_heading()
        attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, get_auto_heading(), true, get_smoothing_gain());
    }
}
Example #6
0
// manual_control - process manual control
void Copter::ModeZigZag::manual_control()
{
    float target_yaw_rate = 0.0f;
    float target_climb_rate = 0.0f;

    // process pilot inputs unless we are in radio failsafe
    if (!copter.failsafe.radio) {
        float target_roll, target_pitch;
        // apply SIMPLE mode transform to pilot inputs
        update_simple_mode();

        // convert pilot input to lean angles
        get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());

        // process pilot's roll and pitch input
        loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt);
        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

        // get pilot desired climb rate
        target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
        // make sure the climb rate is in the given range, prevent floating point errors
        target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up);
    } else {
        // clear out pilot desired acceleration in case radio failsafe event occurs and we
        // do not switch to RTL for some reason
        loiter_nav->clear_pilot_desired_acceleration();
    }

    // set motors to full range
    motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

    // run loiter controller
    loiter_nav->update();

    // call attitude controller
    attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);

    // adjust climb rate using rangefinder
    target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control->get_alt_target(), G_Dt);

    // get avoidance adjusted climb rate
    target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);

    // update altitude target and call position controller
    pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);

    // adjusts target up or down using a climb rate
    pos_control->update_z_controller();
}
// stabilize_run - runs the main stabilize controller
// should be called at 100hz or more
void Copter::heli_stabilize_run()
{
    float target_roll, target_pitch;
    float target_yaw_rate;
    int16_t pilot_throttle_scaled;

    // Tradheli should not reset roll, pitch, yaw targets when motors are not runup, because
    // we may be in autorotation flight.  These should be reset only when transitioning from disarmed
    // to armed, because the pilot will have placed the helicopter down on the landing pad.  This is so
    // that the servos move in a realistic fashion while disarmed for operational checks.
    // Also, unlike multicopters we do not set throttle (i.e. collective pitch) to zero so the swash servos move
    
    if(!motors.armed()) {
        heli_flags.init_targets_on_arming=true;
        attitude_control.set_yaw_target_to_current_heading();
    }
    
    if(motors.armed() && heli_flags.init_targets_on_arming) {
        attitude_control.relax_bf_rate_controller();
        attitude_control.set_yaw_target_to_current_heading();
        if (motors.rotor_speed_above_critical()) {
            heli_flags.init_targets_on_arming=false;
        }
    }

    // send RC inputs direct into motors library for use during manual passthrough for helicopter setup
    heli_radio_passthrough();

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // convert pilot input to lean angles
    // To-Do: convert get_pilot_desired_lean_angles to return angles as floats
    get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch, aparm.angle_max);

    // get pilot's desired yaw rate
    target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);

    // get pilot's desired throttle
    pilot_throttle_scaled = get_pilot_desired_collective(channel_throttle->control_in);

    // call attitude controller
    attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

    // output pilot's throttle - note that TradHeli does not used angle-boost
    attitude_control.set_throttle_out(pilot_throttle_scaled, false, g.throttle_filt);
}
Example #8
0
// auto_loiter_run - loiter in AUTO flight mode
//      called by auto_run at 100hz or more
void Sub::auto_loiter_run()
{
    // if not armed set throttle to zero and exit immediately
    if (!motors.armed()) {
        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        // Sub vehicles do not stabilize roll/pitch/yaw when disarmed
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);

        return;
    }

    // accept pilot input of yaw
    float target_yaw_rate = 0;
    if (!failsafe.pilot_input) {
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
    }

    // set motors to full range
    motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

    // run waypoint and z-axis position controller
    failsafe_terrain_set_status(wp_nav.update_wpnav());

    ///////////////////////
    // update xy outputs //
    float lateral_out, forward_out;
    translate_wpnav_rp(lateral_out, forward_out);

    // Send to forward/lateral outputs
    motors.set_lateral(lateral_out);
    motors.set_forward(forward_out);

    // call z-axis position controller (wpnav should have already updated it's alt target)
    pos_control.update_z_controller();

    // get pilot desired lean angles
    float target_roll, target_pitch;
    get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);

    // roll & pitch from waypoint controller, yaw rate from pilot
    attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
}
void Sub::surface_run()
{
    float target_roll, target_pitch;
    float target_yaw_rate;

    // if not armed set throttle to zero and exit immediately
    if (!motors.armed()) {
        motors.output_min();
        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        return;
    }

    // Already at surface, hold depth at surface
    if (ap.at_surface) {
        set_mode(ALT_HOLD, MODE_REASON_SURFACE_COMPLETE);
    }

    // convert pilot input to lean angles
    // To-Do: convert get_pilot_desired_lean_angles to return angles as floats
    get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);

    // get pilot's desired yaw rate
    target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

    // call attitude controller
    attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

    // set target climb rate
    float cmb_rate = constrain_float(abs(wp_nav.get_speed_up()), 1, pos_control.get_speed_up());

    // record desired climb rate for logging
    desired_climb_rate = cmb_rate;

    // update altitude target and call position controller
    pos_control.set_alt_target_from_climb_rate_ff(cmb_rate, G_Dt, true);
    pos_control.update_z_controller();

    // pilot has control for repositioning
    motors.set_forward(channel_forward->norm_input());
    motors.set_lateral(channel_lateral->norm_input());
}
Example #10
0
// stabilize_run - runs the main stabilize controller
// should be called at 100hz or more
void Copter::ModeStabilize::run()
{
    float target_roll, target_pitch;
    float target_yaw_rate;
    float pilot_throttle_scaled;

    // if not armed set throttle to zero and exit immediately
    if (!motors->armed() || ap.throttle_zero || !motors->get_interlock()) {
        zero_throttle_and_relax_ac();
        return;
    }

    // clear landing flag
    set_land_complete(false);

    motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // convert pilot input to lean angles
    get_pilot_desired_lean_angles(target_roll, target_pitch, copter.aparm.angle_max, copter.aparm.angle_max);

    // get pilot's desired yaw rate
    target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

    // get pilot's desired throttle
    pilot_throttle_scaled = get_pilot_desired_throttle(channel_throttle->get_control_in());

    // call attitude controller
    attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);

    // body-frame rate controller is run directly from 100hz loop

    // output pilot's throttle
    attitude_control->set_throttle_out(pilot_throttle_scaled, true, g.throttle_filt);
}
Example #11
0
// stabilize_run - runs the main stabilize controller
// should be called at 100hz or more
void Copter::stabilize_run()
{
    float target_roll, target_pitch;
    float target_yaw_rate;
    int16_t pilot_throttle_scaled;

    // if not armed or throttle at zero, set throttle to zero and exit immediately
    if(!motors.armed() || ap.throttle_zero) {
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        // slow start if landed
        if (ap.land_complete) {
            motors.slow_start(true);
        }
        return;
    }

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // convert pilot input to lean angles
    // To-Do: convert get_pilot_desired_lean_angles to return angles as floats
    get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch, aparm.angle_max);

    // get pilot's desired yaw rate
    target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);

    // get pilot's desired throttle
    pilot_throttle_scaled = get_pilot_desired_throttle(channel_throttle->control_in);

    // call attitude controller
    attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

    // body-frame rate controller is run directly from 100hz loop

    // output pilot's throttle
    attitude_control.set_throttle_out(pilot_throttle_scaled, true, g.throttle_filt);
}
Example #12
0
// poshold_run - runs the PosHold controller
// should be called at 100hz or more
void Sub::poshold_run()
{
    uint32_t tnow = AP_HAL::millis();
    
    // if not armed set throttle to zero and exit immediately
    if (!motors.armed()) {
        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        wp_nav.init_loiter_target();
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(motors.get_throttle_hover());
        return;
    }

    // set motors to full range
    motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

    // run loiter controller
    wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

    ///////////////////////
    // update xy outputs //
    float pilot_lateral = channel_lateral->norm_input();
    float pilot_forward = channel_forward->norm_input();

    float lateral_out = 0;
    float forward_out = 0;

    // Allow pilot to reposition the sub
    if (fabsf(pilot_lateral) > 0.1 || fabsf(pilot_forward) > 0.1) {
        lateral_out = pilot_lateral;
        forward_out = pilot_forward;
        wp_nav.init_loiter_target(); // initialize target to current position after repositioning
    } else {
        translate_wpnav_rp(lateral_out, forward_out);
    }

    motors.set_lateral(lateral_out);
    motors.set_forward(forward_out);

    /////////////////////
    // Update attitude //

    // get pilot's desired yaw rate
    float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

    // convert pilot input to lean angles
    // To-Do: convert get_pilot_desired_lean_angles to return angles as floats
    float target_roll, target_pitch;
    get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);

    // update attitude controller targets
    if (!is_zero(target_yaw_rate)) { // call attitude controller with rate yaw determined by pilot input
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        last_pilot_heading = ahrs.yaw_sensor;
        last_pilot_yaw_input_ms = tnow; // time when pilot last changed heading

