Example #1
0
/* Subroutine */ int igraphdgeevx_(char *balanc, char *jobvl, char *jobvr, char *
	sense, integer *n, doublereal *a, integer *lda, doublereal *wr, 
	doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr, 
	integer *ldvr, integer *ilo, integer *ihi, doublereal *scale, 
	doublereal *abnrm, doublereal *rconde, doublereal *rcondv, doublereal 
	*work, integer *lwork, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
	    i__2, i__3;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, k;
    doublereal r__, cs, sn;
    char job[1];
    doublereal scl, dum[1], eps;
    char side[1];
    doublereal anrm;
    integer ierr, itau;
    extern /* Subroutine */ int igraphdrot_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    integer iwrk, nout;
    extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    integer icond;
    extern logical igraphlsame_(char *, char *);
    extern doublereal igraphdlapy2_(doublereal *, doublereal *);
    extern /* Subroutine */ int igraphdlabad_(doublereal *, doublereal *), igraphdgebak_(
	    char *, char *, integer *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *), 
	    igraphdgebal_(char *, integer *, doublereal *, integer *, integer *, 
	    integer *, doublereal *, integer *);
    logical scalea;
    extern doublereal igraphdlamch_(char *);
    doublereal cscale;
    extern doublereal igraphdlange_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int igraphdgehrd_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), igraphdlascl_(char *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);
    extern integer igraphidamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    igraphdlartg_(doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *), igraphxerbla_(char *, integer *, ftnlen);
    logical select[1];
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    doublereal bignum;
    extern /* Subroutine */ int igraphdorghr_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), igraphdhseqr_(char *, char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *), igraphdtrevc_(char *, char *, logical *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, doublereal *, integer *), igraphdtrsna_(char *, char *, logical *, integer *, doublereal 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *, integer *);
    integer minwrk, maxwrk;
    logical wantvl, wntsnb;
    integer hswork;
    logical wntsne;
    doublereal smlnum;
    logical lquery, wantvr, wntsnn, wntsnv;


/*  -- LAPACK driver routine (version 3.3.1) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
    -- April 2011                                                      --   


    Purpose   
    =======   

    DGEEVX computes for an N-by-N real nonsymmetric matrix A, the   
    eigenvalues and, optionally, the left and/or right eigenvectors.   

    Optionally also, it computes a balancing transformation to improve   
    the conditioning of the eigenvalues and eigenvectors (ILO, IHI,   
    SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues   
    (RCONDE), and reciprocal condition numbers for the right   
    eigenvectors (RCONDV).   

    The right eigenvector v(j) of A satisfies   
                     A * v(j) = lambda(j) * v(j)   
    where lambda(j) is its eigenvalue.   
    The left eigenvector u(j) of A satisfies   
                  u(j)**T * A = lambda(j) * u(j)**T   
    where u(j)**T denotes the transpose of u(j).   

    The computed eigenvectors are normalized to have Euclidean norm   
    equal to 1 and largest component real.   

    Balancing a matrix means permuting the rows and columns to make it   
    more nearly upper triangular, and applying a diagonal similarity   
    transformation D * A * D**(-1), where D is a diagonal matrix, to   
    make its rows and columns closer in norm and the condition numbers   
    of its eigenvalues and eigenvectors smaller.  The computed   
    reciprocal condition numbers correspond to the balanced matrix.   
    Permuting rows and columns will not change the condition numbers   
    (in exact arithmetic) but diagonal scaling will.  For further   
    explanation of balancing, see section 4.10.2 of the LAPACK   
    Users' Guide.   

    Arguments   
    =========   

    BALANC  (input) CHARACTER*1   
            Indicates how the input matrix should be diagonally scaled   
            and/or permuted to improve the conditioning of its   
            eigenvalues.   
            = 'N': Do not diagonally scale or permute;   
            = 'P': Perform permutations to make the matrix more nearly   
                   upper triangular. Do not diagonally scale;   
            = 'S': Diagonally scale the matrix, i.e. replace A by   
                   D*A*D**(-1), where D is a diagonal matrix chosen   
                   to make the rows and columns of A more equal in   
                   norm. Do not permute;   
            = 'B': Both diagonally scale and permute A.   

            Computed reciprocal condition numbers will be for the matrix   
            after balancing and/or permuting. Permuting does not change   
            condition numbers (in exact arithmetic), but balancing does.   

    JOBVL   (input) CHARACTER*1   
            = 'N': left eigenvectors of A are not computed;   
            = 'V': left eigenvectors of A are computed.   
            If SENSE = 'E' or 'B', JOBVL must = 'V'.   

    JOBVR   (input) CHARACTER*1   
            = 'N': right eigenvectors of A are not computed;   
            = 'V': right eigenvectors of A are computed.   
            If SENSE = 'E' or 'B', JOBVR must = 'V'.   

    SENSE   (input) CHARACTER*1   
            Determines which reciprocal condition numbers are computed.   
            = 'N': None are computed;   
            = 'E': Computed for eigenvalues only;   
            = 'V': Computed for right eigenvectors only;   
            = 'B': Computed for eigenvalues and right eigenvectors.   

            If SENSE = 'E' or 'B', both left and right eigenvectors   
            must also be computed (JOBVL = 'V' and JOBVR = 'V').   

    N       (input) INTEGER   
            The order of the matrix A. N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the N-by-N matrix A.   
            On exit, A has been overwritten.  If JOBVL = 'V' or   
            JOBVR = 'V', A contains the real Schur form of the balanced   
            version of the input matrix A.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    WR      (output) DOUBLE PRECISION array, dimension (N)   
    WI      (output) DOUBLE PRECISION array, dimension (N)   
            WR and WI contain the real and imaginary parts,   
            respectively, of the computed eigenvalues.  Complex   
            conjugate pairs of eigenvalues will appear consecutively   
            with the eigenvalue having the positive imaginary part   
            first.   

    VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)   
            If JOBVL = 'V', the left eigenvectors u(j) are stored one   
            after another in the columns of VL, in the same order   
            as their eigenvalues.   
            If JOBVL = 'N', VL is not referenced.   
            If the j-th eigenvalue is real, then u(j) = VL(:,j),   
            the j-th column of VL.   
            If the j-th and (j+1)-st eigenvalues form a complex   
            conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and   
            u(j+1) = VL(:,j) - i*VL(:,j+1).   

    LDVL    (input) INTEGER   
            The leading dimension of the array VL.  LDVL >= 1; if   
            JOBVL = 'V', LDVL >= N.   

    VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)   
            If JOBVR = 'V', the right eigenvectors v(j) are stored one   
            after another in the columns of VR, in the same order   
            as their eigenvalues.   
            If JOBVR = 'N', VR is not referenced.   
            If the j-th eigenvalue is real, then v(j) = VR(:,j),   
            the j-th column of VR.   
            If the j-th and (j+1)-st eigenvalues form a complex   
            conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and   
            v(j+1) = VR(:,j) - i*VR(:,j+1).   

    LDVR    (input) INTEGER   
            The leading dimension of the array VR.  LDVR >= 1, and if   
            JOBVR = 'V', LDVR >= N.   

    ILO     (output) INTEGER   
    IHI     (output) INTEGER   
            ILO and IHI are integer values determined when A was   
            balanced.  The balanced A(i,j) = 0 if I > J and   
            J = 1,...,ILO-1 or I = IHI+1,...,N.   

    SCALE   (output) DOUBLE PRECISION array, dimension (N)   
            Details of the permutations and scaling factors applied   
            when balancing A.  If P(j) is the index of the row and column   
            interchanged with row and column j, and D(j) is the scaling   
            factor applied to row and column j, then   
            SCALE(J) = P(J),    for J = 1,...,ILO-1   
                     = D(J),    for J = ILO,...,IHI   
                     = P(J)     for J = IHI+1,...,N.   
            The order in which the interchanges are made is N to IHI+1,   
            then 1 to ILO-1.   

    ABNRM   (output) DOUBLE PRECISION   
            The one-norm of the balanced matrix (the maximum   
            of the sum of absolute values of elements of any column).   

    RCONDE  (output) DOUBLE PRECISION array, dimension (N)   
            RCONDE(j) is the reciprocal condition number of the j-th   
            eigenvalue.   

    RCONDV  (output) DOUBLE PRECISION array, dimension (N)   
            RCONDV(j) is the reciprocal condition number of the j-th   
            right eigenvector.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   If SENSE = 'N' or 'E',   
            LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',   
            LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).   
            For good performance, LWORK must generally be larger.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    IWORK   (workspace) INTEGER array, dimension (2*N-2)   
            If SENSE = 'N' or 'E', not referenced.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            > 0:  if INFO = i, the QR algorithm failed to compute all the   
                  eigenvalues, and no eigenvectors or condition numbers   
                  have been computed; elements 1:ILO-1 and i+1:N of WR   
                  and WI contain eigenvalues which have converged.   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --wr;
    --wi;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --scale;
    --rconde;
    --rcondv;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    wantvl = igraphlsame_(jobvl, "V");
    wantvr = igraphlsame_(jobvr, "V");
    wntsnn = igraphlsame_(sense, "N");
    wntsne = igraphlsame_(sense, "E");
    wntsnv = igraphlsame_(sense, "V");
    wntsnb = igraphlsame_(sense, "B");
    if (! (igraphlsame_(balanc, "N") || igraphlsame_(balanc, "S") || igraphlsame_(balanc, "P") 
	    || igraphlsame_(balanc, "B"))) {
	*info = -1;
    } else if (! wantvl && ! igraphlsame_(jobvl, "N")) {
	*info = -2;
    } else if (! wantvr && ! igraphlsame_(jobvr, "N")) {
	*info = -3;
    } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) 
	    && ! (wantvl && wantvr)) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
	*info = -11;
    } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
	*info = -13;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of workspace needed at that point in the code,   
         as well as the preferred amount for good performance.   
         NB refers to the optimal block size for the immediately   
         following subroutine, as returned by ILAENV.   
         HSWORK refers to the workspace preferred by DHSEQR, as   
         calculated below. HSWORK is computed assuming ILO=1 and IHI=N,   
         the worst case.) */

    if (*info == 0) {
	if (*n == 0) {
	    minwrk = 1;
	    maxwrk = 1;
	} else {
	    maxwrk = *n + *n * igraphilaenv_(&c__1, "DGEHRD", " ", n, &c__1, n, &
		    c__0, (ftnlen)6, (ftnlen)1);

	    if (wantvl) {
		igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
			1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
	    } else if (wantvr) {
		igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
			1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
	    } else {
		if (wntsnn) {
		    igraphdhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], 
			    &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, 
			    info);
		} else {
		    igraphdhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], 
			    &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, 
			    info);
		}
	    }
	    hswork = (integer) work[1];

	    if (! wantvl && ! wantvr) {
		minwrk = *n << 1;
		if (! wntsnn) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + *n * 6;
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
		if (! wntsnn) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + *n * 6;
		    maxwrk = max(i__1,i__2);
		}
	    } else {
		minwrk = *n * 3;
		if (! wntsnn && ! wntsne) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + *n * 6;
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + (*n - 1) * igraphilaenv_(&c__1, "DORGHR",
			 " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
		maxwrk = max(i__1,i__2);
		if (! wntsnn && ! wntsne) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + *n * 6;
		    maxwrk = max(i__1,i__2);
		}
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n * 3;
		maxwrk = max(i__1,i__2);
	    }
	    maxwrk = max(maxwrk,minwrk);
	}
	work[1] = (doublereal) maxwrk;

	if (*lwork < minwrk && ! lquery) {
	    *info = -21;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DGEEVX", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = igraphdlamch_("P");
    smlnum = igraphdlamch_("S");
    bignum = 1. / smlnum;
    igraphdlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    icond = 0;
    anrm = igraphdlange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
	scalea = TRUE_;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE_;
	cscale = bignum;
    }
    if (scalea) {
	igraphdlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Balance the matrix and compute ABNRM */

    igraphdgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
    *abnrm = igraphdlange_("1", n, n, &a[a_offset], lda, dum);
    if (scalea) {
	dum[0] = *abnrm;
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
		ierr);
	*abnrm = dum[0];
    }

/*     Reduce to upper Hessenberg form   
       (Workspace: need 2*N, prefer N+N*NB) */

    itau = 1;
    iwrk = itau + *n;
    i__1 = *lwork - iwrk + 1;
    igraphdgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
	    ierr);

    if (wantvl) {

/*        Want left eigenvectors   
          Copy Householder vectors to VL */

	*(unsigned char *)side = 'L';
	igraphdlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
		;

/*        Generate orthogonal matrix in VL   
          (Workspace: need 2*N-1, prefer N+(N-1)*NB) */

	i__1 = *lwork - iwrk + 1;
	igraphdorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VL   
          (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[
		vl_offset], ldvl, &work[iwrk], &i__1, info);

	if (wantvr) {

/*           Want left and right eigenvectors   
             Copy Schur vectors to VR */

	    *(unsigned char *)side = 'B';
	    igraphdlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
	}

    } else if (wantvr) {

/*        Want right eigenvectors   
          Copy Householder vectors to VR */

	*(unsigned char *)side = 'R';
	igraphdlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
		;

/*        Generate orthogonal matrix in VR   
          (Workspace: need 2*N-1, prefer N+(N-1)*NB) */

	i__1 = *lwork - iwrk + 1;
	igraphdorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VR   
          (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);

    } else {

/*        Compute eigenvalues only   
          If condition numbers desired, compute Schur form */

	if (wntsnn) {
	    *(unsigned char *)job = 'E';
	} else {
	    *(unsigned char *)job = 'S';
	}

/*        (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);
    }

/*     If INFO > 0 from DHSEQR, then quit */

    if (*info > 0) {
	goto L50;
    }

    if (wantvl || wantvr) {

/*        Compute left and/or right eigenvectors   
          (Workspace: need 3*N) */

	igraphdtrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
		 &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr);
    }

/*     Compute condition numbers if desired   
       (Workspace: need N*N+6*N unless SENSE = 'E') */

    if (! wntsnn) {
	igraphdtrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], 
		ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, 
		&work[iwrk], n, &iwork[1], &icond);
    }

    if (wantvl) {

/*        Undo balancing of left eigenvectors */

	igraphdgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, 
		&ierr);

/*        Normalize left eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (wi[i__] == 0.) {
		scl = 1. / igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
	    } else if (wi[i__] > 0.) {
		d__1 = igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
		d__2 = igraphdnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
		scl = 1. / igraphdlapy2_(&d__1, &d__2);
		igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
		i__2 = *n;
		for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
		    d__1 = vl[k + i__ * vl_dim1];
/* Computing 2nd power */
		    d__2 = vl[k + (i__ + 1) * vl_dim1];
		    work[k] = d__1 * d__1 + d__2 * d__2;
/* L10: */
		}
		k = igraphidamax_(n, &work[1], &c__1);
		igraphdlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1], 
			&cs, &sn, &r__);
		igraphdrot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) * 
			vl_dim1 + 1], &c__1, &cs, &sn);
		vl[k + (i__ + 1) * vl_dim1] = 0.;
	    }
/* L20: */
	}
    }

    if (wantvr) {

/*        Undo balancing of right eigenvectors */

	igraphdgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, 
		&ierr);

/*        Normalize right eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (wi[i__] == 0.) {
		scl = 1. / igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
	    } else if (wi[i__] > 0.) {
		d__1 = igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
		d__2 = igraphdnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
		scl = 1. / igraphdlapy2_(&d__1, &d__2);
		igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
		i__2 = *n;
		for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
		    d__1 = vr[k + i__ * vr_dim1];
/* Computing 2nd power */
		    d__2 = vr[k + (i__ + 1) * vr_dim1];
		    work[k] = d__1 * d__1 + d__2 * d__2;
/* L30: */
		}
		k = igraphidamax_(n, &work[1], &c__1);
		igraphdlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1], 
			&cs, &sn, &r__);
		igraphdrot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) * 
			vr_dim1 + 1], &c__1, &cs, &sn);
		vr[k + (i__ + 1) * vr_dim1] = 0.;
	    }
/* L40: */
	}
    }

/*     Undo scaling if necessary */

L50:
    if (scalea) {
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = max(i__3,1);
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info + 
		1], &i__2, &ierr);
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = max(i__3,1);
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info + 
		1], &i__2, &ierr);
	if (*info == 0) {
	    if ((wntsnv || wntsnb) && icond == 0) {
		igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
			1], n, &ierr);
	    }
	} else {
	    i__1 = *ilo - 1;
	    igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1], 
		    n, &ierr);
	    i__1 = *ilo - 1;
	    igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1], 
		    n, &ierr);
	}
    }

    work[1] = (doublereal) maxwrk;
    return 0;

/*     End of DGEEVX */

} /* igraphdgeevx_ */
Example #2
0
/* Subroutine */ int igraphdgebal_(char *job, integer *n, doublereal *a, integer *
                                   lda, integer *ilo, integer *ihi, doublereal *scale, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Local variables */
    doublereal c__, f, g;
    integer i__, j, k, l, m;
    doublereal r__, s, ca, ra;
    integer ica, ira, iexc;
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *,
            integer *);
    extern logical igraphlsame_(char *, char *);
    extern /* Subroutine */ int igraphdswap_(integer *, doublereal *, integer *,
            doublereal *, integer *);
    doublereal sfmin1, sfmin2, sfmax1, sfmax2;
    extern doublereal igraphdlamch_(char *);
    extern integer igraphidamax_(integer *, doublereal *, integer *);
    extern logical igraphdisnan_(doublereal *);
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
    logical noconv;


    /*  -- LAPACK routine (version 3.2.2) --
        -- LAPACK is a software package provided by Univ. of Tennessee,    --
        -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
           June 2010


        Purpose
        =======

        DGEBAL balances a general real matrix A.  This involves, first,
        permuting A by a similarity transformation to isolate eigenvalues
        in the first 1 to ILO-1 and last IHI+1 to N elements on the
        diagonal; and second, applying a diagonal similarity transformation
        to rows and columns ILO to IHI to make the rows and columns as
        close in norm as possible.  Both steps are optional.

        Balancing may reduce the 1-norm of the matrix, and improve the
        accuracy of the computed eigenvalues and/or eigenvectors.

        Arguments
        =========

        JOB     (input) CHARACTER*1
                Specifies the operations to be performed on A:
                = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1.0
                        for i = 1,...,N;
                = 'P':  permute only;
                = 'S':  scale only;
                = 'B':  both permute and scale.

        N       (input) INTEGER
                The order of the matrix A.  N >= 0.

        A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                On entry, the input matrix A.
                On exit,  A is overwritten by the balanced matrix.
                If JOB = 'N', A is not referenced.
                See Further Details.

        LDA     (input) INTEGER
                The leading dimension of the array A.  LDA >= max(1,N).

        ILO     (output) INTEGER
        IHI     (output) INTEGER
                ILO and IHI are set to integers such that on exit
                A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N.
                If JOB = 'N' or 'S', ILO = 1 and IHI = N.

        SCALE   (output) DOUBLE PRECISION array, dimension (N)
                Details of the permutations and scaling factors applied to
                A.  If P(j) is the index of the row and column interchanged
                with row and column j and D(j) is the scaling factor
                applied to row and column j, then
                SCALE(j) = P(j)    for j = 1,...,ILO-1
                         = D(j)    for j = ILO,...,IHI
                         = P(j)    for j = IHI+1,...,N.
                The order in which the interchanges are made is N to IHI+1,
                then 1 to ILO-1.

        INFO    (output) INTEGER
                = 0:  successful exit.
                < 0:  if INFO = -i, the i-th argument had an illegal value.

        Further Details
        ===============

        The permutations consist of row and column interchanges which put
        the matrix in the form

                   ( T1   X   Y  )
           P A P = (  0   B   Z  )
                   (  0   0   T2 )

        where T1 and T2 are upper triangular matrices whose eigenvalues lie
        along the diagonal.  The column indices ILO and IHI mark the starting
        and ending columns of the submatrix B. Balancing consists of applying
        a diagonal similarity transformation inv(D) * B * D to make the
        1-norms of each row of B and its corresponding column nearly equal.
        The output matrix is

           ( T1     X*D          Y    )
           (  0  inv(D)*B*D  inv(D)*Z ).
           (  0      0           T2   )

        Information about the permutations P and the diagonal matrix D is
        returned in the vector SCALE.

        This subroutine is based on the EISPACK routine BALANC.

        Modified by Tzu-Yi Chen, Computer Science Division, University of
          California at Berkeley, USA

        =====================================================================


           Test the input parameters

           Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --scale;

    /* Function Body */
    *info = 0;
    if (! igraphlsame_(job, "N") && ! igraphlsame_(job, "P") && ! igraphlsame_(job, "S")
            && ! igraphlsame_(job, "B")) {
        *info = -1;
    } else if (*n < 0) {
        *info = -2;
    } else if (*lda < max(1,*n)) {
        *info = -4;
    }
    if (*info != 0) {
        i__1 = -(*info);
        igraphxerbla_("DGEBAL", &i__1, (ftnlen)6);
        return 0;
    }

    k = 1;
    l = *n;

    if (*n == 0) {
        goto L210;
    }

    if (igraphlsame_(job, "N")) {
        i__1 = *n;
        for (i__ = 1; i__ <= i__1; ++i__) {
            scale[i__] = 1.;
            /* L10: */
        }
        goto L210;
    }

    if (igraphlsame_(job, "S")) {
        goto L120;
    }

    /*     Permutation to isolate eigenvalues if possible */

    goto L50;

    /*     Row and column exchange. */

L20:
    scale[m] = (doublereal) j;
    if (j == m) {
        goto L30;
    }

    igraphdswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
    i__1 = *n - k + 1;
    igraphdswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);

L30:
    switch (iexc) {
    case 1:
        goto L40;
    case 2:
        goto L80;
    }

    /*     Search for rows isolating an eigenvalue and push them down. */

L40:
    if (l == 1) {
        goto L210;
    }
    --l;

L50:
    for (j = l; j >= 1; --j) {

        i__1 = l;
        for (i__ = 1; i__ <= i__1; ++i__) {
            if (i__ == j) {
                goto L60;
            }
            if (a[j + i__ * a_dim1] != 0.) {
                goto L70;
            }
L60:
            ;
        }

        m = l;
        iexc = 1;
        goto L20;
L70:
        ;
    }

    goto L90;

    /*     Search for columns isolating an eigenvalue and push them left. */

L80:
    ++k;

L90:
    i__1 = l;
    for (j = k; j <= i__1; ++j) {

        i__2 = l;
        for (i__ = k; i__ <= i__2; ++i__) {
            if (i__ == j) {
                goto L100;
            }
            if (a[i__ + j * a_dim1] != 0.) {
                goto L110;
            }
L100:
            ;
        }

        m = k;
        iexc = 2;
        goto L20;
L110:
        ;
    }

L120:
    i__1 = l;
    for (i__ = k; i__ <= i__1; ++i__) {
        scale[i__] = 1.;
        /* L130: */
    }

    if (igraphlsame_(job, "P")) {
        goto L210;
    }

    /*     Balance the submatrix in rows K to L.

           Iterative loop for norm reduction */

    sfmin1 = igraphdlamch_("S") / igraphdlamch_("P");
    sfmax1 = 1. / sfmin1;
    sfmin2 = sfmin1 * 2.;
    sfmax2 = 1. / sfmin2;
L140:
    noconv = FALSE_;

    i__1 = l;
    for (i__ = k; i__ <= i__1; ++i__) {
        c__ = 0.;
        r__ = 0.;

        i__2 = l;
        for (j = k; j <= i__2; ++j) {
            if (j == i__) {
                goto L150;
            }
            c__ += (d__1 = a[j + i__ * a_dim1], abs(d__1));
            r__ += (d__1 = a[i__ + j * a_dim1], abs(d__1));
L150:
            ;
        }
        ica = igraphidamax_(&l, &a[i__ * a_dim1 + 1], &c__1);
        ca = (d__1 = a[ica + i__ * a_dim1], abs(d__1));
        i__2 = *n - k + 1;
        ira = igraphidamax_(&i__2, &a[i__ + k * a_dim1], lda);
        ra = (d__1 = a[i__ + (ira + k - 1) * a_dim1], abs(d__1));

        /*        Guard against zero C or R due to underflow. */

        if (c__ == 0. || r__ == 0.) {
            goto L200;
        }
        g = r__ / 2.;
        f = 1.;
        s = c__ + r__;
L160:
        /* Computing MAX */
        d__1 = max(f,c__);
        /* Computing MIN */
        d__2 = min(r__,g);
        if (c__ >= g || max(d__1,ca) >= sfmax2 || min(d__2,ra) <= sfmin2) {
            goto L170;
        }
        d__1 = c__ + f + ca + r__ + g + ra;
        if (igraphdisnan_(&d__1)) {

            /*           Exit if NaN to avoid infinite loop */

            *info = -3;
            i__2 = -(*info);
            igraphxerbla_("DGEBAL", &i__2, (ftnlen)6);
            return 0;
        }
        f *= 2.;
        c__ *= 2.;
        ca *= 2.;
        r__ /= 2.;
        g /= 2.;
        ra /= 2.;
        goto L160;

L170:
        g = c__ / 2.;
L180:
        /* Computing MIN */
        d__1 = min(f,c__), d__1 = min(d__1,g);
        if (g < r__ || max(r__,ra) >= sfmax2 || min(d__1,ca) <= sfmin2) {
            goto L190;
        }
        f /= 2.;
        c__ /= 2.;
        g /= 2.;
        ca /= 2.;
        r__ *= 2.;
        ra *= 2.;
        goto L180;

        /*        Now balance. */

L190:
        if (c__ + r__ >= s * .95) {
            goto L200;
        }
        if (f < 1. && scale[i__] < 1.) {
            if (f * scale[i__] <= sfmin1) {
                goto L200;
            }
        }
        if (f > 1. && scale[i__] > 1.) {
            if (scale[i__] >= sfmax1 / f) {
                goto L200;
            }
        }
        g = 1. / f;
        scale[i__] *= f;
        noconv = TRUE_;

        i__2 = *n - k + 1;
        igraphdscal_(&i__2, &g, &a[i__ + k * a_dim1], lda);
        igraphdscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1);

L200:
        ;
    }

    if (noconv) {
        goto L140;
    }

L210:
    *ilo = k;
    *ihi = l;

    return 0;

    /*     End of DGEBAL */

} /* igraphdgebal_ */
Example #3
0
/* Subroutine */ int igraphdgehd2_(integer *n, integer *ilo, integer *ihi, 
	doublereal *a, integer *lda, doublereal *tau, doublereal *work, 
	integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__;
    doublereal aii;
    extern /* Subroutine */ int igraphdlarf_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *), igraphdlarfg_(integer *, doublereal *, 
	    doublereal *, integer *, doublereal *), igraphxerbla_(char *, integer *,
	     ftnlen);


/*  -- LAPACK routine (version 3.3.1) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
    -- April 2011                                                      --   


    Purpose   
    =======   

    DGEHD2 reduces a real general matrix A to upper Hessenberg form H by   
    an orthogonal similarity transformation:  Q**T * A * Q = H .   

