Example #1
0
unsigned int cpm_pic_init(void)
{
	struct device_node *np = NULL;
	struct resource res;
	unsigned int sirq = NO_IRQ, hwirq, eirq;
	int ret;

	pr_debug("cpm_pic_init\n");

	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
	if (np == NULL)
		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
	if (np == NULL) {
		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
		return sirq;
	}

	ret = of_address_to_resource(np, 0, &res);
	if (ret)
		goto end;

	cpic_reg = ioremap(res.start, resource_size(&res));
	if (cpic_reg == NULL)
		goto end;

	sirq = irq_of_parse_and_map(np, 0);
	if (sirq == NO_IRQ)
		goto end;

	/* Initialize the CPM interrupt controller. */
	hwirq = (unsigned int)virq_to_hw(sirq);
	out_be32(&cpic_reg->cpic_cicr,
	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
		((hwirq/2) << 13) | CICR_HP_MASK);

	out_be32(&cpic_reg->cpic_cimr, 0);

	cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
	if (cpm_pic_host == NULL) {
		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
		sirq = NO_IRQ;
		goto end;
	}

	/* Install our own error handler. */
	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
	if (np == NULL)
		np = of_find_node_by_type(NULL, "cpm");
	if (np == NULL) {
		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
		goto end;
	}

	eirq = irq_of_parse_and_map(np, 0);
	if (eirq == NO_IRQ)
		goto end;

	if (setup_irq(eirq, &cpm_error_irqaction))
		printk(KERN_ERR "Could not allocate CPM error IRQ!");

	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);

end:
	of_node_put(np);
	return sirq;
}
Example #2
0
static int spi_st_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct spi_master *master;
	struct resource *res;
	struct spi_st *spi_st;
	int irq, ret = 0;
	u32 var;

	master = spi_alloc_master(&pdev->dev, sizeof(*spi_st));
	if (!master)
		return -ENOMEM;

	master->dev.of_node		= np;
	master->mode_bits		= MODEBITS;
	master->setup			= spi_st_setup;
	master->cleanup			= spi_st_cleanup;
	master->transfer_one		= spi_st_transfer_one;
	master->bits_per_word_mask	= SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
	master->auto_runtime_pm		= true;
	master->bus_num			= pdev->id;
	spi_st				= spi_master_get_devdata(master);

	spi_st->clk = devm_clk_get(&pdev->dev, "ssc");
	if (IS_ERR(spi_st->clk)) {
		dev_err(&pdev->dev, "Unable to request clock\n");
		ret = PTR_ERR(spi_st->clk);
		goto put_master;
	}

	ret = clk_prepare_enable(spi_st->clk);
	if (ret)
		goto put_master;

	init_completion(&spi_st->done);

	/* Get resources */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	spi_st->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(spi_st->base)) {
		ret = PTR_ERR(spi_st->base);
		goto clk_disable;
	}

	/* Disable I2C and Reset SSC */
	writel_relaxed(0x0, spi_st->base + SSC_I2C);
	var = readw_relaxed(spi_st->base + SSC_CTL);
	var |= SSC_CTL_SR;
	writel_relaxed(var, spi_st->base + SSC_CTL);

	udelay(1);
	var = readl_relaxed(spi_st->base + SSC_CTL);
	var &= ~SSC_CTL_SR;
	writel_relaxed(var, spi_st->base + SSC_CTL);

	/* Set SSC into slave mode before reconfiguring PIO pins */
	var = readl_relaxed(spi_st->base + SSC_CTL);
	var &= ~SSC_CTL_MS;
	writel_relaxed(var, spi_st->base + SSC_CTL);

	irq = irq_of_parse_and_map(np, 0);
	if (!irq) {
		dev_err(&pdev->dev, "IRQ missing or invalid\n");
		ret = -EINVAL;
		goto clk_disable;
	}

	ret = devm_request_irq(&pdev->dev, irq, spi_st_irq, 0,
			       pdev->name, spi_st);
	if (ret) {
		dev_err(&pdev->dev, "Failed to request irq %d\n", irq);
		goto clk_disable;
	}

	/* by default the device is on */
	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

	platform_set_drvdata(pdev, master);

	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret) {
		dev_err(&pdev->dev, "Failed to register master\n");
		goto clk_disable;
	}

	return 0;

clk_disable:
	clk_disable_unprepare(spi_st->clk);
put_master:
	spi_master_put(master);
	return ret;
}
static int __devinit tdm_fsl_starlite_probe(struct of_device *ofdev,
			      const struct of_device_id *match)
{
	int ret = 0;
	struct tdm_priv *priv;
	struct resource res;

	priv = kmalloc(sizeof(struct tdm_priv), GFP_KERNEL);
	if (!priv) {
		ret = -ENOMEM;
		goto err_alloc;
	}

	dev_set_drvdata(&ofdev->dev, priv);
	priv->device = &ofdev->dev;

	ret = of_address_to_resource(ofdev->node, 0, &res);
	if (ret) {
		ret = -EINVAL;
		goto err_resource;
	}
	priv->ptdm_base = res.start;

	priv->tdm_regs = of_iomap(ofdev->node, 0);
	if (!priv->tdm_regs) {
		ret = -ENOMEM;
		goto err_tdmregs;
	}

	priv->dmac_regs = of_iomap(ofdev->node, 1);
	if (!priv->dmac_regs) {
		ret = -ENOMEM;
		goto err_dmacreg;
	}

	/* tdmrd tmdtd at immrbar+0x16100 */
	priv->data_regs =
	    (struct tdm_data *)(TDM_DATAREG_OFFSET + (u8 *)priv->tdm_regs);
	/* TDMCLK_DIV_VAL_RX/TX at TDMBASE+0x180 */
	priv->clk_regs =
	    (struct tdm_clock *)(TDM_CLKREG_OFFSET + (u8 *)priv->tdm_regs);

	/* irqs mapping for tdm err/dmac err, dmac done */
	priv->tdm_err_intr = irq_of_parse_and_map(ofdev->node, 0);
	if (priv->tdm_err_intr == NO_IRQ) {
		ret = -EINVAL;
		goto err_tdmerr_irqmap;
	}

	priv->dmac_done_intr = irq_of_parse_and_map(ofdev->node, 1);
	if (priv->dmac_done_intr == NO_IRQ) {
		ret = -EINVAL;
		goto err_dmacdone_irqmap;
	}
	ret =
	    request_irq(priv->tdm_err_intr, tdm_err_isr, 0, "tdm_err_isr",
			priv);
	if (ret)
		goto err_tdmerrisr;

	ret =
	    request_irq(priv->dmac_done_intr, dmac_done_isr, 0, "dmac_done_isr",
			priv);
	if (ret)
		goto err_dmacdoneisr;

	priv->cfg.loopback = e_TDM_PROCESS_NORMAL;
	priv->cfg.num_ch = TDM_ACTIVE_CHANNELS;
	priv->cfg.ch_type = TDM_CHANNEL_TYPE;
	priv->cfg.ch_width = TDM_SLOT_WIDTH;
	priv->cfg.num_frames = NUM_OF_FRAMES;

	priv->adap = &tdm_fsl_starlite_ops;

	/* Wait q initilization */
	priv->adap->tdm_rx_flag = 0;
	/* todo - these should be configured by dts or init time */
	priv->adap->adap_mode = e_TDM_ADAPTER_MODE_NONE;
	priv->adap->tdm_mode = priv->cfg.loopback;

	priv->adap->max_num_ports = priv->cfg.num_ch;

	tdm_set_adapdata(priv->adap, priv);
	priv->adap->parent = &ofdev->dev;

	ret = 0;
	ret = tdm_add_adapter(priv->adap);
	if (ret < 0) {
		dev_err(priv->device, "failed to add adapter\n");
		goto fail_adapter;
	}

	ret = init_tdm(priv);
	if (ret)
		goto err_tdminit;

	ret = tdm_fsl_starlite_reg_init(priv);
	if (ret)
		goto err_tdminit;

	spin_lock_init(&priv->tdmlock);
	spin_lock(&priv->tdmlock);
	priv->tdm_active = 0;
	spin_unlock(&priv->tdmlock);

	if (tdmen) {
		ret = tdm_fsl_starlite_enable(priv->adap);
		if (!ret)
			goto err_tdminit;
	}

	return 0;

err_tdminit:
fail_adapter:
	free_irq(priv->dmac_done_intr, priv);
err_dmacdoneisr:
	free_irq(priv->tdm_err_intr, priv);
err_tdmerrisr:
	irq_dispose_mapping(priv->dmac_done_intr);
err_dmacdone_irqmap:
	irq_dispose_mapping(priv->tdm_err_intr);
err_tdmerr_irqmap:
	iounmap(priv->dmac_regs);
err_dmacreg:
	iounmap(priv->tdm_regs);
err_tdmregs:
err_resource:
	dev_set_drvdata(&ofdev->dev, NULL);
	kfree(priv);
err_alloc:
	return ret;
}
Example #4
0
/* The decrementer counts at the system (internal) clock frequency divided by
 * sixteen, or external oscillator divided by four.  We force the processor
 * to use system clock divided by sixteen.
 */
void __init mpc8xx_calibrate_decr(void)
{
	struct device_node *cpu;
	cark8xx_t __iomem *clk_r1;
	car8xx_t __iomem *clk_r2;
	sitk8xx_t __iomem *sys_tmr1;
	sit8xx_t __iomem *sys_tmr2;
	int irq, virq;

	clk_r1 = immr_map(im_clkrstk);