    } else { // hold current heading

        // this check is required to prevent bounce back after very fast yaw maneuvers
        // the inertia of the vehicle causes the heading to move slightly past the point when pilot input actually stopped
        if (tnow < last_pilot_yaw_input_ms + 250) { // give 250ms to slow down, then set target heading
            target_yaw_rate = 0; // Stop rotation on yaw axis

            // call attitude controller with target yaw rate = 0 to decelerate on yaw axis
            attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
            last_pilot_heading = ahrs.yaw_sensor; // update heading to hold

        } else { // call attitude controller holding absolute absolute bearing
            attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, last_pilot_heading, true, get_smoothing_gain());
        }
    }

    ///////////////////
    // Update z axis //

    // get pilot desired climb rate
    float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
    target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

    // adjust climb rate using rangefinder
    if (rangefinder_alt_ok()) {
        // if rangefinder is ok, use surface tracking
        target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
    }

    // call z axis position controller
    if (ap.at_bottom) {
        pos_control.relax_alt_hold_controllers(motors.get_throttle_hover()); // clear velocity and position targets, and integrator
        pos_control.set_alt_target(inertial_nav.get_altitude() + 10.0f); // set target to 10 cm above bottom
    } else {
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
    }

    pos_control.update_z_controller();
}
Example #13
0
// land_nogps_run - runs the land controller
//      pilot controls roll and pitch angles
//      should be called at 100hz or more
void Copter::land_nogps_run()
{
    float target_roll = 0.0f, target_pitch = 0.0f;
    float target_yaw_rate = 0;

    // process pilot inputs
    if (!failsafe.radio) {
        if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
            Log_Write_Event(DATA_LAND_CANCELLED_BY_PILOT);
            // exit land if throttle is high
            set_mode(ALT_HOLD);
        }

        if (g.land_repositioning) {
            // apply SIMPLE mode transform to pilot inputs
            update_simple_mode();

            // get pilot desired lean angles
            get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch, aparm.angle_max);
        }

        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);
    }

    // if not auto armed or landed or motor interlock not enabled set throttle to zero and exit immediately
    if (!motors.armed() || !ap.auto_armed || ap.land_complete || !motors.get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME  // Helicopters always stabilize roll/pitch/yaw
        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        attitude_control.set_throttle_out(0,false,g.throttle_filt);
#else
        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        // multicopters do not stabilize roll/pitch/yaw when disarmed
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif

#if LAND_REQUIRE_MIN_THROTTLE_TO_DISARM == ENABLED
        // disarm when the landing detector says we've landed and throttle is at minimum
        if (ap.land_complete && (ap.throttle_zero || failsafe.radio)) {
            init_disarm_motors();
        }
#else
        // disarm when the landing detector says we've landed
        if (ap.land_complete) {
            init_disarm_motors();
        }
#endif
        return;
    }

    // set motors to full range
    motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

    // call attitude controller
    attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

    // pause 4 seconds before beginning land descent
    float cmb_rate;
    if(land_pause && millis()-land_start_time < LAND_WITH_DELAY_MS) {
        cmb_rate = 0;
    } else {
        land_pause = false;
        cmb_rate = get_land_descent_speed();
    }

    // record desired climb rate for logging
    desired_climb_rate = cmb_rate;

    // call position controller
    pos_control.set_alt_target_from_climb_rate(cmb_rate, G_Dt, true);
    pos_control.update_z_controller();
}
Example #14
0
// althold_run - runs the althold controller
// should be called at 100hz or more
void Sub::althold_run()
{
    uint32_t tnow = AP_HAL::millis();

    // initialize vertical speeds and acceleration
    pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
    pos_control.set_accel_z(g.pilot_accel_z);

    if (!motors.armed() || !motors.get_interlock()) {
        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        // Sub vehicles do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle)
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(motors.get_throttle_hover());
        last_pilot_heading = ahrs.yaw_sensor;
        return;
    }

    motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // get pilot desired lean angles
    float target_roll, target_pitch;
    get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());

    // get pilot's desired yaw rate
    float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

    // get pilot desired climb rate
    float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
    target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

    // call attitude controller
    if (!is_zero(target_yaw_rate)) { // call attitude controller with rate yaw determined by pilot input
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        last_pilot_heading = ahrs.yaw_sensor;
        last_pilot_yaw_input_ms = tnow; // time when pilot last changed heading

    } else { // hold current heading

        // this check is required to prevent bounce back after very fast yaw maneuvers
        // the inertia of the vehicle causes the heading to move slightly past the point when pilot input actually stopped
        if (tnow < last_pilot_yaw_input_ms + 250) { // give 250ms to slow down, then set target heading
            target_yaw_rate = 0; // Stop rotation on yaw axis

            // call attitude controller with target yaw rate = 0 to decelerate on yaw axis
            attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
            last_pilot_heading = ahrs.yaw_sensor; // update heading to hold

        } else { // call attitude controller holding absolute absolute bearing
            attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, last_pilot_heading, true, get_smoothing_gain());
        }
    }

    // adjust climb rate using rangefinder
    if (rangefinder_alt_ok()) {
        // if rangefinder is ok, use surface tracking
        target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
    }

    // call z axis position controller
    if (ap.at_bottom) {
        pos_control.relax_alt_hold_controllers(motors.get_throttle_hover()); // clear velocity and position targets, and integrator
        pos_control.set_alt_target(inertial_nav.get_altitude() + 10.0f); // set target to 10 cm above bottom
    } else {
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
    }

    pos_control.update_z_controller();

    //control_in is range 0-1000
    //radio_in is raw pwm value
    motors.set_forward(channel_forward->norm_input());
    motors.set_lateral(channel_lateral->norm_input());
}
Example #15
0
// drift_run - runs the drift controller
// should be called at 100hz or more
void Copter::ModeDrift::run()
{
    static float braker = 0.0f;
    static float roll_input = 0.0f;
    float target_roll, target_pitch;
    float target_yaw_rate;
    float pilot_throttle_scaled;

    // if landed and throttle at zero, set throttle to zero and exit immediately
    if (!motors->armed() || !motors->get_interlock() || (ap.land_complete && ap.throttle_zero)) {
        zero_throttle_and_relax_ac();
        return;
    }

    // clear landing flag above zero throttle
    if (!ap.throttle_zero) {
        set_land_complete(false);
    }

    // convert pilot input to lean angles
    get_pilot_desired_lean_angles(target_roll, target_pitch, copter.aparm.angle_max, copter.aparm.angle_max);

    // get pilot's desired throttle
    pilot_throttle_scaled = get_pilot_desired_throttle(channel_throttle->get_control_in());

    // Grab inertial velocity
    const Vector3f& vel = inertial_nav.get_velocity();

    // rotate roll, pitch input from north facing to vehicle's perspective
    float roll_vel =  vel.y * ahrs.cos_yaw() - vel.x * ahrs.sin_yaw(); // body roll vel
    float pitch_vel = vel.y * ahrs.sin_yaw() + vel.x * ahrs.cos_yaw(); // body pitch vel

    // gain sceduling for Yaw
    float pitch_vel2 = MIN(fabsf(pitch_vel), 2000);
    target_yaw_rate = ((float)target_roll/1.0f) * (1.0f - (pitch_vel2 / 5000.0f)) * g.acro_yaw_p;

    roll_vel = constrain_float(roll_vel, -DRIFT_SPEEDLIMIT, DRIFT_SPEEDLIMIT);
    pitch_vel = constrain_float(pitch_vel, -DRIFT_SPEEDLIMIT, DRIFT_SPEEDLIMIT);
    
    roll_input = roll_input * .96f + (float)channel_yaw->get_control_in() * .04f;

    //convert user input into desired roll velocity
    float roll_vel_error = roll_vel - (roll_input / DRIFT_SPEEDGAIN);

    // Roll velocity is feed into roll acceleration to minimize slip
    target_roll = roll_vel_error * -DRIFT_SPEEDGAIN;
    target_roll = constrain_float(target_roll, -4500.0f, 4500.0f);

    // If we let go of sticks, bring us to a stop
    if(is_zero(target_pitch)){
        // .14/ (.03 * 100) = 4.6 seconds till full braking
        braker += .03f;
        braker = MIN(braker, DRIFT_SPEEDGAIN);
        target_pitch = pitch_vel * braker;
    }else{
        braker = 0.0f;
    }

    // set motors to full range
    motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

    // call attitude controller
    attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);

    // output pilot's throttle with angle boost
    attitude_control->set_throttle_out(get_throttle_assist(vel.z, pilot_throttle_scaled), true, g.throttle_filt);
}
Example #16
0
// althold_run - runs the althold controller
// should be called at 100hz or more
void Copter::althold_run()
{
    AltHoldModeState althold_state;
    float takeoff_climb_rate = 0.0f;

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // get pilot desired lean angles
    float target_roll, target_pitch;
    get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());

    // get pilot's desired yaw rate
    float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);

    // get pilot desired climb rate
    float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->control_in);
    target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