    Arguments   
    =========   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    ILO     (input) INTEGER   
    IHI     (input) INTEGER   
            It is assumed that A is already upper triangular in rows   
            and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally   
            set by a previous call to DGEBAL; otherwise they should be   
            set to 1 and N respectively. See Further Details.   
            1 <= ILO <= IHI <= max(1,N).   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the n by n general matrix to be reduced.   
            On exit, the upper triangle and the first subdiagonal of A   
            are overwritten with the upper Hessenberg matrix H, and the   
            elements below the first subdiagonal, with the array TAU,   
            represent the orthogonal matrix Q as a product of elementary   
            reflectors. See Further Details.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    TAU     (output) DOUBLE PRECISION array, dimension (N-1)   
            The scalar factors of the elementary reflectors (see Further   
            Details).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (N)   

    INFO    (output) INTEGER   
            = 0:  successful exit.   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   

    Further Details   
    ===============   

    The matrix Q is represented as a product of (ihi-ilo) elementary   
    reflectors   

       Q = H(ilo) H(ilo+1) . . . H(ihi-1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v**T   

    where tau is a real scalar, and v is a real vector with   
    v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on   
    exit in A(i+2:ihi,i), and tau in TAU(i).   

    The contents of A are illustrated by the following example, with   
    n = 7, ilo = 2 and ihi = 6:   

    on entry,                        on exit,   

    ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )   
    (     a   a   a   a   a   a )    (      a   h   h   h   h   a )   
    (     a   a   a   a   a   a )    (      h   h   h   h   h   h )   
    (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )   
    (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )   
    (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )   
    (                         a )    (                          a )   

    where a denotes an element of the original matrix A, h denotes a   
    modified element of the upper Hessenberg matrix H, and vi denotes an   
    element of the vector defining H(i).   

    =====================================================================   


       Test the input parameters   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -1;
    } else if (*ilo < 1 || *ilo > max(1,*n)) {
	*info = -2;
    } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    }
    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DGEHD2", &i__1, (ftnlen)6);
	return 0;
    }

    i__1 = *ihi - 1;
    for (i__ = *ilo; i__ <= i__1; ++i__) {

/*        Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */

	i__2 = *ihi - i__;
/* Computing MIN */
	i__3 = i__ + 2;
	igraphdlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*n) + i__ * 
		a_dim1], &c__1, &tau[i__]);
	aii = a[i__ + 1 + i__ * a_dim1];
	a[i__ + 1 + i__ * a_dim1] = 1.;

/*        Apply H(i) to A(1:ihi,i+1:ihi) from the right */

	i__2 = *ihi - i__;
	igraphdlarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
		i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]);

/*        Apply H(i) to A(i+1:ihi,i+1:n) from the left */

	i__2 = *ihi - i__;
	i__3 = *n - i__;
	igraphdlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
		i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]);

	a[i__ + 1 + i__ * a_dim1] = aii;
/* L10: */
    }

    return 0;

/*     End of DGEHD2 */

} /* igraphdgehd2_ */
Example #4
0
   Subroutine */ int igraphdgetrs_(char *trans, integer *n, integer *nrhs, 
	doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer *
	ldb, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;

    /* Local variables */
    extern logical igraphlsame_(char *, char *);
    extern /* Subroutine */ int igraphdtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), igraphxerbla_(
	    char *, integer *, ftnlen), igraphdlaswp_(integer *, doublereal *, 
	    integer *, integer *, integer *, integer *, integer *);
    logical notran;


/*  -- LAPACK computational routine (version 3.4.0) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       November 2011   


    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    notran = igraphlsame_(trans, "N");
    if (! notran && ! igraphlsame_(trans, "T") && ! igraphlsame_(
	    trans, "C")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DGETRS", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

    if (notran) {

/*        Solve A * X = B.   

          Apply row interchanges to the right hand sides. */

	igraphdlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c__1);

/*        Solve L*X = B, overwriting B with X. */

	igraphdtrsm_("Left", "Lower", "No transpose", "Unit", n, nrhs, &c_b12, &a[
		a_offset], lda, &b[b_offset], ldb);

/*        Solve U*X = B, overwriting B with X. */

	igraphdtrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b12, &
		a[a_offset], lda, &b[b_offset], ldb);
    } else {

/*        Solve A**T * X = B.   

          Solve U**T *X = B, overwriting B with X. */

	igraphdtrsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b12, &a[
		a_offset], lda, &b[b_offset], ldb);

/*        Solve L**T *X = B, overwriting B with X. */

	igraphdtrsm_("Left", "Lower", "Transpose", "Unit", n, nrhs, &c_b12, &a[
		a_offset], lda, &b[b_offset], ldb);

/*        Apply row interchanges to the solution vectors. */

	igraphdlaswp_(nrhs, &b[b_offset], ldb, &c__1, n, &ipiv[1], &c_n1);
    }

    return 0;

/*     End of DGETRS */

} /* igraphdgetrs_ */
Example #5
0
/* Subroutine */ int igraphdtrsen_(char *job, char *compq, logical *select, integer 
	*n, doublereal *t, integer *ldt, doublereal *q, integer *ldq, 
	doublereal *wr, doublereal *wi, integer *m, doublereal *s, doublereal 
	*sep, doublereal *work, integer *lwork, integer *iwork, integer *
	liwork, integer *info)
{
    /* System generated locals */
    integer q_dim1, q_offset, t_dim1, t_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer k, n1, n2, kk, nn, ks;
    doublereal est;
    integer kase;
    logical pair;
    integer ierr;
    logical swap;
    doublereal scale;
    extern logical igraphlsame_(char *, char *);
    integer isave[3], lwmin;
    logical wantq, wants;
    doublereal rnorm;
    extern /* Subroutine */ int igraphdlacn2_(integer *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *, integer *);
    extern doublereal igraphdlange_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    igraphxerbla_(char *, integer *, ftnlen);
    logical wantbh;
    extern /* Subroutine */ int igraphdtrexc_(char *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, integer *, 
	    doublereal *, integer *);
    integer liwmin;
    logical wantsp, lquery;
    extern /* Subroutine */ int igraphdtrsyl_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);


/*  -- LAPACK routine (version 3.3.1) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
    -- April 2011                                                      --   


    Purpose   
    =======   

    DTRSEN reorders the real Schur factorization of a real matrix   
    A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in   
    the leading diagonal blocks of the upper quasi-triangular matrix T,   
    and the leading columns of Q form an orthonormal basis of the   
    corresponding right invariant subspace.   

    Optionally the routine computes the reciprocal condition numbers of   
    the cluster of eigenvalues and/or the invariant subspace.   

    T must be in Schur canonical form (as returned by DHSEQR), that is,   
    block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each   
    2-by-2 diagonal block has its diagonal elemnts equal and its   
    off-diagonal elements of opposite sign.   

    Arguments   
    =========   

    JOB     (input) CHARACTER*1   
            Specifies whether condition numbers are required for the   
            cluster of eigenvalues (S) or the invariant subspace (SEP):   
            = 'N': none;   
            = 'E': for eigenvalues only (S);   
            = 'V': for invariant subspace only (SEP);   
            = 'B': for both eigenvalues and invariant subspace (S and   
                   SEP).   

    COMPQ   (input) CHARACTER*1   
            = 'V': update the matrix Q of Schur vectors;   
            = 'N': do not update Q.   

    SELECT  (input) LOGICAL array, dimension (N)   
            SELECT specifies the eigenvalues in the selected cluster. To   
            select a real eigenvalue w(j), SELECT(j) must be set to   
            .TRUE.. To select a complex conjugate pair of eigenvalues   
            w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,   
            either SELECT(j) or SELECT(j+1) or both must be set to   
            .TRUE.; a complex conjugate pair of eigenvalues must be   
            either both included in the cluster or both excluded.   

    N       (input) INTEGER   
            The order of the matrix T. N >= 0.   

    T       (input/output) DOUBLE PRECISION array, dimension (LDT,N)   
            On entry, the upper quasi-triangular matrix T, in Schur   
            canonical form.   
            On exit, T is overwritten by the reordered matrix T, again in   
            Schur canonical form, with the selected eigenvalues in the   
            leading diagonal blocks.   

    LDT     (input) INTEGER   
            The leading dimension of the array T. LDT >= max(1,N).   

    Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)   
            On entry, if COMPQ = 'V', the matrix Q of Schur vectors.   
            On exit, if COMPQ = 'V', Q has been postmultiplied by the   
            orthogonal transformation matrix which reorders T; the   
            leading M columns of Q form an orthonormal basis for the   
            specified invariant subspace.   
            If COMPQ = 'N', Q is not referenced.   

    LDQ     (input) INTEGER   
            The leading dimension of the array Q.   
            LDQ >= 1; and if COMPQ = 'V', LDQ >= N.   

    WR      (output) DOUBLE PRECISION array, dimension (N)   
    WI      (output) DOUBLE PRECISION array, dimension (N)   
            The real and imaginary parts, respectively, of the reordered   
            eigenvalues of T. The eigenvalues are stored in the same   
            order as on the diagonal of T, with WR(i) = T(i,i) and, if   
            T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and   
            WI(i+1) = -WI(i). Note that if a complex eigenvalue is   
            sufficiently ill-conditioned, then its value may differ   
            significantly from its value before reordering.   

    M       (output) INTEGER   
            The dimension of the specified invariant subspace.   
            0 < = M <= N.   

    S       (output) DOUBLE PRECISION   
            If JOB = 'E' or 'B', S is a lower bound on the reciprocal   
            condition number for the selected cluster of eigenvalues.   
            S cannot underestimate the true reciprocal condition number   
            by more than a factor of sqrt(N). If M = 0 or N, S = 1.   
            If JOB = 'N' or 'V', S is not referenced.   

    SEP     (output) DOUBLE PRECISION   
            If JOB = 'V' or 'B', SEP is the estimated reciprocal   
            condition number of the specified invariant subspace. If   
            M = 0 or N, SEP = norm(T).   
            If JOB = 'N' or 'E', SEP is not referenced.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            If JOB = 'N', LWORK >= max(1,N);   
            if JOB = 'E', LWORK >= max(1,M*(N-M));   
            if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))   
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.   

    LIWORK  (input) INTEGER   
            The dimension of the array IWORK.   
            If JOB = 'N' or 'E', LIWORK >= 1;   
            if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).   

            If LIWORK = -1, then a workspace query is assumed; the   
            routine only calculates the optimal size of the IWORK array,   
            returns this value as the first entry of the IWORK array, and   
            no error message related to LIWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   
            = 1: reordering of T failed because some eigenvalues are too   
                 close to separate (the problem is very ill-conditioned);   
                 T may have been partially reordered, and WR and WI   
                 contain the eigenvalues in the same order as in T; S and   
                 SEP (if requested) are set to zero.   

    Further Details   
    ===============   

    DTRSEN first collects the selected eigenvalues by computing an   
    orthogonal transformation Z to move them to the top left corner of T.   
    In other words, the selected eigenvalues are the eigenvalues of T11   
    in:   

            Z**T * T * Z = ( T11 T12 ) n1   
                           (  0  T22 ) n2   
                              n1  n2   

    where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns   
    of Z span the specified invariant subspace of T.   

    If T has been obtained from the real Schur factorization of a matrix   
    A = Q*T*Q**T, then the reordered real Schur factorization of A is given   
    by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span   
    the corresponding invariant subspace of A.   

    The reciprocal condition number of the average of the eigenvalues of   
    T11 may be returned in S. S lies between 0 (very badly conditioned)   
    and 1 (very well conditioned). It is computed as follows. First we   
    compute R so that   

                           P = ( I  R ) n1   
                               ( 0  0 ) n2   
                                 n1 n2   

    is the projector on the invariant subspace associated with T11.   
    R is the solution of the Sylvester equation:   

                          T11*R - R*T22 = T12.   

    Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote   
    the two-norm of M. Then S is computed as the lower bound   

                        (1 + F-norm(R)**2)**(-1/2)   

    on the reciprocal of 2-norm(P), the true reciprocal condition number.   
    S cannot underestimate 1 / 2-norm(P) by more than a factor of   
    sqrt(N).   

    An approximate error bound for the computed average of the   
    eigenvalues of T11 is   

                           EPS * norm(T) / S   

    where EPS is the machine precision.   

    The reciprocal condition number of the right invariant subspace   
    spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.   
    SEP is defined as the separation of T11 and T22:   

                       sep( T11, T22 ) = sigma-min( C )   

    where sigma-min(C) is the smallest singular value of the   
    n1*n2-by-n1*n2 matrix   

       C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )   

    I(m) is an m by m identity matrix, and kprod denotes the Kronecker   
    product. We estimate sigma-min(C) by the reciprocal of an estimate of   
    the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)   
    cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).   

    When SEP is small, small changes in T can cause large changes in   
    the invariant subspace. An approximate bound on the maximum angular   
    error in the computed right invariant subspace is   

                        EPS * norm(T) / SEP   

    =====================================================================   


       Decode and test the input parameters   

       Parameter adjustments */
    --select;
    t_dim1 = *ldt;
    t_offset = 1 + t_dim1;
    t -= t_offset;
    q_dim1 = *ldq;
    q_offset = 1 + q_dim1;
    q -= q_offset;
    --wr;
    --wi;
    --work;
    --iwork;

    /* Function Body */
    wantbh = igraphlsame_(job, "B");
    wants = igraphlsame_(job, "E") || wantbh;
    wantsp = igraphlsame_(job, "V") || wantbh;
    wantq = igraphlsame_(compq, "V");

    *info = 0;
    lquery = *lwork == -1;
    if (! igraphlsame_(job, "N") && ! wants && ! wantsp) {
	*info = -1;
    } else if (! igraphlsame_(compq, "N") && ! wantq) {
	*info = -2;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ldt < max(1,*n)) {
	*info = -6;
    } else if (*ldq < 1 || wantq && *ldq < *n) {
	*info = -8;
    } else {

/*        Set M to the dimension of the specified invariant subspace,   
          and test LWORK and LIWORK. */

	*m = 0;
	pair = FALSE_;
	i__1 = *n;
	for (k = 1; k <= i__1; ++k) {
	    if (pair) {
		pair = FALSE_;
	    } else {
		if (k < *n) {
		    if (t[k + 1 + k * t_dim1] == 0.) {
			if (select[k]) {
			    ++(*m);
			}
		    } else {
			pair = TRUE_;
			if (select[k] || select[k + 1]) {
			    *m += 2;
			}
		    }
		} else {
		    if (select[*n]) {
			++(*m);
		    }
		}
	    }
/* L10: */
	}

	n1 = *m;
	n2 = *n - *m;
	nn = n1 * n2;

	if (wantsp) {
/* Computing MAX */
	    i__1 = 1, i__2 = nn << 1;
	    lwmin = max(i__1,i__2);
	    liwmin = max(1,nn);
	} else if (igraphlsame_(job, "N")) {
	    lwmin = max(1,*n);
	    liwmin = 1;
	} else if (igraphlsame_(job, "E")) {
	    lwmin = max(1,nn);
	    liwmin = 1;
	}

	if (*lwork < lwmin && ! lquery) {
	    *info = -15;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -17;
	}
    }

    if (*info == 0) {
	work[1] = (doublereal) lwmin;
	iwork[1] = liwmin;
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DTRSEN", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible. */

    if (*m == *n || *m == 0) {
	if (wants) {
	    *s = 1.;
	}
	if (wantsp) {
	    *sep = igraphdlange_("1", n, n, &t[t_offset], ldt, &work[1]);
	}
	goto L40;
    }

/*     Collect the selected blocks at the top-left corner of T. */

    ks = 0;
    pair = FALSE_;
    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
	if (pair) {
	    pair = FALSE_;
	} else {
	    swap = select[k];
	    if (k < *n) {
		if (t[k + 1 + k * t_dim1] != 0.) {
		    pair = TRUE_;
		    swap = swap || select[k + 1];
		}
	    }
	    if (swap) {
		++ks;

/*              Swap the K-th block to position KS. */

		ierr = 0;
		kk = k;
		if (k != ks) {
		    igraphdtrexc_(compq, n, &t[t_offset], ldt, &q[q_offset], ldq, &
			    kk, &ks, &work[1], &ierr);
		}
		if (ierr == 1 || ierr == 2) {

/*                 Blocks too close to swap: exit. */

		    *info = 1;
		    if (wants) {
			*s = 0.;
		    }
		    if (wantsp) {
			*sep = 0.;
		    }
		    goto L40;
		}
		if (pair) {
		    ++ks;
		}
	    }
	}
/* L20: */
    }

    if (wants) {

/*        Solve Sylvester equation for R:   

             T11*R - R*T22 = scale*T12 */

	igraphdlacpy_("F", &n1, &n2, &t[(n1 + 1) * t_dim1 + 1], ldt, &work[1], &n1);
	igraphdtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 1 + (n1 
		+ 1) * t_dim1], ldt, &work[1], &n1, &scale, &ierr);

/*        Estimate the reciprocal of the condition number of the cluster   
          of eigenvalues. */

	rnorm = igraphdlange_("F", &n1, &n2, &work[1], &n1, &work[1]);
	if (rnorm == 0.) {
	    *s = 1.;
	} else {
	    *s = scale / (sqrt(scale * scale / rnorm + rnorm) * sqrt(rnorm));
	}
    }

    if (wantsp) {

/*        Estimate sep(T11,T22). */

	est = 0.;
	kase = 0;
L30:
	igraphdlacn2_(&nn, &work[nn + 1], &work[1], &iwork[1], &est, &kase, isave);
	if (kase != 0) {
	    if (kase == 1) {

/*              Solve  T11*R - R*T22 = scale*X. */

		igraphdtrsyl_("N", "N", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 
			1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
			ierr);
	    } else {

/*              Solve T11**T*R - R*T22**T = scale*X. */

		igraphdtrsyl_("T", "T", &c_n1, &n1, &n2, &t[t_offset], ldt, &t[n1 + 
			1 + (n1 + 1) * t_dim1], ldt, &work[1], &n1, &scale, &
			ierr);
	    }
	    goto L30;
	}

	*sep = scale / est;
    }

L40:

/*     Store the output eigenvalues in WR and WI. */

    i__1 = *n;
    for (k = 1; k <= i__1; ++k) {
	wr[k] = t[k + k * t_dim1];
	wi[k] = 0.;
/* L50: */
    }
    i__1 = *n - 1;
    for (k = 1; k <= i__1; ++k) {
	if (t[k + 1 + k * t_dim1] != 0.) {
	    wi[k] = sqrt((d__1 = t[k + (k + 1) * t_dim1], abs(d__1))) * sqrt((
		    d__2 = t[k + 1 + k * t_dim1], abs(d__2)));
	    wi[k + 1] = -wi[k];
	}
/* L60: */
    }

    work[1] = (doublereal) lwmin;
    iwork[1] = liwmin;

    return 0;

/*     End of DTRSEN */

} /* igraphdtrsen_ */
Example #6
0
/* Subroutine */ int igraphdgebak_(char *job, char *side, integer *n, integer *ilo,
                                   integer *ihi, doublereal *scale, integer *m, doublereal *v, integer *
                                   ldv, integer *info)
{
    /* System generated locals */
    integer v_dim1, v_offset, i__1;

    /* Local variables */
    integer i__, k;
    doublereal s;
    integer ii;
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *,
            integer *);
    extern logical igraphlsame_(char *, char *);
    extern /* Subroutine */ int igraphdswap_(integer *, doublereal *, integer *,
            doublereal *, integer *);
    logical leftv;
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
    logical rightv;


    /*  -- LAPACK routine (version 3.2) --
        -- LAPACK is a software package provided by Univ. of Tennessee,    --
        -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
           November 2006


        Purpose
        =======

        DGEBAK forms the right or left eigenvectors of a real general matrix
        by backward transformation on the computed eigenvectors of the
        balanced matrix output by DGEBAL.

        Arguments
        =========

        JOB     (input) CHARACTER*1
                Specifies the type of backward transformation required:
                = 'N', do nothing, return immediately;
                = 'P', do backward transformation for permutation only;
                = 'S', do backward transformation for scaling only;
                = 'B', do backward transformations for both permutation and
                       scaling.
                JOB must be the same as the argument JOB supplied to DGEBAL.

        SIDE    (input) CHARACTER*1
                = 'R':  V contains right eigenvectors;
                = 'L':  V contains left eigenvectors.

        N       (input) INTEGER
                The number of rows of the matrix V.  N >= 0.

        ILO     (input) INTEGER
        IHI     (input) INTEGER
                The integers ILO and IHI determined by DGEBAL.
                1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

        SCALE   (input) DOUBLE PRECISION array, dimension (N)
                Details of the permutation and scaling factors, as returned
                by DGEBAL.

        M       (input) INTEGER
                The number of columns of the matrix V.  M >= 0.

        V       (input/output) DOUBLE PRECISION array, dimension (LDV,M)
                On entry, the matrix of right or left eigenvectors to be
                transformed, as returned by DHSEIN or DTREVC.
                On exit, V is overwritten by the transformed eigenvectors.

        LDV     (input) INTEGER
                The leading dimension of the array V. LDV >= max(1,N).

        INFO    (output) INTEGER
                = 0:  successful exit
                < 0:  if INFO = -i, the i-th argument had an illegal value.