	/* Unlock the SCCR. */
	out_be32(&clk_r1->cark_sccrk, ~KAPWR_KEY);
	out_be32(&clk_r1->cark_sccrk, KAPWR_KEY);
	immr_unmap(clk_r1);

	/* Force all 8xx processors to use divide by 16 processor clock. */
	clk_r2 = immr_map(im_clkrst);
	setbits32(&clk_r2->car_sccr, 0x02000000);
	immr_unmap(clk_r2);

	/* Processor frequency is MHz.
	 */
	ppc_proc_freq = 50000000;
	if (!get_freq("clock-frequency", &ppc_proc_freq))
		printk(KERN_ERR "WARNING: Estimating processor frequency "
		                "(not found)\n");

	ppc_tb_freq = ppc_proc_freq / 16;
	printk("Decrementer Frequency = 0x%lx\n", ppc_tb_freq);

	/* Perform some more timer/timebase initialization.  This used
	 * to be done elsewhere, but other changes caused it to get
	 * called more than once....that is a bad thing.
	 *
	 * First, unlock all of the registers we are going to modify.
	 * To protect them from corruption during power down, registers
	 * that are maintained by keep alive power are "locked".  To
	 * modify these registers we have to write the key value to
	 * the key location associated with the register.
	 * Some boards power up with these unlocked, while others
	 * are locked.  Writing anything (including the unlock code?)
	 * to the unlocked registers will lock them again.  So, here
	 * we guarantee the registers are locked, then we unlock them
	 * for our use.
	 */
	sys_tmr1 = immr_map(im_sitk);
	out_be32(&sys_tmr1->sitk_tbscrk, ~KAPWR_KEY);
	out_be32(&sys_tmr1->sitk_rtcsck, ~KAPWR_KEY);
	out_be32(&sys_tmr1->sitk_tbk, ~KAPWR_KEY);
	out_be32(&sys_tmr1->sitk_tbscrk, KAPWR_KEY);
	out_be32(&sys_tmr1->sitk_rtcsck, KAPWR_KEY);
	out_be32(&sys_tmr1->sitk_tbk, KAPWR_KEY);
	immr_unmap(sys_tmr1);

	init_internal_rtc();

	/* Enabling the decrementer also enables the timebase interrupts
	 * (or from the other point of view, to get decrementer interrupts
	 * we have to enable the timebase).  The decrementer interrupt
	 * is wired into the vector table, nothing to do here for that.
	 */
	cpu = of_find_node_by_type(NULL, "cpu");
	virq= irq_of_parse_and_map(cpu, 0);
	irq = virq_to_hw(virq);

	sys_tmr2 = immr_map(im_sit);
	out_be16(&sys_tmr2->sit_tbscr, ((1 << (7 - (irq/2))) << 8) |
					(TBSCR_TBF | TBSCR_TBE));
	immr_unmap(sys_tmr2);

	if (setup_irq(virq, &tbint_irqaction))
		panic("Could not allocate timer IRQ!");
}
Example #5
0
static int __devinit
ohci_hcd_ppc_of_probe(struct of_device *op, const struct of_device_id *match)
{
	struct device_node *dn = op->dev.of_node;
	struct usb_hcd *hcd;
	struct ohci_hcd	*ohci;
	struct resource res;
	int irq;

	int rv;
	int is_bigendian;
	struct device_node *np;

	if (usb_disabled())
		return -ENODEV;

	is_bigendian =
		of_device_is_compatible(dn, "ohci-bigendian") ||
		of_device_is_compatible(dn, "ohci-be");

	dev_dbg(&op->dev, "initializing PPC-OF USB Controller\n");

	rv = of_address_to_resource(dn, 0, &res);
	if (rv)
		return rv;

	hcd = usb_create_hcd(&ohci_ppc_of_hc_driver, &op->dev, "PPC-OF USB");
	if (!hcd)
		return -ENOMEM;

	hcd->rsrc_start = res.start;
	hcd->rsrc_len = res.end - res.start + 1;

	if (!request_mem_region(hcd->rsrc_start, hcd->rsrc_len, hcd_name)) {
		printk(KERN_ERR "%s: request_mem_region failed\n", __FILE__);
		rv = -EBUSY;
		goto err_rmr;
	}

	irq = irq_of_parse_and_map(dn, 0);
	if (irq == NO_IRQ) {
		printk(KERN_ERR "%s: irq_of_parse_and_map failed\n", __FILE__);
		rv = -EBUSY;
		goto err_irq;
	}

	hcd->regs = ioremap(hcd->rsrc_start, hcd->rsrc_len);
	if (!hcd->regs) {
		printk(KERN_ERR "%s: ioremap failed\n", __FILE__);
		rv = -ENOMEM;
		goto err_ioremap;
	}

	ohci = hcd_to_ohci(hcd);
	if (is_bigendian) {
		ohci->flags |= OHCI_QUIRK_BE_MMIO | OHCI_QUIRK_BE_DESC;
		if (of_device_is_compatible(dn, "fsl,mpc5200-ohci"))
			ohci->flags |= OHCI_QUIRK_FRAME_NO;
		if (of_device_is_compatible(dn, "mpc5200-ohci"))
			ohci->flags |= OHCI_QUIRK_FRAME_NO;
	}

	ohci_hcd_init(ohci);

	rv = usb_add_hcd(hcd, irq, IRQF_DISABLED);
	if (rv == 0)
		return 0;

	/* by now, 440epx is known to show usb_23 erratum */
	np = of_find_compatible_node(NULL, NULL, "ibm,usb-ehci-440epx");

	/* Work around - At this point ohci_run has executed, the
	* controller is running, everything, the root ports, etc., is
	* set up.  If the ehci driver is loaded, put the ohci core in
	* the suspended state.  The ehci driver will bring it out of
	* suspended state when / if a non-high speed USB device is
	* attached to the USB Host port.  If the ehci driver is not
	* loaded, do nothing. request_mem_region is used to test if
	* the ehci driver is loaded.
	*/
	if (np !=  NULL) {
		if (!of_address_to_resource(np, 0, &res)) {
			if (!request_mem_region(res.start, 0x4, hcd_name)) {
				writel_be((readl_be(&ohci->regs->control) |
					OHCI_USB_SUSPEND), &ohci->regs->control);
					(void) readl_be(&ohci->regs->control);
			} else
				release_mem_region(res.start, 0x4);
		} else
			pr_debug("%s: cannot get ehci offset from fdt\n", __FILE__);
	}

	iounmap(hcd->regs);
err_ioremap:
	irq_dispose_mapping(irq);
err_irq:
	release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
err_rmr:
 	usb_put_hcd(hcd);

	return rv;
}
Example #6
0
static int talitos_probe(struct platform_device *pdev)
#endif
{
	struct talitos_softc *sc = NULL;
	struct resource *r;
#ifdef CONFIG_PPC_MERGE
	struct device *device = &ofdev->dev;
	struct device_node *np = ofdev->node;
	const unsigned int *prop;
	int err;
	struct resource res;
#endif
	static int num_chips = 0;
	int rc;
	int i;

	DPRINTF("%s()\n", __FUNCTION__);

	sc = (struct talitos_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
	if (!sc)
		return -ENOMEM;
	memset(sc, 0, sizeof(*sc));

	softc_device_init(sc, DRV_NAME, num_chips, talitos_methods);

	sc->sc_irq = -1;
	sc->sc_cid = -1;
#ifndef CONFIG_PPC_MERGE
	sc->sc_dev = pdev;
#endif
	sc->sc_num = num_chips++;

#ifdef CONFIG_PPC_MERGE
	dev_set_drvdata(device, sc);
#else
	platform_set_drvdata(sc->sc_dev, sc);
#endif

	/* get the irq line */
#ifdef CONFIG_PPC_MERGE
	err = of_address_to_resource(np, 0, &res);
	if (err)
		return -EINVAL;
	r = &res;

	sc->sc_irq = irq_of_parse_and_map(np, 0);
#else
	/* get a pointer to the register memory */
	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	sc->sc_irq = platform_get_irq(pdev, 0);
#endif
	rc = request_irq(sc->sc_irq, talitos_intr, 0,
			device_get_nameunit(sc->sc_cdev), sc);
	if (rc) {
		printk(KERN_ERR "%s: failed to hook irq %d\n",
				device_get_nameunit(sc->sc_cdev), sc->sc_irq);
		sc->sc_irq = -1;
		goto out;
	}

	sc->sc_base_addr = (ocf_iomem_t) ioremap(r->start, (r->end - r->start));
	if (!sc->sc_base_addr) {
		printk(KERN_ERR "%s: failed to ioremap\n",
				device_get_nameunit(sc->sc_cdev));
		goto out;
	}