#if FRAME_CONFIG == HELI_FRAME
    // helicopters are held on the ground until rotor speed runup has finished
    bool takeoff_triggered = (ap.land_complete && (channel_throttle->control_in > get_takeoff_trigger_throttle()) && motors.rotor_runup_complete());
#else
    bool takeoff_triggered = (ap.land_complete && (channel_throttle->control_in > get_takeoff_trigger_throttle()));
#endif

    // Alt Hold State Machine Determination
    if(!ap.auto_armed || !motors.get_interlock()) {
        althold_state = AltHold_Disarmed;
    } else if (takeoff_state.running || takeoff_triggered){
        althold_state = AltHold_Takeoff;
    } else if (ap.land_complete){
        althold_state = AltHold_Landed;
    } else {
        althold_state = AltHold_Flying;
    }

    // Alt Hold State Machine
    switch (althold_state) {

    case AltHold_Disarmed:

#if FRAME_CONFIG == HELI_FRAME  // Helicopters always stabilize roll/pitch/yaw
        attitude_control.set_yaw_target_to_current_heading();
        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        attitude_control.set_throttle_out(0,false,g.throttle_filt);
#else   // Multicopter do not stabilize roll/pitch/yaw when disarmed
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif  // HELI_FRAME
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
        break;

    case AltHold_Takeoff:

        // initiate take-off
        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            set_land_complete(false);
            // clear i terms
            set_throttle_takeoff();
        }

        // get take-off adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
        break;

    case AltHold_Landed:

#if FRAME_CONFIG == HELI_FRAME  // Helicopters always stabilize roll/pitch/yaw
        attitude_control.set_yaw_target_to_current_heading();
        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        attitude_control.set_throttle_out(get_throttle_pre_takeoff(channel_throttle->control_in),false,g.throttle_filt);
#else   // Multicopter do not stabilize roll/pitch/yaw when disarmed
        attitude_control.set_throttle_out_unstabilized(get_throttle_pre_takeoff(channel_throttle->control_in),true,g.throttle_filt);
#endif
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
        break;

    case AltHold_Flying:
        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // call throttle controller
        if (sonar_enabled && (sonar_alt_health >= SONAR_ALT_HEALTH_MAX)) {
            // if sonar is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.update_z_controller();
        break;
    }
}
Example #17
0
// poshold_run - runs the PosHold controller
// should be called at 100hz or more
void Copter::poshold_run()
{
    float target_roll, target_pitch;  // pilot's roll and pitch angle inputs
    float target_yaw_rate = 0;          // pilot desired yaw rate in centi-degrees/sec
    float target_climb_rate = 0;      // pilot desired climb rate in centimeters/sec
    float takeoff_climb_rate = 0.0f;    // takeoff induced climb rate
    float brake_to_loiter_mix;          // mix of brake and loiter controls.  0 = fully brake controls, 1 = fully loiter controls
    float controller_to_pilot_roll_mix; // mix of controller and pilot controls.  0 = fully last controller controls, 1 = fully pilot controls
    float controller_to_pilot_pitch_mix;    // mix of controller and pilot controls.  0 = fully last controller controls, 1 = fully pilot controls
    float vel_fw, vel_right;            // vehicle's current velocity in body-frame forward and right directions
    const Vector3f& vel = inertial_nav.get_velocity();

    // initialize vertical speeds and acceleration
    pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
    pos_control.set_accel_z(g.pilot_accel_z);

    // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
    if (!motors.armed() || !ap.auto_armed || !motors.get_interlock()) {
        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        wp_nav.init_loiter_target();
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
        return;
    }

    // process pilot inputs
    if (!failsafe.radio) {
        // apply SIMPLE mode transform to pilot inputs
        update_simple_mode();

        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

        // get pilot desired climb rate (for alt-hold mode and take-off)
        target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
        target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

        // get takeoff adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // check for take-off
        if (ap.land_complete && (takeoff_state.running || channel_throttle->get_control_in() > get_takeoff_trigger_throttle())) {
            if (!takeoff_state.running) {
                takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            }

            // indicate we are taking off
            set_land_complete(false);
            // clear i term when we're taking off
            set_throttle_takeoff();
        }
    }

    // relax loiter target if we might be landed
    if (ap.land_complete_maybe) {
        wp_nav.loiter_soften_for_landing();
    }

    // if landed initialise loiter targets, set throttle to zero and exit
    if (ap.land_complete) {
        // if throttle zero reset attitude and exit immediately
        if (ap.throttle_zero) {
            motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        }else{
            motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        }
        wp_nav.init_loiter_target();
        // move throttle to between minimum and non-takeoff-throttle to keep us on the ground
        attitude_control.set_throttle_out(get_throttle_pre_takeoff(channel_throttle->get_control_in()),false,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
        return;
    }else{
        // convert pilot input to lean angles
        get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);

        // convert inertial nav earth-frame velocities to body-frame
        // To-Do: move this to AP_Math (or perhaps we already have a function to do this)
        vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw();
        vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw();
        
        // If not in LOITER, retrieve latest wind compensation lean angles related to current yaw
        if (poshold.roll_mode != POSHOLD_LOITER || poshold.pitch_mode != POSHOLD_LOITER)
        poshold_get_wind_comp_lean_angles(poshold.wind_comp_roll, poshold.wind_comp_pitch);

        // Roll state machine
        //  Each state (aka mode) is responsible for:
        //      1. dealing with pilot input
        //      2. calculating the final roll output to the attitude controller
        //      3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
        switch (poshold.roll_mode) {

            case POSHOLD_PILOT_OVERRIDE:
                // update pilot desired roll angle using latest radio input
                //  this filters the input so that it returns to zero no faster than the brake-rate
                poshold_update_pilot_lean_angle(poshold.pilot_roll, target_roll);

                // switch to BRAKE mode for next iteration if no pilot input
                if (is_zero(target_roll) && (fabsf(poshold.pilot_roll) < 2 * g.poshold_brake_rate)) {
                    // initialise BRAKE mode
                    poshold.roll_mode = POSHOLD_BRAKE;        // Set brake roll mode
                    poshold.brake_roll = 0;                  // initialise braking angle to zero
                    poshold.brake_angle_max_roll = 0;        // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
                    poshold.brake_timeout_roll = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
                    poshold.braking_time_updated_roll = false;   // flag the braking time can be re-estimated
                }

                // final lean angle should be pilot input plus wind compensation
                poshold.roll = poshold.pilot_roll + poshold.wind_comp_roll;
                break;

            case POSHOLD_BRAKE:
            case POSHOLD_BRAKE_READY_TO_LOITER:
                // calculate brake_roll angle to counter-act velocity
                poshold_update_brake_angle_from_velocity(poshold.brake_roll, vel_right);

                // update braking time estimate
                if (!poshold.braking_time_updated_roll) {
                    // check if brake angle is increasing
                    if (abs(poshold.brake_roll) >= poshold.brake_angle_max_roll) {
                        poshold.brake_angle_max_roll = abs(poshold.brake_roll);
                    } else {
                        // braking angle has started decreasing so re-estimate braking time
                        poshold.brake_timeout_roll = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(abs(poshold.brake_roll))/(10L*(int32_t)g.poshold_brake_rate));  // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
                        poshold.braking_time_updated_roll = true;
                    }
                }

                // if velocity is very low reduce braking time to 0.5seconds
                if ((fabsf(vel_right) <= POSHOLD_SPEED_0) && (poshold.brake_timeout_roll > 50*LOOP_RATE_FACTOR)) {
                    poshold.brake_timeout_roll = 50*LOOP_RATE_FACTOR;
                }

                // reduce braking timer
                if (poshold.brake_timeout_roll > 0) {
                    poshold.brake_timeout_roll--;
                } else {
                    // indicate that we are ready to move to Loiter.
                    // Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to POSHOLD_BRAKE_READY_TO_LOITER
                    //  logic for engaging loiter is handled below the roll and pitch mode switch statements
                    poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                }

                // final lean angle is braking angle + wind compensation angle
                poshold.roll = poshold.brake_roll + poshold.wind_comp_roll;

                // check for pilot input
                if (!is_zero(target_roll)) {
                    // init transition to pilot override
                    poshold_roll_controller_to_pilot_override();
                }
                break;

            case POSHOLD_BRAKE_TO_LOITER:
            case POSHOLD_LOITER:
                // these modes are combined roll-pitch modes and are handled below
                break;

            case POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE:
                // update pilot desired roll angle using latest radio input
                //  this filters the input so that it returns to zero no faster than the brake-rate
                poshold_update_pilot_lean_angle(poshold.pilot_roll, target_roll);

                // count-down loiter to pilot timer
                if (poshold.controller_to_pilot_timer_roll > 0) {
                    poshold.controller_to_pilot_timer_roll--;
                } else {
                    // when timer runs out switch to full pilot override for next iteration
                    poshold.roll_mode = POSHOLD_PILOT_OVERRIDE;
                }

                // calculate controller_to_pilot mix ratio
                controller_to_pilot_roll_mix = (float)poshold.controller_to_pilot_timer_roll / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;