        =====================================================================


           Decode and Test the input parameters

           Parameter adjustments */
    --scale;
    v_dim1 = *ldv;
    v_offset = 1 + v_dim1;
    v -= v_offset;

    /* Function Body */
    rightv = igraphlsame_(side, "R");
    leftv = igraphlsame_(side, "L");

    *info = 0;
    if (! igraphlsame_(job, "N") && ! igraphlsame_(job, "P") && ! igraphlsame_(job, "S")
            && ! igraphlsame_(job, "B")) {
        *info = -1;
    } else if (! rightv && ! leftv) {
        *info = -2;
    } else if (*n < 0) {
        *info = -3;
    } else if (*ilo < 1 || *ilo > max(1,*n)) {
        *info = -4;
    } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
        *info = -5;
    } else if (*m < 0) {
        *info = -7;
    } else if (*ldv < max(1,*n)) {
        *info = -9;
    }
    if (*info != 0) {
        i__1 = -(*info);
        igraphxerbla_("DGEBAK", &i__1, (ftnlen)6);
        return 0;
    }

    /*     Quick return if possible */

    if (*n == 0) {
        return 0;
    }
    if (*m == 0) {
        return 0;
    }
    if (igraphlsame_(job, "N")) {
        return 0;
    }

    if (*ilo == *ihi) {
        goto L30;
    }

    /*     Backward balance */

    if (igraphlsame_(job, "S") || igraphlsame_(job, "B")) {

        if (rightv) {
            i__1 = *ihi;
            for (i__ = *ilo; i__ <= i__1; ++i__) {
                s = scale[i__];
                igraphdscal_(m, &s, &v[i__ + v_dim1], ldv);
                /* L10: */
            }
        }

        if (leftv) {
            i__1 = *ihi;
            for (i__ = *ilo; i__ <= i__1; ++i__) {
                s = 1. / scale[i__];
                igraphdscal_(m, &s, &v[i__ + v_dim1], ldv);
                /* L20: */
            }
        }

    }

    /*     Backward permutation

           For  I = ILO-1 step -1 until 1,
                    IHI+1 step 1 until N do -- */

L30:
    if (igraphlsame_(job, "P") || igraphlsame_(job, "B")) {
        if (rightv) {
            i__1 = *n;
            for (ii = 1; ii <= i__1; ++ii) {
                i__ = ii;
                if (i__ >= *ilo && i__ <= *ihi) {
                    goto L40;
                }
                if (i__ < *ilo) {
                    i__ = *ilo - ii;
                }
                k = (integer) scale[i__];
                if (k == i__) {
                    goto L40;
                }
                igraphdswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
L40:
                ;
            }
        }

        if (leftv) {
            i__1 = *n;
            for (ii = 1; ii <= i__1; ++ii) {
                i__ = ii;
                if (i__ >= *ilo && i__ <= *ihi) {
                    goto L50;
                }
                if (i__ < *ilo) {
                    i__ = *ilo - ii;
                }
                k = (integer) scale[i__];
                if (k == i__) {
                    goto L50;
                }
                igraphdswap_(m, &v[i__ + v_dim1], ldv, &v[k + v_dim1], ldv);
L50:
                ;
            }
        }
    }

    return 0;

    /*     End of DGEBAK */

} /* igraphdgebak_ */
Example #7
0
   Subroutine */ int igraphdgeevx_(char *balanc, char *jobvl, char *jobvr, char *
	sense, integer *n, doublereal *a, integer *lda, doublereal *wr, 
	doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr, 
	integer *ldvr, integer *ilo, integer *ihi, doublereal *scale, 
	doublereal *abnrm, doublereal *rconde, doublereal *rcondv, doublereal 
	*work, integer *lwork, integer *iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
	    i__2, i__3;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, k;
    doublereal r__, cs, sn;
    char job[1];
    doublereal scl, dum[1], eps;
    char side[1];
    doublereal anrm;
    integer ierr, itau;
    extern /* Subroutine */ int igraphdrot_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    integer iwrk, nout;
    extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    integer icond;
    extern logical igraphlsame_(char *, char *);
    extern doublereal igraphdlapy2_(doublereal *, doublereal *);
    extern /* Subroutine */ int igraphdlabad_(doublereal *, doublereal *), igraphdgebak_(
	    char *, char *, integer *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *), 
	    igraphdgebal_(char *, integer *, doublereal *, integer *, integer *, 
	    integer *, doublereal *, integer *);
    logical scalea;
    extern doublereal igraphdlamch_(char *);
    doublereal cscale;
    extern doublereal igraphdlange_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int igraphdgehrd_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), igraphdlascl_(char *, integer *, integer *, doublereal *, 
	    doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *);
    extern integer igraphidamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphdlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    igraphdlartg_(doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *), igraphxerbla_(char *, integer *, ftnlen);
    logical select[1];
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    doublereal bignum;
    extern /* Subroutine */ int igraphdorghr_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), igraphdhseqr_(char *, char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *), igraphdtrevc_(char *, char *, logical *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, doublereal *, integer *), igraphdtrsna_(char *, char *, logical *, integer *, doublereal 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *, integer *);
    integer minwrk, maxwrk;
    logical wantvl, wntsnb;
    integer hswork;
    logical wntsne;
    doublereal smlnum;
    logical lquery, wantvr, wntsnn, wntsnv;


/*  -- LAPACK driver routine (version 3.4.2) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       September 2012   


    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --wr;
    --wi;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1;
    vr -= vr_offset;
    --scale;
    --rconde;
    --rcondv;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    wantvl = igraphlsame_(jobvl, "V");
    wantvr = igraphlsame_(jobvr, "V");
    wntsnn = igraphlsame_(sense, "N");
    wntsne = igraphlsame_(sense, "E");
    wntsnv = igraphlsame_(sense, "V");
    wntsnb = igraphlsame_(sense, "B");
    if (! (igraphlsame_(balanc, "N") || igraphlsame_(balanc, "S") || igraphlsame_(balanc, "P") 
	    || igraphlsame_(balanc, "B"))) {
	*info = -1;
    } else if (! wantvl && ! igraphlsame_(jobvl, "N")) {
	*info = -2;
    } else if (! wantvr && ! igraphlsame_(jobvr, "N")) {
	*info = -3;
    } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) 
	    && ! (wantvl && wantvr)) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,*n)) {
	*info = -7;
    } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
	*info = -11;
    } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
	*info = -13;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of workspace needed at that point in the code,   
         as well as the preferred amount for good performance.   
         NB refers to the optimal block size for the immediately   
         following subroutine, as returned by ILAENV.   
         HSWORK refers to the workspace preferred by DHSEQR, as   
         calculated below. HSWORK is computed assuming ILO=1 and IHI=N,   
         the worst case.) */

    if (*info == 0) {
	if (*n == 0) {
	    minwrk = 1;
	    maxwrk = 1;
	} else {
	    maxwrk = *n + *n * igraphilaenv_(&c__1, "DGEHRD", " ", n, &c__1, n, &
		    c__0, (ftnlen)6, (ftnlen)1);

	    if (wantvl) {
		igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
			1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
	    } else if (wantvr) {
		igraphdhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
			1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
	    } else {
		if (wntsnn) {
		    igraphdhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], 
			    &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, 
			    info);
		} else {
		    igraphdhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], 
			    &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, 
			    info);
		}
	    }
	    hswork = (integer) work[1];

	    if (! wantvl && ! wantvr) {
		minwrk = *n << 1;
		if (! wntsnn) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + *n * 6;
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
		if (! wntsnn) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + *n * 6;
		    maxwrk = max(i__1,i__2);
		}
	    } else {
		minwrk = *n * 3;
		if (! wntsnn && ! wntsne) {
/* Computing MAX */
		    i__1 = minwrk, i__2 = *n * *n + *n * 6;
		    minwrk = max(i__1,i__2);
		}
		maxwrk = max(maxwrk,hswork);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n + (*n - 1) * igraphilaenv_(&c__1, "DORGHR",
			 " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
		maxwrk = max(i__1,i__2);
		if (! wntsnn && ! wntsne) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *n * *n + *n * 6;
		    maxwrk = max(i__1,i__2);
		}
/* Computing MAX */
		i__1 = maxwrk, i__2 = *n * 3;
		maxwrk = max(i__1,i__2);
	    }
	    maxwrk = max(maxwrk,minwrk);
	}
	work[1] = (doublereal) maxwrk;

	if (*lwork < minwrk && ! lquery) {
	    *info = -21;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DGEEVX", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = igraphdlamch_("P");
    smlnum = igraphdlamch_("S");
    bignum = 1. / smlnum;
    igraphdlabad_(&smlnum, &bignum);
    smlnum = sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    icond = 0;
    anrm = igraphdlange_("M", n, n, &a[a_offset], lda, dum);
    scalea = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
	scalea = TRUE_;
	cscale = smlnum;
    } else if (anrm > bignum) {
	scalea = TRUE_;
	cscale = bignum;
    }
    if (scalea) {
	igraphdlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Balance the matrix and compute ABNRM */

    igraphdgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
    *abnrm = igraphdlange_("1", n, n, &a[a_offset], lda, dum);
    if (scalea) {
	dum[0] = *abnrm;
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
		ierr);
	*abnrm = dum[0];
    }

/*     Reduce to upper Hessenberg form   
       (Workspace: need 2*N, prefer N+N*NB) */

    itau = 1;
    iwrk = itau + *n;
    i__1 = *lwork - iwrk + 1;
    igraphdgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
	    ierr);

    if (wantvl) {

/*        Want left eigenvectors   
          Copy Householder vectors to VL */

	*(unsigned char *)side = 'L';
	igraphdlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
		;

/*        Generate orthogonal matrix in VL   
          (Workspace: need 2*N-1, prefer N+(N-1)*NB) */

	i__1 = *lwork - iwrk + 1;
	igraphdorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VL   
          (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[
		vl_offset], ldvl, &work[iwrk], &i__1, info);

	if (wantvr) {

/*           Want left and right eigenvectors   
             Copy Schur vectors to VR */

	    *(unsigned char *)side = 'B';
	    igraphdlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
	}

    } else if (wantvr) {

/*        Want right eigenvectors   
          Copy Householder vectors to VR */

	*(unsigned char *)side = 'R';
	igraphdlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
		;

/*        Generate orthogonal matrix in VR   
          (Workspace: need 2*N-1, prefer N+(N-1)*NB) */

	i__1 = *lwork - iwrk + 1;
	igraphdorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
		i__1, &ierr);

/*        Perform QR iteration, accumulating Schur vectors in VR   
          (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);

    } else {

/*        Compute eigenvalues only   
          If condition numbers desired, compute Schur form */

	if (wntsnn) {
	    *(unsigned char *)job = 'E';
	} else {
	    *(unsigned char *)job = 'S';
	}

/*        (Workspace: need 1, prefer HSWORK (see comments) ) */

	iwrk = itau;
	i__1 = *lwork - iwrk + 1;
	igraphdhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
		vr_offset], ldvr, &work[iwrk], &i__1, info);
    }

/*     If INFO > 0 from DHSEQR, then quit */

    if (*info > 0) {
	goto L50;
    }

    if (wantvl || wantvr) {

/*        Compute left and/or right eigenvectors   
          (Workspace: need 3*N) */

	igraphdtrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
		 &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr);
    }

/*     Compute condition numbers if desired   
       (Workspace: need N*N+6*N unless SENSE = 'E') */

    if (! wntsnn) {
	igraphdtrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], 
		ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, 
		&work[iwrk], n, &iwork[1], &icond);
    }

    if (wantvl) {

/*        Undo balancing of left eigenvectors */

	igraphdgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, 
		&ierr);

/*        Normalize left eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (wi[i__] == 0.) {
		scl = 1. / igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
	    } else if (wi[i__] > 0.) {
		d__1 = igraphdnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
		d__2 = igraphdnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
		scl = 1. / igraphdlapy2_(&d__1, &d__2);
		igraphdscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
		i__2 = *n;
		for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
		    d__1 = vl[k + i__ * vl_dim1];
/* Computing 2nd power */
		    d__2 = vl[k + (i__ + 1) * vl_dim1];
		    work[k] = d__1 * d__1 + d__2 * d__2;
/* L10: */
		}
		k = igraphidamax_(n, &work[1], &c__1);
		igraphdlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1], 
			&cs, &sn, &r__);
		igraphdrot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) * 
			vl_dim1 + 1], &c__1, &cs, &sn);
		vl[k + (i__ + 1) * vl_dim1] = 0.;
	    }
/* L20: */
	}
    }

    if (wantvr) {

/*        Undo balancing of right eigenvectors */

	igraphdgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, 
		&ierr);

/*        Normalize right eigenvectors and make largest component real */

	i__1 = *n;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (wi[i__] == 0.) {
		scl = 1. / igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
	    } else if (wi[i__] > 0.) {
		d__1 = igraphdnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
		d__2 = igraphdnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
		scl = 1. / igraphdlapy2_(&d__1, &d__2);
		igraphdscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
		igraphdscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
		i__2 = *n;
		for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
		    d__1 = vr[k + i__ * vr_dim1];
/* Computing 2nd power */
		    d__2 = vr[k + (i__ + 1) * vr_dim1];
		    work[k] = d__1 * d__1 + d__2 * d__2;
/* L30: */
		}
		k = igraphidamax_(n, &work[1], &c__1);
		igraphdlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1], 
			&cs, &sn, &r__);
		igraphdrot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) * 
			vr_dim1 + 1], &c__1, &cs, &sn);
		vr[k + (i__ + 1) * vr_dim1] = 0.;
	    }
/* L40: */
	}
    }

/*     Undo scaling if necessary */

L50:
    if (scalea) {
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = max(i__3,1);
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info + 
		1], &i__2, &ierr);
	i__1 = *n - *info;
/* Computing MAX */
	i__3 = *n - *info;
	i__2 = max(i__3,1);
	igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info + 
		1], &i__2, &ierr);
	if (*info == 0) {
	    if ((wntsnv || wntsnb) && icond == 0) {
		igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
			1], n, &ierr);
	    }
	} else {
	    i__1 = *ilo - 1;
	    igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1], 
		    n, &ierr);
	    i__1 = *ilo - 1;
	    igraphdlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1], 
		    n, &ierr);
	}
    }

    work[1] = (doublereal) maxwrk;
    return 0;

/*     End of DGEEVX */

} /* igraphdgeevx_ */
Example #8
0
/* Subroutine */ int igraphdgetf2_(integer *m, integer *n, doublereal *a, integer *
	lda, integer *ipiv, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    doublereal d__1;

    /* Local variables */
    integer i__, j, jp;
    extern /* Subroutine */ int igraphdger_(integer *, integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *), igraphdscal_(integer *, doublereal *, doublereal *, integer 
	    *);
    doublereal sfmin;
    extern /* Subroutine */ int igraphdswap_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    extern doublereal igraphdlamch_(char *);
    extern integer igraphidamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);


/*  -- LAPACK routine (version 3.2) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       November 2006   


    Purpose   
    =======   

    DGETF2 computes an LU factorization of a general m-by-n matrix A   
    using partial pivoting with row interchanges.   

    The factorization has the form   
       A = P * L * U   
    where P is a permutation matrix, L is lower triangular with unit   
    diagonal elements (lower trapezoidal if m > n), and U is upper   
    triangular (upper trapezoidal if m < n).   

    This is the right-looking Level 2 BLAS version of the algorithm.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the m by n matrix to be factored.   
            On exit, the factors L and U from the factorization   
            A = P*L*U; the unit diagonal elements of L are not stored.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    IPIV    (output) INTEGER array, dimension (min(M,N))   
            The pivot indices; for 1 <= i <= min(M,N), row i of the   
            matrix was interchanged with row IPIV(i).   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -k, the k-th argument had an illegal value   
            > 0: if INFO = k, U(k,k) is exactly zero. The factorization   
                 has been completed, but the factor U is exactly   
                 singular, and division by zero will occur if it is used   
                 to solve a system of equations.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DGETF2", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     Compute machine safe minimum */

    sfmin = igraphdlamch_("S");

    i__1 = min(*m,*n);
    for (j = 1; j <= i__1; ++j) {

/*        Find pivot and test for singularity. */

	i__2 = *m - j + 1;
	jp = j - 1 + igraphidamax_(&i__2, &a[j + j * a_dim1], &c__1);
	ipiv[j] = jp;
	if (a[jp + j * a_dim1] != 0.) {

/*           Apply the interchange to columns 1:N. */

	    if (jp != j) {
		igraphdswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda);
	    }

/*           Compute elements J+1:M of J-th column. */

	    if (j < *m) {
		if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) {
		    i__2 = *m - j;
		    d__1 = 1. / a[j + j * a_dim1];
		    igraphdscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
		} else {
		    i__2 = *m - j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			a[j + i__ + j * a_dim1] /= a[j + j * a_dim1];
/* L20: */
		    }
		}
	    }

	} else if (*info == 0) {

	    *info = j;
	}

	if (j < min(*m,*n)) {

/*           Update trailing submatrix. */

	    i__2 = *m - j;
	    i__3 = *n - j;
	    igraphdger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + (
		    j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda);
	}
/* L10: */
    }
    return 0;

/*     End of DGETF2 */

} /* igraphdgetf2_ */
Example #9
0
   Subroutine */ int igraphdstein_(integer *n, doublereal *d__, doublereal *e, 
	integer *m, doublereal *w, integer *iblock, integer *isplit, 
	doublereal *z__, integer *ldz, doublereal *work, integer *iwork, 
	integer *ifail, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2, i__3;
    doublereal d__1, d__2, d__3, d__4, d__5;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, b1, j1, bn;
    doublereal xj, scl, eps, sep, nrm, tol;
    integer its;
    doublereal xjm, ztr, eps1;
    integer jblk, nblk;
    extern doublereal igraphddot_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    integer jmax;
    extern doublereal igraphdnrm2_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    integer iseed[4], gpind, iinfo;
    extern doublereal igraphdasum_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), igraphdaxpy_(integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *);
    doublereal ortol;
    integer indrv1, indrv2, indrv3, indrv4, indrv5;
    extern doublereal igraphdlamch_(char *);
    extern /* Subroutine */ int igraphdlagtf_(integer *, doublereal *, doublereal *,
	     doublereal *, doublereal *, doublereal *, doublereal *, integer *
	    , integer *);
    extern integer igraphidamax_(integer *, doublereal *, integer *);
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen), igraphdlagts_(
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *);
    integer nrmchk;
    extern /* Subroutine */ int igraphdlarnv_(integer *, integer *, integer *, 
	    doublereal *);
    integer blksiz;
    doublereal onenrm, dtpcrt, pertol;


/*  -- LAPACK computational routine (version 3.4.0) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       November 2011   


    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    --d__;
    --e;
    --w;
    --iblock;
    --isplit;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;
    --iwork;
    --ifail;

    /* Function Body */
    *info = 0;
    i__1 = *m;
    for (i__ = 1; i__ <= i__1; ++i__) {
	ifail[i__] = 0;
/* L10: */
    }

    if (*n < 0) {
	*info = -1;
    } else if (*m < 0 || *m > *n) {
	*info = -4;
    } else if (*ldz < max(1,*n)) {
	*info = -9;
    } else {
	i__1 = *m;
	for (j = 2; j <= i__1; ++j) {
	    if (iblock[j] < iblock[j - 1]) {
		*info = -6;
		goto L30;
	    }
	    if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {
		*info = -5;
		goto L30;
	    }
/* L20: */
	}
L30:
	;
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DSTEIN", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *m == 0) {
	return 0;
    } else if (*n == 1) {
	z__[z_dim1 + 1] = 1.;
	return 0;
    }

/*     Get machine constants. */

    eps = igraphdlamch_("Precision");

/*     Initialize seed for random number generator DLARNV. */

    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = 1;
/* L40: */
    }

/*     Initialize pointers. */

    indrv1 = 0;
    indrv2 = indrv1 + *n;
    indrv3 = indrv2 + *n;
    indrv4 = indrv3 + *n;
    indrv5 = indrv4 + *n;

/*     Compute eigenvectors of matrix blocks. */

    j1 = 1;
    i__1 = iblock[*m];
    for (nblk = 1; nblk <= i__1; ++nblk) {

/*        Find starting and ending indices of block nblk. */

	if (nblk == 1) {
	    b1 = 1;
	} else {
	    b1 = isplit[nblk - 1] + 1;
	}
	bn = isplit[nblk];
	blksiz = bn - b1 + 1;
	if (blksiz == 1) {
	    goto L60;
	}
	gpind = b1;

/*        Compute reorthogonalization criterion and stopping criterion. */

	onenrm = (d__1 = d__[b1], abs(d__1)) + (d__2 = e[b1], abs(d__2));
/* Computing MAX */
	d__3 = onenrm, d__4 = (d__1 = d__[bn], abs(d__1)) + (d__2 = e[bn - 1],
		 abs(d__2));
	onenrm = max(d__3,d__4);
	i__2 = bn - 1;
	for (i__ = b1 + 1; i__ <= i__2; ++i__) {
/* Computing MAX */
	    d__4 = onenrm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[
		    i__ - 1], abs(d__2)) + (d__3 = e[i__], abs(d__3));
	    onenrm = max(d__4,d__5);
/* L50: */
	}
	ortol = onenrm * .001;

	dtpcrt = sqrt(.1 / blksiz);

/*        Loop through eigenvalues of block nblk. */

L60:
	jblk = 0;
	i__2 = *m;
	for (j = j1; j <= i__2; ++j) {
	    if (iblock[j] != nblk) {
		j1 = j;
		goto L160;
	    }
	    ++jblk;
	    xj = w[j];

/*           Skip all the work if the block size is one. */

	    if (blksiz == 1) {
		work[indrv1 + 1] = 1.;
		goto L120;
	    }

/*           If eigenvalues j and j-1 are too close, add a relatively   
             small perturbation. */

	    if (jblk > 1) {
		eps1 = (d__1 = eps * xj, abs(d__1));
		pertol = eps1 * 10.;
		sep = xj - xjm;
		if (sep < pertol) {
		    xj = xjm + pertol;
		}
	    }

	    its = 0;
	    nrmchk = 0;

/*           Get random starting vector. */

	    igraphdlarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);

/*           Copy the matrix T so it won't be destroyed in factorization. */

	    igraphdcopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);
	    i__3 = blksiz - 1;
	    igraphdcopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);
	    i__3 = blksiz - 1;
	    igraphdcopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);

/*           Compute LU factors with partial pivoting  ( PT = LU ) */

	    tol = 0.;
	    igraphdlagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[
		    indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);

/*           Update iteration count. */

L70:
	    ++its;
	    if (its > 5) {
		goto L100;
	    }

/*           Normalize and scale the righthand side vector Pb.   

   Computing MAX */
	    d__2 = eps, d__3 = (d__1 = work[indrv4 + blksiz], abs(d__1));
	    scl = blksiz * onenrm * max(d__2,d__3) / igraphdasum_(&blksiz, &work[
		    indrv1 + 1], &c__1);
	    igraphdscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);

/*           Solve the system LU = Pb. */

	    igraphdlagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &
		    work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[
		    indrv1 + 1], &tol, &iinfo);

/*           Reorthogonalize by modified Gram-Schmidt if eigenvalues are   
             close enough. */

	    if (jblk == 1) {
		goto L90;
	    }
	    if ((d__1 = xj - xjm, abs(d__1)) > ortol) {
		gpind = j;
	    }
	    if (gpind != j) {
		i__3 = j - 1;
		for (i__ = gpind; i__ <= i__3; ++i__) {
		    ztr = -igraphddot_(&blksiz, &work[indrv1 + 1], &c__1, &z__[b1 + 
			    i__ * z_dim1], &c__1);
		    igraphdaxpy_(&blksiz, &ztr, &z__[b1 + i__ * z_dim1], &c__1, &
			    work[indrv1 + 1], &c__1);
/* L80: */
		}
	    }

/*           Check the infinity norm of the iterate. */

L90:
	    jmax = igraphidamax_(&blksiz, &work[indrv1 + 1], &c__1);
	    nrm = (d__1 = work[indrv1 + jmax], abs(d__1));

/*           Continue for additional iterations after norm reaches   
             stopping criterion. */

	    if (nrm < dtpcrt) {
		goto L70;
	    }
	    ++nrmchk;
	    if (nrmchk < 3) {
		goto L70;
	    }

	    goto L110;

/*           If stopping criterion was not satisfied, update info and   
             store eigenvector number in array ifail. */

L100:
	    ++(*info);
	    ifail[*info] = j;

/*           Accept iterate as jth eigenvector. */

L110:
	    scl = 1. / igraphdnrm2_(&blksiz, &work[indrv1 + 1], &c__1);
	    jmax = igraphidamax_(&blksiz, &work[indrv1 + 1], &c__1);
	    if (work[indrv1 + jmax] < 0.) {
		scl = -scl;
	    }
	    igraphdscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
L120:
	    i__3 = *n;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		z__[i__ + j * z_dim1] = 0.;
/* L130: */
	    }
	    i__3 = blksiz;
	    for (i__ = 1; i__ <= i__3; ++i__) {
		z__[b1 + i__ - 1 + j * z_dim1] = work[indrv1 + i__];
/* L140: */
	    }

/*           Save the shift to check eigenvalue spacing at next   
             iteration. */

	    xjm = xj;

/* L150: */
	}
L160:
	;
    }

    return 0;

/*     End of DSTEIN */

} /* igraphdstein_ */
Example #10
0
/* Subroutine */ int igraphdsytrd_(char *uplo, integer *n, doublereal *a, integer *
	lda, doublereal *d__, doublereal *e, doublereal *tau, doublereal *
	work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, nb, kk, nx, iws;
    extern logical igraphlsame_(char *, char *);
    integer nbmin, iinfo;
    logical upper;
    extern /* Subroutine */ int igraphdsytd2_(char *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *), igraphdsyr2k_(char *, char *, integer *, integer *, doublereal 
	    *, doublereal *, integer *, doublereal *, integer *, doublereal *,
	     doublereal *, integer *), igraphdlatrd_(char *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *), igraphxerbla_(char *, 
	    integer *, ftnlen);
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    integer ldwork, lwkopt;
    logical lquery;


/*  -- LAPACK routine (version 3.3.1) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
    -- April 2011                                                      --   


    Purpose   
    =======   

    DSYTRD reduces a real symmetric matrix A to real symmetric   
    tridiagonal form T by an orthogonal similarity transformation:   
    Q**T * A * Q = T.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
            N-by-N upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading N-by-N lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   
            On exit, if UPLO = 'U', the diagonal and first superdiagonal   
            of A are overwritten by the corresponding elements of the   
            tridiagonal matrix T, and the elements above the first   
            superdiagonal, with the array TAU, represent the orthogonal   
            matrix Q as a product of elementary reflectors; if UPLO   
            = 'L', the diagonal and first subdiagonal of A are over-   
            written by the corresponding elements of the tridiagonal   
            matrix T, and the elements below the first subdiagonal, with   
            the array TAU, represent the orthogonal matrix Q as a product   
            of elementary reflectors. See Further Details.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    D       (output) DOUBLE PRECISION array, dimension (N)   
            The diagonal elements of the tridiagonal matrix T:   
            D(i) = A(i,i).   

    E       (output) DOUBLE PRECISION array, dimension (N-1)   
            The off-diagonal elements of the tridiagonal matrix T:   
            E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.   

    TAU     (output) DOUBLE PRECISION array, dimension (N-1)   
            The scalar factors of the elementary reflectors (see Further   
            Details).   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= 1.   
            For optimum performance LWORK >= N*NB, where NB is the   
            optimal blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    Further Details   
    ===============   

    If UPLO = 'U', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(n-1) . . . H(2) H(1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v**T   

    where tau is a real scalar, and v is a real vector with   
    v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in   
    A(1:i-1,i+1), and tau in TAU(i).   

    If UPLO = 'L', the matrix Q is represented as a product of elementary   
    reflectors   

       Q = H(1) H(2) . . . H(n-1).   

    Each H(i) has the form   

       H(i) = I - tau * v * v**T   

    where tau is a real scalar, and v is a real vector with   
    v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),   
    and tau in TAU(i).   

    The contents of A on exit are illustrated by the following examples   
    with n = 5:   

    if UPLO = 'U':                       if UPLO = 'L':   

      (  d   e   v2  v3  v4 )              (  d                  )   
      (      d   e   v3  v4 )              (  e   d              )   
      (          d   e   v4 )              (  v1  e   d          )   
      (              d   e  )              (  v1  v2  e   d      )   
      (                  d  )              (  v1  v2  v3  e   d  )   

    where d and e denote diagonal and off-diagonal elements of T, and vi   
    denotes an element of the vector defining H(i).   

    =====================================================================   


       Test the input parameters   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --d__;
    --e;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    upper = igraphlsame_(uplo, "U");
    lquery = *lwork == -1;
    if (! upper && ! igraphlsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*n)) {
	*info = -4;
    } else if (*lwork < 1 && ! lquery) {
	*info = -9;
    }

    if (*info == 0) {

/*        Determine the block size. */

	nb = igraphilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
		 (ftnlen)1);
	lwkopt = *n * nb;
	work[1] = (doublereal) lwkopt;
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DSYTRD", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	work[1] = 1.;
	return 0;
    }

    nx = *n;
    iws = 1;
    if (nb > 1 && nb < *n) {

/*        Determine when to cross over from blocked to unblocked code   
          (last block is always handled by unblocked code).   

   Computing MAX */
	i__1 = nb, i__2 = igraphilaenv_(&c__3, "DSYTRD", uplo, n, &c_n1, &c_n1, &
		c_n1, (ftnlen)6, (ftnlen)1);
	nx = max(i__1,i__2);
	if (nx < *n) {

/*           Determine if workspace is large enough for blocked code. */

	    ldwork = *n;
	    iws = ldwork * nb;
	    if (*lwork < iws) {

/*              Not enough workspace to use optimal NB:  determine the   
                minimum value of NB, and reduce NB or force use of   
                unblocked code by setting NX = N.   