	/* figure out our SEC's properties and capabilities */
	sc->sc_chiprev = (u64)talitos_read(sc->sc_base_addr + TALITOS_ID) << 32
		 | talitos_read(sc->sc_base_addr + TALITOS_ID_HI);
	DPRINTF("sec id 0x%llx\n", sc->sc_chiprev);

#ifdef CONFIG_PPC_MERGE
	/* get SEC properties from device tree, defaulting to SEC 2.0 */

	prop = of_get_property(np, "num-channels", NULL);
	sc->sc_num_channels = prop ? *prop : TALITOS_NCHANNELS_SEC_2_0;

	prop = of_get_property(np, "channel-fifo-len", NULL);
	sc->sc_chfifo_len = prop ? *prop : TALITOS_CHFIFOLEN_SEC_2_0;

	prop = of_get_property(np, "exec-units-mask", NULL);
	sc->sc_exec_units = prop ? *prop : TALITOS_HAS_EUS_SEC_2_0;

	prop = of_get_property(np, "descriptor-types-mask", NULL);
	sc->sc_desc_types = prop ? *prop : TALITOS_HAS_DESCTYPES_SEC_2_0;
#else
	/* bulk should go away with openfirmware flat device tree support */
	if (sc->sc_chiprev & TALITOS_ID_SEC_2_0) {
		sc->sc_num_channels = TALITOS_NCHANNELS_SEC_2_0;
		sc->sc_chfifo_len = TALITOS_CHFIFOLEN_SEC_2_0;
		sc->sc_exec_units = TALITOS_HAS_EUS_SEC_2_0;
		sc->sc_desc_types = TALITOS_HAS_DESCTYPES_SEC_2_0;
	} else {
		printk(KERN_ERR "%s: failed to id device\n",
				device_get_nameunit(sc->sc_cdev));
		goto out;
	}
#endif

	/* + 1 is for the meta-channel lock used by the channel scheduler */
	sc->sc_chnfifolock = (spinlock_t *) kmalloc(
		(sc->sc_num_channels + 1) * sizeof(spinlock_t), GFP_KERNEL);
	if (!sc->sc_chnfifolock)
		goto out;
	for (i = 0; i < sc->sc_num_channels + 1; i++) {
		spin_lock_init(&sc->sc_chnfifolock[i]);
	}

	sc->sc_chnlastalg = (int *) kmalloc(
		sc->sc_num_channels * sizeof(int), GFP_KERNEL);
	if (!sc->sc_chnlastalg)
		goto out;
	memset(sc->sc_chnlastalg, 0, sc->sc_num_channels * sizeof(int));

	sc->sc_chnfifo = (struct desc_cryptop_pair **) kmalloc(
		sc->sc_num_channels * sizeof(struct desc_cryptop_pair *),
		GFP_KERNEL);
	if (!sc->sc_chnfifo)
		goto out;
	for (i = 0; i < sc->sc_num_channels; i++) {
		sc->sc_chnfifo[i] = (struct desc_cryptop_pair *) kmalloc(
			sc->sc_chfifo_len * sizeof(struct desc_cryptop_pair),
			GFP_KERNEL);
		if (!sc->sc_chnfifo[i])
			goto out;
		memset(sc->sc_chnfifo[i], 0,
			sc->sc_chfifo_len * sizeof(struct desc_cryptop_pair));
	}

	/* reset and initialize the SEC h/w device */
	talitos_reset_device(sc);
	talitos_init_device(sc);

	sc->sc_cid = crypto_get_driverid(softc_get_device(sc),CRYPTOCAP_F_HARDWARE);
	if (sc->sc_cid < 0) {
		printk(KERN_ERR "%s: could not get crypto driver id\n",
				device_get_nameunit(sc->sc_cdev));
		goto out;
	}

	/* register algorithms with the framework */
	printk("%s:", device_get_nameunit(sc->sc_cdev));

	if (sc->sc_exec_units & TALITOS_HAS_EU_RNG)  {
		printk(" rng");
#ifdef CONFIG_OCF_RANDOMHARVEST
		talitos_rng_init(sc);
		crypto_rregister(sc->sc_cid, talitos_read_random, sc);
#endif
	}
	if (sc->sc_exec_units & TALITOS_HAS_EU_DEU) {
		printk(" des/3des");
		crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
		crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
	}
	if (sc->sc_exec_units & TALITOS_HAS_EU_AESU) {
		printk(" aes");
		crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
	}
	if (sc->sc_exec_units & TALITOS_HAS_EU_MDEU) {
		printk(" md5");
		crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0);
		/* HMAC support only with IPsec for now */
		crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
		printk(" sha1");
		crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0);
		/* HMAC support only with IPsec for now */
		crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
	}
	printk("\n");
	return 0;

out:
#ifndef CONFIG_PPC_MERGE
	talitos_remove(pdev);
#endif
	return -ENOMEM;
}
Example #7
0
/*
 * Setup one port structure after probing, HW is down at this point,
 * Unlike sunzilog, we don't need to pre-init the spinlock as we don't
 * register our console before uart_add_one_port() is called
 */
static int __init pmz_init_port(struct uart_pmac_port *uap)
{
	struct device_node *np = uap->node;
	const char *conn;
	const struct slot_names_prop {
		int	count;
		char	name[1];
	} *slots;
	int len;
	struct resource r_ports, r_rxdma, r_txdma;

	/*
	 * Request & map chip registers
	 */
	if (of_address_to_resource(np, 0, &r_ports))
		return -ENODEV;
	uap->port.mapbase = r_ports.start;
	uap->port.membase = ioremap(uap->port.mapbase, 0x1000);
      
	uap->control_reg = uap->port.membase;
	uap->data_reg = uap->control_reg + 0x10;
	
	/*
	 * Request & map DBDMA registers
	 */
#ifdef HAS_DBDMA
	if (of_address_to_resource(np, 1, &r_txdma) == 0 &&
	    of_address_to_resource(np, 2, &r_rxdma) == 0)
		uap->flags |= PMACZILOG_FLAG_HAS_DMA;
#else
	memset(&r_txdma, 0, sizeof(struct resource));
	memset(&r_rxdma, 0, sizeof(struct resource));
#endif	
	if (ZS_HAS_DMA(uap)) {
		uap->tx_dma_regs = ioremap(r_txdma.start, 0x100);
		if (uap->tx_dma_regs == NULL) {	
			uap->flags &= ~PMACZILOG_FLAG_HAS_DMA;
			goto no_dma;
		}
		uap->rx_dma_regs = ioremap(r_rxdma.start, 0x100);
		if (uap->rx_dma_regs == NULL) {	
			iounmap(uap->tx_dma_regs);
			uap->tx_dma_regs = NULL;
			uap->flags &= ~PMACZILOG_FLAG_HAS_DMA;
			goto no_dma;
		}
		uap->tx_dma_irq = irq_of_parse_and_map(np, 1);
		uap->rx_dma_irq = irq_of_parse_and_map(np, 2);
	}
no_dma:

	/*
	 * Detect port type
	 */
	if (of_device_is_compatible(np, "cobalt"))
		uap->flags |= PMACZILOG_FLAG_IS_INTMODEM;
	conn = of_get_property(np, "AAPL,connector", &len);
	if (conn && (strcmp(conn, "infrared") == 0))
		uap->flags |= PMACZILOG_FLAG_IS_IRDA;
	uap->port_type = PMAC_SCC_ASYNC;
	/* 1999 Powerbook G3 has slot-names property instead */
	slots = of_get_property(np, "slot-names", &len);
	if (slots && slots->count > 0) {
		if (strcmp(slots->name, "IrDA") == 0)
			uap->flags |= PMACZILOG_FLAG_IS_IRDA;
		else if (strcmp(slots->name, "Modem") == 0)
			uap->flags |= PMACZILOG_FLAG_IS_INTMODEM;
	}
	if (ZS_IS_IRDA(uap))
		uap->port_type = PMAC_SCC_IRDA;
	if (ZS_IS_INTMODEM(uap)) {
		struct device_node* i2c_modem =
			of_find_node_by_name(NULL, "i2c-modem");
		if (i2c_modem) {
			const char* mid =
				of_get_property(i2c_modem, "modem-id", NULL);
			if (mid) switch(*mid) {
			case 0x04 :
			case 0x05 :
			case 0x07 :
			case 0x08 :
			case 0x0b :
			case 0x0c :
				uap->port_type = PMAC_SCC_I2S1;
			}
			printk(KERN_INFO "pmac_zilog: i2c-modem detected, id: %d\n",
				mid ? (*mid) : 0);
			of_node_put(i2c_modem);
		} else {
			printk(KERN_INFO "pmac_zilog: serial modem detected\n");
		}
	}

	/*
	 * Init remaining bits of "port" structure
	 */
	uap->port.iotype = UPIO_MEM;
	uap->port.irq = irq_of_parse_and_map(np, 0);
	uap->port.uartclk = ZS_CLOCK;
	uap->port.fifosize = 1;
	uap->port.ops = &pmz_pops;
	uap->port.type = PORT_PMAC_ZILOG;
	uap->port.flags = 0;