                // mix final loiter lean angle and pilot desired lean angles
                poshold.roll = poshold_mix_controls(controller_to_pilot_roll_mix, poshold.controller_final_roll, poshold.pilot_roll + poshold.wind_comp_roll);
                break;
        }

        // Pitch state machine
        //  Each state (aka mode) is responsible for:
        //      1. dealing with pilot input
        //      2. calculating the final pitch output to the attitude contpitcher
        //      3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state
        switch (poshold.pitch_mode) {

            case POSHOLD_PILOT_OVERRIDE:
                // update pilot desired pitch angle using latest radio input
                //  this filters the input so that it returns to zero no faster than the brake-rate
                poshold_update_pilot_lean_angle(poshold.pilot_pitch, target_pitch);

                // switch to BRAKE mode for next iteration if no pilot input
                if (is_zero(target_pitch) && (fabsf(poshold.pilot_pitch) < 2 * g.poshold_brake_rate)) {
                    // initialise BRAKE mode
                    poshold.pitch_mode = POSHOLD_BRAKE;       // set brake pitch mode
                    poshold.brake_pitch = 0;                 // initialise braking angle to zero
                    poshold.brake_angle_max_pitch = 0;       // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking
                    poshold.brake_timeout_pitch = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode.
                    poshold.braking_time_updated_pitch = false;   // flag the braking time can be re-estimated
                }

                // final lean angle should be pilot input plus wind compensation
                poshold.pitch = poshold.pilot_pitch + poshold.wind_comp_pitch;
                break;

            case POSHOLD_BRAKE:
            case POSHOLD_BRAKE_READY_TO_LOITER:
                // calculate brake_pitch angle to counter-act velocity
                poshold_update_brake_angle_from_velocity(poshold.brake_pitch, -vel_fw);

                // update braking time estimate
                if (!poshold.braking_time_updated_pitch) {
                    // check if brake angle is increasing
                    if (abs(poshold.brake_pitch) >= poshold.brake_angle_max_pitch) {
                        poshold.brake_angle_max_pitch = abs(poshold.brake_pitch);
                    } else {
                        // braking angle has started decreasing so re-estimate braking time
                        poshold.brake_timeout_pitch = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(abs(poshold.brake_pitch))/(10L*(int32_t)g.poshold_brake_rate));  // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
                        poshold.braking_time_updated_pitch = true;
                    }
                }

                // if velocity is very low reduce braking time to 0.5seconds
                if ((fabsf(vel_fw) <= POSHOLD_SPEED_0) && (poshold.brake_timeout_pitch > 50*LOOP_RATE_FACTOR)) {
                    poshold.brake_timeout_pitch = 50*LOOP_RATE_FACTOR;
                }

                // reduce braking timer
                if (poshold.brake_timeout_pitch > 0) {
                    poshold.brake_timeout_pitch--;
                } else {
                    // indicate that we are ready to move to Loiter.
                    // Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to POSHOLD_BRAKE_READY_TO_LOITER
                    //  logic for engaging loiter is handled below the pitch and pitch mode switch statements
                    poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                }

                // final lean angle is braking angle + wind compensation angle
                poshold.pitch = poshold.brake_pitch + poshold.wind_comp_pitch;

                // check for pilot input
                if (!is_zero(target_pitch)) {
                    // init transition to pilot override
                    poshold_pitch_controller_to_pilot_override();
                }
                break;

            case POSHOLD_BRAKE_TO_LOITER:
            case POSHOLD_LOITER:
                // these modes are combined pitch-pitch modes and are handled below
                break;

            case POSHOLD_CONTROLLER_TO_PILOT_OVERRIDE:
                // update pilot desired pitch angle using latest radio input
                //  this filters the input so that it returns to zero no faster than the brake-rate
                poshold_update_pilot_lean_angle(poshold.pilot_pitch, target_pitch);

                // count-down loiter to pilot timer
                if (poshold.controller_to_pilot_timer_pitch > 0) {
                    poshold.controller_to_pilot_timer_pitch--;
                } else {
                    // when timer runs out switch to full pilot override for next iteration
                    poshold.pitch_mode = POSHOLD_PILOT_OVERRIDE;
                }

                // calculate controller_to_pilot mix ratio
                controller_to_pilot_pitch_mix = (float)poshold.controller_to_pilot_timer_pitch / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER;

                // mix final loiter lean angle and pilot desired lean angles
                poshold.pitch = poshold_mix_controls(controller_to_pilot_pitch_mix, poshold.controller_final_pitch, poshold.pilot_pitch + poshold.wind_comp_pitch);
                break;
        }

        // set motors to full range
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        //
        // Shared roll & pitch states (POSHOLD_BRAKE_TO_LOITER and POSHOLD_LOITER)
        //

        // switch into LOITER mode when both roll and pitch are ready
        if (poshold.roll_mode == POSHOLD_BRAKE_READY_TO_LOITER && poshold.pitch_mode == POSHOLD_BRAKE_READY_TO_LOITER) {
            poshold.roll_mode = POSHOLD_BRAKE_TO_LOITER;
            poshold.pitch_mode = POSHOLD_BRAKE_TO_LOITER;
            poshold.brake_to_loiter_timer = POSHOLD_BRAKE_TO_LOITER_TIMER;
            // init loiter controller
            wp_nav.init_loiter_target(inertial_nav.get_position(), poshold.loiter_reset_I); // (false) to avoid I_term reset. In original code, velocity(0,0,0) was used instead of current velocity: wp_nav.init_loiter_target(inertial_nav.get_position(), Vector3f(0,0,0));
            // at this stage, we are going to run update_loiter that will reset I_term once. From now, we ensure next time that we will enter loiter and update it, I_term won't be reset anymore
            poshold.loiter_reset_I = false;
            // set delay to start of wind compensation estimate updates
            poshold.wind_comp_start_timer = POSHOLD_WIND_COMP_START_TIMER;
        }

        // roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes
        if (poshold.roll_mode == POSHOLD_BRAKE_TO_LOITER || poshold.roll_mode == POSHOLD_LOITER) {

            // force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states)
            poshold.pitch_mode = poshold.roll_mode;

            // handle combined roll+pitch mode
            switch (poshold.roll_mode) {
                case POSHOLD_BRAKE_TO_LOITER:
                    // reduce brake_to_loiter timer
                    if (poshold.brake_to_loiter_timer > 0) {
                        poshold.brake_to_loiter_timer--;
                    } else {
                        // progress to full loiter on next iteration
                        poshold.roll_mode = POSHOLD_LOITER;
                        poshold.pitch_mode = POSHOLD_LOITER;
                    }

                    // calculate percentage mix of loiter and brake control
                    brake_to_loiter_mix = (float)poshold.brake_to_loiter_timer / (float)POSHOLD_BRAKE_TO_LOITER_TIMER;

                    // calculate brake_roll and pitch angles to counter-act velocity
                    poshold_update_brake_angle_from_velocity(poshold.brake_roll, vel_right);
                    poshold_update_brake_angle_from_velocity(poshold.brake_pitch, -vel_fw);

                    // run loiter controller
                    wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

                    // calculate final roll and pitch output by mixing loiter and brake controls
                    poshold.roll = poshold_mix_controls(brake_to_loiter_mix, poshold.brake_roll + poshold.wind_comp_roll, wp_nav.get_roll());
                    poshold.pitch = poshold_mix_controls(brake_to_loiter_mix, poshold.brake_pitch + poshold.wind_comp_pitch, wp_nav.get_pitch());

                    // check for pilot input
                    if (!is_zero(target_roll) || !is_zero(target_pitch)) {
                        // if roll input switch to pilot override for roll
                        if (!is_zero(target_roll)) {
                            // init transition to pilot override
                            poshold_roll_controller_to_pilot_override();
                            // switch pitch-mode to brake (but ready to go back to loiter anytime)
                            // no need to reset poshold.brake_pitch here as wind comp has not been updated since last brake_pitch computation
                            poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                        }
                        // if pitch input switch to pilot override for pitch
                        if (!is_zero(target_pitch)) {
                            // init transition to pilot override
                            poshold_pitch_controller_to_pilot_override();
                            if (is_zero(target_roll)) {
                                // switch roll-mode to brake (but ready to go back to loiter anytime)
                                // no need to reset poshold.brake_roll here as wind comp has not been updated since last brake_roll computation
                                poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                            }
                        }
                    }
                    break;

                case POSHOLD_LOITER:
                    // run loiter controller
                    wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

                    // set roll angle based on loiter controller outputs
                    poshold.roll = wp_nav.get_roll();
                    poshold.pitch = wp_nav.get_pitch();

                    // update wind compensation estimate
                    poshold_update_wind_comp_estimate();