   Computing MAX */
		i__1 = *lwork / ldwork;
		nb = max(i__1,1);
		nbmin = igraphilaenv_(&c__2, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1,
			 (ftnlen)6, (ftnlen)1);
		if (nb < nbmin) {
		    nx = *n;
		}
	    }
	} else {
	    nx = *n;
	}
    } else {
	nb = 1;
    }

    if (upper) {

/*        Reduce the upper triangle of A.   
          Columns 1:kk are handled by the unblocked method. */

	kk = *n - (*n - nx + nb - 1) / nb * nb;
	i__1 = kk + 1;
	i__2 = -nb;
	for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += 
		i__2) {

/*           Reduce columns i:i+nb-1 to tridiagonal form and form the   
             matrix W which is needed to update the unreduced part of   
             the matrix */

	    i__3 = i__ + nb - 1;
	    igraphdlatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &
		    work[1], &ldwork);

/*           Update the unreduced submatrix A(1:i-1,1:i-1), using an   
             update of the form:  A := A - V*W**T - W*V**T */

	    i__3 = i__ - 1;
	    igraphdsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ * a_dim1 
		    + 1], lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda);

/*           Copy superdiagonal elements back into A, and diagonal   
             elements into D */

	    i__3 = i__ + nb - 1;
	    for (j = i__; j <= i__3; ++j) {
		a[j - 1 + j * a_dim1] = e[j - 1];
		d__[j] = a[j + j * a_dim1];
/* L10: */
	    }
/* L20: */
	}

/*        Use unblocked code to reduce the last or only block */

	igraphdsytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);
    } else {

/*        Reduce the lower triangle of A */

	i__2 = *n - nx;
	i__1 = nb;
	for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {

/*           Reduce columns i:i+nb-1 to tridiagonal form and form the   
             matrix W which is needed to update the unreduced part of   
             the matrix */

	    i__3 = *n - i__ + 1;
	    igraphdlatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], &
		    tau[i__], &work[1], &ldwork);

/*           Update the unreduced submatrix A(i+ib:n,i+ib:n), using   
             an update of the form:  A := A - V*W**T - W*V**T */

	    i__3 = *n - i__ - nb + 1;
	    igraphdsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ + nb + 
		    i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b23, &a[
		    i__ + nb + (i__ + nb) * a_dim1], lda);

/*           Copy subdiagonal elements back into A, and diagonal   
             elements into D */

	    i__3 = i__ + nb - 1;
	    for (j = i__; j <= i__3; ++j) {
		a[j + 1 + j * a_dim1] = e[j];
		d__[j] = a[j + j * a_dim1];
/* L30: */
	    }
/* L40: */
	}

/*        Use unblocked code to reduce the last or only block */

	i__1 = *n - i__ + 1;
	igraphdsytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], 
		&tau[i__], &iinfo);
    }

    work[1] = (doublereal) lwkopt;
    return 0;

/*     End of DSYTRD */

} /* igraphdsytrd_ */
Example #11
0
/* Subroutine */ int igraphdorm2l_(char *side, char *trans, integer *m, integer *n, 
	integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
	c__, integer *ldc, doublereal *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;

    /* Local variables */
    integer i__, i1, i2, i3, mi, ni, nq;
    doublereal aii;
    logical left;
    extern /* Subroutine */ int igraphdlarf_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *);
    extern logical igraphlsame_(char *, char *);
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
    logical notran;


/*  -- LAPACK routine (version 3.3.1) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
    -- April 2011                                                      --   


    Purpose   
    =======   

    DORM2L overwrites the general real m by n matrix C with   

          Q * C  if SIDE = 'L' and TRANS = 'N', or   

          Q**T * C  if SIDE = 'L' and TRANS = 'T', or   

          C * Q  if SIDE = 'R' and TRANS = 'N', or   

          C * Q**T if SIDE = 'R' and TRANS = 'T',   

    where Q is a real orthogonal matrix defined as the product of k   
    elementary reflectors   

          Q = H(k) . . . H(2) H(1)   

    as returned by DGEQLF. Q is of order m if SIDE = 'L' and of order n   
    if SIDE = 'R'.   

    Arguments   
    =========   

    SIDE    (input) CHARACTER*1   
            = 'L': apply Q or Q**T from the Left   
            = 'R': apply Q or Q**T from the Right   

    TRANS   (input) CHARACTER*1   
            = 'N': apply Q  (No transpose)   
            = 'T': apply Q**T (Transpose)   

    M       (input) INTEGER   
            The number of rows of the matrix C. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix C. N >= 0.   

    K       (input) INTEGER   
            The number of elementary reflectors whose product defines   
            the matrix Q.   
            If SIDE = 'L', M >= K >= 0;   
            if SIDE = 'R', N >= K >= 0.   

    A       (input) DOUBLE PRECISION array, dimension (LDA,K)   
            The i-th column must contain the vector which defines the   
            elementary reflector H(i), for i = 1,2,...,k, as returned by   
            DGEQLF in the last k columns of its array argument A.   
            A is modified by the routine but restored on exit.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.   
            If SIDE = 'L', LDA >= max(1,M);   
            if SIDE = 'R', LDA >= max(1,N).   

    TAU     (input) DOUBLE PRECISION array, dimension (K)   
            TAU(i) must contain the scalar factor of the elementary   
            reflector H(i), as returned by DGEQLF.   

    C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)   
            On entry, the m by n matrix C.   
            On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.   

    LDC     (input) INTEGER   
            The leading dimension of the array C. LDC >= max(1,M).   

    WORK    (workspace) DOUBLE PRECISION array, dimension   
                                     (N) if SIDE = 'L',   
                                     (M) if SIDE = 'R'   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;

    /* Function Body */
    *info = 0;
    left = igraphlsame_(side, "L");
    notran = igraphlsame_(trans, "N");

/*     NQ is the order of Q */

    if (left) {
	nq = *m;
    } else {
	nq = *n;
    }
    if (! left && ! igraphlsame_(side, "R")) {
	*info = -1;
    } else if (! notran && ! igraphlsame_(trans, "T")) {
	*info = -2;
    } else if (*m < 0) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*k < 0 || *k > nq) {
	*info = -5;
    } else if (*lda < max(1,nq)) {
	*info = -7;
    } else if (*ldc < max(1,*m)) {
	*info = -10;
    }
    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DORM2L", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0 || *k == 0) {
	return 0;
    }

    if (left && notran || ! left && ! notran) {
	i1 = 1;
	i2 = *k;
	i3 = 1;
    } else {
	i1 = *k;
	i2 = 1;
	i3 = -1;
    }

    if (left) {
	ni = *n;
    } else {
	mi = *m;
    }

    i__1 = i2;
    i__2 = i3;
    for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
	if (left) {

/*           H(i) is applied to C(1:m-k+i,1:n) */

	    mi = *m - *k + i__;
	} else {

/*           H(i) is applied to C(1:m,1:n-k+i) */

	    ni = *n - *k + i__;
	}

/*        Apply H(i) */

	aii = a[nq - *k + i__ + i__ * a_dim1];
	a[nq - *k + i__ + i__ * a_dim1] = 1.;
	igraphdlarf_(side, &mi, &ni, &a[i__ * a_dim1 + 1], &c__1, &tau[i__], &c__[
		c_offset], ldc, &work[1]);
	a[nq - *k + i__ + i__ * a_dim1] = aii;
/* L10: */
    }
    return 0;

/*     End of DORM2L */

} /* igraphdorm2l_ */
Example #12
0
/* Subroutine */ int igraphdgeqr2_(integer *m, integer *n, doublereal *a, integer *
	lda, doublereal *tau, doublereal *work, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;

    /* Local variables */
    static integer i__, k;
    static doublereal aii;
    extern /* Subroutine */ int igraphdlarf_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *), igraphdlarfg_(integer *, doublereal *, 
	    doublereal *, integer *, doublereal *), igraphxerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.0) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/*     Courant Institute, Argonne National Lab, and Rice University */
/*     February 29, 1992 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGEQR2 computes a QR factorization of a real m by n matrix A: */
/*  A = Q * R. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A.  M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/*          On entry, the m by n matrix A. */
/*          On exit, the elements on and above the diagonal of the array */
/*          contain the min(m,n) by n upper trapezoidal matrix R (R is */
/*          upper triangular if m >= n); the elements below the diagonal, */
/*          with the array TAU, represent the orthogonal matrix Q as a */
/*          product of elementary reflectors (see Further Details). */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,M). */

/*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors (see Further */
/*          Details). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real scalar, and v is a real vector with */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i), */
/*  and tau in TAU(i). */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DGEQR2", &i__1);
	return 0;
    }

    k = min(*m,*n);

    i__1 = k;
    for (i__ = 1; i__ <= i__1; ++i__) {

/*        Generate elementary reflector H(i) to annihilate A(i+1:m,i) */

	i__2 = *m - i__ + 1;
/* Computing MIN */
	i__3 = i__ + 1;
	igraphdlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ * a_dim1]
		, &c__1, &tau[i__]);
	if (i__ < *n) {

/*           Apply H(i) to A(i:m,i+1:n) from the left */

	    aii = a[i__ + i__ * a_dim1];
	    a[i__ + i__ * a_dim1] = 1.;
	    i__2 = *m - i__ + 1;
	    i__3 = *n - i__;
	    igraphdlarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &tau[
		    i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]);
	    a[i__ + i__ * a_dim1] = aii;
	}
/* L10: */
    }
    return 0;

/*     End of DGEQR2 */

} /* igraphdgeqr2_ */
Example #13
0
/* Subroutine */ int igraphdormhr_(char *side, char *trans, integer *m, integer *n, 
	integer *ilo, integer *ihi, doublereal *a, integer *lda, doublereal *
	tau, doublereal *c__, integer *ldc, doublereal *work, integer *lwork, 
	integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2;
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i1, i2, nb, mi, nh, ni, nq, nw;
    logical left;
    extern logical igraphlsame_(char *, char *);
    integer iinfo;
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int igraphdormqr_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *);
    integer lwkopt;
    logical lquery;


/*  -- LAPACK routine (version 3.2) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       November 2006   


    Purpose   
    =======   

    DORMHR overwrites the general real M-by-N matrix C with   

                    SIDE = 'L'     SIDE = 'R'   
    TRANS = 'N':      Q * C          C * Q   
    TRANS = 'T':      Q**T * C       C * Q**T   

    where Q is a real orthogonal matrix of order nq, with nq = m if   
    SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of   
    IHI-ILO elementary reflectors, as returned by DGEHRD:   

    Q = H(ilo) H(ilo+1) . . . H(ihi-1).   

    Arguments   
    =========   

    SIDE    (input) CHARACTER*1   
            = 'L': apply Q or Q**T from the Left;   
            = 'R': apply Q or Q**T from the Right.   

    TRANS   (input) CHARACTER*1   
            = 'N':  No transpose, apply Q;   
            = 'T':  Transpose, apply Q**T.   

    M       (input) INTEGER   
            The number of rows of the matrix C. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix C. N >= 0.   

    ILO     (input) INTEGER   
    IHI     (input) INTEGER   
            ILO and IHI must have the same values as in the previous call   
            of DGEHRD. Q is equal to the unit matrix except in the   
            submatrix Q(ilo+1:ihi,ilo+1:ihi).   
            If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and   
            ILO = 1 and IHI = 0, if M = 0;   
            if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and   
            ILO = 1 and IHI = 0, if N = 0.   

    A       (input) DOUBLE PRECISION array, dimension   
                                 (LDA,M) if SIDE = 'L'   
                                 (LDA,N) if SIDE = 'R'   
            The vectors which define the elementary reflectors, as   
            returned by DGEHRD.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.   
            LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.   

    TAU     (input) DOUBLE PRECISION array, dimension   
                                 (M-1) if SIDE = 'L'   
                                 (N-1) if SIDE = 'R'   
            TAU(i) must contain the scalar factor of the elementary   
            reflector H(i), as returned by DGEHRD.   

    C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)   
            On entry, the M-by-N matrix C.   
            On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.   

    LDC     (input) INTEGER   
            The leading dimension of the array C. LDC >= max(1,M).   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            If SIDE = 'L', LWORK >= max(1,N);   
            if SIDE = 'R', LWORK >= max(1,M).   
            For optimum performance LWORK >= N*NB if SIDE = 'L', and   
            LWORK >= M*NB if SIDE = 'R', where NB is the optimal   
            blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;

    /* Function Body */
    *info = 0;
    nh = *ihi - *ilo;
    left = igraphlsame_(side, "L");
    lquery = *lwork == -1;

/*     NQ is the order of Q and NW is the minimum dimension of WORK */

    if (left) {
	nq = *m;
	nw = *n;
    } else {
	nq = *n;
	nw = *m;
    }
    if (! left && ! igraphlsame_(side, "R")) {
	*info = -1;
    } else if (! igraphlsame_(trans, "N") && ! igraphlsame_(trans, 
	    "T")) {
	*info = -2;
    } else if (*m < 0) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ilo < 1 || *ilo > max(1,nq)) {
	*info = -5;
    } else if (*ihi < min(*ilo,nq) || *ihi > nq) {
	*info = -6;
    } else if (*lda < max(1,nq)) {
	*info = -8;
    } else if (*ldc < max(1,*m)) {
	*info = -11;
    } else if (*lwork < max(1,nw) && ! lquery) {
	*info = -13;
    }

    if (*info == 0) {
	if (left) {
/* Writing concatenation */
	    i__1[0] = 1, a__1[0] = side;
	    i__1[1] = 1, a__1[1] = trans;
	    s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
	    nb = igraphilaenv_(&c__1, "DORMQR", ch__1, &nh, n, &nh, &c_n1, (ftnlen)
		    6, (ftnlen)2);
	} else {
/* Writing concatenation */
	    i__1[0] = 1, a__1[0] = side;
	    i__1[1] = 1, a__1[1] = trans;
	    s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
	    nb = igraphilaenv_(&c__1, "DORMQR", ch__1, m, &nh, &nh, &c_n1, (ftnlen)
		    6, (ftnlen)2);
	}
	lwkopt = max(1,nw) * nb;
	work[1] = (doublereal) lwkopt;
    }

    if (*info != 0) {
	i__2 = -(*info);
	igraphxerbla_("DORMHR", &i__2, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0 || nh == 0) {
	work[1] = 1.;
	return 0;
    }

    if (left) {
	mi = nh;
	ni = *n;
	i1 = *ilo + 1;
	i2 = 1;
    } else {
	mi = *m;
	ni = nh;
	i1 = 1;
	i2 = *ilo + 1;
    }

    igraphdormqr_(side, trans, &mi, &ni, &nh, &a[*ilo + 1 + *ilo * a_dim1], lda, &
	    tau[*ilo], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);

    work[1] = (doublereal) lwkopt;
    return 0;

/*     End of DORMHR */

} /* igraphdormhr_ */
Example #14
0
   Subroutine */ int igraphdormqr_(char *side, char *trans, integer *m, integer *n, 
	integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
	c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, 
	    i__5;
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__;
    doublereal t[4160]	/* was [65][64] */;
    integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
    logical left;
    extern logical igraphlsame_(char *, char *);
    integer nbmin, iinfo;
    extern /* Subroutine */ int igraphdorm2r_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *), igraphdlarfb_(char 
	    *, char *, char *, char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *), igraphdlarft_(char *, char *, integer *, integer *, doublereal 
	    *, integer *, doublereal *, doublereal *, integer *), igraphxerbla_(char *, integer *, ftnlen);
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    logical notran;
    integer ldwork, lwkopt;
    logical lquery;


/*  -- LAPACK computational routine (version 3.4.0) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       November 2011   


    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;

    /* Function Body */
    *info = 0;
    left = igraphlsame_(side, "L");
    notran = igraphlsame_(trans, "N");
    lquery = *lwork == -1;

/*     NQ is the order of Q and NW is the minimum dimension of WORK */

    if (left) {
	nq = *m;
	nw = *n;
    } else {
	nq = *n;
	nw = *m;
    }
    if (! left && ! igraphlsame_(side, "R")) {
	*info = -1;
    } else if (! notran && ! igraphlsame_(trans, "T")) {
	*info = -2;
    } else if (*m < 0) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*k < 0 || *k > nq) {
	*info = -5;
    } else if (*lda < max(1,nq)) {
	*info = -7;
    } else if (*ldc < max(1,*m)) {
	*info = -10;
    } else if (*lwork < max(1,nw) && ! lquery) {
	*info = -12;
    }

    if (*info == 0) {

/*        Determine the block size.  NB may be at most NBMAX, where NBMAX   
          is used to define the local array T.   

   Computing MIN   
   Writing concatenation */
	i__3[0] = 1, a__1[0] = side;
	i__3[1] = 1, a__1[1] = trans;
	s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
	i__1 = 64, i__2 = igraphilaenv_(&c__1, "DORMQR", ch__1, m, n, k, &c_n1, (
		ftnlen)6, (ftnlen)2);
	nb = min(i__1,i__2);
	lwkopt = max(1,nw) * nb;
	work[1] = (doublereal) lwkopt;
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DORMQR", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0 || *k == 0) {
	work[1] = 1.;
	return 0;
    }

    nbmin = 2;
    ldwork = nw;
    if (nb > 1 && nb < *k) {
	iws = nw * nb;
	if (*lwork < iws) {
	    nb = *lwork / ldwork;
/* Computing MAX   
   Writing concatenation */
	    i__3[0] = 1, a__1[0] = side;
	    i__3[1] = 1, a__1[1] = trans;
	    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
	    i__1 = 2, i__2 = igraphilaenv_(&c__2, "DORMQR", ch__1, m, n, k, &c_n1, (
		    ftnlen)6, (ftnlen)2);
	    nbmin = max(i__1,i__2);
	}
    } else {
	iws = nw;
    }

    if (nb < nbmin || nb >= *k) {

/*        Use unblocked code */

	igraphdorm2r_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
		c_offset], ldc, &work[1], &iinfo);
    } else {

/*        Use blocked code */

	if (left && ! notran || ! left && notran) {
	    i1 = 1;
	    i2 = *k;
	    i3 = nb;
	} else {
	    i1 = (*k - 1) / nb * nb + 1;
	    i2 = 1;
	    i3 = -nb;
	}

	if (left) {
	    ni = *n;
	    jc = 1;
	} else {
	    mi = *m;
	    ic = 1;
	}

	i__1 = i2;
	i__2 = i3;
	for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
	    i__4 = nb, i__5 = *k - i__ + 1;
	    ib = min(i__4,i__5);

/*           Form the triangular factor of the block reflector   
             H = H(i) H(i+1) . . . H(i+ib-1) */

	    i__4 = nq - i__ + 1;
	    igraphdlarft_("Forward", "Columnwise", &i__4, &ib, &a[i__ + i__ * 
		    a_dim1], lda, &tau[i__], t, &c__65)
		    ;
	    if (left) {

/*              H or H**T is applied to C(i:m,1:n) */

		mi = *m - i__ + 1;
		ic = i__;
	    } else {

/*              H or H**T is applied to C(1:m,i:n) */

		ni = *n - i__ + 1;
		jc = i__;
	    }

/*           Apply H or H**T */

	    igraphdlarfb_(side, trans, "Forward", "Columnwise", &mi, &ni, &ib, &a[
		    i__ + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc * 
		    c_dim1], ldc, &work[1], &ldwork);
/* L10: */
	}
    }
    work[1] = (doublereal) lwkopt;
    return 0;

/*     End of DORMQR */

} /* igraphdormqr_ */
Example #15
0
   Subroutine */ int igraphdgetrf_(integer *m, integer *n, doublereal *a, integer *
	lda, integer *ipiv, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;

    /* Local variables */
    integer i__, j, jb, nb;
    extern /* Subroutine */ int igraphdgemm_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *);
    integer iinfo;
    extern /* Subroutine */ int igraphdtrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *), igraphdgetf2_(
	    integer *, integer *, doublereal *, integer *, integer *, integer 
	    *), igraphxerbla_(char *, integer *, ftnlen);
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int igraphdlaswp_(integer *, doublereal *, integer *, 
	    integer *, integer *, integer *, integer *);


/*  -- LAPACK computational routine (version 3.4.0) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       November 2011   


    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --ipiv;

    /* Function Body */
    *info = 0;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DGETRF", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

/*     Determine the block size for this environment. */

    nb = igraphilaenv_(&c__1, "DGETRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)
	    1);
    if (nb <= 1 || nb >= min(*m,*n)) {

/*        Use unblocked code. */

	igraphdgetf2_(m, n, &a[a_offset], lda, &ipiv[1], info);
    } else {

/*        Use blocked code. */

	i__1 = min(*m,*n);
	i__2 = nb;
	for (j = 1; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
/* Computing MIN */
	    i__3 = min(*m,*n) - j + 1;
	    jb = min(i__3,nb);

/*           Factor diagonal and subdiagonal blocks and test for exact   
             singularity. */

	    i__3 = *m - j + 1;
	    igraphdgetf2_(&i__3, &jb, &a[j + j * a_dim1], lda, &ipiv[j], &iinfo);

/*           Adjust INFO and the pivot indices. */

	    if (*info == 0 && iinfo > 0) {
		*info = iinfo + j - 1;
	    }
/* Computing MIN */
	    i__4 = *m, i__5 = j + jb - 1;
	    i__3 = min(i__4,i__5);
	    for (i__ = j; i__ <= i__3; ++i__) {
		ipiv[i__] = j - 1 + ipiv[i__];
/* L10: */
	    }

/*           Apply interchanges to columns 1:J-1. */

	    i__3 = j - 1;
	    i__4 = j + jb - 1;
	    igraphdlaswp_(&i__3, &a[a_offset], lda, &j, &i__4, &ipiv[1], &c__1);

	    if (j + jb <= *n) {

/*              Apply interchanges to columns J+JB:N. */

		i__3 = *n - j - jb + 1;
		i__4 = j + jb - 1;
		igraphdlaswp_(&i__3, &a[(j + jb) * a_dim1 + 1], lda, &j, &i__4, &
			ipiv[1], &c__1);

/*              Compute block row of U. */

		i__3 = *n - j - jb + 1;
		igraphdtrsm_("Left", "Lower", "No transpose", "Unit", &jb, &i__3, &
			c_b16, &a[j + j * a_dim1], lda, &a[j + (j + jb) * 
			a_dim1], lda);
		if (j + jb <= *m) {

/*                 Update trailing submatrix. */

		    i__3 = *m - j - jb + 1;
		    i__4 = *n - j - jb + 1;
		    igraphdgemm_("No transpose", "No transpose", &i__3, &i__4, &jb, 
			    &c_b19, &a[j + jb + j * a_dim1], lda, &a[j + (j + 
			    jb) * a_dim1], lda, &c_b16, &a[j + jb + (j + jb) *
			     a_dim1], lda);
		}
	    }
/* L20: */
	}
    }
    return 0;

/*     End of DGETRF */

} /* igraphdgetrf_ */
Example #16
0
/* Subroutine */ int igraphdormql_(char *side, char *trans, integer *m, integer *n, 
	integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
	c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, 
	    i__5;
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__;
    doublereal t[4160]	/* was [65][64] */;
    integer i1, i2, i3, ib, nb, mi, ni, nq, nw, iws;
    logical left;
    extern logical igraphlsame_(char *, char *);
    integer nbmin, iinfo;
    extern /* Subroutine */ int igraphdorm2l_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *), igraphdlarfb_(char 
	    *, char *, char *, char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *), igraphdlarft_(char *, char *, integer *, integer *, doublereal 
	    *, integer *, doublereal *, doublereal *, integer *), igraphxerbla_(char *, integer *, ftnlen);
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    logical notran;
    integer ldwork, lwkopt;
    logical lquery;


/*  -- LAPACK routine (version 3.3.1) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
    -- April 2011                                                      --   


    Purpose   
    =======   

    DORMQL overwrites the general real M-by-N matrix C with   

                    SIDE = 'L'     SIDE = 'R'   
    TRANS = 'N':      Q * C          C * Q   
    TRANS = 'T':      Q**T * C       C * Q**T   

    where Q is a real orthogonal matrix defined as the product of k   
    elementary reflectors   

          Q = H(k) . . . H(2) H(1)   

    as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N   
    if SIDE = 'R'.   

    Arguments   
    =========   

    SIDE    (input) CHARACTER*1   
            = 'L': apply Q or Q**T from the Left;   
            = 'R': apply Q or Q**T from the Right.   

    TRANS   (input) CHARACTER*1   
            = 'N':  No transpose, apply Q;   
            = 'T':  Transpose, apply Q**T.   

    M       (input) INTEGER   
            The number of rows of the matrix C. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix C. N >= 0.   

    K       (input) INTEGER   
            The number of elementary reflectors whose product defines   
            the matrix Q.   
            If SIDE = 'L', M >= K >= 0;   
            if SIDE = 'R', N >= K >= 0.   

    A       (input) DOUBLE PRECISION array, dimension (LDA,K)   
            The i-th column must contain the vector which defines the   
            elementary reflector H(i), for i = 1,2,...,k, as returned by   
            DGEQLF in the last k columns of its array argument A.   
            A is modified by the routine but restored on exit.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.   
            If SIDE = 'L', LDA >= max(1,M);   
            if SIDE = 'R', LDA >= max(1,N).   

    TAU     (input) DOUBLE PRECISION array, dimension (K)   
            TAU(i) must contain the scalar factor of the elementary   
            reflector H(i), as returned by DGEQLF.   

    C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)   
            On entry, the M-by-N matrix C.   
            On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.   