	/* Setup some valid baud rate information in the register
	 * shadows so we don't write crap there before baud rate is
	 * first initialized.
	 */
	pmz_convert_to_zs(uap, CS8, 0, 9600);

	return 0;
}
Example #8
0
static int __init omap_dm_timer_init_one(struct omap_dm_timer *timer,
						int gptimer_id,
						const char *fck_source,
						const char *property,
						int posted)
{
	char name[10]; /* 10 = sizeof("gptXX_Xck0") */
	const char *oh_name;
	struct device_node *np;
	struct omap_hwmod *oh;
	struct resource irq, mem;
	int r = 0;

	if (of_have_populated_dt()) {
		np = omap_get_timer_dt(omap_timer_match, property);
		if (!np)
			return -ENODEV;

		of_property_read_string_index(np, "ti,hwmods", 0, &oh_name);
		if (!oh_name)
			return -ENODEV;

		timer->irq = irq_of_parse_and_map(np, 0);
		if (!timer->irq)
			return -ENXIO;

		timer->io_base = of_iomap(np, 0);

		of_node_put(np);
	} else {
		if (omap_dm_timer_reserve_systimer(gptimer_id))
			return -ENODEV;

		sprintf(name, "timer%d", gptimer_id);
		oh_name = name;
	}

	oh = omap_hwmod_lookup(oh_name);
	if (!oh)
		return -ENODEV;

	if (!of_have_populated_dt()) {
		r = omap_hwmod_get_resource_byname(oh, IORESOURCE_IRQ, NULL,
						   &irq);
		if (r)
			return -ENXIO;
		timer->irq = irq.start;

		r = omap_hwmod_get_resource_byname(oh, IORESOURCE_MEM, NULL,
						   &mem);
		if (r)
			return -ENXIO;

		/* Static mapping, never released */
		timer->io_base = ioremap(mem.start, mem.end - mem.start);
	}

	if (!timer->io_base)
		return -ENXIO;

	/* After the dmtimer is using hwmod these clocks won't be needed */
	timer->fclk = clk_get(NULL, omap_hwmod_get_main_clk(oh));
	if (IS_ERR(timer->fclk))
		return -ENODEV;

	/* FIXME: Need to remove hard-coded test on timer ID */
	if (gptimer_id != 12) {
		struct clk *src;

		src = clk_get(NULL, fck_source);
		if (IS_ERR(src)) {
			r = -EINVAL;
		} else {
			r = clk_set_parent(timer->fclk, src);
			if (IS_ERR_VALUE(r))
				pr_warn("%s: %s cannot set source\n",
					__func__, oh->name);
			clk_put(src);
		}
	}

	omap_hwmod_setup_one(oh_name);
	omap_hwmod_enable(oh);
	__omap_dm_timer_init_regs(timer);

	if (posted)
		__omap_dm_timer_enable_posted(timer);

	/* Check that the intended posted configuration matches the actual */
	if (posted != timer->posted)
		return -EINVAL;

	timer->rate = clk_get_rate(timer->fclk);
	timer->reserved = 1;

	return r;
}
static int __init xen_guest_init(void)
{
	struct xen_add_to_physmap xatp;
	static struct shared_info *shared_info_page = 0;
	struct device_node *node;
	int len;
	const char *s = NULL;
	const char *version = NULL;
	const char *xen_prefix = "xen,xen-";
	struct resource res;

	node = of_find_compatible_node(NULL, NULL, "xen,xen");
	if (!node) {
		pr_debug("No Xen support\n");
		return 0;
	}
	s = of_get_property(node, "compatible", &len);
	if (strlen(xen_prefix) + 3  < len &&
			!strncmp(xen_prefix, s, strlen(xen_prefix)))
		version = s + strlen(xen_prefix);
	if (version == NULL) {
		pr_debug("Xen version not found\n");
		return 0;
	}
	if (of_address_to_resource(node, GRANT_TABLE_PHYSADDR, &res))
		return 0;
	xen_hvm_resume_frames = res.start >> PAGE_SHIFT;
	xen_events_irq = irq_of_parse_and_map(node, 0);
	pr_info("Xen %s support found, events_irq=%d gnttab_frame_pfn=%lx\n",
			version, xen_events_irq, xen_hvm_resume_frames);
	xen_domain_type = XEN_HVM_DOMAIN;

	xen_setup_features();
	if (xen_feature(XENFEAT_dom0))
		xen_start_info->flags |= SIF_INITDOMAIN|SIF_PRIVILEGED;
	else
		xen_start_info->flags &= ~(SIF_INITDOMAIN|SIF_PRIVILEGED);

	if (!shared_info_page)
		shared_info_page = (struct shared_info *)
			get_zeroed_page(GFP_KERNEL);
	if (!shared_info_page) {
		pr_err("not enough memory\n");
		return -ENOMEM;
	}
	xatp.domid = DOMID_SELF;
	xatp.idx = 0;
	xatp.space = XENMAPSPACE_shared_info;
	xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
	if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
		BUG();

	HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;

	/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
	 * page, we use it in the event channel upcall and in some pvclock
	 * related functions. 
	 * The shared info contains exactly 1 CPU (the boot CPU). The guest
	 * is required to use VCPUOP_register_vcpu_info to place vcpu info
	 * for secondary CPUs as they are brought up.
	 * For uniformity we use VCPUOP_register_vcpu_info even on cpu0.
	 */
	xen_vcpu_info = __alloc_percpu(sizeof(struct vcpu_info),
			                       sizeof(struct vcpu_info));
	if (xen_vcpu_info == NULL)
		return -ENOMEM;

	gnttab_init();
	if (!xen_initial_domain())
		xenbus_probe(NULL);

	return 0;
}
static int __devinit electra_cf_probe(struct of_device *ofdev,
				      const struct of_device_id *match)
{
	struct device *device = &ofdev->dev;
	struct device_node *np = ofdev->node;
	struct electra_cf_socket   *cf;
	struct resource mem, io;
	int status;
	const unsigned int *prop;
	int err;
	struct vm_struct *area;

	err = of_address_to_resource(np, 0, &mem);
	if (err)
		return -EINVAL;

	err = of_address_to_resource(np, 1, &io);
	if (err)
		return -EINVAL;

	cf = kzalloc(sizeof *cf, GFP_KERNEL);
	if (!cf)
		return -ENOMEM;

	setup_timer(&cf->timer, electra_cf_timer, (unsigned long)cf);
	cf->irq = NO_IRQ;

	cf->ofdev = ofdev;
	cf->mem_phys = mem.start;
	cf->mem_size = PAGE_ALIGN(mem.end - mem.start);
	cf->mem_base = ioremap(cf->mem_phys, cf->mem_size);
	cf->io_size = PAGE_ALIGN(io.end - io.start);

	area = __get_vm_area(cf->io_size, 0, PHB_IO_BASE, PHB_IO_END);
	if (area == NULL)
		return -ENOMEM;

	cf->io_virt = (void __iomem *)(area->addr);

	cf->gpio_base = ioremap(0xfc103000, 0x1000);
	dev_set_drvdata(device, cf);

	if (!cf->mem_base || !cf->io_virt || !cf->gpio_base ||
	    (__ioremap_at(io.start, cf->io_virt, cf->io_size,
		_PAGE_NO_CACHE | _PAGE_GUARDED) == NULL)) {
		dev_err(device, "can't ioremap ranges\n");
		status = -ENOMEM;
		goto fail1;
	}


	cf->io_base = (unsigned long)cf->io_virt - VMALLOC_END;

	cf->iomem.start = (unsigned long)cf->mem_base;
	cf->iomem.end = (unsigned long)cf->mem_base + (mem.end - mem.start);
	cf->iomem.flags = IORESOURCE_MEM;

	cf->irq = irq_of_parse_and_map(np, 0);

	status = request_irq(cf->irq, electra_cf_irq, IRQF_SHARED,
			     driver_name, cf);
	if (status < 0) {
		dev_err(device, "request_irq failed\n");
		goto fail1;
	}

	cf->socket.pci_irq = cf->irq;

	prop = of_get_property(np, "card-detect-gpio", NULL);
	if (!prop)
		goto fail1;
	cf->gpio_detect = *prop;

	prop = of_get_property(np, "card-vsense-gpio", NULL);
	if (!prop)
		goto fail1;
	cf->gpio_vsense = *prop;

	prop = of_get_property(np, "card-3v-gpio", NULL);
	if (!prop)
		goto fail1;
	cf->gpio_3v = *prop;

	prop = of_get_property(np, "card-5v-gpio", NULL);
	if (!prop)
		goto fail1;
	cf->gpio_5v = *prop;

	cf->socket.io_offset = cf->io_base;