                    // check for pilot input
                    if (!is_zero(target_roll) || !is_zero(target_pitch)) {
                        // if roll input switch to pilot override for roll
                        if (!is_zero(target_roll)) {
                            // init transition to pilot override
                            poshold_roll_controller_to_pilot_override();
                            // switch pitch-mode to brake (but ready to go back to loiter anytime)
                            poshold.pitch_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                            // reset brake_pitch because wind_comp is now different and should give the compensation of the whole previous loiter angle
                            poshold.brake_pitch = 0;
                        }
                        // if pitch input switch to pilot override for pitch
                        if (!is_zero(target_pitch)) {
                            // init transition to pilot override
                            poshold_pitch_controller_to_pilot_override();
                            // if roll not overriden switch roll-mode to brake (but be ready to go back to loiter any time)
                            if (is_zero(target_roll)) {
                                poshold.roll_mode = POSHOLD_BRAKE_READY_TO_LOITER;
                                poshold.brake_roll = 0;
                            }
                        }
                    }
                    break;

                default:
                    // do nothing for uncombined roll and pitch modes
                    break;
            }
        }
        
        // constrain target pitch/roll angles
        poshold.roll = constrain_int16(poshold.roll, -aparm.angle_max, aparm.angle_max);
        poshold.pitch = constrain_int16(poshold.pitch, -aparm.angle_max, aparm.angle_max);

        // update attitude controller targets
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(poshold.roll, poshold.pitch, target_yaw_rate);

        // adjust climb rate using rangefinder
        if (rangefinder_alt_ok()) {
            // if rangefinder is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }
        // update altitude target and call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
    }
}
Example #18
0
// Attempt recovery from terrain failsafe
// If recovery is successful resume mission
// If recovery fails revert to failsafe action
void Sub::auto_terrain_recover_run()
{
    float target_climb_rate = 0;
    static uint32_t rangefinder_recovery_ms = 0;

    // if not armed set throttle to zero and exit immediately
    if (!motors.armed()) {
        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        return;
    }

    switch (rangefinder.status_orient(ROTATION_PITCH_270)) {

    case RangeFinder::RangeFinder_OutOfRangeLow:
        target_climb_rate = wp_nav.get_speed_up();
        rangefinder_recovery_ms = 0;
        break;

    case RangeFinder::RangeFinder_OutOfRangeHigh:
        target_climb_rate = wp_nav.get_speed_down();
        rangefinder_recovery_ms = 0;
        break;

    case RangeFinder::RangeFinder_Good: // exit on success (recovered rangefinder data)

        target_climb_rate = 0; // Attempt to hold current depth

        if (rangefinder_state.alt_healthy) {

            // Start timer as soon as rangefinder is healthy
            if (rangefinder_recovery_ms == 0) {
                rangefinder_recovery_ms = AP_HAL::millis();
                pos_control.relax_alt_hold_controllers(motors.get_throttle_hover()); // Reset alt hold targets
            }

            // 1.5 seconds of healthy rangefinder means we can resume mission with terrain enabled
            if (AP_HAL::millis() > rangefinder_recovery_ms + 1500) {
                gcs().send_text(MAV_SEVERITY_INFO, "Terrain failsafe recovery successful!");
                failsafe_terrain_set_status(true); // Reset failsafe timers
                failsafe.terrain = false; // Clear flag
                auto_mode = Auto_Loiter; // Switch back to loiter for next iteration
                mission.resume(); // Resume mission
                rangefinder_recovery_ms = 0; // Reset for subsequent recoveries
            }

        }
        break;

        // Not connected, or no data
    default:
        // Terrain failsafe recovery has failed, terrain data is not available
        // and rangefinder is not connected, or has stopped responding
        gcs().send_text(MAV_SEVERITY_CRITICAL, "Terrain failsafe recovery failure: No Rangefinder!");
        failsafe_terrain_act();
        rangefinder_recovery_ms = 0;
        return;
    }

    // exit on failure (timeout)
    if (AP_HAL::millis() > fs_terrain_recover_start_ms + FS_TERRAIN_RECOVER_TIMEOUT_MS) {
        // Recovery has failed, revert to failsafe action
        gcs().send_text(MAV_SEVERITY_CRITICAL, "Terrain failsafe recovery timeout!");
        failsafe_terrain_act();
    }

    // run loiter controller
    wp_nav.update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);

    ///////////////////////
    // update xy targets //
    float lateral_out, forward_out;
    translate_wpnav_rp(lateral_out, forward_out);

    // Send to forward/lateral outputs
    motors.set_lateral(lateral_out);
    motors.set_forward(forward_out);

    /////////////////////
    // update z target //
    pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, true);
    pos_control.update_z_controller();

    ////////////////////////////
    // update angular targets //
    float target_roll = 0;
    float target_pitch = 0;

    // convert pilot input to lean angles
    // To-Do: convert get_pilot_desired_lean_angles to return angles as floats
    get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, aparm.angle_max);

    float target_yaw_rate = 0;

    // call attitude controller
    attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
}
Example #19
0
// loiter_run - runs the loiter controller
// should be called at 100hz or more
void Copter::ModeLoiter::run()
{
    float target_roll, target_pitch;
    float target_yaw_rate = 0.0f;
    float target_climb_rate = 0.0f;
    float takeoff_climb_rate = 0.0f;

    // initialize vertical speed and acceleration
    pos_control->set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
    pos_control->set_max_accel_z(g.pilot_accel_z);

    // process pilot inputs unless we are in radio failsafe
    if (!copter.failsafe.radio) {
        // apply SIMPLE mode transform to pilot inputs
        update_simple_mode();

        // convert pilot input to lean angles
        get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());

        // process pilot's roll and pitch input
        loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt);

        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

        // get pilot desired climb rate
        target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
        target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up);
    } else {
        // clear out pilot desired acceleration in case radio failsafe event occurs and we do not switch to RTL for some reason
        loiter_nav->clear_pilot_desired_acceleration();
    }

    // relax loiter target if we might be landed
    if (ap.land_complete_maybe) {
        loiter_nav->soften_for_landing();
    }

    // Loiter State Machine Determination
    AltHoldModeState loiter_state = get_alt_hold_state(target_climb_rate);

    // Loiter State Machine
    switch (loiter_state) {

    case AltHold_MotorStopped:

        attitude_control->reset_rate_controller_I_terms();
        attitude_control->set_yaw_target_to_current_heading();
        pos_control->relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
        loiter_nav->init_target();
        attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);
        pos_control->update_z_controller();
        break;

    case AltHold_Takeoff:

        // initiate take-off
        if (!takeoff.running()) {
            takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            set_land_complete(false);
            // clear i term when we're taking off
            set_throttle_takeoff();
        }

        // get takeoff adjusted pilot and takeoff climb rates
        takeoff.get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // get avoidance adjusted climb rate
        target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);

        // run loiter controller
        loiter_nav->update();

        // call attitude controller
        attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);

        // update altitude target and call position controller
        pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control->add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control->update_z_controller();
        break;

    case AltHold_Landed_Ground_Idle:

        attitude_control->reset_rate_controller_I_terms();
        attitude_control->set_yaw_target_to_current_heading();
        // FALLTHROUGH

    case AltHold_Landed_Pre_Takeoff:

        loiter_nav->init_target();
        attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0.0f, 0.0f, 0.0f);
        pos_control->relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
        pos_control->update_z_controller();
        break;

    case AltHold_Flying:

        // set motors to full range
        motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);

#if PRECISION_LANDING == ENABLED
        if (do_precision_loiter()) {
            precision_loiter_xy();
        }
#endif

        // run loiter controller
        loiter_nav->update();

        // call attitude controller
        attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);

        // adjust climb rate using rangefinder
        target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control->get_alt_target(), G_Dt);

        // get avoidance adjusted climb rate
        target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);

        pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control->update_z_controller();
        break;
    }
}
Example #20
0
// althold_run - runs the althold controller
// should be called at 100hz or more
void Sub::althold_run()
{
    uint32_t tnow = AP_HAL::millis();

    // initialize vertical speeds and acceleration
    pos_control.set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
    pos_control.set_max_accel_z(g.pilot_accel_z);

    if (!motors.armed()) {
        motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
        // Sub vehicles do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle)
        attitude_control.set_throttle_out(0,true,g.throttle_filt);
        attitude_control.relax_attitude_controllers();
        pos_control.relax_alt_hold_controllers(motors.get_throttle_hover());
        last_pilot_heading = ahrs.yaw_sensor;
        return;
    }

    motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);

    // get pilot desired lean angles
    float target_roll, target_pitch;

    // Check if set_attitude_target_no_gps is valid
    if (tnow - sub.set_attitude_target_no_gps.last_message_ms < 5000) {
        float target_yaw;
        Quaternion(
            set_attitude_target_no_gps.packet.q
        ).to_euler(
            target_roll,
            target_pitch,
            target_yaw
        );
        target_roll = degrees(target_roll);
        target_pitch = degrees(target_pitch);
        target_yaw = degrees(target_yaw);

        attitude_control.input_euler_angle_roll_pitch_yaw(target_roll * 1e2f, target_pitch * 1e2f, target_yaw * 1e2f, true);
        return;
    }

    get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());

    // get pilot's desired yaw rate
    float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