    LDC     (input) INTEGER   
            The leading dimension of the array C. LDC >= max(1,M).   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            If SIDE = 'L', LWORK >= max(1,N);   
            if SIDE = 'R', LWORK >= max(1,M).   
            For optimum performance LWORK >= N*NB if SIDE = 'L', and   
            LWORK >= M*NB if SIDE = 'R', where NB is the optimal   
            blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;

    /* Function Body */
    *info = 0;
    left = igraphlsame_(side, "L");
    notran = igraphlsame_(trans, "N");
    lquery = *lwork == -1;

/*     NQ is the order of Q and NW is the minimum dimension of WORK */

    if (left) {
	nq = *m;
	nw = max(1,*n);
    } else {
	nq = *n;
	nw = max(1,*m);
    }
    if (! left && ! igraphlsame_(side, "R")) {
	*info = -1;
    } else if (! notran && ! igraphlsame_(trans, "T")) {
	*info = -2;
    } else if (*m < 0) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*k < 0 || *k > nq) {
	*info = -5;
    } else if (*lda < max(1,nq)) {
	*info = -7;
    } else if (*ldc < max(1,*m)) {
	*info = -10;
    }

    if (*info == 0) {
	if (*m == 0 || *n == 0) {
	    lwkopt = 1;
	} else {

/*           Determine the block size.  NB may be at most NBMAX, where   
             NBMAX is used to define the local array T.   

   Computing MIN   
   Writing concatenation */
	    i__3[0] = 1, a__1[0] = side;
	    i__3[1] = 1, a__1[1] = trans;
	    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
	    i__1 = 64, i__2 = igraphilaenv_(&c__1, "DORMQL", ch__1, m, n, k, &c_n1, 
		    (ftnlen)6, (ftnlen)2);
	    nb = min(i__1,i__2);
	    lwkopt = nw * nb;
	}
	work[1] = (doublereal) lwkopt;

	if (*lwork < nw && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DORMQL", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0) {
	return 0;
    }

    nbmin = 2;
    ldwork = nw;
    if (nb > 1 && nb < *k) {
	iws = nw * nb;
	if (*lwork < iws) {
	    nb = *lwork / ldwork;
/* Computing MAX   
   Writing concatenation */
	    i__3[0] = 1, a__1[0] = side;
	    i__3[1] = 1, a__1[1] = trans;
	    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
	    i__1 = 2, i__2 = igraphilaenv_(&c__2, "DORMQL", ch__1, m, n, k, &c_n1, (
		    ftnlen)6, (ftnlen)2);
	    nbmin = max(i__1,i__2);
	}
    } else {
	iws = nw;
    }

    if (nb < nbmin || nb >= *k) {

/*        Use unblocked code */

	igraphdorm2l_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
		c_offset], ldc, &work[1], &iinfo);
    } else {

/*        Use blocked code */

	if (left && notran || ! left && ! notran) {
	    i1 = 1;
	    i2 = *k;
	    i3 = nb;
	} else {
	    i1 = (*k - 1) / nb * nb + 1;
	    i2 = 1;
	    i3 = -nb;
	}

	if (left) {
	    ni = *n;
	} else {
	    mi = *m;
	}

	i__1 = i2;
	i__2 = i3;
	for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
/* Computing MIN */
	    i__4 = nb, i__5 = *k - i__ + 1;
	    ib = min(i__4,i__5);

/*           Form the triangular factor of the block reflector   
             H = H(i+ib-1) . . . H(i+1) H(i) */

	    i__4 = nq - *k + i__ + ib - 1;
	    igraphdlarft_("Backward", "Columnwise", &i__4, &ib, &a[i__ * a_dim1 + 1]
		    , lda, &tau[i__], t, &c__65);
	    if (left) {

/*              H or H**T is applied to C(1:m-k+i+ib-1,1:n) */

		mi = *m - *k + i__ + ib - 1;
	    } else {

/*              H or H**T is applied to C(1:m,1:n-k+i+ib-1) */

		ni = *n - *k + i__ + ib - 1;
	    }

/*           Apply H or H**T */

	    igraphdlarfb_(side, trans, "Backward", "Columnwise", &mi, &ni, &ib, &a[
		    i__ * a_dim1 + 1], lda, t, &c__65, &c__[c_offset], ldc, &
		    work[1], &ldwork);
/* L10: */
	}
    }
    work[1] = (doublereal) lwkopt;
    return 0;

/*     End of DORMQL */

} /* igraphdormql_ */
Example #17
0
/* Subroutine */ int igraphdstebz_(char *range, char *order, integer *n, doublereal 
	*vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol, 
	doublereal *d__, doublereal *e, integer *m, integer *nsplit, 
	doublereal *w, integer *iblock, integer *isplit, doublereal *work, 
	integer *iwork, integer *info)
{
    /* System generated locals */
    integer i__1, i__2, i__3;
    doublereal d__1, d__2, d__3, d__4, d__5;

    /* Builtin functions */
    double sqrt(doublereal), log(doublereal);

    /* Local variables */
    integer j, ib, jb, ie, je, nb;
    doublereal gl;
    integer im, in;
    doublereal gu;
    integer iw;
    doublereal wl, wu;
    integer nwl;
    doublereal ulp, wlu, wul;
    integer nwu;
    doublereal tmp1, tmp2;
    integer iend, ioff, iout, itmp1, jdisc;
    extern logical igraphlsame_(char *, char *);
    integer iinfo;
    doublereal atoli;
    integer iwoff;
    doublereal bnorm;
    integer itmax;
    doublereal wkill, rtoli, tnorm;
    extern doublereal igraphdlamch_(char *);
    integer ibegin;
    extern /* Subroutine */ int igraphdlaebz_(integer *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
	     doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *);
    integer irange, idiscl;
    doublereal safemn;
    integer idumma[1];
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    integer idiscu, iorder;
    logical ncnvrg;
    doublereal pivmin;
    logical toofew;


/*  -- LAPACK routine (version 3.3.1) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
    -- April 2011                                                      --   
       8-18-00:  Increase FUDGE factor for T3E (eca)   


    Purpose   
    =======   

    DSTEBZ computes the eigenvalues of a symmetric tridiagonal   
    matrix T.  The user may ask for all eigenvalues, all eigenvalues   
    in the half-open interval (VL, VU], or the IL-th through IU-th   
    eigenvalues.   

    To avoid overflow, the matrix must be scaled so that its   
    largest element is no greater than overflow**(1/2) *   
    underflow**(1/4) in absolute value, and for greatest   
    accuracy, it should not be much smaller than that.   

    See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal   
    Matrix", Report CS41, Computer Science Dept., Stanford   
    University, July 21, 1966.   

    Arguments   
    =========   

    RANGE   (input) CHARACTER*1   
            = 'A': ("All")   all eigenvalues will be found.   
            = 'V': ("Value") all eigenvalues in the half-open interval   
                             (VL, VU] will be found.   
            = 'I': ("Index") the IL-th through IU-th eigenvalues (of the   
                             entire matrix) will be found.   

    ORDER   (input) CHARACTER*1   
            = 'B': ("By Block") the eigenvalues will be grouped by   
                                split-off block (see IBLOCK, ISPLIT) and   
                                ordered from smallest to largest within   
                                the block.   
            = 'E': ("Entire matrix")   
                                the eigenvalues for the entire matrix   
                                will be ordered from smallest to   
                                largest.   

    N       (input) INTEGER   
            The order of the tridiagonal matrix T.  N >= 0.   

    VL      (input) DOUBLE PRECISION   
    VU      (input) DOUBLE PRECISION   
            If RANGE='V', the lower and upper bounds of the interval to   
            be searched for eigenvalues.  Eigenvalues less than or equal   
            to VL, or greater than VU, will not be returned.  VL < VU.   
            Not referenced if RANGE = 'A' or 'I'.   

    IL      (input) INTEGER   
    IU      (input) INTEGER   
            If RANGE='I', the indices (in ascending order) of the   
            smallest and largest eigenvalues to be returned.   
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   
            Not referenced if RANGE = 'A' or 'V'.   

    ABSTOL  (input) DOUBLE PRECISION   
            The absolute tolerance for the eigenvalues.  An eigenvalue   
            (or cluster) is considered to be located if it has been   
            determined to lie in an interval whose width is ABSTOL or   
            less.  If ABSTOL is less than or equal to zero, then ULP*|T|   
            will be used, where |T| means the 1-norm of T.   

            Eigenvalues will be computed most accurately when ABSTOL is   
            set to twice the underflow threshold 2*DLAMCH('S'), not zero.   

    D       (input) DOUBLE PRECISION array, dimension (N)   
            The n diagonal elements of the tridiagonal matrix T.   

    E       (input) DOUBLE PRECISION array, dimension (N-1)   
            The (n-1) off-diagonal elements of the tridiagonal matrix T.   

    M       (output) INTEGER   
            The actual number of eigenvalues found. 0 <= M <= N.   
            (See also the description of INFO=2,3.)   

    NSPLIT  (output) INTEGER   
            The number of diagonal blocks in the matrix T.   
            1 <= NSPLIT <= N.   

    W       (output) DOUBLE PRECISION array, dimension (N)   
            On exit, the first M elements of W will contain the   
            eigenvalues.  (DSTEBZ may use the remaining N-M elements as   
            workspace.)   

    IBLOCK  (output) INTEGER array, dimension (N)   
            At each row/column j where E(j) is zero or small, the   
            matrix T is considered to split into a block diagonal   
            matrix.  On exit, if INFO = 0, IBLOCK(i) specifies to which   
            block (from 1 to the number of blocks) the eigenvalue W(i)   
            belongs.  (DSTEBZ may use the remaining N-M elements as   
            workspace.)   

    ISPLIT  (output) INTEGER array, dimension (N)   
            The splitting points, at which T breaks up into submatrices.   
            The first submatrix consists of rows/columns 1 to ISPLIT(1),   
            the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),   
            etc., and the NSPLIT-th consists of rows/columns   
            ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.   
            (Only the first NSPLIT elements will actually be used, but   
            since the user cannot know a priori what value NSPLIT will   
            have, N words must be reserved for ISPLIT.)   

    WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)   

    IWORK   (workspace) INTEGER array, dimension (3*N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  some or all of the eigenvalues failed to converge or   
                  were not computed:   
                  =1 or 3: Bisection failed to converge for some   
                          eigenvalues; these eigenvalues are flagged by a   
                          negative block number.  The effect is that the   
                          eigenvalues may not be as accurate as the   
                          absolute and relative tolerances.  This is   
                          generally caused by unexpectedly inaccurate   
                          arithmetic.   
                  =2 or 3: RANGE='I' only: Not all of the eigenvalues   
                          IL:IU were found.   
                          Effect: M < IU+1-IL   
                          Cause:  non-monotonic arithmetic, causing the   
                                  Sturm sequence to be non-monotonic.   
                          Cure:   recalculate, using RANGE='A', and pick   
                                  out eigenvalues IL:IU.  In some cases,   
                                  increasing the PARAMETER "FUDGE" may   
                                  make things work.   
                  = 4:    RANGE='I', and the Gershgorin interval   
                          initially used was too small.  No eigenvalues   
                          were computed.   
                          Probable cause: your machine has sloppy   
                                          floating-point arithmetic.   
                          Cure: Increase the PARAMETER "FUDGE",   
                                recompile, and try again.   

    Internal Parameters   
    ===================   

    RELFAC  DOUBLE PRECISION, default = 2.0e0   
            The relative tolerance.  An interval (a,b] lies within   
            "relative tolerance" if  b-a < RELFAC*ulp*max(|a|,|b|),   
            where "ulp" is the machine precision (distance from 1 to   
            the next larger floating point number.)   

    FUDGE   DOUBLE PRECISION, default = 2   
            A "fudge factor" to widen the Gershgorin intervals.  Ideally,   
            a value of 1 should work, but on machines with sloppy   
            arithmetic, this needs to be larger.  The default for   
            publicly released versions should be large enough to handle   
            the worst machine around.  Note that this has no effect   
            on accuracy of the solution.   

    =====================================================================   


       Parameter adjustments */
    --iwork;
    --work;
    --isplit;
    --iblock;
    --w;
    --e;
    --d__;

    /* Function Body */
    *info = 0;

/*     Decode RANGE */

    if (igraphlsame_(range, "A")) {
	irange = 1;
    } else if (igraphlsame_(range, "V")) {
	irange = 2;
    } else if (igraphlsame_(range, "I")) {
	irange = 3;
    } else {
	irange = 0;
    }

/*     Decode ORDER */

    if (igraphlsame_(order, "B")) {
	iorder = 2;
    } else if (igraphlsame_(order, "E")) {
	iorder = 1;
    } else {
	iorder = 0;
    }

/*     Check for Errors */

    if (irange <= 0) {
	*info = -1;
    } else if (iorder <= 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (irange == 2) {
	if (*vl >= *vu) {
	    *info = -5;
	}
    } else if (irange == 3 && (*il < 1 || *il > max(1,*n))) {
	*info = -6;
    } else if (irange == 3 && (*iu < min(*n,*il) || *iu > *n)) {
	*info = -7;
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DSTEBZ", &i__1, (ftnlen)6);
	return 0;
    }

/*     Initialize error flags */

    *info = 0;
    ncnvrg = FALSE_;
    toofew = FALSE_;

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

/*     Simplifications: */

    if (irange == 3 && *il == 1 && *iu == *n) {
	irange = 1;
    }

/*     Get machine constants   
       NB is the minimum vector length for vector bisection, or 0   
       if only scalar is to be done. */

    safemn = igraphdlamch_("S");
    ulp = igraphdlamch_("P");
    rtoli = ulp * 2.;
    nb = igraphilaenv_(&c__1, "DSTEBZ", " ", n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    if (nb <= 1) {
	nb = 0;
    }

/*     Special Case when N=1 */

    if (*n == 1) {
	*nsplit = 1;
	isplit[1] = 1;
	if (irange == 2 && (*vl >= d__[1] || *vu < d__[1])) {
	    *m = 0;
	} else {
	    w[1] = d__[1];
	    iblock[1] = 1;
	    *m = 1;
	}
	return 0;
    }

/*     Compute Splitting Points */

    *nsplit = 1;
    work[*n] = 0.;
    pivmin = 1.;

    i__1 = *n;
    for (j = 2; j <= i__1; ++j) {
/* Computing 2nd power */
	d__1 = e[j - 1];
	tmp1 = d__1 * d__1;
/* Computing 2nd power */
	d__2 = ulp;
	if ((d__1 = d__[j] * d__[j - 1], abs(d__1)) * (d__2 * d__2) + safemn 
		> tmp1) {
	    isplit[*nsplit] = j - 1;
	    ++(*nsplit);
	    work[j - 1] = 0.;
	} else {
	    work[j - 1] = tmp1;
	    pivmin = max(pivmin,tmp1);
	}
/* L10: */
    }
    isplit[*nsplit] = *n;
    pivmin *= safemn;

/*     Compute Interval and ATOLI */

    if (irange == 3) {

/*        RANGE='I': Compute the interval containing eigenvalues   
                     IL through IU.   

          Compute Gershgorin interval for entire (split) matrix   
          and use it as the initial interval */

	gu = d__[1];
	gl = d__[1];
	tmp1 = 0.;

	i__1 = *n - 1;
	for (j = 1; j <= i__1; ++j) {
	    tmp2 = sqrt(work[j]);
/* Computing MAX */
	    d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
	    gu = max(d__1,d__2);
/* Computing MIN */
	    d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
	    gl = min(d__1,d__2);
	    tmp1 = tmp2;
/* L20: */
	}

/* Computing MAX */
	d__1 = gu, d__2 = d__[*n] + tmp1;
	gu = max(d__1,d__2);
/* Computing MIN */
	d__1 = gl, d__2 = d__[*n] - tmp1;
	gl = min(d__1,d__2);
/* Computing MAX */
	d__1 = abs(gl), d__2 = abs(gu);
	tnorm = max(d__1,d__2);
	gl = gl - tnorm * 2.1 * ulp * *n - pivmin * 4.2000000000000002;
	gu = gu + tnorm * 2.1 * ulp * *n + pivmin * 2.1;

/*        Compute Iteration parameters */

	itmax = (integer) ((log(tnorm + pivmin) - log(pivmin)) / log(2.)) + 2;
	if (*abstol <= 0.) {
	    atoli = ulp * tnorm;
	} else {
	    atoli = *abstol;
	}

	work[*n + 1] = gl;
	work[*n + 2] = gl;
	work[*n + 3] = gu;
	work[*n + 4] = gu;
	work[*n + 5] = gl;
	work[*n + 6] = gu;
	iwork[1] = -1;
	iwork[2] = -1;
	iwork[3] = *n + 1;
	iwork[4] = *n + 1;
	iwork[5] = *il - 1;
	iwork[6] = *iu;

	igraphdlaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, &pivmin, 
		&d__[1], &e[1], &work[1], &iwork[5], &work[*n + 1], &work[*n 
		+ 5], &iout, &iwork[1], &w[1], &iblock[1], &iinfo);

	if (iwork[6] == *iu) {
	    wl = work[*n + 1];
	    wlu = work[*n + 3];
	    nwl = iwork[1];
	    wu = work[*n + 4];
	    wul = work[*n + 2];
	    nwu = iwork[4];
	} else {
	    wl = work[*n + 2];
	    wlu = work[*n + 4];
	    nwl = iwork[2];
	    wu = work[*n + 3];
	    wul = work[*n + 1];
	    nwu = iwork[3];
	}

	if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) {
	    *info = 4;
	    return 0;
	}
    } else {

/*        RANGE='A' or 'V' -- Set ATOLI   

   Computing MAX */
	d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = d__[*n], abs(d__1)) + (
		d__2 = e[*n - 1], abs(d__2));
	tnorm = max(d__3,d__4);

	i__1 = *n - 1;
	for (j = 2; j <= i__1; ++j) {
/* Computing MAX */
	    d__4 = tnorm, d__5 = (d__1 = d__[j], abs(d__1)) + (d__2 = e[j - 1]
		    , abs(d__2)) + (d__3 = e[j], abs(d__3));
	    tnorm = max(d__4,d__5);
/* L30: */
	}

	if (*abstol <= 0.) {
	    atoli = ulp * tnorm;
	} else {
	    atoli = *abstol;
	}

	if (irange == 2) {
	    wl = *vl;
	    wu = *vu;
	} else {
	    wl = 0.;
	    wu = 0.;
	}
    }

/*     Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU.   
       NWL accumulates the number of eigenvalues .le. WL,   
       NWU accumulates the number of eigenvalues .le. WU */

    *m = 0;
    iend = 0;
    *info = 0;
    nwl = 0;
    nwu = 0;

    i__1 = *nsplit;
    for (jb = 1; jb <= i__1; ++jb) {
	ioff = iend;
	ibegin = ioff + 1;
	iend = isplit[jb];
	in = iend - ioff;

	if (in == 1) {

/*           Special Case -- IN=1 */

	    if (irange == 1 || wl >= d__[ibegin] - pivmin) {
		++nwl;
	    }
	    if (irange == 1 || wu >= d__[ibegin] - pivmin) {
		++nwu;
	    }
	    if (irange == 1 || wl < d__[ibegin] - pivmin && wu >= d__[ibegin] 
		    - pivmin) {
		++(*m);
		w[*m] = d__[ibegin];
		iblock[*m] = jb;
	    }
	} else {

/*           General Case -- IN > 1   

             Compute Gershgorin Interval   
             and use it as the initial interval */

	    gu = d__[ibegin];
	    gl = d__[ibegin];
	    tmp1 = 0.;

	    i__2 = iend - 1;
	    for (j = ibegin; j <= i__2; ++j) {
		tmp2 = (d__1 = e[j], abs(d__1));
/* Computing MAX */
		d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
		gu = max(d__1,d__2);
/* Computing MIN */
		d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
		gl = min(d__1,d__2);
		tmp1 = tmp2;
/* L40: */
	    }

/* Computing MAX */
	    d__1 = gu, d__2 = d__[iend] + tmp1;
	    gu = max(d__1,d__2);
/* Computing MIN */
	    d__1 = gl, d__2 = d__[iend] - tmp1;
	    gl = min(d__1,d__2);
/* Computing MAX */
	    d__1 = abs(gl), d__2 = abs(gu);
	    bnorm = max(d__1,d__2);
	    gl = gl - bnorm * 2.1 * ulp * in - pivmin * 2.1;
	    gu = gu + bnorm * 2.1 * ulp * in + pivmin * 2.1;

/*           Compute ATOLI for the current submatrix */

	    if (*abstol <= 0.) {
/* Computing MAX */
		d__1 = abs(gl), d__2 = abs(gu);
		atoli = ulp * max(d__1,d__2);
	    } else {
		atoli = *abstol;
	    }

	    if (irange > 1) {
		if (gu < wl) {
		    nwl += in;
		    nwu += in;
		    goto L70;
		}
		gl = max(gl,wl);
		gu = min(gu,wu);
		if (gl >= gu) {
		    goto L70;
		}
	    }

/*           Set Up Initial Interval */

	    work[*n + 1] = gl;
	    work[*n + in + 1] = gu;
	    igraphdlaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli, &
		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
		    work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], &
		    w[*m + 1], &iblock[*m + 1], &iinfo);

	    nwl += iwork[1];
	    nwu += iwork[in + 1];
	    iwoff = *m - iwork[1];

/*           Compute Eigenvalues */

	    itmax = (integer) ((log(gu - gl + pivmin) - log(pivmin)) / log(2.)
		    ) + 2;
	    igraphdlaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli, &
		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
		    work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1],
		     &w[*m + 1], &iblock[*m + 1], &iinfo);

/*           Copy Eigenvalues Into W and IBLOCK   
             Use -JB for block number for unconverged eigenvalues. */

	    i__2 = iout;
	    for (j = 1; j <= i__2; ++j) {
		tmp1 = (work[j + *n] + work[j + in + *n]) * .5;

/*              Flag non-convergence. */

		if (j > iout - iinfo) {
		    ncnvrg = TRUE_;
		    ib = -jb;
		} else {
		    ib = jb;
		}
		i__3 = iwork[j + in] + iwoff;
		for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) {
		    w[je] = tmp1;
		    iblock[je] = ib;
/* L50: */
		}
/* L60: */
	    }

	    *m += im;
	}
L70:
	;
    }

/*     If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU   
       If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */

    if (irange == 3) {
	im = 0;
	idiscl = *il - 1 - nwl;
	idiscu = nwu - *iu;

	if (idiscl > 0 || idiscu > 0) {
	    i__1 = *m;
	    for (je = 1; je <= i__1; ++je) {
		if (w[je] <= wlu && idiscl > 0) {
		    --idiscl;
		} else if (w[je] >= wul && idiscu > 0) {
		    --idiscu;
		} else {
		    ++im;
		    w[im] = w[je];
		    iblock[im] = iblock[je];
		}
/* L80: */
	    }
	    *m = im;
	}
	if (idiscl > 0 || idiscu > 0) {

/*           Code to deal with effects of bad arithmetic:   
             Some low eigenvalues to be discarded are not in (WL,WLU],   
             or high eigenvalues to be discarded are not in (WUL,WU]   
             so just kill off the smallest IDISCL/largest IDISCU   
             eigenvalues, by simply finding the smallest/largest   
             eigenvalue(s).   

             (If N(w) is monotone non-decreasing, this should never   
                 happen.) */

	    if (idiscl > 0) {
		wkill = wu;
		i__1 = idiscl;
		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
		    iw = 0;
		    i__2 = *m;
		    for (je = 1; je <= i__2; ++je) {
			if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) {
			    iw = je;
			    wkill = w[je];
			}
/* L90: */
		    }
		    iblock[iw] = 0;
/* L100: */
		}
	    }
	    if (idiscu > 0) {

		wkill = wl;
		i__1 = idiscu;
		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
		    iw = 0;
		    i__2 = *m;
		    for (je = 1; je <= i__2; ++je) {
			if (iblock[je] != 0 && (w[je] > wkill || iw == 0)) {
			    iw = je;
			    wkill = w[je];
			}
/* L110: */
		    }
		    iblock[iw] = 0;
/* L120: */
		}
	    }
	    im = 0;
	    i__1 = *m;
	    for (je = 1; je <= i__1; ++je) {
		if (iblock[je] != 0) {
		    ++im;
		    w[im] = w[je];
		    iblock[im] = iblock[je];
		}
/* L130: */
	    }
	    *m = im;
	}
	if (idiscl < 0 || idiscu < 0) {
	    toofew = TRUE_;
	}
    }

/*     If ORDER='B', do nothing -- the eigenvalues are already sorted   
          by block.   
       If ORDER='E', sort the eigenvalues from smallest to largest */

    if (iorder == 1 && *nsplit > 1) {
	i__1 = *m - 1;
	for (je = 1; je <= i__1; ++je) {
	    ie = 0;
	    tmp1 = w[je];
	    i__2 = *m;
	    for (j = je + 1; j <= i__2; ++j) {
		if (w[j] < tmp1) {
		    ie = j;
		    tmp1 = w[j];
		}
/* L140: */
	    }

	    if (ie != 0) {
		itmp1 = iblock[ie];
		w[ie] = w[je];
		iblock[ie] = iblock[je];
		w[je] = tmp1;
		iblock[je] = itmp1;
	    }
/* L150: */
	}
    }

    *info = 0;
    if (ncnvrg) {
	++(*info);
    }
    if (toofew) {
	*info += 2;
    }
    return 0;

/*     End of DSTEBZ */

} /* igraphdstebz_ */
Example #18
0
/* Subroutine */ int igraphdsyrk_(char *uplo, char *trans, integer *n, integer *k, 
	doublereal *alpha, doublereal *a, integer *lda, doublereal *beta, 
	doublereal *c__, integer *ldc)
{
    /* System generated locals */
    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;

    /* Local variables */
    integer i__, j, l, info;
    doublereal temp;
    extern logical igraphlsame_(char *, char *);
    integer nrowa;
    logical upper;
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);


/*  Purpose   
    =======   

    DSYRK  performs one of the symmetric rank k operations   

       C := alpha*A*A**T + beta*C,   

    or   

       C := alpha*A**T*A + beta*C,   

    where  alpha and beta  are scalars, C is an  n by n  symmetric matrix   
    and  A  is an  n by k  matrix in the first case and a  k by n  matrix   
    in the second case.   

    Arguments   
    ==========   

    UPLO   - CHARACTER*1.   
             On  entry,   UPLO  specifies  whether  the  upper  or  lower   
             triangular  part  of the  array  C  is to be  referenced  as   
             follows:   

                UPLO = 'U' or 'u'   Only the  upper triangular part of  C   
                                    is to be referenced.   