	/* reserve chip-select regions */
	if (!request_mem_region(cf->mem_phys, cf->mem_size, driver_name)) {
		status = -ENXIO;
		dev_err(device, "Can't claim memory region\n");
		goto fail1;
	}

	if (!request_region(cf->io_base, cf->io_size, driver_name)) {
		status = -ENXIO;
		dev_err(device, "Can't claim I/O region\n");
		goto fail2;
	}

	cf->socket.owner = THIS_MODULE;
	cf->socket.dev.parent = &ofdev->dev;
	cf->socket.ops = &electra_cf_ops;
	cf->socket.resource_ops = &pccard_static_ops;
	cf->socket.features = SS_CAP_PCCARD | SS_CAP_STATIC_MAP |
				SS_CAP_MEM_ALIGN;
	cf->socket.map_size = 0x800;

	status = pcmcia_register_socket(&cf->socket);
	if (status < 0) {
		dev_err(device, "pcmcia_register_socket failed\n");
		goto fail3;
	}

	dev_info(device, "at mem 0x%lx io 0x%llx irq %d\n",
		 cf->mem_phys, io.start, cf->irq);

	cf->active = 1;
	electra_cf_timer((unsigned long)cf);
	return 0;

fail3:
	release_region(cf->io_base, cf->io_size);
fail2:
	release_mem_region(cf->mem_phys, cf->mem_size);
fail1:
	if (cf->irq != NO_IRQ)
		free_irq(cf->irq, cf);

	if (cf->io_virt)
		__iounmap_at(cf->io_virt, cf->io_size);
	if (cf->mem_base)
		iounmap(cf->mem_base);
	if (cf->gpio_base)
		iounmap(cf->gpio_base);
	device_init_wakeup(&ofdev->dev, 0);
	kfree(cf);
	return status;

}
Example #11
0
/*
 * Fill a struct uart_port for a given device node
 */
static int __devinit of_platform_serial_setup(struct platform_device *ofdev,
					int type, struct uart_port *port)
{
	struct resource resource;
	struct device_node *np = ofdev->dev.of_node;
	u32 clk, spd, prop;
	int ret;

	memset(port, 0, sizeof *port);
	if (of_property_read_u32(np, "clock-frequency", &clk)) {
		dev_warn(&ofdev->dev, "no clock-frequency property set\n");
		return -ENODEV;
	}
	/* If current-speed was set, then try not to change it. */
	if (of_property_read_u32(np, "current-speed", &spd) == 0)
		port->custom_divisor = clk / (16 * spd);

	ret = of_address_to_resource(np, 0, &resource);
	if (ret) {
		dev_warn(&ofdev->dev, "invalid address\n");
		return ret;
	}

	spin_lock_init(&port->lock);
	port->mapbase = resource.start;

	/* Check for shifted address mapping */
	if (of_property_read_u32(np, "reg-offset", &prop) == 0)
		port->mapbase += prop;

	/* Check for registers offset within the devices address range */
	if (of_property_read_u32(np, "reg-shift", &prop) == 0)
		port->regshift = prop;

	port->irq = irq_of_parse_and_map(np, 0);
	port->iotype = UPIO_MEM;
	if (of_property_read_u32(np, "reg-io-width", &prop) == 0) {
		switch (prop) {
		case 1:
			port->iotype = UPIO_MEM;
			break;
		case 4:
			port->iotype = UPIO_MEM32;
			break;
		default:
			dev_warn(&ofdev->dev, "unsupported reg-io-width (%d)\n",
				 prop);
			return -EINVAL;
		}
	}

	port->type = type;
	port->uartclk = clk;
	port->flags = UPF_SHARE_IRQ | UPF_BOOT_AUTOCONF | UPF_IOREMAP
		| UPF_FIXED_PORT | UPF_FIXED_TYPE;
	port->dev = &ofdev->dev;

	if (type == PORT_TEGRA)
		port->handle_break = tegra_serial_handle_break;

	return 0;
}
Example #12
0
static int __init tegra_init_timer(struct device_node *np, bool tegra20)
{
	struct timer_of *to;
	int cpu, ret;

	to = this_cpu_ptr(&tegra_to);
	ret = timer_of_init(np, to);
	if (ret)
		goto out;

	timer_reg_base = timer_of_base(to);

	/*
	 * Configure microsecond timers to have 1MHz clock
	 * Config register is 0xqqww, where qq is "dividend", ww is "divisor"
	 * Uses n+1 scheme
	 */
	switch (timer_of_rate(to)) {
	case 12000000:
		usec_config = 0x000b; /* (11+1)/(0+1) */
		break;
	case 12800000:
		usec_config = 0x043f; /* (63+1)/(4+1) */
		break;
	case 13000000:
		usec_config = 0x000c; /* (12+1)/(0+1) */
		break;
	case 16800000:
		usec_config = 0x0453; /* (83+1)/(4+1) */
		break;
	case 19200000:
		usec_config = 0x045f; /* (95+1)/(4+1) */
		break;
	case 26000000:
		usec_config = 0x0019; /* (25+1)/(0+1) */
		break;
	case 38400000:
		usec_config = 0x04bf; /* (191+1)/(4+1) */
		break;
	case 48000000:
		usec_config = 0x002f; /* (47+1)/(0+1) */
		break;
	default:
		ret = -EINVAL;
		goto out;
	}

	writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG);

	for_each_possible_cpu(cpu) {
		struct timer_of *cpu_to = per_cpu_ptr(&tegra_to, cpu);
		unsigned int base = tegra_base_for_cpu(cpu, tegra20);
		unsigned int idx = tegra_irq_idx_for_cpu(cpu, tegra20);

		/*
		 * TIMER1-9 are fixed to 1MHz, TIMER10-13 are running off the
		 * parent clock.
		 */
		if (tegra20)
			cpu_to->of_clk.rate = 1000000;

		cpu_to = per_cpu_ptr(&tegra_to, cpu);
		cpu_to->of_base.base = timer_reg_base + base;
		cpu_to->clkevt.cpumask = cpumask_of(cpu);
		cpu_to->clkevt.irq = irq_of_parse_and_map(np, idx);
		if (!cpu_to->clkevt.irq) {
			pr_err("failed to map irq for cpu%d\n", cpu);
			ret = -EINVAL;
			goto out_irq;
		}

		irq_set_status_flags(cpu_to->clkevt.irq, IRQ_NOAUTOEN);
		ret = request_irq(cpu_to->clkevt.irq, tegra_timer_isr,
				  IRQF_TIMER | IRQF_NOBALANCING,
				  cpu_to->clkevt.name, &cpu_to->clkevt);
		if (ret) {
			pr_err("failed to set up irq for cpu%d: %d\n",
			       cpu, ret);
			irq_dispose_mapping(cpu_to->clkevt.irq);
			cpu_to->clkevt.irq = 0;
			goto out_irq;
		}
	}

	sched_clock_register(tegra_read_sched_clock, 32, 1000000);

	ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US,
				    "timer_us", 1000000,
				    300, 32, clocksource_mmio_readl_up);
	if (ret)
		pr_err("failed to register clocksource: %d\n", ret);

#ifdef CONFIG_ARM
	register_current_timer_delay(&tegra_delay_timer);
#endif

	ret = cpuhp_setup_state(CPUHP_AP_TEGRA_TIMER_STARTING,
				"AP_TEGRA_TIMER_STARTING", tegra_timer_setup,
				tegra_timer_stop);
	if (ret)
		pr_err("failed to set up cpu hp state: %d\n", ret);

	return ret;

out_irq:
	for_each_possible_cpu(cpu) {
		struct timer_of *cpu_to;

		cpu_to = per_cpu_ptr(&tegra_to, cpu);
		if (cpu_to->clkevt.irq) {
			free_irq(cpu_to->clkevt.irq, &cpu_to->clkevt);
			irq_dispose_mapping(cpu_to->clkevt.irq);
		}
	}
out:
	timer_of_cleanup(to);

	return ret;
}
void __init armada_370_xp_timer_init(void)
{
	u32 u;
	struct device_node *np;
	int res;

	np = of_find_compatible_node(NULL, NULL, "marvell,armada-370-xp-timer");
	timer_base = of_iomap(np, 0);
	WARN_ON(!timer_base);
	local_base = of_iomap(np, 1);

	if (of_find_property(np, "marvell,timer-25Mhz", NULL)) {
		/* The fixed 25MHz timer is available so let's use it */
		u = readl(timer_base + TIMER_CTRL_OFF);
		writel(u | TIMER0_25MHZ,
		       timer_base + TIMER_CTRL_OFF);
		timer_clk = 25000000;
	} else {
		unsigned long rate = 0;
		struct clk *clk = of_clk_get(np, 0);
		WARN_ON(IS_ERR(clk));
		rate =  clk_get_rate(clk);

		u = readl(timer_base + TIMER_CTRL_OFF);
		writel(u & ~(TIMER0_25MHZ),
		       timer_base + TIMER_CTRL_OFF);

		timer_clk = rate / TIMER_DIVIDER;
		timer25Mhz = false;
	}

	/*
	 * We use timer 0 as clocksource, and private(local) timer 0
	 * for clockevents
	 */
	armada_370_xp_clkevt_irq = irq_of_parse_and_map(np, 4);

	ticks_per_jiffy = (timer_clk + HZ / 2) / HZ;

	/*
	 * Set scale and timer for sched_clock.
	 */
	setup_sched_clock(armada_370_xp_read_sched_clock, 32, timer_clk);