    // call attitude controller
    if (!is_zero(target_yaw_rate)) { // call attitude controller with rate yaw determined by pilot input
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);
        last_pilot_heading = ahrs.yaw_sensor;
        last_pilot_yaw_input_ms = tnow; // time when pilot last changed heading

    } else { // hold current heading

        // this check is required to prevent bounce back after very fast yaw maneuvers
        // the inertia of the vehicle causes the heading to move slightly past the point when pilot input actually stopped
        if (tnow < last_pilot_yaw_input_ms + 250) { // give 250ms to slow down, then set target heading
            target_yaw_rate = 0; // Stop rotation on yaw axis

            // call attitude controller with target yaw rate = 0 to decelerate on yaw axis
            attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);
            last_pilot_heading = ahrs.yaw_sensor; // update heading to hold

        } else { // call attitude controller holding absolute absolute bearing
            attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, last_pilot_heading, true);
        }
    }

    // Hold actual position until zero derivative is detected
    static bool engageStopZ = true;
    // Get last user velocity direction to check for zero derivative points
    static bool lastVelocityZWasNegative = false;
    if (fabsf(channel_throttle->norm_input()-0.5f) > 0.05f) { // Throttle input above 5%
        // output pilot's throttle
        attitude_control.set_throttle_out(channel_throttle->norm_input(), false, g.throttle_filt);
        // reset z targets to current values
        pos_control.relax_alt_hold_controllers();
        engageStopZ = true;
        lastVelocityZWasNegative = is_negative(inertial_nav.get_velocity_z());
    } else { // hold z

        if (ap.at_bottom) {
            pos_control.relax_alt_hold_controllers(); // clear velocity and position targets
            pos_control.set_alt_target(inertial_nav.get_altitude() + 10.0f); // set target to 10 cm above bottom
        } else if (rangefinder_alt_ok()) {
            // if rangefinder is ok, use surface tracking
            float target_climb_rate = get_surface_tracking_climb_rate(0, pos_control.get_alt_target(), G_Dt);
            pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        }

        // Detects a zero derivative
        // When detected, move the altitude set point to the actual position
        // This will avoid any problem related to joystick delays
        // or smaller input signals
        if(engageStopZ && (lastVelocityZWasNegative ^ is_negative(inertial_nav.get_velocity_z()))) {
            engageStopZ = false;
            pos_control.relax_alt_hold_controllers();
        }

        pos_control.update_z_controller();
    }

    motors.set_forward(channel_forward->norm_input());
    motors.set_lateral(channel_lateral->norm_input());
}
Example #21
0
void Copter::Mode::land_run_horizontal_control()
{
    LowPassFilterFloat &rc_throttle_control_in_filter = copter.rc_throttle_control_in_filter;
    AP_Vehicle::MultiCopter &aparm = copter.aparm;

    float target_roll = 0.0f;
    float target_pitch = 0.0f;
    float target_yaw_rate = 0;

    // relax loiter target if we might be landed
    if (ap.land_complete_maybe) {
        loiter_nav->soften_for_landing();
    }

    // process pilot inputs
    if (!copter.failsafe.radio) {
        if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
            copter.Log_Write_Event(DATA_LAND_CANCELLED_BY_PILOT);
            // exit land if throttle is high
            if (!set_mode(LOITER, MODE_REASON_THROTTLE_LAND_ESCAPE)) {
                set_mode(ALT_HOLD, MODE_REASON_THROTTLE_LAND_ESCAPE);
            }
        }

        if (g.land_repositioning) {
            // apply SIMPLE mode transform to pilot inputs
            update_simple_mode();

            // convert pilot input to lean angles
            get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());

            // record if pilot has overriden roll or pitch
            if (!is_zero(target_roll) || !is_zero(target_pitch)) {
                ap.land_repo_active = true;
            }
        }

        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
    }

#if PRECISION_LANDING == ENABLED
    AC_PrecLand &precland = copter.precland;
    bool doing_precision_landing = !ap.land_repo_active && precland.target_acquired();
    // run precision landing
    if (doing_precision_landing) {
        Vector2f target_pos, target_vel_rel;
        if (!precland.get_target_position_cm(target_pos)) {
            target_pos.x = inertial_nav.get_position().x;
            target_pos.y = inertial_nav.get_position().y;
        }
        if (!precland.get_target_velocity_relative_cms(target_vel_rel)) {
            target_vel_rel.x = -inertial_nav.get_velocity().x;
            target_vel_rel.y = -inertial_nav.get_velocity().y;
        }
        pos_control->set_xy_target(target_pos.x, target_pos.y);
        pos_control->override_vehicle_velocity_xy(-target_vel_rel);
    }
#endif

    // process roll, pitch inputs
    loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt);

    // run loiter controller
    loiter_nav->update(ekfGndSpdLimit, ekfNavVelGainScaler);

    int32_t nav_roll  = loiter_nav->get_roll();
    int32_t nav_pitch = loiter_nav->get_pitch();

    if (g2.wp_navalt_min > 0) {
        // user has requested an altitude below which navigation
        // attitude is limited. This is used to prevent commanded roll
        // over on landing, which particularly affects helicopters if
        // there is any position estimate drift after touchdown. We
        // limit attitude to 7 degrees below this limit and linearly
        // interpolate for 1m above that
        const int alt_above_ground = get_alt_above_ground();
        float attitude_limit_cd = linear_interpolate(700, aparm.angle_max, alt_above_ground,
                                                     g2.wp_navalt_min*100U, (g2.wp_navalt_min+1)*100U);
        float total_angle_cd = norm(nav_roll, nav_pitch);
        if (total_angle_cd > attitude_limit_cd) {
            float ratio = attitude_limit_cd / total_angle_cd;
            nav_roll *= ratio;
            nav_pitch *= ratio;

            // tell position controller we are applying an external limit
            pos_control->set_limit_accel_xy();
        }
    }


    // call attitude controller
    attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(nav_roll, nav_pitch, target_yaw_rate);
}
Example #22
0
// althold_run - runs the althold controller
// should be called at 100hz or more
void Copter::althold_run()
{
    AltHoldModeState althold_state;
    float takeoff_climb_rate = 0.0f;

    // initialize vertical speeds and acceleration
    pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
    pos_control.set_accel_z(g.pilot_accel_z);

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // get pilot desired lean angles
    float target_roll, target_pitch;
    get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());

    // get pilot's desired yaw rate
    float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

    // get pilot desired climb rate
    float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
    target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

#if FRAME_CONFIG == HELI_FRAME
    // helicopters are held on the ground until rotor speed runup has finished
    bool takeoff_triggered = (ap.land_complete && (channel_throttle->get_control_in() > get_takeoff_trigger_throttle()) && motors.rotor_runup_complete());
#else
    bool takeoff_triggered = (ap.land_complete && (channel_throttle->get_control_in() > get_takeoff_trigger_throttle()) && motors.spool_up_complete());
#endif

    // Alt Hold State Machine Determination
    if (!motors.armed() || !motors.get_interlock()) {
        althold_state = AltHold_MotorStopped;
    } else if (!ap.auto_armed){
        althold_state = AltHold_NotAutoArmed;
    } else if (takeoff_state.running || takeoff_triggered){
        althold_state = AltHold_Takeoff;
    } else if (ap.land_complete){
        althold_state = AltHold_Landed;
    } else {
        althold_state = AltHold_Flying;
    }

    // Alt Hold State Machine
    switch (althold_state) {

    case AltHold_MotorStopped:

        motors.set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
#if FRAME_CONFIG == HELI_FRAME    
        // helicopters are capable of flying even with the motor stopped, therefore we will attempt to keep flying
        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // force descent rate and call position controller
        pos_control.set_alt_target_from_climb_rate(-abs(g.land_speed), G_Dt, false);
        pos_control.update_z_controller();
#else
        // Multicopters do not stabilize roll/pitch/yaw when motor are stopped
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
#endif
        break;

    case AltHold_NotAutoArmed:

        motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
#if FRAME_CONFIG == HELI_FRAME
        // Helicopters always stabilize roll/pitch/yaw
        attitude_control.set_yaw_target_to_current_heading();
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        attitude_control.set_throttle_out(0,false,g.throttle_filt);
#else
        // Multicopters do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle)
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
        break;

    case AltHold_Takeoff:

        // initiate take-off
        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            set_land_complete(false);
            // clear i terms
            set_throttle_takeoff();
        }

        // get take-off adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // set motors to full range
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
        break;

    case AltHold_Landed:

#if FRAME_CONFIG == HELI_FRAME
        attitude_control.set_yaw_target_to_current_heading();
#endif
        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        attitude_control.set_throttle_out(get_throttle_pre_takeoff(channel_throttle->get_control_in()),false,g.throttle_filt);
        // set motors to spin-when-armed if throttle at zero, otherwise full range
        if (ap.throttle_zero) {
            motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        } else {
            motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        }
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->get_control_in())-throttle_average);
        break;

    case AltHold_Flying:
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // adjust climb rate using rangefinder
        if (rangefinder_alt_ok()) {
            // if rangefinder is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.update_z_controller();
        break;
    }
}
Example #23
0
// althold_run - runs the althold controller
// should be called at 100hz or more
void Copter::althold_run()
{
    AltHoldModeState althold_state;
    float takeoff_climb_rate = 0.0f;