                UPLO = 'L' or 'l'   Only the  lower triangular part of  C   
                                    is to be referenced.   

             Unchanged on exit.   

    TRANS  - CHARACTER*1.   
             On entry,  TRANS  specifies the operation to be performed as   
             follows:   

                TRANS = 'N' or 'n'   C := alpha*A*A**T + beta*C.   

                TRANS = 'T' or 't'   C := alpha*A**T*A + beta*C.   

                TRANS = 'C' or 'c'   C := alpha*A**T*A + beta*C.   

             Unchanged on exit.   

    N      - INTEGER.   
             On entry,  N specifies the order of the matrix C.  N must be   
             at least zero.   
             Unchanged on exit.   

    K      - INTEGER.   
             On entry with  TRANS = 'N' or 'n',  K  specifies  the number   
             of  columns   of  the   matrix   A,   and  on   entry   with   
             TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number   
             of rows of the matrix  A.  K must be at least zero.   
             Unchanged on exit.   

    ALPHA  - DOUBLE PRECISION.   
             On entry, ALPHA specifies the scalar alpha.   
             Unchanged on exit.   

    A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is   
             k  when  TRANS = 'N' or 'n',  and is  n  otherwise.   
             Before entry with  TRANS = 'N' or 'n',  the  leading  n by k   
             part of the array  A  must contain the matrix  A,  otherwise   
             the leading  k by n  part of the array  A  must contain  the   
             matrix A.   
             Unchanged on exit.   

    LDA    - INTEGER.   
             On entry, LDA specifies the first dimension of A as declared   
             in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'   
             then  LDA must be at least  max( 1, n ), otherwise  LDA must   
             be at least  max( 1, k ).   
             Unchanged on exit.   

    BETA   - DOUBLE PRECISION.   
             On entry, BETA specifies the scalar beta.   
             Unchanged on exit.   

    C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).   
             Before entry  with  UPLO = 'U' or 'u',  the leading  n by n   
             upper triangular part of the array C must contain the upper   
             triangular part  of the  symmetric matrix  and the strictly   
             lower triangular part of C is not referenced.  On exit, the   
             upper triangular part of the array  C is overwritten by the   
             upper triangular part of the updated matrix.   
             Before entry  with  UPLO = 'L' or 'l',  the leading  n by n   
             lower triangular part of the array C must contain the lower   
             triangular part  of the  symmetric matrix  and the strictly   
             upper triangular part of C is not referenced.  On exit, the   
             lower triangular part of the array  C is overwritten by the   
             lower triangular part of the updated matrix.   

    LDC    - INTEGER.   
             On entry, LDC specifies the first dimension of C as declared   
             in  the  calling  (sub)  program.   LDC  must  be  at  least   
             max( 1, n ).   
             Unchanged on exit.   

    Further Details   
    ===============   

    Level 3 Blas routine.   

    -- Written on 8-February-1989.   
       Jack Dongarra, Argonne National Laboratory.   
       Iain Duff, AERE Harwell.   
       Jeremy Du Croz, Numerical Algorithms Group Ltd.   
       Sven Hammarling, Numerical Algorithms Group Ltd.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;

    /* Function Body */
    if (igraphlsame_(trans, "N")) {
	nrowa = *n;
    } else {
	nrowa = *k;
    }
    upper = igraphlsame_(uplo, "U");

    info = 0;
    if (! upper && ! igraphlsame_(uplo, "L")) {
	info = 1;
    } else if (! igraphlsame_(trans, "N") && ! igraphlsame_(trans, 
	    "T") && ! igraphlsame_(trans, "C")) {
	info = 2;
    } else if (*n < 0) {
	info = 3;
    } else if (*k < 0) {
	info = 4;
    } else if (*lda < max(1,nrowa)) {
	info = 7;
    } else if (*ldc < max(1,*n)) {
	info = 10;
    }
    if (info != 0) {
	igraphxerbla_("DSYRK ", &info, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible. */

    if (*n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) {
	return 0;
    }

/*     And when  alpha.eq.zero. */

    if (*alpha == 0.) {
	if (upper) {
	    if (*beta == 0.) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = 0.;
/* L10: */
		    }
/* L20: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L30: */
		    }
/* L40: */
		}
	    }
	} else {
	    if (*beta == 0.) {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = 0.;
/* L50: */
		    }
/* L60: */
		}
	    } else {
		i__1 = *n;
		for (j = 1; j <= i__1; ++j) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L70: */
		    }
/* L80: */
		}
	    }
	}
	return 0;
    }

/*     Start the operations. */

    if (igraphlsame_(trans, "N")) {

/*        Form  C := alpha*A*A**T + beta*C. */

	if (upper) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (*beta == 0.) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = 0.;
/* L90: */
		    }
		} else if (*beta != 1.) {
		    i__2 = j;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L100: */
		    }
		}
		i__2 = *k;
		for (l = 1; l <= i__2; ++l) {
		    if (a[j + l * a_dim1] != 0.) {
			temp = *alpha * a[j + l * a_dim1];
			i__3 = j;
			for (i__ = 1; i__ <= i__3; ++i__) {
			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 
				    a_dim1];
/* L110: */
			}
		    }
/* L120: */
		}
/* L130: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (*beta == 0.) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = 0.;
/* L140: */
		    }
		} else if (*beta != 1.) {
		    i__2 = *n;
		    for (i__ = j; i__ <= i__2; ++i__) {
			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L150: */
		    }
		}
		i__2 = *k;
		for (l = 1; l <= i__2; ++l) {
		    if (a[j + l * a_dim1] != 0.) {
			temp = *alpha * a[j + l * a_dim1];
			i__3 = *n;
			for (i__ = j; i__ <= i__3; ++i__) {
			    c__[i__ + j * c_dim1] += temp * a[i__ + l * 
				    a_dim1];
/* L160: */
			}
		    }
/* L170: */
		}
/* L180: */
	    }
	}
    } else {

/*        Form  C := alpha*A**T*A + beta*C. */

	if (upper) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp = 0.;
		    i__3 = *k;
		    for (l = 1; l <= i__3; ++l) {
			temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
/* L190: */
		    }
		    if (*beta == 0.) {
			c__[i__ + j * c_dim1] = *alpha * temp;
		    } else {
			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
				i__ + j * c_dim1];
		    }
/* L200: */
		}
/* L210: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n;
		for (i__ = j; i__ <= i__2; ++i__) {
		    temp = 0.;
		    i__3 = *k;
		    for (l = 1; l <= i__3; ++l) {
			temp += a[l + i__ * a_dim1] * a[l + j * a_dim1];
/* L220: */
		    }
		    if (*beta == 0.) {
			c__[i__ + j * c_dim1] = *alpha * temp;
		    } else {
			c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
				i__ + j * c_dim1];
		    }
/* L230: */
		}
/* L240: */
	    }
	}
    }

    return 0;

/*     End of DSYRK . */

} /* igraphdsyrk_ */
Example #19
0
/* Subroutine */ int igraphdormtr_(char *side, char *uplo, char *trans, integer *m, 
	integer *n, doublereal *a, integer *lda, doublereal *tau, doublereal *
	c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
{
    /* System generated locals */
    address a__1[2];
    integer a_dim1, a_offset, c_dim1, c_offset, i__1[2], i__2, i__3;
    char ch__1[2];

    /* Builtin functions   
       Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i1, i2, nb, mi, ni, nq, nw;
    logical left;
    extern logical igraphlsame_(char *, char *);
    integer iinfo;
    logical upper;
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int igraphdormql_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *), 
	    igraphdormqr_(char *, char *, integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, integer *);
    integer lwkopt;
    logical lquery;


/*  -- LAPACK routine (version 3.2) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       November 2006   


    Purpose   
    =======   

    DORMTR overwrites the general real M-by-N matrix C with   

                    SIDE = 'L'     SIDE = 'R'   
    TRANS = 'N':      Q * C          C * Q   
    TRANS = 'T':      Q**T * C       C * Q**T   

    where Q is a real orthogonal matrix of order nq, with nq = m if   
    SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of   
    nq-1 elementary reflectors, as returned by DSYTRD:   

    if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1);   

    if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1).   

    Arguments   
    =========   

    SIDE    (input) CHARACTER*1   
            = 'L': apply Q or Q**T from the Left;   
            = 'R': apply Q or Q**T from the Right.   

    UPLO    (input) CHARACTER*1   
            = 'U': Upper triangle of A contains elementary reflectors   
                   from DSYTRD;   
            = 'L': Lower triangle of A contains elementary reflectors   
                   from DSYTRD.   

    TRANS   (input) CHARACTER*1   
            = 'N':  No transpose, apply Q;   
            = 'T':  Transpose, apply Q**T.   

    M       (input) INTEGER   
            The number of rows of the matrix C. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix C. N >= 0.   

    A       (input) DOUBLE PRECISION array, dimension   
                                 (LDA,M) if SIDE = 'L'   
                                 (LDA,N) if SIDE = 'R'   
            The vectors which define the elementary reflectors, as   
            returned by DSYTRD.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.   
            LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.   

    TAU     (input) DOUBLE PRECISION array, dimension   
                                 (M-1) if SIDE = 'L'   
                                 (N-1) if SIDE = 'R'   
            TAU(i) must contain the scalar factor of the elementary   
            reflector H(i), as returned by DSYTRD.   

    C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)   
            On entry, the M-by-N matrix C.   
            On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.   

    LDC     (input) INTEGER   
            The leading dimension of the array C. LDC >= max(1,M).   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.   
            If SIDE = 'L', LWORK >= max(1,N);   
            if SIDE = 'R', LWORK >= max(1,M).   
            For optimum performance LWORK >= N*NB if SIDE = 'L', and   
            LWORK >= M*NB if SIDE = 'R', where NB is the optimal   
            blocksize.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    c_dim1 = *ldc;
    c_offset = 1 + c_dim1;
    c__ -= c_offset;
    --work;

    /* Function Body */
    *info = 0;
    left = igraphlsame_(side, "L");
    upper = igraphlsame_(uplo, "U");
    lquery = *lwork == -1;

/*     NQ is the order of Q and NW is the minimum dimension of WORK */

    if (left) {
	nq = *m;
	nw = *n;
    } else {
	nq = *n;
	nw = *m;
    }
    if (! left && ! igraphlsame_(side, "R")) {
	*info = -1;
    } else if (! upper && ! igraphlsame_(uplo, "L")) {
	*info = -2;
    } else if (! igraphlsame_(trans, "N") && ! igraphlsame_(trans, 
	    "T")) {
	*info = -3;
    } else if (*m < 0) {
	*info = -4;
    } else if (*n < 0) {
	*info = -5;
    } else if (*lda < max(1,nq)) {
	*info = -7;
    } else if (*ldc < max(1,*m)) {
	*info = -10;
    } else if (*lwork < max(1,nw) && ! lquery) {
	*info = -12;
    }

    if (*info == 0) {
	if (upper) {
	    if (left) {
/* Writing concatenation */
		i__1[0] = 1, a__1[0] = side;
		i__1[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
		i__2 = *m - 1;
		i__3 = *m - 1;
		nb = igraphilaenv_(&c__1, "DORMQL", ch__1, &i__2, n, &i__3, &c_n1, (
			ftnlen)6, (ftnlen)2);
	    } else {
/* Writing concatenation */
		i__1[0] = 1, a__1[0] = side;
		i__1[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
		i__2 = *n - 1;
		i__3 = *n - 1;
		nb = igraphilaenv_(&c__1, "DORMQL", ch__1, m, &i__2, &i__3, &c_n1, (
			ftnlen)6, (ftnlen)2);
	    }
	} else {
	    if (left) {
/* Writing concatenation */
		i__1[0] = 1, a__1[0] = side;
		i__1[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
		i__2 = *m - 1;
		i__3 = *m - 1;
		nb = igraphilaenv_(&c__1, "DORMQR", ch__1, &i__2, n, &i__3, &c_n1, (
			ftnlen)6, (ftnlen)2);
	    } else {
/* Writing concatenation */
		i__1[0] = 1, a__1[0] = side;
		i__1[1] = 1, a__1[1] = trans;
		s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
		i__2 = *n - 1;
		i__3 = *n - 1;
		nb = igraphilaenv_(&c__1, "DORMQR", ch__1, m, &i__2, &i__3, &c_n1, (
			ftnlen)6, (ftnlen)2);
	    }
	}
	lwkopt = max(1,nw) * nb;
	work[1] = (doublereal) lwkopt;
    }

    if (*info != 0) {
	i__2 = -(*info);
	igraphxerbla_("DORMTR", &i__2, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*m == 0 || *n == 0 || nq == 1) {
	work[1] = 1.;
	return 0;
    }

    if (left) {
	mi = *m - 1;
	ni = *n;
    } else {
	mi = *m;
	ni = *n - 1;
    }

    if (upper) {

/*        Q was determined by a call to DSYTRD with UPLO = 'U' */

	i__2 = nq - 1;
	igraphdormql_(side, trans, &mi, &ni, &i__2, &a[(a_dim1 << 1) + 1], lda, &
		tau[1], &c__[c_offset], ldc, &work[1], lwork, &iinfo);
    } else {

/*        Q was determined by a call to DSYTRD with UPLO = 'L' */

	if (left) {
	    i1 = 2;
	    i2 = 1;
	} else {
	    i1 = 1;
	    i2 = 2;
	}
	i__2 = nq - 1;
	igraphdormqr_(side, trans, &mi, &ni, &i__2, &a[a_dim1 + 2], lda, &tau[1], &
		c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
    }
    work[1] = (doublereal) lwkopt;
    return 0;

/*     End of DORMTR */

} /* igraphdormtr_ */
Example #20
0
   Subroutine */ int igraphdsteqr_(char *compz, integer *n, doublereal *d__, 
	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
	integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal), d_sign(doublereal *, doublereal *);

    /* Local variables */
    doublereal b, c__, f, g;
    integer i__, j, k, l, m;
    doublereal p, r__, s;
    integer l1, ii, mm, lm1, mm1, nm1;
    doublereal rt1, rt2, eps;
    integer lsv;
    doublereal tst, eps2;
    integer lend, jtot;
    extern /* Subroutine */ int igraphdlae2_(doublereal *, doublereal *, doublereal 
	    *, doublereal *, doublereal *);
    extern logical igraphlsame_(char *, char *);
    extern /* Subroutine */ int igraphdlasr_(char *, char *, char *, integer *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *);
    doublereal anorm;
    extern /* Subroutine */ int igraphdswap_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), igraphdlaev2_(doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *);
    integer lendm1, lendp1;
    extern doublereal igraphdlapy2_(doublereal *, doublereal *), igraphdlamch_(char *);
    integer iscale;
    extern /* Subroutine */ int igraphdlascl_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), igraphdlaset_(char *, integer *, integer 
	    *, doublereal *, doublereal *, doublereal *, integer *);
    doublereal safmin;
    extern /* Subroutine */ int igraphdlartg_(doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *);
    doublereal safmax;
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
    extern doublereal igraphdlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */ int igraphdlasrt_(char *, integer *, doublereal *, 
	    integer *);
    integer lendsv;
    doublereal ssfmin;
    integer nmaxit, icompz;
    doublereal ssfmax;


/*  -- LAPACK computational routine (version 3.4.0) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       November 2011   


    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    --d__;
    --e;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    *info = 0;

    if (igraphlsame_(compz, "N")) {
	icompz = 0;
    } else if (igraphlsame_(compz, "V")) {
	icompz = 1;
    } else if (igraphlsame_(compz, "I")) {
	icompz = 2;
    } else {
	icompz = -1;
    }
    if (icompz < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DSTEQR", &i__1, (ftnlen)6);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (icompz == 2) {
	    z__[z_dim1 + 1] = 1.;
	}
	return 0;
    }

/*     Determine the unit roundoff and over/underflow thresholds. */

    eps = igraphdlamch_("E");
/* Computing 2nd power */
    d__1 = eps;
    eps2 = d__1 * d__1;
    safmin = igraphdlamch_("S");
    safmax = 1. / safmin;
    ssfmax = sqrt(safmax) / 3.;
    ssfmin = sqrt(safmin) / eps2;

/*     Compute the eigenvalues and eigenvectors of the tridiagonal   
       matrix. */

    if (icompz == 2) {
	igraphdlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
    }

    nmaxit = *n * 30;
    jtot = 0;

/*     Determine where the matrix splits and choose QL or QR iteration   
       for each block, according to whether top or bottom diagonal   
       element is smaller. */

    l1 = 1;
    nm1 = *n - 1;

L10:
    if (l1 > *n) {
	goto L160;
    }
    if (l1 > 1) {
	e[l1 - 1] = 0.;
    }
    if (l1 <= nm1) {
	i__1 = nm1;
	for (m = l1; m <= i__1; ++m) {
	    tst = (d__1 = e[m], abs(d__1));
	    if (tst == 0.) {
		goto L30;
	    }
	    if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m 
		    + 1], abs(d__2))) * eps) {
		e[m] = 0.;
		goto L30;
	    }
/* L20: */
	}
    }
    m = *n;

L30:
    l = l1;
    lsv = l;
    lend = m;
    lendsv = lend;
    l1 = m + 1;
    if (lend == l) {
	goto L10;
    }

/*     Scale submatrix in rows and columns L to LEND */

    i__1 = lend - l + 1;
    anorm = igraphdlanst_("M", &i__1, &d__[l], &e[l]);
    iscale = 0;
    if (anorm == 0.) {
	goto L10;
    }
    if (anorm > ssfmax) {
	iscale = 1;
	i__1 = lend - l + 1;
	igraphdlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 
		info);
	i__1 = lend - l;
	igraphdlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 
		info);
    } else if (anorm < ssfmin) {
	iscale = 2;
	i__1 = lend - l + 1;
	igraphdlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 
		info);
	i__1 = lend - l;
	igraphdlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 
		info);
    }

/*     Choose between QL and QR iteration */

    if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
	lend = lsv;
	l = lendsv;
    }

    if (lend > l) {

/*        QL Iteration   

          Look for small subdiagonal element. */

L40:
	if (l != lend) {
	    lendm1 = lend - 1;
	    i__1 = lendm1;
	    for (m = l; m <= i__1; ++m) {
/* Computing 2nd power */
		d__2 = (d__1 = e[m], abs(d__1));
		tst = d__2 * d__2;
		if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m 
			+ 1], abs(d__2)) + safmin) {
		    goto L60;
		}
/* L50: */
	    }
	}

	m = lend;

L60:
	if (m < lend) {
	    e[m] = 0.;
	}
	p = d__[l];
	if (m == l) {
	    goto L80;
	}

/*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2   
          to compute its eigensystem. */

	if (m == l + 1) {
	    if (icompz > 0) {
		igraphdlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
		work[l] = c__;
		work[*n - 1 + l] = s;
		igraphdlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
			z__[l * z_dim1 + 1], ldz);
	    } else {
		igraphdlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
	    }
	    d__[l] = rt1;
	    d__[l + 1] = rt2;
	    e[l] = 0.;
	    l += 2;
	    if (l <= lend) {
		goto L40;
	    }
	    goto L140;
	}

	if (jtot == nmaxit) {
	    goto L140;
	}
	++jtot;

/*        Form shift. */

	g = (d__[l + 1] - p) / (e[l] * 2.);
	r__ = igraphdlapy2_(&g, &c_b10);
	g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));

	s = 1.;
	c__ = 1.;
	p = 0.;

/*        Inner loop */

	mm1 = m - 1;
	i__1 = l;
	for (i__ = mm1; i__ >= i__1; --i__) {
	    f = s * e[i__];
	    b = c__ * e[i__];
	    igraphdlartg_(&g, &f, &c__, &s, &r__);
	    if (i__ != m - 1) {
		e[i__ + 1] = r__;
	    }
	    g = d__[i__ + 1] - p;
	    r__ = (d__[i__] - g) * s + c__ * 2. * b;
	    p = s * r__;
	    d__[i__ + 1] = g + p;
	    g = c__ * r__ - b;

/*           If eigenvectors are desired, then save rotations. */

	    if (icompz > 0) {
		work[i__] = c__;
		work[*n - 1 + i__] = -s;
	    }

/* L70: */
	}

/*        If eigenvectors are desired, then apply saved rotations. */

	if (icompz > 0) {
	    mm = m - l + 1;
	    igraphdlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l 
		    * z_dim1 + 1], ldz);
	}

	d__[l] -= p;
	e[l] = g;
	goto L40;

/*        Eigenvalue found. */

L80:
	d__[l] = p;

	++l;
	if (l <= lend) {
	    goto L40;
	}
	goto L140;

    } else {

/*        QR Iteration   

          Look for small superdiagonal element. */

L90:
	if (l != lend) {
	    lendp1 = lend + 1;
	    i__1 = lendp1;
	    for (m = l; m >= i__1; --m) {
/* Computing 2nd power */
		d__2 = (d__1 = e[m - 1], abs(d__1));
		tst = d__2 * d__2;
		if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m 
			- 1], abs(d__2)) + safmin) {
		    goto L110;
		}
/* L100: */
	    }
	}

	m = lend;

L110:
	if (m > lend) {
	    e[m - 1] = 0.;
	}
	p = d__[l];
	if (m == l) {
	    goto L130;
	}

/*        If remaining matrix is 2-by-2, use DLAE2 or SLAEV2   
          to compute its eigensystem. */

	if (m == l - 1) {
	    if (icompz > 0) {
		igraphdlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
			;
		work[m] = c__;
		work[*n - 1 + m] = s;
		igraphdlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
			z__[(l - 1) * z_dim1 + 1], ldz);
	    } else {
		igraphdlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
	    }
	    d__[l - 1] = rt1;
	    d__[l] = rt2;
	    e[l - 1] = 0.;
	    l += -2;
	    if (l >= lend) {
		goto L90;
	    }
	    goto L140;
	}

	if (jtot == nmaxit) {
	    goto L140;
	}
	++jtot;

/*        Form shift. */

	g = (d__[l - 1] - p) / (e[l - 1] * 2.);
	r__ = igraphdlapy2_(&g, &c_b10);
	g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));

	s = 1.;
	c__ = 1.;
	p = 0.;

/*        Inner loop */

	lm1 = l - 1;
	i__1 = lm1;
	for (i__ = m; i__ <= i__1; ++i__) {
	    f = s * e[i__];
	    b = c__ * e[i__];
	    igraphdlartg_(&g, &f, &c__, &s, &r__);
	    if (i__ != m) {
		e[i__ - 1] = r__;
	    }
	    g = d__[i__] - p;
	    r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
	    p = s * r__;
	    d__[i__] = g + p;
	    g = c__ * r__ - b;

/*           If eigenvectors are desired, then save rotations. */

	    if (icompz > 0) {
		work[i__] = c__;
		work[*n - 1 + i__] = s;
	    }

/* L120: */
	}

/*        If eigenvectors are desired, then apply saved rotations. */

	if (icompz > 0) {
	    mm = l - m + 1;
	    igraphdlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m 
		    * z_dim1 + 1], ldz);
	}

	d__[l] -= p;
	e[lm1] = g;
	goto L90;

/*        Eigenvalue found. */

L130:
	d__[l] = p;

	--l;
	if (l >= lend) {
	    goto L90;
	}
	goto L140;

    }

/*     Undo scaling if necessary */

L140:
    if (iscale == 1) {
	i__1 = lendsv - lsv + 1;
	igraphdlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], 
		n, info);
	i__1 = lendsv - lsv;
	igraphdlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n, 
		info);
    } else if (iscale == 2) {
	i__1 = lendsv - lsv + 1;
	igraphdlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], 
		n, info);
	i__1 = lendsv - lsv;
	igraphdlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n, 
		info);
    }

/*     Check for no convergence to an eigenvalue after a total   
       of N*MAXIT iterations. */

    if (jtot < nmaxit) {
	goto L10;
    }
    i__1 = *n - 1;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (e[i__] != 0.) {
	    ++(*info);
	}
/* L150: */
    }
    goto L190;

/*     Order eigenvalues and eigenvectors. */

L160:
    if (icompz == 0) {

/*        Use Quick Sort */

	igraphdlasrt_("I", n, &d__[1], info);

    } else {

/*        Use Selection Sort to minimize swaps of eigenvectors */

	i__1 = *n;
	for (ii = 2; ii <= i__1; ++ii) {
	    i__ = ii - 1;
	    k = i__;
	    p = d__[i__];
	    i__2 = *n;
	    for (j = ii; j <= i__2; ++j) {
		if (d__[j] < p) {
		    k = j;
		    p = d__[j];
		}
/* L170: */
	    }
	    if (k != i__) {
		d__[k] = d__[i__];
		d__[i__] = p;
		igraphdswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
			 &c__1);
	    }
/* L180: */
	}
    }

L190:
    return 0;

/*     End of DSTEQR */

} /* igraphdsteqr_ */
Example #21
0
   Subroutine */ int igraphdstebz_(char *range, char *order, integer *n, doublereal 
	*vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol, 
	doublereal *d__, doublereal *e, integer *m, integer *nsplit, 
	doublereal *w, integer *iblock, integer *isplit, doublereal *work, 
	integer *iwork, integer *info)
{
    /* System generated locals */
    integer i__1, i__2, i__3;
    doublereal d__1, d__2, d__3, d__4, d__5;

    /* Builtin functions */
    double sqrt(doublereal), log(doublereal);

    /* Local variables */
    integer j, ib, jb, ie, je, nb;
    doublereal gl;
    integer im, in;
    doublereal gu;
    integer iw;
    doublereal wl, wu;
    integer nwl;
    doublereal ulp, wlu, wul;
    integer nwu;
    doublereal tmp1, tmp2;
    integer iend, ioff, iout, itmp1, jdisc;
    extern logical igraphlsame_(char *, char *);
    integer iinfo;
    doublereal atoli;
    integer iwoff;
    doublereal bnorm;
    integer itmax;
    doublereal wkill, rtoli, tnorm;
    extern doublereal igraphdlamch_(char *);
    integer ibegin;
    extern /* Subroutine */ int igraphdlaebz_(integer *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
	     doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *);
    integer irange, idiscl;
    doublereal safemn;
    integer idumma[1];
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    integer idiscu, iorder;
    logical ncnvrg;
    doublereal pivmin;
    logical toofew;


/*  -- LAPACK computational routine (version 3.4.0) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       November 2011   


    =====================================================================   


       Parameter adjustments */
    --iwork;
    --work;
    --isplit;
    --iblock;
    --w;
    --e;
    --d__;

    /* Function Body */
    *info = 0;

/*     Decode RANGE */

    if (igraphlsame_(range, "A")) {
	irange = 1;
    } else if (igraphlsame_(range, "V")) {
	irange = 2;
    } else if (igraphlsame_(range, "I")) {
	irange = 3;
    } else {
	irange = 0;
    }

/*     Decode ORDER */

    if (igraphlsame_(order, "B")) {
	iorder = 2;
    } else if (igraphlsame_(order, "E")) {
	iorder = 1;
    } else {
	iorder = 0;
    }

/*     Check for Errors */

    if (irange <= 0) {
	*info = -1;
    } else if (iorder <= 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (irange == 2) {
	if (*vl >= *vu) {
	    *info = -5;
	}
    } else if (irange == 3 && (*il < 1 || *il > max(1,*n))) {
	*info = -6;
    } else if (irange == 3 && (*iu < min(*n,*il) || *iu > *n)) {
	*info = -7;
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DSTEBZ", &i__1, (ftnlen)6);
	return 0;
    }

/*     Initialize error flags */

    *info = 0;
    ncnvrg = FALSE_;
    toofew = FALSE_;

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

/*     Simplifications: */

    if (irange == 3 && *il == 1 && *iu == *n) {
	irange = 1;
    }

/*     Get machine constants   
       NB is the minimum vector length for vector bisection, or 0   
       if only scalar is to be done. */

    safemn = igraphdlamch_("S");
    ulp = igraphdlamch_("P");
    rtoli = ulp * 2.;
    nb = igraphilaenv_(&c__1, "DSTEBZ", " ", n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    if (nb <= 1) {
	nb = 0;
    }

/*     Special Case when N=1 */

    if (*n == 1) {
	*nsplit = 1;
	isplit[1] = 1;
	if (irange == 2 && (*vl >= d__[1] || *vu < d__[1])) {
	    *m = 0;
	} else {
	    w[1] = d__[1];
	    iblock[1] = 1;
	    *m = 1;
	}
	return 0;
    }

/*     Compute Splitting Points */

    *nsplit = 1;
    work[*n] = 0.;
    pivmin = 1.;

    i__1 = *n;
    for (j = 2; j <= i__1; ++j) {
/* Computing 2nd power */
	d__1 = e[j - 1];
	tmp1 = d__1 * d__1;
/* Computing 2nd power */
	d__2 = ulp;
	if ((d__1 = d__[j] * d__[j - 1], abs(d__1)) * (d__2 * d__2) + safemn 
		> tmp1) {
	    isplit[*nsplit] = j - 1;
	    ++(*nsplit);
	    work[j - 1] = 0.;
	} else {
	    work[j - 1] = tmp1;
	    pivmin = max(pivmin,tmp1);
	}
/* L10: */
    }
    isplit[*nsplit] = *n;
    pivmin *= safemn;

/*     Compute Interval and ATOLI */

    if (irange == 3) {

/*        RANGE='I': Compute the interval containing eigenvalues   
                     IL through IU.   