	/*
	 * Setup free-running clocksource timer (interrupts
	 * disabled).
	 */
	writel(0xffffffff, timer_base + TIMER0_VAL_OFF);
	writel(0xffffffff, timer_base + TIMER0_RELOAD_OFF);

	u = readl(timer_base + TIMER_CTRL_OFF);

	writel((u | TIMER0_EN | TIMER0_RELOAD_EN |
		TIMER0_DIV(TIMER_DIVIDER_SHIFT)), timer_base + TIMER_CTRL_OFF);

	clocksource_mmio_init(timer_base + TIMER0_VAL_OFF,
			      "armada_370_xp_clocksource",
			      timer_clk, 300, 32, clocksource_mmio_readl_down);

	register_cpu_notifier(&armada_370_xp_timer_cpu_nb);

	armada_370_xp_evt = alloc_percpu(struct clock_event_device);


	/*
	 * Setup clockevent timer (interrupt-driven).
	 */
	res = request_percpu_irq(armada_370_xp_clkevt_irq,
				armada_370_xp_timer_interrupt,
				"armada_370_xp_per_cpu_tick",
				armada_370_xp_evt);
	/* Immediately configure the timer on the boot CPU */
	if (!res)
		armada_370_xp_timer_setup(this_cpu_ptr(armada_370_xp_evt));
}
static int __devinit fsl_i2c_probe(struct of_device *op, const struct of_device_id *match)
{
	int result = 0;
	struct mpc_i2c *i2c;

	i2c = kzalloc(sizeof(*i2c), GFP_KERNEL);
	if (!i2c)
		return -ENOMEM;

	if (of_get_property(op->node, "dfsrr", NULL))
		i2c->flags |= FSL_I2C_DEV_SEPARATE_DFSRR;

	if (of_device_is_compatible(op->node, "fsl,mpc5200-i2c") ||
			of_device_is_compatible(op->node, "mpc5200-i2c"))
		i2c->flags |= FSL_I2C_DEV_CLOCK_5200;

	init_waitqueue_head(&i2c->queue);

	i2c->base = of_iomap(op->node, 0);
	if (!i2c->base) {
		printk(KERN_ERR "i2c-mpc - failed to map controller\n");
		result = -ENOMEM;
		goto fail_map;
	}

	i2c->irq = irq_of_parse_and_map(op->node, 0);
	if (i2c->irq != NO_IRQ) { /* i2c->irq = NO_IRQ implies polling */
		result = request_irq(i2c->irq, mpc_i2c_isr,
				     IRQF_SHARED, "i2c-mpc", i2c);
		if (result < 0) {
			printk(KERN_ERR "i2c-mpc - failed to attach interrupt\n");
			goto fail_request;
		}
	}
	
	mpc_i2c_setclock(i2c);

	dev_set_drvdata(&op->dev, i2c);

	i2c->adap = mpc_ops;
	i2c_set_adapdata(&i2c->adap, i2c);
	i2c->adap.dev.parent = &op->dev;

	result = i2c_add_adapter(&i2c->adap);
	if (result < 0) {
		printk(KERN_ERR "i2c-mpc - failed to add adapter\n");
		goto fail_add;
	}
	of_register_i2c_devices(&i2c->adap, op->node);

	return result;

 fail_add:
	dev_set_drvdata(&op->dev, NULL);
	free_irq(i2c->irq, i2c);
 fail_request:
	irq_dispose_mapping(i2c->irq);
 	iounmap(i2c->base);
 fail_map:
	kfree(i2c);
	return result;
};
static int of_isp1760_probe(struct platform_device *dev)
{
	struct isp1760 *drvdata;
	struct device_node *dp = dev->dev.of_node;
	struct resource *res;
	struct resource memory;
	int virq;
	resource_size_t res_len;
	int ret;
	unsigned int devflags = 0;
	enum of_gpio_flags gpio_flags;
	u32 bus_width = 0;

	drvdata = kzalloc(sizeof(*drvdata), GFP_KERNEL);
	if (!drvdata)
		return -ENOMEM;

	ret = of_address_to_resource(dp, 0, &memory);
	if (ret) {
		ret = -ENXIO;
		goto free_data;
	}

	res_len = resource_size(&memory);

	res = request_mem_region(memory.start, res_len, dev_name(&dev->dev));
	if (!res) {
		ret = -EBUSY;
		goto free_data;
	}

	virq = irq_of_parse_and_map(dp, 0);
	if (!virq) {
		ret = -ENODEV;
		goto release_reg;
	}

	if (of_device_is_compatible(dp, "nxp,usb-isp1761"))
		devflags |= ISP1760_FLAG_ISP1761;

	/* Some systems wire up only 16 of the 32 data lines */
	of_property_read_u32(dp, "bus-width", &bus_width);
	if (bus_width == 16)
		devflags |= ISP1760_FLAG_BUS_WIDTH_16;

	if (of_get_property(dp, "port1-otg", NULL) != NULL)
		devflags |= ISP1760_FLAG_OTG_EN;

	if (of_get_property(dp, "analog-oc", NULL) != NULL)
		devflags |= ISP1760_FLAG_ANALOG_OC;

	if (of_get_property(dp, "dack-polarity", NULL) != NULL)
		devflags |= ISP1760_FLAG_DACK_POL_HIGH;

	if (of_get_property(dp, "dreq-polarity", NULL) != NULL)
		devflags |= ISP1760_FLAG_DREQ_POL_HIGH;

	drvdata->rst_gpio = of_get_gpio_flags(dp, 0, &gpio_flags);
	if (gpio_is_valid(drvdata->rst_gpio)) {
		ret = gpio_request(drvdata->rst_gpio, dev_name(&dev->dev));
		if (!ret) {
			if (!(gpio_flags & OF_GPIO_ACTIVE_LOW)) {
				devflags |= ISP1760_FLAG_RESET_ACTIVE_HIGH;
				gpio_direction_output(drvdata->rst_gpio, 0);
			} else {
				gpio_direction_output(drvdata->rst_gpio, 1);
			}
		} else {
			drvdata->rst_gpio = ret;
		}
	}

	drvdata->hcd = isp1760_register(memory.start, res_len, virq,
					IRQF_SHARED, drvdata->rst_gpio,
					&dev->dev, dev_name(&dev->dev),
					devflags);
	if (IS_ERR(drvdata->hcd)) {
		ret = PTR_ERR(drvdata->hcd);
		goto free_gpio;
	}

	dev_set_drvdata(&dev->dev, drvdata);
	return ret;

free_gpio:
	if (gpio_is_valid(drvdata->rst_gpio))
		gpio_free(drvdata->rst_gpio);
release_reg:
	release_mem_region(memory.start, res_len);
free_data:
	kfree(drvdata);
	return ret;
}
Example #16
0
static int ehci_hcd_grlib_probe(struct platform_device *op)
{
	struct device_node *dn = op->dev.of_node;
	struct usb_hcd *hcd;
	struct ehci_hcd	*ehci = NULL;
	struct resource res;
	u32 hc_capbase;
	int irq;
	int rv;

	if (usb_disabled())
		return -ENODEV;

	dev_dbg(&op->dev, "initializing GRUSBHC EHCI USB Controller\n");

	rv = of_address_to_resource(dn, 0, &res);
	if (rv)
		return rv;

	/* usb_create_hcd requires dma_mask != NULL */
	op->dev.dma_mask = &op->dev.coherent_dma_mask;
	hcd = usb_create_hcd(&ehci_grlib_hc_driver, &op->dev,
			"GRUSBHC EHCI USB");
	if (!hcd)
		return -ENOMEM;

	hcd->rsrc_start = res.start;
	hcd->rsrc_len = resource_size(&res);

	irq = irq_of_parse_and_map(dn, 0);
	if (irq == NO_IRQ) {
		printk(KERN_ERR "%s: irq_of_parse_and_map failed\n", __FILE__);
		rv = -EBUSY;
		goto err_irq;
	}

	hcd->regs = devm_ioremap_resource(&op->dev, &res);
	if (IS_ERR(hcd->regs)) {
		rv = PTR_ERR(hcd->regs);
		goto err_ioremap;
	}

	ehci = hcd_to_ehci(hcd);

	ehci->caps = hcd->regs;

	/* determine endianness of this implementation */
	hc_capbase = ehci_readl(ehci, &ehci->caps->hc_capbase);
	if (HC_VERSION(ehci, hc_capbase) != GRUSBHC_HCIVERSION) {
		ehci->big_endian_mmio = 1;
		ehci->big_endian_desc = 1;
		ehci->big_endian_capbase = 1;
	}

	rv = usb_add_hcd(hcd, irq, 0);
	if (rv)
		goto err_ioremap;

	return 0;

err_ioremap:
	irq_dispose_mapping(irq);
err_irq:
	usb_put_hcd(hcd);

	return rv;
}
static int kpd_pdrv_probe(struct platform_device *pdev)
{

	int i, r;
	int err = 0;
	struct clk *kpd_clk = NULL;

	kpd_info("Keypad probe start!!!\n");