    // initialize vertical speeds and acceleration
    pos_control.set_speed_z(-g.pilot_velocity_z_max, g.pilot_velocity_z_max);
    pos_control.set_accel_z(g.pilot_accel_z);

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // get pilot desired lean angles
    float target_roll, target_pitch;
    get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());

    // get pilot's desired yaw rate
    float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

    // get pilot desired climb rate
    float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
    target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

#if FRAME_CONFIG == HELI_FRAME
    // helicopters are held on the ground until rotor speed runup has finished
    bool takeoff_triggered = (ap.land_complete && (target_climb_rate > 0.0f) && motors.rotor_runup_complete());
#else
    bool takeoff_triggered = ap.land_complete && (target_climb_rate > 0.0f);
#endif

    // Alt Hold State Machine Determination
    if (!motors.armed() || !motors.get_interlock()) {
        althold_state = AltHold_MotorStopped;
    } else if (takeoff_state.running || takeoff_triggered) {
        althold_state = AltHold_Takeoff;
    } else if (!ap.auto_armed || ap.land_complete) {
        althold_state = AltHold_Landed;
    } else {
        althold_state = AltHold_Flying;
    }

    // Alt Hold State Machine
    switch (althold_state) {

    case AltHold_MotorStopped:

        motors.set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
#if FRAME_CONFIG == HELI_FRAME    
        // force descent rate and call position controller
        pos_control.set_alt_target_from_climb_rate(-abs(g.land_speed), G_Dt, false);
#else
        attitude_control.reset_rate_controller_I_terms();
        attitude_control.set_yaw_target_to_current_heading();
        pos_control.relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
#endif
        pos_control.update_z_controller();
        break;

    case AltHold_Takeoff:
        // set motors to full range
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        // initiate take-off
        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            set_land_complete(false);
            // clear i terms
            set_throttle_takeoff();
        }

        // get take-off adjusted pilot and takeoff climb rates
        takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
        break;

    case AltHold_Landed:
        // set motors to spin-when-armed if throttle below deadzone, otherwise full range (but motors will only spin at min throttle)
        if (target_climb_rate < 0.0f) {
            motors.set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        } else {
            motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        }

        attitude_control.reset_rate_controller_I_terms();
        attitude_control.set_yaw_target_to_current_heading();
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        pos_control.relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
        pos_control.update_z_controller();
        break;

    case AltHold_Flying:
        motors.set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        // call attitude controller
        attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

        // adjust climb rate using rangefinder
        if (rangefinder_alt_ok()) {
            // if rangefinder is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }

        // call position controller
        pos_control.set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
        pos_control.update_z_controller();
        break;
    }
}
void Copter::heli_stabilize_run_ruas()
{
    float target_roll, target_pitch;
    float target_yaw_rate;
    int16_t pilot_throttle_scaled;

    // Tradheli should not reset roll, pitch, yaw targets when motors are not runup, because
    // we may be in autorotation flight.  These should be reset only when transitioning from disarmed
    // to armed, because the pilot will have placed the helicopter down on the landing pad.  This is so
    // that the servos move in a realistic fashion while disarmed for operational checks.
    // Also, unlike multicopters we do not set throttle (i.e. collective pitch) to zero so the swash servos move

    if(!motors.armed()) {
        heli_flags.init_targets_on_arming=true;
        attitude_control.set_yaw_target_to_current_heading();
    }

    if(motors.armed() && heli_flags.init_targets_on_arming) {
        attitude_control.set_yaw_target_to_current_heading();
        if (motors.rotor_speed_above_critical()) {
            heli_flags.init_targets_on_arming=false;
        }
    }

    // send RC inputs direct into motors library for use during manual passthrough for helicopter setup
    heli_radio_passthrough();

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();


    // updates avoidnace logic
    avoidance_maneuver(); //RUAS


    //Allowing the pilot to have presidance in heli attitude control demos! The presidnace order can be changed as needed here:
    if(!failsafe.radio && (channel_roll->control_in >= 200 || channel_roll->control_in <= -200 || channel_pitch->control_in >= 200 ||channel_pitch->control_in <= -200)){
      get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch, aparm.angle_max);

      //If no pilot input and need to implement manouver
    }else if(do_avoid_maneuver){
      get_pilot_desired_lean_angles(avoidance_roll_angle_cd, avoidance_pitch_angle_cd , target_roll, target_pitch, aparm.angle_max);

      //If no pilot input and no mpending crash, hold middlestick position
    }else{
      get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch, aparm.angle_max);
    }


    //the pilot takes presidnace in the yaw direction in the demos!
    if(!failsafe.radio && (channel_yaw->control_in >= 200 || channel_yaw->control_in <= -200)){
      target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);
    }else if(do_track_maneuver){
      //point to air traffic
      target_yaw_rate = _trafic_angle * 100 * g.acro_yaw_p;//check this
    }else{
      //point to current heading
      target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);
    }


    // get pilot's desired throttle
    pilot_throttle_scaled = input_manager.get_pilot_desired_collective(channel_throttle->control_in);

    // call attitude controller
    attitude_control.input_euler_angle_roll_pitch_euler_rate_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());

    // output pilot's throttle - note that TradHeli does not used angle-boost
    attitude_control.set_throttle_out(pilot_throttle_scaled, false, g.throttle_filt);
}
Example #25
0
// flowhold_run - runs the flowhold controller
// should be called at 100hz or more
void Copter::ModeFlowHold::run()
{
    FlowHoldModeState flowhold_state;
    float takeoff_climb_rate = 0.0f;

    update_height_estimate();

    // initialize vertical speeds and acceleration
    copter.pos_control->set_max_speed_z(-get_pilot_speed_dn(), copter.g.pilot_speed_up);
    copter.pos_control->set_max_accel_z(copter.g.pilot_accel_z);

    // apply SIMPLE mode transform to pilot inputs
    copter.update_simple_mode();

    // check for filter change
    if (!is_equal(flow_filter.get_cutoff_freq(), flow_filter_hz.get())) {
        flow_filter.set_cutoff_frequency(flow_filter_hz.get());
    }

    // get pilot desired climb rate
    float target_climb_rate = copter.get_pilot_desired_climb_rate(copter.channel_throttle->get_control_in());
    target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), copter.g.pilot_speed_up);

    // get pilot's desired yaw rate
    float target_yaw_rate = copter.get_pilot_desired_yaw_rate(copter.channel_yaw->get_control_in());

    if (!copter.motors->armed() || !copter.motors->get_interlock()) {
        flowhold_state = FlowHold_MotorStopped;
    } else if (takeoff.running() || takeoff.triggered(target_climb_rate)) {
        flowhold_state = FlowHold_Takeoff;
    } else if (!copter.ap.auto_armed || copter.ap.land_complete) {
        flowhold_state = FlowHold_Landed;
    } else {
        flowhold_state = FlowHold_Flying;
    }

    if (copter.optflow.healthy()) {
        const float filter_constant = 0.95;
        quality_filtered = filter_constant * quality_filtered + (1-filter_constant) * copter.optflow.quality();
    } else {
        quality_filtered = 0;
    }

    Vector2f bf_angles;

    // calculate alt-hold angles
    int16_t roll_in = copter.channel_roll->get_control_in();
    int16_t pitch_in = copter.channel_pitch->get_control_in();
    float angle_max = copter.attitude_control->get_althold_lean_angle_max();
    get_pilot_desired_lean_angles(bf_angles.x, bf_angles.y,angle_max, attitude_control->get_althold_lean_angle_max());

    if (quality_filtered >= flow_min_quality &&
        AP_HAL::millis() - copter.arm_time_ms > 3000) {
        // don't use for first 3s when we are just taking off
        Vector2f flow_angles;

        flowhold_flow_to_angle(flow_angles, (roll_in != 0) || (pitch_in != 0));
        flow_angles.x = constrain_float(flow_angles.x, -angle_max/2, angle_max/2);
        flow_angles.y = constrain_float(flow_angles.y, -angle_max/2, angle_max/2);
        bf_angles += flow_angles;
    }
    bf_angles.x = constrain_float(bf_angles.x, -angle_max, angle_max);
    bf_angles.y = constrain_float(bf_angles.y, -angle_max, angle_max);

    // Flow Hold State Machine
    switch (flowhold_state) {

    case FlowHold_MotorStopped:

        copter.motors->set_desired_spool_state(AP_Motors::DESIRED_SHUT_DOWN);
        copter.attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(bf_angles.x, bf_angles.y, target_yaw_rate);
#if FRAME_CONFIG == HELI_FRAME    
        // force descent rate and call position controller
        copter.pos_control->set_alt_target_from_climb_rate(-abs(copter.g.land_speed), copter.G_Dt, false);
#else
        copter.attitude_control->reset_rate_controller_I_terms();
        copter.attitude_control->set_yaw_target_to_current_heading();
        copter.pos_control->relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
#endif
        flow_pi_xy.reset_I();
        copter.pos_control->update_z_controller();
        break;

    case FlowHold_Takeoff:
        // set motors to full range
        copter.motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