          Compute Gershgorin interval for entire (split) matrix   
          and use it as the initial interval */

	gu = d__[1];
	gl = d__[1];
	tmp1 = 0.;

	i__1 = *n - 1;
	for (j = 1; j <= i__1; ++j) {
	    tmp2 = sqrt(work[j]);
/* Computing MAX */
	    d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
	    gu = max(d__1,d__2);
/* Computing MIN */
	    d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
	    gl = min(d__1,d__2);
	    tmp1 = tmp2;
/* L20: */
	}

/* Computing MAX */
	d__1 = gu, d__2 = d__[*n] + tmp1;
	gu = max(d__1,d__2);
/* Computing MIN */
	d__1 = gl, d__2 = d__[*n] - tmp1;
	gl = min(d__1,d__2);
/* Computing MAX */
	d__1 = abs(gl), d__2 = abs(gu);
	tnorm = max(d__1,d__2);
	gl = gl - tnorm * 2.1 * ulp * *n - pivmin * 4.2000000000000002;
	gu = gu + tnorm * 2.1 * ulp * *n + pivmin * 2.1;

/*        Compute Iteration parameters */

	itmax = (integer) ((log(tnorm + pivmin) - log(pivmin)) / log(2.)) + 2;
	if (*abstol <= 0.) {
	    atoli = ulp * tnorm;
	} else {
	    atoli = *abstol;
	}

	work[*n + 1] = gl;
	work[*n + 2] = gl;
	work[*n + 3] = gu;
	work[*n + 4] = gu;
	work[*n + 5] = gl;
	work[*n + 6] = gu;
	iwork[1] = -1;
	iwork[2] = -1;
	iwork[3] = *n + 1;
	iwork[4] = *n + 1;
	iwork[5] = *il - 1;
	iwork[6] = *iu;

	igraphdlaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, &pivmin, 
		&d__[1], &e[1], &work[1], &iwork[5], &work[*n + 1], &work[*n 
		+ 5], &iout, &iwork[1], &w[1], &iblock[1], &iinfo);

	if (iwork[6] == *iu) {
	    wl = work[*n + 1];
	    wlu = work[*n + 3];
	    nwl = iwork[1];
	    wu = work[*n + 4];
	    wul = work[*n + 2];
	    nwu = iwork[4];
	} else {
	    wl = work[*n + 2];
	    wlu = work[*n + 4];
	    nwl = iwork[2];
	    wu = work[*n + 3];
	    wul = work[*n + 1];
	    nwu = iwork[3];
	}

	if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) {
	    *info = 4;
	    return 0;
	}
    } else {

/*        RANGE='A' or 'V' -- Set ATOLI   

   Computing MAX */
	d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = d__[*n], abs(d__1)) + (
		d__2 = e[*n - 1], abs(d__2));
	tnorm = max(d__3,d__4);

	i__1 = *n - 1;
	for (j = 2; j <= i__1; ++j) {
/* Computing MAX */
	    d__4 = tnorm, d__5 = (d__1 = d__[j], abs(d__1)) + (d__2 = e[j - 1]
		    , abs(d__2)) + (d__3 = e[j], abs(d__3));
	    tnorm = max(d__4,d__5);
/* L30: */
	}

	if (*abstol <= 0.) {
	    atoli = ulp * tnorm;
	} else {
	    atoli = *abstol;
	}

	if (irange == 2) {
	    wl = *vl;
	    wu = *vu;
	} else {
	    wl = 0.;
	    wu = 0.;
	}
    }

/*     Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU.   
       NWL accumulates the number of eigenvalues .le. WL,   
       NWU accumulates the number of eigenvalues .le. WU */

    *m = 0;
    iend = 0;
    *info = 0;
    nwl = 0;
    nwu = 0;

    i__1 = *nsplit;
    for (jb = 1; jb <= i__1; ++jb) {
	ioff = iend;
	ibegin = ioff + 1;
	iend = isplit[jb];
	in = iend - ioff;

	if (in == 1) {

/*           Special Case -- IN=1 */

	    if (irange == 1 || wl >= d__[ibegin] - pivmin) {
		++nwl;
	    }
	    if (irange == 1 || wu >= d__[ibegin] - pivmin) {
		++nwu;
	    }
	    if (irange == 1 || wl < d__[ibegin] - pivmin && wu >= d__[ibegin] 
		    - pivmin) {
		++(*m);
		w[*m] = d__[ibegin];
		iblock[*m] = jb;
	    }
	} else {

/*           General Case -- IN > 1   

             Compute Gershgorin Interval   
             and use it as the initial interval */

	    gu = d__[ibegin];
	    gl = d__[ibegin];
	    tmp1 = 0.;

	    i__2 = iend - 1;
	    for (j = ibegin; j <= i__2; ++j) {
		tmp2 = (d__1 = e[j], abs(d__1));
/* Computing MAX */
		d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
		gu = max(d__1,d__2);
/* Computing MIN */
		d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
		gl = min(d__1,d__2);
		tmp1 = tmp2;
/* L40: */
	    }

/* Computing MAX */
	    d__1 = gu, d__2 = d__[iend] + tmp1;
	    gu = max(d__1,d__2);
/* Computing MIN */
	    d__1 = gl, d__2 = d__[iend] - tmp1;
	    gl = min(d__1,d__2);
/* Computing MAX */
	    d__1 = abs(gl), d__2 = abs(gu);
	    bnorm = max(d__1,d__2);
	    gl = gl - bnorm * 2.1 * ulp * in - pivmin * 2.1;
	    gu = gu + bnorm * 2.1 * ulp * in + pivmin * 2.1;

/*           Compute ATOLI for the current submatrix */

	    if (*abstol <= 0.) {
/* Computing MAX */
		d__1 = abs(gl), d__2 = abs(gu);
		atoli = ulp * max(d__1,d__2);
	    } else {
		atoli = *abstol;
	    }

	    if (irange > 1) {
		if (gu < wl) {
		    nwl += in;
		    nwu += in;
		    goto L70;
		}
		gl = max(gl,wl);
		gu = min(gu,wu);
		if (gl >= gu) {
		    goto L70;
		}
	    }

/*           Set Up Initial Interval */

	    work[*n + 1] = gl;
	    work[*n + in + 1] = gu;
	    igraphdlaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli, &
		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
		    work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], &
		    w[*m + 1], &iblock[*m + 1], &iinfo);

	    nwl += iwork[1];
	    nwu += iwork[in + 1];
	    iwoff = *m - iwork[1];

/*           Compute Eigenvalues */

	    itmax = (integer) ((log(gu - gl + pivmin) - log(pivmin)) / log(2.)
		    ) + 2;
	    igraphdlaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli, &
		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
		    work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1],
		     &w[*m + 1], &iblock[*m + 1], &iinfo);

/*           Copy Eigenvalues Into W and IBLOCK   
             Use -JB for block number for unconverged eigenvalues. */

	    i__2 = iout;
	    for (j = 1; j <= i__2; ++j) {
		tmp1 = (work[j + *n] + work[j + in + *n]) * .5;

/*              Flag non-convergence. */

		if (j > iout - iinfo) {
		    ncnvrg = TRUE_;
		    ib = -jb;
		} else {
		    ib = jb;
		}
		i__3 = iwork[j + in] + iwoff;
		for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) {
		    w[je] = tmp1;
		    iblock[je] = ib;
/* L50: */
		}
/* L60: */
	    }

	    *m += im;
	}
L70:
	;
    }

/*     If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU   
       If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */

    if (irange == 3) {
	im = 0;
	idiscl = *il - 1 - nwl;
	idiscu = nwu - *iu;

	if (idiscl > 0 || idiscu > 0) {
	    i__1 = *m;
	    for (je = 1; je <= i__1; ++je) {
		if (w[je] <= wlu && idiscl > 0) {
		    --idiscl;
		} else if (w[je] >= wul && idiscu > 0) {
		    --idiscu;
		} else {
		    ++im;
		    w[im] = w[je];
		    iblock[im] = iblock[je];
		}
/* L80: */
	    }
	    *m = im;
	}
	if (idiscl > 0 || idiscu > 0) {

/*           Code to deal with effects of bad arithmetic:   
             Some low eigenvalues to be discarded are not in (WL,WLU],   
             or high eigenvalues to be discarded are not in (WUL,WU]   
             so just kill off the smallest IDISCL/largest IDISCU   
             eigenvalues, by simply finding the smallest/largest   
             eigenvalue(s).   

             (If N(w) is monotone non-decreasing, this should never   
                 happen.) */

	    if (idiscl > 0) {
		wkill = wu;
		i__1 = idiscl;
		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
		    iw = 0;
		    i__2 = *m;
		    for (je = 1; je <= i__2; ++je) {
			if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) {
			    iw = je;
			    wkill = w[je];
			}
/* L90: */
		    }
		    iblock[iw] = 0;
/* L100: */
		}
	    }
	    if (idiscu > 0) {

		wkill = wl;
		i__1 = idiscu;
		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
		    iw = 0;
		    i__2 = *m;
		    for (je = 1; je <= i__2; ++je) {
			if (iblock[je] != 0 && (w[je] > wkill || iw == 0)) {
			    iw = je;
			    wkill = w[je];
			}
/* L110: */
		    }
		    iblock[iw] = 0;
/* L120: */
		}
	    }
	    im = 0;
	    i__1 = *m;
	    for (je = 1; je <= i__1; ++je) {
		if (iblock[je] != 0) {
		    ++im;
		    w[im] = w[je];
		    iblock[im] = iblock[je];
		}
/* L130: */
	    }
	    *m = im;
	}
	if (idiscl < 0 || idiscu < 0) {
	    toofew = TRUE_;
	}
    }

/*     If ORDER='B', do nothing -- the eigenvalues are already sorted   
          by block.   
       If ORDER='E', sort the eigenvalues from smallest to largest */

    if (iorder == 1 && *nsplit > 1) {
	i__1 = *m - 1;
	for (je = 1; je <= i__1; ++je) {
	    ie = 0;
	    tmp1 = w[je];
	    i__2 = *m;
	    for (j = je + 1; j <= i__2; ++j) {
		if (w[j] < tmp1) {
		    ie = j;
		    tmp1 = w[j];
		}
/* L140: */
	    }

	    if (ie != 0) {
		itmp1 = iblock[ie];
		w[ie] = w[je];
		iblock[ie] = iblock[je];
		w[je] = tmp1;
		iblock[je] = itmp1;
	    }
/* L150: */
	}
    }

    *info = 0;
    if (ncnvrg) {
	++(*info);
    }
    if (toofew) {
	*info += 2;
    }
    return 0;

/*     End of DSTEBZ */

} /* igraphdstebz_ */
Example #22
0
   Subroutine */ int igraphdsyevr_(char *jobz, char *range, char *uplo, integer *n, 
	doublereal *a, integer *lda, doublereal *vl, doublereal *vu, integer *
	il, integer *iu, doublereal *abstol, integer *m, doublereal *w, 
	doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, 
	integer *lwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, nb, jj;
    doublereal eps, vll, vuu, tmp1;
    integer indd, inde;
    doublereal anrm;
    integer imax;
    doublereal rmin, rmax;
    integer inddd, indee;
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    doublereal sigma;
    extern logical igraphlsame_(char *, char *);
    integer iinfo;
    char order[1];
    integer indwk;
    extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), igraphdswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    integer lwmin;
    logical lower, wantz;
    extern doublereal igraphdlamch_(char *);
    logical alleig, indeig;
    integer iscale, ieeeok, indibl, indifl;
    logical valeig;
    doublereal safmin;
    extern integer igraphilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    extern /* Subroutine */ int igraphxerbla_(char *, integer *, ftnlen);
    doublereal abstll, bignum;
    integer indtau, indisp;
    extern /* Subroutine */ int igraphdstein_(integer *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, integer *), 
	    igraphdsterf_(integer *, doublereal *, doublereal *, integer *);
    integer indiwo, indwkn;
    extern doublereal igraphdlansy_(char *, char *, integer *, doublereal *, 
	    integer *, doublereal *);
    extern /* Subroutine */ int igraphdstebz_(char *, char *, integer *, doublereal 
	    *, doublereal *, integer *, integer *, doublereal *, doublereal *,
	     doublereal *, integer *, integer *, doublereal *, integer *, 
	    integer *, doublereal *, integer *, integer *), 
	    igraphdstemr_(char *, char *, integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, integer *, 
	    logical *, doublereal *, integer *, integer *, integer *, integer 
	    *);
    integer liwmin;
    logical tryrac;
    extern /* Subroutine */ int igraphdormtr_(char *, char *, char *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *);
    integer llwrkn, llwork, nsplit;
    doublereal smlnum;
    extern /* Subroutine */ int igraphdsytrd_(char *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, doublereal *,
	     integer *, integer *);
    integer lwkopt;
    logical lquery;


/*  -- LAPACK driver routine (version 3.4.2) --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
       September 2012   


   =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --isuppz;
    --work;
    --iwork;

    /* Function Body */
    ieeeok = igraphilaenv_(&c__10, "DSYEVR", "N", &c__1, &c__2, &c__3, &c__4, (
	    ftnlen)6, (ftnlen)1);

    lower = igraphlsame_(uplo, "L");
    wantz = igraphlsame_(jobz, "V");
    alleig = igraphlsame_(range, "A");
    valeig = igraphlsame_(range, "V");
    indeig = igraphlsame_(range, "I");

    lquery = *lwork == -1 || *liwork == -1;

/* Computing MAX */
    i__1 = 1, i__2 = *n * 26;
    lwmin = max(i__1,i__2);
/* Computing MAX */
    i__1 = 1, i__2 = *n * 10;
    liwmin = max(i__1,i__2);

    *info = 0;
    if (! (wantz || igraphlsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (! (lower || igraphlsame_(uplo, "U"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*lda < max(1,*n)) {
	*info = -6;
    } else {
	if (valeig) {
	    if (*n > 0 && *vu <= *vl) {
		*info = -8;
	    }
	} else if (indeig) {
	    if (*il < 1 || *il > max(1,*n)) {
		*info = -9;
	    } else if (*iu < min(*n,*il) || *iu > *n) {
		*info = -10;
	    }
	}
    }
    if (*info == 0) {
	if (*ldz < 1 || wantz && *ldz < *n) {
	    *info = -15;
	} else if (*lwork < lwmin && ! lquery) {
	    *info = -18;
	} else if (*liwork < liwmin && ! lquery) {
	    *info = -20;
	}
    }

    if (*info == 0) {
	nb = igraphilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
		 (ftnlen)1);
/* Computing MAX */
	i__1 = nb, i__2 = igraphilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1, &
		c_n1, (ftnlen)6, (ftnlen)1);
	nb = max(i__1,i__2);
/* Computing MAX */
	i__1 = (nb + 1) * *n;
	lwkopt = max(i__1,lwmin);
	work[1] = (doublereal) lwkopt;
	iwork[1] = liwmin;
    }

    if (*info != 0) {
	i__1 = -(*info);
	igraphxerbla_("DSYEVR", &i__1, (ftnlen)6);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	work[1] = 1.;
	return 0;
    }

    if (*n == 1) {
	work[1] = 7.;
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = a[a_dim1 + 1];
	} else {
	    if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
		*m = 1;
		w[1] = a[a_dim1 + 1];
	    }
	}
	if (wantz) {
	    z__[z_dim1 + 1] = 1.;
	    isuppz[1] = 1;
	    isuppz[2] = 1;
	}
	return 0;
    }

/*     Get machine constants. */

    safmin = igraphdlamch_("Safe minimum");
    eps = igraphdlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
    rmax = min(d__1,d__2);

/*     Scale matrix to allowable range, if necessary. */

    iscale = 0;
    abstll = *abstol;
    if (valeig) {
	vll = *vl;
	vuu = *vu;
    }
    anrm = igraphdlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	if (lower) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j + 1;
		igraphdscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
/* L10: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		igraphdscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
/* L20: */
	    }
	}
	if (*abstol > 0.) {
	    abstll = *abstol * sigma;
	}
	if (valeig) {
	    vll = *vl * sigma;
	    vuu = *vu * sigma;
	}
    }
/*     Initialize indices into workspaces.  Note: The IWORK indices are   
       used only if DSTERF or DSTEMR fail.   
       WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the   
       elementary reflectors used in DSYTRD. */
    indtau = 1;
/*     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */
    indd = indtau + *n;
/*     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the   
       tridiagonal matrix from DSYTRD. */
    inde = indd + *n;
/*     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over   
       -written by DSTEMR (the DSTERF path copies the diagonal to W). */
    inddd = inde + *n;
/*     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over   
       -written while computing the eigenvalues in DSTERF and DSTEMR. */
    indee = inddd + *n;
/*     INDWK is the starting offset of the left-over workspace, and   
       LLWORK is the remaining workspace size. */
    indwk = indee + *n;
    llwork = *lwork - indwk + 1;
/*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and   
       stores the block indices of each of the M<=N eigenvalues. */
    indibl = 1;
/*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and   
       stores the starting and finishing indices of each block. */
    indisp = indibl + *n;
/*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors   
       that corresponding to eigenvectors that fail to converge in   
       DSTEIN.  This information is discarded; if any fail, the driver   
       returns INFO > 0. */
    indifl = indisp + *n;
/*     INDIWO is the offset of the remaining integer workspace. */
    indiwo = indifl + *n;

/*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */

    igraphdsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
	    indtau], &work[indwk], &llwork, &iinfo);

/*     If all eigenvalues are desired   
       then call DSTERF or DSTEMR and DORMTR. */

    if ((alleig || indeig && *il == 1 && *iu == *n) && ieeeok == 1) {
	if (! wantz) {
	    igraphdcopy_(n, &work[indd], &c__1, &w[1], &c__1);
	    i__1 = *n - 1;
	    igraphdcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    igraphdsterf_(n, &w[1], &work[indee], info);
	} else {
	    i__1 = *n - 1;
	    igraphdcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
	    igraphdcopy_(n, &work[indd], &c__1, &work[inddd], &c__1);

	    if (*abstol <= *n * 2. * eps) {
		tryrac = TRUE_;
	    } else {
		tryrac = FALSE_;
	    }
	    igraphdstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu, 
		    m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &
		    work[indwk], lwork, &iwork[1], liwork, info);



/*        Apply orthogonal matrix used in reduction to tridiagonal   
          form to eigenvectors returned by DSTEIN. */

	    if (wantz && *info == 0) {
		indwkn = inde;
		llwrkn = *lwork - indwkn + 1;
		igraphdormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
			, &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
	    }
	}


	if (*info == 0) {
/*           Everything worked.  Skip DSTEBZ/DSTEIN.  IWORK(:) are   
             undefined. */
	    *m = *n;
	    goto L30;
	}
	*info = 0;
    }

/*     Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN.   
       Also call DSTEBZ and DSTEIN if DSTEMR fails. */

    if (wantz) {
	*(unsigned char *)order = 'B';
    } else {
	*(unsigned char *)order = 'E';
    }
    igraphdstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
	    indwk], &iwork[indiwo], info);

    if (wantz) {
	igraphdstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
		indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], &
		iwork[indifl], info);

/*        Apply orthogonal matrix used in reduction to tridiagonal   
          form to eigenvectors returned by DSTEIN. */

	indwkn = inde;
	llwrkn = *lwork - indwkn + 1;
	igraphdormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
		z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately.   