	/*kpd-clk should be control by kpd driver, not depend on default clock state*/
	kpd_clk = devm_clk_get(&pdev->dev, "kpd-clk");
	if (!IS_ERR(kpd_clk)) {
		clk_prepare(kpd_clk);
		clk_enable(kpd_clk);
	} else {
		kpd_print("get kpd-clk fail, but not return, maybe kpd-clk is set by ccf.\n");
	}

	kp_base = of_iomap(pdev->dev.of_node, 0);
	if (!kp_base) {
		kpd_info("KP iomap failed\n");
		return -ENODEV;
	};

	kp_irqnr = irq_of_parse_and_map(pdev->dev.of_node, 0);
	if (!kp_irqnr) {
		kpd_info("KP get irqnr failed\n");
		return -ENODEV;
	}
	kpd_info("kp base: 0x%p, addr:0x%p,  kp irq: %d\n", kp_base, &kp_base, kp_irqnr);
	/* initialize and register input device (/dev/input/eventX) */
	kpd_input_dev = input_allocate_device();
	if (!kpd_input_dev) {
		kpd_print("input allocate device fail.\n");
		return -ENOMEM;
	}

	kpd_input_dev->name = KPD_NAME;
	kpd_input_dev->id.bustype = BUS_HOST;
	kpd_input_dev->id.vendor = 0x2454;
	kpd_input_dev->id.product = 0x6500;
	kpd_input_dev->id.version = 0x0010;
	kpd_input_dev->open = kpd_open;

	kpd_get_dts_info(pdev->dev.of_node);

#ifdef CONFIG_ARCH_MT8173
	wake_lock_init(&pwrkey_lock, WAKE_LOCK_SUSPEND, "PWRKEY");
#endif

	/* fulfill custom settings */
	kpd_memory_setting();

	__set_bit(EV_KEY, kpd_input_dev->evbit);

#if defined(CONFIG_KPD_PWRKEY_USE_EINT) || defined(CONFIG_KPD_PWRKEY_USE_PMIC)
	__set_bit(kpd_dts_data.kpd_sw_pwrkey, kpd_input_dev->keybit);
	kpd_keymap[8] = 0;
#endif
	if (!kpd_dts_data.kpd_use_extend_type) {
		for (i = 17; i < KPD_NUM_KEYS; i += 9)	/* only [8] works for Power key */
			kpd_keymap[i] = 0;
	}
	for (i = 0; i < KPD_NUM_KEYS; i++) {
		if (kpd_keymap[i] != 0)
			__set_bit(kpd_keymap[i], kpd_input_dev->keybit);
	}

#if KPD_AUTOTEST
	for (i = 0; i < ARRAY_SIZE(kpd_auto_keymap); i++)
		__set_bit(kpd_auto_keymap[i], kpd_input_dev->keybit);
#endif

#if KPD_HAS_SLIDE_QWERTY
	__set_bit(EV_SW, kpd_input_dev->evbit);
	__set_bit(SW_LID, kpd_input_dev->swbit);
#endif
	if (kpd_dts_data.kpd_sw_rstkey)
		__set_bit(kpd_dts_data.kpd_sw_rstkey, kpd_input_dev->keybit);
#ifdef KPD_KEY_MAP
	__set_bit(KPD_KEY_MAP, kpd_input_dev->keybit);
#endif
#ifdef CONFIG_MTK_MRDUMP_KEY
		__set_bit(KEY_RESTART, kpd_input_dev->keybit);
#endif
	kpd_input_dev->dev.parent = &pdev->dev;
	r = input_register_device(kpd_input_dev);
	if (r) {
		kpd_info("register input device failed (%d)\n", r);
		input_free_device(kpd_input_dev);
		return r;
	}

	/* register device (/dev/mt6575-kpd) */
	kpd_dev.parent = &pdev->dev;
	r = misc_register(&kpd_dev);
	if (r) {
		kpd_info("register device failed (%d)\n", r);
		input_unregister_device(kpd_input_dev);
		return r;
	}

	wake_lock_init(&kpd_suspend_lock, WAKE_LOCK_SUSPEND, "kpd wakelock");

	/* register IRQ and EINT */
	kpd_set_debounce(kpd_dts_data.kpd_key_debounce);
	r = request_irq(kp_irqnr, kpd_irq_handler, IRQF_TRIGGER_NONE, KPD_NAME, NULL);
	if (r) {
		kpd_info("register IRQ failed (%d)\n", r);
		misc_deregister(&kpd_dev);
		input_unregister_device(kpd_input_dev);
		return r;
	}
	mt_eint_register();

#ifndef KPD_EARLY_PORTING	/*add for avoid early porting build err the macro is defined in custom file */
	long_press_reboot_function_setting();	/* /API 4 for kpd long press reboot function setting */
#endif
	hrtimer_init(&aee_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	aee_timer.function = aee_timer_func;

#if AEE_ENABLE_5_15
	hrtimer_init(&aee_timer_5s, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	aee_timer_5s.function = aee_timer_5s_func;
#endif
	err = kpd_create_attr(&kpd_pdrv.driver);
	if (err) {
		kpd_info("create attr file fail\n");
		kpd_delete_attr(&kpd_pdrv.driver);
		return err;
	}
	kpd_info("%s Done\n", __func__);
	return 0;
}
Example #18
0
static int serial_omap_probe(struct platform_device *pdev)
{
	struct omap_uart_port_info *omap_up_info = dev_get_platdata(&pdev->dev);
	struct uart_omap_port *up;
	struct resource *mem;
	void __iomem *base;
	int uartirq = 0;
	int wakeirq = 0;
	int ret;

	/* The optional wakeirq may be specified in the board dts file */
	if (pdev->dev.of_node) {
		uartirq = irq_of_parse_and_map(pdev->dev.of_node, 0);
		if (!uartirq)
			return -EPROBE_DEFER;
		wakeirq = irq_of_parse_and_map(pdev->dev.of_node, 1);
		omap_up_info = of_get_uart_port_info(&pdev->dev);
		pdev->dev.platform_data = omap_up_info;
	} else {
		uartirq = platform_get_irq(pdev, 0);
		if (uartirq < 0)
			return -EPROBE_DEFER;
	}

	up = devm_kzalloc(&pdev->dev, sizeof(*up), GFP_KERNEL);
	if (!up)
		return -ENOMEM;

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	base = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(base))
		return PTR_ERR(base);

	up->dev = &pdev->dev;
	up->port.dev = &pdev->dev;
	up->port.type = PORT_OMAP;
	up->port.iotype = UPIO_MEM;
	up->port.irq = uartirq;
	up->port.regshift = 2;
	up->port.fifosize = 64;
	up->port.ops = &serial_omap_pops;

	if (pdev->dev.of_node)
		ret = of_alias_get_id(pdev->dev.of_node, "serial");
	else
		ret = pdev->id;

	if (ret < 0) {
		dev_err(&pdev->dev, "failed to get alias/pdev id, errno %d\n",
			ret);
		goto err_port_line;
	}
	up->port.line = ret;

	if (up->port.line >= OMAP_MAX_HSUART_PORTS) {
		dev_err(&pdev->dev, "uart ID %d >  MAX %d.\n", up->port.line,
			OMAP_MAX_HSUART_PORTS);
		ret = -ENXIO;
		goto err_port_line;
	}

	up->wakeirq = wakeirq;
	if (!up->wakeirq)
		dev_info(up->port.dev, "no wakeirq for uart%d\n",
			 up->port.line);

	ret = serial_omap_probe_rs485(up, pdev->dev.of_node);
	if (ret < 0)
		goto err_rs485;

	sprintf(up->name, "OMAP UART%d", up->port.line);
	up->port.mapbase = mem->start;
	up->port.membase = base;
	up->port.flags = omap_up_info->flags;
	up->port.uartclk = omap_up_info->uartclk;
	up->port.rs485_config = serial_omap_config_rs485;
	if (!up->port.uartclk) {
		up->port.uartclk = DEFAULT_CLK_SPEED;
		dev_warn(&pdev->dev,
			 "No clock speed specified: using default: %d\n",
			 DEFAULT_CLK_SPEED);
	}

	up->latency = PM_QOS_CPU_DMA_LAT_DEFAULT_VALUE;
	up->calc_latency = PM_QOS_CPU_DMA_LAT_DEFAULT_VALUE;
	pm_qos_add_request(&up->pm_qos_request,
		PM_QOS_CPU_DMA_LATENCY, up->latency);
	INIT_WORK(&up->qos_work, serial_omap_uart_qos_work);

	platform_set_drvdata(pdev, up);
	if (omap_up_info->autosuspend_timeout == 0)
		omap_up_info->autosuspend_timeout = -1;

	device_init_wakeup(up->dev, true);
	pm_runtime_use_autosuspend(&pdev->dev);
	pm_runtime_set_autosuspend_delay(&pdev->dev,
			omap_up_info->autosuspend_timeout);

	pm_runtime_irq_safe(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

	pm_runtime_get_sync(&pdev->dev);

	omap_serial_fill_features_erratas(up);

	ui[up->port.line] = up;
	serial_omap_add_console_port(up);

	ret = uart_add_one_port(&serial_omap_reg, &up->port);
	if (ret != 0)
		goto err_add_port;

	pm_runtime_mark_last_busy(up->dev);
	pm_runtime_put_autosuspend(up->dev);
	return 0;