        // initiate take-off
        if (!takeoff.running()) {
            takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
            // indicate we are taking off
            copter.set_land_complete(false);
            // clear i terms
            copter.set_throttle_takeoff();
        }

        // get take-off adjusted pilot and takeoff climb rates
        takeoff.get_climb_rates(target_climb_rate, takeoff_climb_rate);

        // get avoidance adjusted climb rate
        target_climb_rate = copter.get_avoidance_adjusted_climbrate(target_climb_rate);

        // call attitude controller
        copter.attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(bf_angles.x, bf_angles.y, target_yaw_rate);

        // call position controller
        copter.pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, copter.G_Dt, false);
        copter.pos_control->add_takeoff_climb_rate(takeoff_climb_rate, copter.G_Dt);
        copter.pos_control->update_z_controller();
        break;

    case FlowHold_Landed:
        // set motors to spin-when-armed if throttle below deadzone, otherwise full range (but motors will only spin at min throttle)
        if (target_climb_rate < 0.0f) {
            copter.motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
        } else {
            copter.motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
        }

        copter.attitude_control->reset_rate_controller_I_terms();
        copter.attitude_control->set_yaw_target_to_current_heading();
        copter.attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(bf_angles.x, bf_angles.y, target_yaw_rate);
        copter.pos_control->relax_alt_hold_controllers(0.0f);   // forces throttle output to go to zero
        copter.pos_control->update_z_controller();
        break;

    case FlowHold_Flying:
        copter.motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

#if AC_AVOID_ENABLED == ENABLED
        // apply avoidance
        copter.avoid.adjust_roll_pitch(bf_angles.x, bf_angles.y, copter.aparm.angle_max);
#endif

        // call attitude controller
        copter.attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(bf_angles.x, bf_angles.y, target_yaw_rate);

        // adjust climb rate using rangefinder
        target_climb_rate = copter.get_surface_tracking_climb_rate(target_climb_rate, copter.pos_control->get_alt_target(), copter.G_Dt);

        // get avoidance adjusted climb rate
        target_climb_rate = copter.get_avoidance_adjusted_climbrate(target_climb_rate);

        // call position controller
        copter.pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, copter.G_Dt, false);
        copter.pos_control->update_z_controller();
        break;
    }
}
Example #26
0
// althold_run - runs the althold controller
// should be called at 100hz or more
void Copter::althold_run()
{
    float target_roll, target_pitch;
    float target_yaw_rate;
    float target_climb_rate;
    float takeoff_climb_rate = 0.0f;

    // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
    if(!ap.auto_armed || !motors.get_interlock()) {
        attitude_control.set_throttle_out_unstabilized(0,true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
        return;
    }

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // get pilot desired lean angles
    // To-Do: convert get_pilot_desired_lean_angles to return angles as floats
    get_pilot_desired_lean_angles(channel_roll->control_in, channel_pitch->control_in, target_roll, target_pitch);

    // get pilot's desired yaw rate
    target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->control_in);

    // get pilot desired climb rate
    target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->control_in);
    target_climb_rate = constrain_float(target_climb_rate, -g.pilot_velocity_z_max, g.pilot_velocity_z_max);

    // get takeoff adjusted pilot and takeoff climb rates
    takeoff_get_climb_rates(target_climb_rate, takeoff_climb_rate);

    // check for take-off
    if (ap.land_complete && (takeoff_state.running || (channel_throttle->control_in > get_takeoff_trigger_throttle()))) {
        if (!takeoff_state.running) {
            takeoff_timer_start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f));
        }

        // indicate we are taking off
        set_land_complete(false);
        // clear i term when we're taking off
        set_throttle_takeoff();
    }

    // reset target lean angles and heading while landed
    if (ap.land_complete) {
        attitude_control.set_throttle_out_unstabilized(get_throttle_pre_takeoff(channel_throttle->control_in),true,g.throttle_filt);
        pos_control.relax_alt_hold_controllers(get_throttle_pre_takeoff(channel_throttle->control_in)-throttle_average);
    }else{
        // call attitude controller
        attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth(target_roll, target_pitch, target_yaw_rate, get_smoothing_gain());
        // body-frame rate controller is run directly from 100hz loop

        // call throttle controller
        if (sonar_alt_health >= SONAR_ALT_HEALTH_MAX) {
            // if sonar is ok, use surface tracking
            target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control.get_alt_target(), G_Dt);
        }

        // call position controller
        pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt, false);
        pos_control.add_takeoff_climb_rate(takeoff_climb_rate, G_Dt);
        pos_control.update_z_controller();
        
    }
}
Example #27
0
// rtl_descent_run - implements the final descent to the RTL_ALT
//      called by rtl_run at 100hz or more
void Copter::ModeRTL::descent_run()
{
    float target_roll = 0.0f;
    float target_pitch = 0.0f;
    float target_yaw_rate = 0.0f;

    // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
    if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
        zero_throttle_and_relax_ac();
        // set target to current position
        loiter_nav->clear_pilot_desired_acceleration();
        loiter_nav->init_target();
        return;
    }

    // process pilot's input
    if (!copter.failsafe.radio) {
        if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && copter.rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
            Log_Write_Event(DATA_LAND_CANCELLED_BY_PILOT);
            // exit land if throttle is high
            if (!copter.set_mode(LOITER, MODE_REASON_THROTTLE_LAND_ESCAPE)) {
                copter.set_mode(ALT_HOLD, MODE_REASON_THROTTLE_LAND_ESCAPE);
            }
        }

        if (g.land_repositioning) {
            // apply SIMPLE mode transform to pilot inputs
            update_simple_mode();

            // convert pilot input to lean angles
            get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());

            // record if pilot has overriden roll or pitch
            if (!is_zero(target_roll) || !is_zero(target_pitch)) {
                if (!ap.land_repo_active) {
                    copter.Log_Write_Event(DATA_LAND_REPO_ACTIVE);
                }
                ap.land_repo_active = true;
            }
        }

        // get pilot's desired yaw rate
        target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
    }

    // set motors to full range
    motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);

    // process roll, pitch inputs
    loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt);

    // run loiter controller
    loiter_nav->update();

    // call z-axis position controller
    pos_control->set_alt_target_with_slew(rtl_path.descent_target.alt, G_Dt);
    pos_control->update_z_controller();

    // roll & pitch from waypoint controller, yaw rate from pilot
    attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);

    // check if we've reached within 20cm of final altitude
    _state_complete = labs(rtl_path.descent_target.alt - copter.current_loc.alt) < 20;
}
// stabilize_run - runs the main stabilize controller
// should be called at 100hz or more
void Copter::ModeStabilize_Heli::run()
{
    float target_roll, target_pitch;
    float target_yaw_rate;
    float pilot_throttle_scaled;

    // apply SIMPLE mode transform to pilot inputs
    update_simple_mode();

    // convert pilot input to lean angles
    get_pilot_desired_lean_angles(target_roll, target_pitch, copter.aparm.angle_max, copter.aparm.angle_max);

    // get pilot's desired yaw rate
    target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());

    // get pilot's desired throttle
    pilot_throttle_scaled = copter.input_manager.get_pilot_desired_collective(channel_throttle->get_control_in());

    // Tradheli should not reset roll, pitch, yaw targets when motors are not runup while flying, because
    // we may be in autorotation flight.  This is so that the servos move in a realistic fashion while disarmed
    // for operational checks. Also, unlike multicopters we do not set throttle (i.e. collective pitch) to zero
    // so the swash servos move.

    if (!motors->armed()) {
        // Motors should be Stopped
        motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
    } else {
        // heli will not let the spool state progress to THROTTLE_UNLIMITED until motor interlock is enabled
        motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
    }

    switch (motors->get_spool_state()) {
    case AP_Motors::SpoolState::SHUT_DOWN:
        // Motors Stopped
        attitude_control->set_yaw_target_to_current_heading();
        attitude_control->reset_rate_controller_I_terms();
        break;
    case AP_Motors::SpoolState::GROUND_IDLE:
        // Landed
        if (motors->init_targets_on_arming()) {
            attitude_control->set_yaw_target_to_current_heading();
            attitude_control->reset_rate_controller_I_terms();
        }
        break;
    case AP_Motors::SpoolState::THROTTLE_UNLIMITED:
        // clear landing flag above zero throttle
        if (!motors->limit.throttle_lower) {
            set_land_complete(false);
        }
    case AP_Motors::SpoolState::SPOOLING_UP:
    case AP_Motors::SpoolState::SPOOLING_DOWN:
        // do nothing
        break;
    }

    // call attitude controller
    attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll, target_pitch, target_yaw_rate);

    // output pilot's throttle - note that TradHeli does not used angle-boost
    attitude_control->set_throttle_out(pilot_throttle_scaled, false, g.throttle_filt);
}