    Jump here if DSTEMR/DSTEIN succeeded. */
L30:
    if (iscale == 1) {
	if (*info == 0) {
	    imax = *m;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	igraphdscal_(&imax, &d__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in order, then sort them, along with   
       eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.   
       It may not be initialized (if DSTEMR/DSTEIN succeeded), and we do   
       not return this detailed information to the user. */

    if (wantz) {
	i__1 = *m - 1;
	for (j = 1; j <= i__1; ++j) {
	    i__ = 0;
	    tmp1 = w[j];
	    i__2 = *m;
	    for (jj = j + 1; jj <= i__2; ++jj) {
		if (w[jj] < tmp1) {
		    i__ = jj;
		    tmp1 = w[jj];
		}
/* L40: */
	    }

	    if (i__ != 0) {
		w[i__] = w[j];
		w[j] = tmp1;
		igraphdswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
			 &c__1);
	    }
/* L50: */
	}
    }

/*     Set WORK(1) to optimal workspace size. */

    work[1] = (doublereal) lwkopt;
    iwork[1] = liwmin;

    return 0;

/*     End of DSYEVR */

} /* igraphdsyevr_ */
Example #23
0
/* Subroutine */ int igraphdgemv_(char *trans, integer *m, integer *n, doublereal *
	alpha, doublereal *a, integer *lda, doublereal *x, integer *incx, 
	doublereal *beta, doublereal *y, integer *incy)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;

    /* Local variables */
    static integer i__, j, ix, iy, jx, jy, kx, ky, info;
    static doublereal temp;
    static integer lenx, leny;
    extern logical igraphlsame_(char *, char *);
    extern /* Subroutine */ int igraphxerbla_(char *, integer *);

/*     .. Scalar Arguments .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DGEMV  performs one of the matrix-vector operations */

/*     y := alpha*A*x + beta*y,   or   y := alpha*A'*x + beta*y, */

/*  where alpha and beta are scalars, x and y are vectors and A is an */
/*  m by n matrix. */

/*  Parameters */
/*  ========== */

/*  TRANS  - CHARACTER*1. */
/*           On entry, TRANS specifies the operation to be performed as */
/*           follows: */

/*              TRANS = 'N' or 'n'   y := alpha*A*x + beta*y. */

/*              TRANS = 'T' or 't'   y := alpha*A'*x + beta*y. */

/*              TRANS = 'C' or 'c'   y := alpha*A'*x + beta*y. */

/*           Unchanged on exit. */

/*  M      - INTEGER. */
/*           On entry, M specifies the number of rows of the matrix A. */
/*           M must be at least zero. */
/*           Unchanged on exit. */

/*  N      - INTEGER. */
/*           On entry, N specifies the number of columns of the matrix A. */
/*           N must be at least zero. */
/*           Unchanged on exit. */

/*  ALPHA  - DOUBLE PRECISION. */
/*           On entry, ALPHA specifies the scalar alpha. */
/*           Unchanged on exit. */

/*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
/*           Before entry, the leading m by n part of the array A must */
/*           contain the matrix of coefficients. */
/*           Unchanged on exit. */

/*  LDA    - INTEGER. */
/*           On entry, LDA specifies the first dimension of A as declared */
/*           in the calling (sub) program. LDA must be at least */
/*           max( 1, m ). */
/*           Unchanged on exit. */

/*  X      - DOUBLE PRECISION array of DIMENSION at least */
/*           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */
/*           and at least */
/*           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */
/*           Before entry, the incremented array X must contain the */
/*           vector x. */
/*           Unchanged on exit. */

/*  INCX   - INTEGER. */
/*           On entry, INCX specifies the increment for the elements of */
/*           X. INCX must not be zero. */
/*           Unchanged on exit. */

/*  BETA   - DOUBLE PRECISION. */
/*           On entry, BETA specifies the scalar beta. When BETA is */
/*           supplied as zero then Y need not be set on input. */
/*           Unchanged on exit. */

/*  Y      - DOUBLE PRECISION array of DIMENSION at least */
/*           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */
/*           and at least */
/*           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */
/*           Before entry with BETA non-zero, the incremented array Y */
/*           must contain the vector y. On exit, Y is overwritten by the */
/*           updated vector y. */

/*  INCY   - INTEGER. */
/*           On entry, INCY specifies the increment for the elements of */
/*           Y. INCY must not be zero. */
/*           Unchanged on exit. */


/*  Level 2 Blas routine. */

/*  -- Written on 22-October-1986. */
/*     Jack Dongarra, Argonne National Lab. */
/*     Jeremy Du Croz, Nag Central Office. */
/*     Sven Hammarling, Nag Central Office. */
/*     Richard Hanson, Sandia National Labs. */


/*     .. Parameters .. */
/*     .. Local Scalars .. */
/*     .. External Functions .. */
/*     .. External Subroutines .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --x;
    --y;

    /* Function Body */
    info = 0;
    if (! igraphlsame_(trans, "N") && ! igraphlsame_(trans, "T") && ! igraphlsame_(trans, "C")
	    ) {
	info = 1;
    } else if (*m < 0) {
	info = 2;
    } else if (*n < 0) {
	info = 3;
    } else if (*lda < max(1,*m)) {
	info = 6;
    } else if (*incx == 0) {
	info = 8;
    } else if (*incy == 0) {
	info = 11;
    }
    if (info != 0) {
	igraphxerbla_("DGEMV ", &info);
	return 0;
    }

/*     Quick return if possible. */

    if (*m == 0 || *n == 0 || (*alpha == 0. && *beta == 1. )) {
	return 0;
    }

/*     Set  LENX  and  LENY, the lengths of the vectors x and y, and set */
/*     up the start points in  X  and  Y. */

    if (igraphlsame_(trans, "N")) {
	lenx = *n;
	leny = *m;
    } else {
	lenx = *m;
	leny = *n;
    }
    if (*incx > 0) {
	kx = 1;
    } else {
	kx = 1 - (lenx - 1) * *incx;
    }
    if (*incy > 0) {
	ky = 1;
    } else {
	ky = 1 - (leny - 1) * *incy;
    }

/*     Start the operations. In this version the elements of A are */
/*     accessed sequentially with one pass through A. */

/*     First form  y := beta*y. */

    if (*beta != 1.) {
	if (*incy == 1) {
	    if (*beta == 0.) {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[i__] = 0.;
/* L10: */
		}
	    } else {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[i__] = *beta * y[i__];
/* L20: */
		}
	    }
	} else {
	    iy = ky;
	    if (*beta == 0.) {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[iy] = 0.;
		    iy += *incy;
/* L30: */
		}
	    } else {
		i__1 = leny;
		for (i__ = 1; i__ <= i__1; ++i__) {
		    y[iy] = *beta * y[iy];
		    iy += *incy;
/* L40: */
		}
	    }
	}
    }
    if (*alpha == 0.) {
	return 0;
    }
    if (igraphlsame_(trans, "N")) {

/*        Form  y := alpha*A*x + y. */

	jx = kx;
	if (*incy == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[jx] != 0.) {
		    temp = *alpha * x[jx];
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			y[i__] += temp * a[i__ + j * a_dim1];
/* L50: */
		    }
		}
		jx += *incx;
/* L60: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		if (x[jx] != 0.) {
		    temp = *alpha * x[jx];
		    iy = ky;
		    i__2 = *m;
		    for (i__ = 1; i__ <= i__2; ++i__) {
			y[iy] += temp * a[i__ + j * a_dim1];
			iy += *incy;
/* L70: */
		    }
		}
		jx += *incx;
/* L80: */
	    }
	}
    } else {

/*        Form  y := alpha*A'*x + y. */

	jy = ky;
	if (*incx == 1) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		temp = 0.;
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp += a[i__ + j * a_dim1] * x[i__];
/* L90: */
		}
		y[jy] += *alpha * temp;
		jy += *incy;
/* L100: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		temp = 0.;
		ix = kx;
		i__2 = *m;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    temp += a[i__ + j * a_dim1] * x[ix];
		    ix += *incx;
/* L110: */
		}
		y[jy] += *alpha * temp;
		jy += *incy;
/* L120: */
	    }
	}
    }

    return 0;

/*     End of DGEMV . */

} /* igraphdgemv_ */
Example #24
0
/* Subroutine */ int igraphdstemr_(char *jobz, char *range, integer *n, doublereal *
	d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, 
	integer *iu, integer *m, doublereal *w, doublereal *z__, integer *ldz,
	 integer *nzc, integer *isuppz, logical *tryrac, doublereal *work, 
	integer *lwork, integer *iwork, integer *liwork, integer *info)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    doublereal d__1, d__2;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j;
    doublereal r1, r2;
    integer jj;
    doublereal cs;
    integer in;
    doublereal sn, wl, wu;
    integer iil, iiu;
    doublereal eps, tmp;
    integer indd, iend, jblk, wend;
    doublereal rmin, rmax;
    integer itmp;
    doublereal tnrm;
    extern /* Subroutine */ int igraphdlae2_(doublereal *, doublereal *, doublereal 
	    *, doublereal *, doublereal *);
    integer inde2, itmp2;
    doublereal rtol1, rtol2;
    extern /* Subroutine */ int igraphdscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    doublereal scale;
    integer indgp;
    extern logical igraphlsame_(char *, char *);
    integer iinfo, iindw, ilast;
    extern /* Subroutine */ int igraphdcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), igraphdswap_(integer *, doublereal *, integer 
	    *, doublereal *, integer *);
    integer lwmin;
    logical wantz;
    extern /* Subroutine */ int igraphdlaev2_(doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *);
    extern doublereal igraphdlamch_(char *);
    logical alleig;
    integer ibegin;
    logical indeig;
    integer iindbl;
    logical valeig;
    extern /* Subroutine */ int igraphdlarrc_(char *, integer *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
	     integer *, integer *, integer *), igraphdlarre_(char *, 
	    integer *, doublereal *, doublereal *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, integer *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *);
    integer wbegin;
    doublereal safmin;
    extern /* Subroutine */ int igraphdlarrj_(integer *, doublereal *, doublereal *,
	     integer *, integer *, doublereal *, integer *, doublereal *, 
	    doublereal *, doublereal *, integer *, doublereal *, doublereal *,
	     integer *), igraphxerbla_(char *, integer *, ftnlen);
    doublereal bignum;
    integer inderr, iindwk, indgrs, offset;
    extern doublereal igraphdlanst_(char *, integer *, doublereal *, doublereal *);
    extern /* Subroutine */ int igraphdlarrr_(integer *, doublereal *, doublereal *,
	     integer *), igraphdlarrv_(integer *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), igraphdlasrt_(char *, integer *, doublereal *, 
	    integer *);
    doublereal thresh;
    integer iinspl, ifirst, indwrk, liwmin, nzcmin;
    doublereal pivmin;
    integer nsplit;
    doublereal smlnum;
    logical lquery, zquery;


/*  -- LAPACK computational routine (version 3.2.2)                                  --   
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
    -- June 2010                                                       --   


    Purpose   
    =======   

    DSTEMR computes selected eigenvalues and, optionally, eigenvectors   
    of a real symmetric tridiagonal matrix T. Any such unreduced matrix has   
    a well defined set of pairwise different real eigenvalues, the corresponding   
    real eigenvectors are pairwise orthogonal.   

    The spectrum may be computed either completely or partially by specifying   
    either an interval (VL,VU] or a range of indices IL:IU for the desired   
    eigenvalues.   

    Depending on the number of desired eigenvalues, these are computed either   
    by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are   
    computed by the use of various suitable L D L^T factorizations near clusters   
    of close eigenvalues (referred to as RRRs, Relatively Robust   
    Representations). An informal sketch of the algorithm follows.   

    For each unreduced block (submatrix) of T,   
       (a) Compute T - sigma I  = L D L^T, so that L and D   
           define all the wanted eigenvalues to high relative accuracy.   
           This means that small relative changes in the entries of D and L   
           cause only small relative changes in the eigenvalues and   
           eigenvectors. The standard (unfactored) representation of the   
           tridiagonal matrix T does not have this property in general.   
       (b) Compute the eigenvalues to suitable accuracy.   
           If the eigenvectors are desired, the algorithm attains full   
           accuracy of the computed eigenvalues only right before   
           the corresponding vectors have to be computed, see steps c) and d).   
       (c) For each cluster of close eigenvalues, select a new   
           shift close to the cluster, find a new factorization, and refine   
           the shifted eigenvalues to suitable accuracy.   
       (d) For each eigenvalue with a large enough relative separation compute   
           the corresponding eigenvector by forming a rank revealing twisted   
           factorization. Go back to (c) for any clusters that remain.   

    For more details, see:   
    - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations   
      to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"   
      Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.   
    - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and   
      Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,   
      2004.  Also LAPACK Working Note 154.   
    - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric   
      tridiagonal eigenvalue/eigenvector problem",   
      Computer Science Division Technical Report No. UCB/CSD-97-971,   
      UC Berkeley, May 1997.   

    Further Details   
    1.DSTEMR works only on machines which follow IEEE-754   
    floating-point standard in their handling of infinities and NaNs.   
    This permits the use of efficient inner loops avoiding a check for   
    zero divisors.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    RANGE   (input) CHARACTER*1   
            = 'A': all eigenvalues will be found.   
            = 'V': all eigenvalues in the half-open interval (VL,VU]   
                   will be found.   
            = 'I': the IL-th through IU-th eigenvalues will be found.   

    N       (input) INTEGER   
            The order of the matrix.  N >= 0.   

    D       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the N diagonal elements of the tridiagonal matrix   
            T. On exit, D is overwritten.   

    E       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the (N-1) subdiagonal elements of the tridiagonal   
            matrix T in elements 1 to N-1 of E. E(N) need not be set on   
            input, but is used internally as workspace.   
            On exit, E is overwritten.   

    VL      (input) DOUBLE PRECISION   
    VU      (input) DOUBLE PRECISION   
            If RANGE='V', the lower and upper bounds of the interval to   
            be searched for eigenvalues. VL < VU.   
            Not referenced if RANGE = 'A' or 'I'.   

    IL      (input) INTEGER   
    IU      (input) INTEGER   
            If RANGE='I', the indices (in ascending order) of the   
            smallest and largest eigenvalues to be returned.   
            1 <= IL <= IU <= N, if N > 0.   
            Not referenced if RANGE = 'A' or 'V'.   

    M       (output) INTEGER   
            The total number of eigenvalues found.  0 <= M <= N.   
            If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.   

    W       (output) DOUBLE PRECISION array, dimension (N)   
            The first M elements contain the selected eigenvalues in   
            ascending order.   

    Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) )   
            If JOBZ = 'V', and if INFO = 0, then the first M columns of Z   
            contain the orthonormal eigenvectors of the matrix T   
            corresponding to the selected eigenvalues, with the i-th   
            column of Z holding the eigenvector associated with W(i).   
            If JOBZ = 'N', then Z is not referenced.   
            Note: the user must ensure that at least max(1,M) columns are   
            supplied in the array Z; if RANGE = 'V', the exact value of M   
            is not known in advance and can be computed with a workspace   
            query by setting NZC = -1, see below.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', then LDZ >= max(1,N).   

    NZC     (input) INTEGER   
            The number of eigenvectors to be held in the array Z.   
            If RANGE = 'A', then NZC >= max(1,N).   
            If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].   
            If RANGE = 'I', then NZC >= IU-IL+1.   
            If NZC = -1, then a workspace query is assumed; the   
            routine calculates the number of columns of the array Z that   
            are needed to hold the eigenvectors.   
            This value is returned as the first entry of the Z array, and   
            no error message related to NZC is issued by XERBLA.   

    ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) )   
            The support of the eigenvectors in Z, i.e., the indices   
            indicating the nonzero elements in Z. The i-th computed eigenvector   
            is nonzero only in elements ISUPPZ( 2*i-1 ) through   
            ISUPPZ( 2*i ). This is relevant in the case when the matrix   
            is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.   

    TRYRAC  (input/output) LOGICAL   
            If TRYRAC.EQ..TRUE., indicates that the code should check whether   
            the tridiagonal matrix defines its eigenvalues to high relative   
            accuracy.  If so, the code uses relative-accuracy preserving   
            algorithms that might be (a bit) slower depending on the matrix.   
            If the matrix does not define its eigenvalues to high relative   
            accuracy, the code can uses possibly faster algorithms.   
            If TRYRAC.EQ..FALSE., the code is not required to guarantee   
            relatively accurate eigenvalues and can use the fastest possible   
            techniques.   
            On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix   
            does not define its eigenvalues to high relative accuracy.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal   
            (and minimal) LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK >= max(1,18*N)   
            if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.   
            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    IWORK   (workspace/output) INTEGER array, dimension (LIWORK)   
            On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.   

    LIWORK  (input) INTEGER   
            The dimension of the array IWORK.  LIWORK >= max(1,10*N)   
            if the eigenvectors are desired, and LIWORK >= max(1,8*N)   
            if only the eigenvalues are to be computed.   
            If LIWORK = -1, then a workspace query is assumed; the   
            routine only calculates the optimal size of the IWORK array,   
            returns this value as the first entry of the IWORK array, and   
            no error message related to LIWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            On exit, INFO   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = 1X, internal error in DLARRE,   
                  if INFO = 2X, internal error in DLARRV.   
                  Here, the digit X = ABS( IINFO ) < 10, where IINFO is   
                  the nonzero error code returned by DLARRE or   
                  DLARRV, respectively.   


    Further Details   
    ===============   

    Based on contributions by   
       Beresford Parlett, University of California, Berkeley, USA   
       Jim Demmel, University of California, Berkeley, USA   
       Inderjit Dhillon, University of Texas, Austin, USA   
       Osni Marques, LBNL/NERSC, USA   
       Christof Voemel, University of California, Berkeley, USA   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    --d__;
    --e;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --isuppz;
    --work;
    --iwork;

    /* Function Body */
    wantz = igraphlsame_(jobz, "V");
    alleig = igraphlsame_(range, "A");
    valeig = igraphlsame_(range, "V");
    indeig = igraphlsame_(range, "I");

    lquery = *lwork == -1 || *liwork == -1;
    zquery = *nzc == -1;
/*     DSTEMR needs WORK of size 6*N, IWORK of size 3*N.   
       In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.   
       Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N. */
    if (wantz) {
	lwmin = *n * 18;
	liwmin = *n * 10;
    } else {
/*        need less workspace if only the eigenvalues are wanted */
	lwmin = *n * 12;
	liwmin = *n << 3;
    }
    wl = 0.;
    wu = 0.;
    iil = 0;
    iiu = 0;
    if (valeig) {
/*        We do not reference VL, VU in the cases RANGE = 'I','A'   
          The interval (WL, WU] contains all the wanted eigenvalues.   
          It is either given by the user or computed in DLARRE. */
	wl = *vl;
	wu = *vu;
    } else if (indeig) {
/*        We do not reference IL, IU in the cases RANGE = 'V','A' */
	iil = *il;
	iiu = *iu;
    }

    *info = 0;
    if (! (wantz || igraphlsame_(jobz, "N"))) {
	*info = -1;
    } else if (! (alleig || valeig || indeig)) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (valeig && *n > 0 && wu <= wl) {
	*info = -7;
    } else if (indeig && (iil < 1 || iil > *n)) {
	*info = -8;
    } else if (indeig && (iiu < iil || iiu > *n)) {
	*info = -9;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -13;
    } else if (*lwork < lwmin && ! lquery) {
	*info = -17;
    } else if (*liwork < liwmin && ! lquery) {
	*info = -19;
    }

/*     Get machine constants. */

    safmin = igraphdlamch_("Safe minimum");
    eps = igraphdlamch_("Precision");
    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = sqrt(smlnum);
/* Computing MIN */
    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
    rmax = min(d__1,d__2);

    if (*info == 0) {
	work[1] = (doublereal) lwmin;
	iwork[1] = liwmin;

	if (wantz && alleig) {
	    nzcmin = *n;
	} else if (wantz && valeig) {
	    igraphdlarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &
		    itmp2, info);
	} else if (wantz && indeig) {
	    nzcmin = iiu - iil + 1;
	} else {
/*           WANTZ .EQ. FALSE. */
	    nzcmin = 0;
	}
	if (zquery && *info == 0) {
	    z__[z_dim1 + 1] = (doublereal) nzcmin;
	} else if (*nzc < nzcmin && ! zquery) {
	    *info = -14;
	}
    }
    if (*info != 0) {

	i__1 = -(*info);
	igraphxerbla_("DSTEMR", &i__1, (ftnlen)6);

	return 0;
    } else if (lquery || zquery) {
	return 0;
    }

/*     Handle N = 0, 1, and 2 cases immediately */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

    if (*n == 1) {
	if (alleig || indeig) {
	    *m = 1;
	    w[1] = d__[1];
	} else {
	    if (wl < d__[1] && wu >= d__[1]) {
		*m = 1;
		w[1] = d__[1];
	    }
	}
	if (wantz && ! zquery) {
	    z__[z_dim1 + 1] = 1.;
	    isuppz[1] = 1;
	    isuppz[2] = 1;
	}
	return 0;
    }

    if (*n == 2) {
	if (! wantz) {
	    igraphdlae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
	} else if (wantz && ! zquery) {
	    igraphdlaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
	}
	if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {
	    ++(*m);
	    w[*m] = r2;
	    if (wantz && ! zquery) {
		z__[*m * z_dim1 + 1] = -sn;
		z__[*m * z_dim1 + 2] = cs;
/*              Note: At most one of SN and CS can be zero. */
		if (sn != 0.) {
		    if (cs != 0.) {
			isuppz[(*m << 1) - 1] = 1;
			isuppz[*m * 2] = 2;
		    } else {
			isuppz[(*m << 1) - 1] = 1;
			isuppz[*m * 2] = 1;
		    }
		} else {
		    isuppz[(*m << 1) - 1] = 2;
		    isuppz[*m * 2] = 2;
		}
	    }
	}
	if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {
	    ++(*m);
	    w[*m] = r1;
	    if (wantz && ! zquery) {
		z__[*m * z_dim1 + 1] = cs;
		z__[*m * z_dim1 + 2] = sn;
/*              Note: At most one of SN and CS can be zero. */
		if (sn != 0.) {
		    if (cs != 0.) {
			isuppz[(*m << 1) - 1] = 1;
			isuppz[*m * 2] = 2;
		    } else {
			isuppz[(*m << 1) - 1] = 1;
			isuppz[*m * 2] = 1;
		    }
		} else {
		    isuppz[(*m << 1) - 1] = 2;
		    isuppz[*m * 2] = 2;
		}
	    }
	}
	return 0;
    }
/*     Continue with general N */
    indgrs = 1;
    inderr = (*n << 1) + 1;
    indgp = *n * 3 + 1;
    indd = (*n << 2) + 1;
    inde2 = *n * 5 + 1;
    indwrk = *n * 6 + 1;

    iinspl = 1;
    iindbl = *n + 1;
    iindw = (*n << 1) + 1;
    iindwk = *n * 3 + 1;

/*     Scale matrix to allowable range, if necessary.   
       The allowable range is related to the PIVMIN parameter; see the   
       comments in DLARRD.  The preference for scaling small values   
       up is heuristic; we expect users' matrices not to be close to the   
       RMAX threshold. */

    scale = 1.;
    tnrm = igraphdlanst_("M", n, &d__[1], &e[1]);
    if (tnrm > 0. && tnrm < rmin) {
	scale = rmin / tnrm;
    } else if (tnrm > rmax) {
	scale = rmax / tnrm;
    }
    if (scale != 1.) {
	igraphdscal_(n, &scale, &d__[1], &c__1);
	i__1 = *n - 1;
	igraphdscal_(&i__1, &scale, &e[1], &c__1);
	tnrm *= scale;
	if (valeig) {
/*           If eigenvalues in interval have to be found,   
             scale (WL, WU] accordingly */
	    wl *= scale;
	    wu *= scale;
	}
    }

/*     Compute the desired eigenvalues of the tridiagonal after splitting   
       into smaller subblocks if the corresponding off-diagonal elements   
       are small   
       THRESH is the splitting parameter for DLARRE   
       A negative THRESH forces the old splitting criterion based on the   
       size of the off-diagonal. A positive THRESH switches to splitting   
       which preserves relative accuracy. */

    if (*tryrac) {
/*        Test whether the matrix warrants the more expensive relative approach. */
	igraphdlarrr_(n, &d__[1], &e[1], &iinfo);
    } else {
/*        The user does not care about relative accurately eigenvalues */
	iinfo = -1;
    }
/*     Set the splitting criterion */
    if (iinfo == 0) {
	thresh = eps;
    } else {
	thresh = -eps;
/*        relative accuracy is desired but T does not guarantee it */
	*tryrac = FALSE_;
    }

    if (*tryrac) {
/*        Copy original diagonal, needed to guarantee relative accuracy */
	igraphdcopy_(n, &d__[1], &c__1, &work[indd], &c__1);
    }
/*     Store the squares of the offdiagonal values of T */
    i__1 = *n - 1;
    for (j = 1; j <= i__1; ++j) {
/* Computing 2nd power */
	d__1 = e[j];
	work[inde2 + j - 1] = d__1 * d__1;
/* L5: */
    }
/*     Set the tolerance parameters for bisection */
    if (! wantz) {
/*        DLARRE computes the eigenvalues to full precision. */
	rtol1 = eps * 4.;
	rtol2 = eps * 4.;
    } else {
/*        DLARRE computes the eigenvalues to less than full precision.   
          DLARRV will refine the eigenvalue approximations, and we can   
          need less accurate initial bisection in DLARRE.   
          Note: these settings do only affect the subset case and DLARRE */
	rtol1 = sqrt(eps);
/* Computing MAX */
	d__1 = sqrt(eps) * .005, d__2 = eps * 4.;
	rtol2 = max(d__1,d__2);
    }
    igraphdlarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2], &
	    rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &work[
	    inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &work[
	    indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
    if (iinfo != 0) {
	*info = abs(iinfo) + 10;
	return 0;
    }
/*     Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired   
       part of the spectrum. All desired eigenvalues are contained in   
       (WL,WU] */
    if (wantz) {

/*        Compute the desired eigenvectors corresponding to the computed   
          eigenvalues */

	igraphdlarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &
		c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &work[
		indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs], &z__[
		z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[iindwk], &
		iinfo);
	if (iinfo != 0) {
	    *info = abs(iinfo) + 20;
	    return 0;
	}
    } else {
/*        DLARRE computes eigenvalues of the (shifted) root representation   
          DLARRV returns the eigenvalues of the unshifted matrix.   
          However, if the eigenvectors are not desired by the user, we need   
          to apply the corresponding shifts from DLARRE to obtain the   
          eigenvalues of the original matrix. */
	i__1 = *m;
	for (j = 1; j <= i__1; ++j) {
	    itmp = iwork[iindbl + j - 1];
	    w[j] += e[iwork[iinspl + itmp - 1]];
/* L20: */
	}
    }

    if (*tryrac) {
/*        Refine computed eigenvalues so that they are relatively accurate   
          with respect to the original matrix T. */
	ibegin = 1;
	wbegin = 1;
	i__1 = iwork[iindbl + *m - 1];
	for (jblk = 1; jblk <= i__1; ++jblk) {
	    iend = iwork[iinspl + jblk - 1];
	    in = iend - ibegin + 1;
	    wend = wbegin - 1;
/*           check if any eigenvalues have to be refined in this block */
L36:
	    if (wend < *m) {
		if (iwork[iindbl + wend] == jblk) {
		    ++wend;
		    goto L36;
		}
	    }
	    if (wend < wbegin) {
		ibegin = iend + 1;
		goto L39;
	    }
	    offset = iwork[iindw + wbegin - 1] - 1;
	    ifirst = iwork[iindw + wbegin - 1];
	    ilast = iwork[iindw + wend - 1];
	    rtol2 = eps * 4.;
	    igraphdlarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin - 1], 
		    &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &work[
		    inderr + wbegin - 1], &work[indwrk], &iwork[iindwk], &
		    pivmin, &tnrm, &iinfo);
	    ibegin = iend + 1;
	    wbegin = wend + 1;
L39:
	    ;
	}
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (scale != 1.) {
	d__1 = 1. / scale;
	igraphdscal_(m, &d__1, &w[1], &c__1);
    }

/*     If eigenvalues are not in increasing order, then sort them,   
       possibly along with eigenvectors. */

    if (nsplit > 1) {
	if (! wantz) {
	    igraphdlasrt_("I", m, &w[1], &iinfo);
	    if (iinfo != 0) {
		*info = 3;
		return 0;
	    }
	} else {
	    i__1 = *m - 1;
	    for (j = 1; j <= i__1; ++j) {
		i__ = 0;
		tmp = w[j];
		i__2 = *m;
		for (jj = j + 1; jj <= i__2; ++jj) {
		    if (w[jj] < tmp) {
			i__ = jj;
			tmp = w[jj];
		    }
/* L50: */
		}
		if (i__ != 0) {
		    w[i__] = w[j];
		    w[j] = tmp;
		    if (wantz) {
			igraphdswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * 
				z_dim1 + 1], &c__1);
			itmp = isuppz[(i__ << 1) - 1];
			isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
			isuppz[(j << 1) - 1] = itmp;
			itmp = isuppz[i__ * 2];
			isuppz[i__ * 2] = isuppz[j * 2];
			isuppz[j * 2] = itmp;
		    }
		}
/* L60: */
	    }
	}
    }


    work[1] = (doublereal) lwmin;
    iwork[1] = liwmin;
    return 0;

/*     End of DSTEMR */

} /* igraphdstemr_ */