err_add_port:
	pm_runtime_put(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
	pm_qos_remove_request(&up->pm_qos_request);
	device_init_wakeup(up->dev, false);
err_rs485:
err_port_line:
	return ret;
}
int of_mdiobus_register(struct mii_bus *mdio, struct device_node *np)
{
	struct phy_device *phy;
	struct device_node *child;
	int rc, i;

	mdio->phy_mask = ~0;

	
	if (mdio->irq)
		for (i=0; i<PHY_MAX_ADDR; i++)
			mdio->irq[i] = PHY_POLL;

	
	rc = mdiobus_register(mdio);
	if (rc)
		return rc;

	
	for_each_child_of_node(np, child) {
		const __be32 *paddr;
		u32 addr;
		int len;

		
		paddr = of_get_property(child, "reg", &len);
		if (!paddr || len < sizeof(*paddr)) {
			dev_err(&mdio->dev, "%s has invalid PHY address\n",
				child->full_name);
			continue;
		}

		addr = be32_to_cpup(paddr);
		if (addr >= 32) {
			dev_err(&mdio->dev, "%s PHY address %i is too large\n",
				child->full_name, addr);
			continue;
		}

		if (mdio->irq) {
			mdio->irq[addr] = irq_of_parse_and_map(child, 0);
			if (!mdio->irq[addr])
				mdio->irq[addr] = PHY_POLL;
		}

		phy = get_phy_device(mdio, addr);
		if (!phy || IS_ERR(phy)) {
			dev_err(&mdio->dev, "error probing PHY at address %i\n",
				addr);
			continue;
		}

		of_node_get(child);
		phy->dev.of_node = child;

		
		rc = phy_device_register(phy);
		if (rc) {
			phy_device_free(phy);
			of_node_put(child);
			continue;
		}

		dev_dbg(&mdio->dev, "registered phy %s at address %i\n",
			child->name, addr);
	}

	return 0;
}
Example #20
0
/*
 * Interrupt setup and service.  Interrupts on the holly come
 * from the four external INT pins, PCI interrupts are routed via
 * PCI interrupt control registers, it generates internal IRQ23
 *
 * Interrupt routing on the Holly Board:
 * TSI108:PB_INT[0] -> CPU0:INT#
 * TSI108:PB_INT[1] -> CPU0:MCP#
 * TSI108:PB_INT[2] -> N/C
 * TSI108:PB_INT[3] -> N/C
 */
static void __init holly_init_IRQ(void)
{
	struct mpic *mpic;
	phys_addr_t mpic_paddr = 0;
	struct device_node *tsi_pic;
#ifdef CONFIG_PCI
	unsigned int cascade_pci_irq;
	struct device_node *tsi_pci;
	struct device_node *cascade_node = NULL;
#endif

	tsi_pic = of_find_node_by_type(NULL, "open-pic");
	if (tsi_pic) {
		unsigned int size;
		const void *prop = of_get_property(tsi_pic, "reg", &size);
		mpic_paddr = of_translate_address(tsi_pic, prop);
	}

	if (mpic_paddr == 0) {
		printk(KERN_ERR "%s: No tsi108 PIC found !\n", __func__);
		return;
	}

	pr_debug("%s: tsi108 pic phys_addr = 0x%x\n", __func__, (u32) mpic_paddr);

	mpic = mpic_alloc(tsi_pic, mpic_paddr,
			MPIC_PRIMARY | MPIC_BIG_ENDIAN | MPIC_WANTS_RESET |
			MPIC_SPV_EOI | MPIC_NO_PTHROU_DIS | MPIC_REGSET_TSI108,
			24,
			NR_IRQS-4, /* num_sources used */
			"Tsi108_PIC");

	BUG_ON(mpic == NULL);

	mpic_assign_isu(mpic, 0, mpic_paddr + 0x100);

	mpic_init(mpic);

#ifdef CONFIG_PCI
	tsi_pci = of_find_node_by_type(NULL, "pci");
	if (tsi_pci == NULL) {
		printk(KERN_ERR "%s: No tsi108 pci node found !\n", __func__);
		return;
	}

	cascade_node = of_find_node_by_type(NULL, "pic-router");
	if (cascade_node == NULL) {
		printk(KERN_ERR "%s: No tsi108 pci cascade node found !\n", __func__);
		return;
	}

	cascade_pci_irq = irq_of_parse_and_map(tsi_pci, 0);
	pr_debug("%s: tsi108 cascade_pci_irq = 0x%x\n", __func__, (u32) cascade_pci_irq);
	tsi108_pci_int_init(cascade_node);
	set_irq_data(cascade_pci_irq, mpic);
	set_irq_chained_handler(cascade_pci_irq, tsi108_irq_cascade);
#endif
	/* Configure MPIC outputs to CPU0 */
	tsi108_write_reg(TSI108_MPIC_OFFSET + 0x30c, 0);
	of_node_put(tsi_pic);
}
Example #21
0
static int mpc52xx_fec_mdio_probe(struct of_device *of,
                                  const struct of_device_id *match)
{
    struct device *dev = &of->dev;
    struct device_node *np = of->node;
    struct device_node *child = NULL;
    struct mii_bus *bus;
    struct mpc52xx_fec_mdio_priv *priv;
    struct resource res = {};
    int err;
    int i;

    bus = mdiobus_alloc();
    if (bus == NULL)
        return -ENOMEM;
    priv = kzalloc(sizeof(*priv), GFP_KERNEL);
    if (priv == NULL) {
        err = -ENOMEM;
        goto out_free;
    }

    bus->name = "mpc52xx MII bus";
    bus->read = mpc52xx_fec_mdio_read;
    bus->write = mpc52xx_fec_mdio_write;

    /* setup irqs */
    bus->irq = kmalloc(sizeof(bus->irq[0]) * PHY_MAX_ADDR, GFP_KERNEL);
    if (bus->irq == NULL) {
        err = -ENOMEM;
        goto out_free;
    }
    for (i=0; i<PHY_MAX_ADDR; i++)
        bus->irq[i] = PHY_POLL;

    while ((child = of_get_next_child(np, child)) != NULL) {
        int irq = irq_of_parse_and_map(child, 0);
        if (irq != NO_IRQ) {
            const u32 *id = of_get_property(child, "reg", NULL);
            if (id)
                bus->irq[*id] = irq;
        }
    }

    /* setup registers */
    err = of_address_to_resource(np, 0, &res);
    if (err)
        goto out_free;
    priv->regs = ioremap(res.start, res.end - res.start + 1);
    if (priv->regs == NULL) {
        err = -ENOMEM;
        goto out_free;
    }

    snprintf(bus->id, MII_BUS_ID_SIZE, "%x", res.start);
    bus->priv = priv;

    bus->parent = dev;
    dev_set_drvdata(dev, bus);

    /* set MII speed */
    out_be32(&priv->regs->mii_speed,
             ((mpc52xx_find_ipb_freq(of->node) >> 20) / 5) << 1);

    err = mdiobus_register(bus);
    if (err)
        goto out_unmap;

    return 0;

out_unmap:
    iounmap(priv->regs);
out_free:
    for (i=0; i<PHY_MAX_ADDR; i++)
        if (bus->irq[i] != PHY_POLL)
            irq_dispose_mapping(bus->irq[i]);
    kfree(bus->irq);
    kfree(priv);
    mdiobus_free(bus);

    return err;
}
Example #22
0
static int nokia_modem_probe(struct device *dev)
{
	struct device_node *np;
	struct nokia_modem_device *modem;
	struct hsi_client *cl = to_hsi_client(dev);
	struct hsi_port *port = hsi_get_port(cl);
	int irq, pflags, err;
	struct hsi_board_info ssip;
	struct hsi_board_info cmtspeech;

	np = dev->of_node;
	if (!np) {
		dev_err(dev, "device tree node not found\n");
		return -ENXIO;
	}

	modem = devm_kzalloc(dev, sizeof(*modem), GFP_KERNEL);
	if (!modem) {
		dev_err(dev, "Could not allocate memory for nokia_modem_device\n");
		return -ENOMEM;
	}
	dev_set_drvdata(dev, modem);
	modem->device = dev;

	irq = irq_of_parse_and_map(np, 0);
	if (!irq) {
		dev_err(dev, "Invalid rst_ind interrupt (%d)\n", irq);
		return -EINVAL;
	}
	modem->nokia_modem_rst_ind_irq = irq;
	pflags = irq_get_trigger_type(irq);

	tasklet_init(&modem->nokia_modem_rst_ind_tasklet,
			do_nokia_modem_rst_ind_tasklet, (unsigned long)modem);
	err = devm_request_irq(dev, irq, nokia_modem_rst_ind_isr,
				pflags, "modem_rst_ind", modem);
	if (err < 0) {
		dev_err(dev, "Request rst_ind irq(%d) failed (flags %d)\n",
								irq, pflags);
		return err;
	}
	enable_irq_wake(irq);

	if(pm) {
		err = nokia_modem_gpio_probe(dev);
		if (err < 0) {
			dev_err(dev, "Could not probe GPIOs\n");
			goto error1;
		}
	}

	ssip.name = "ssi-protocol";
	ssip.tx_cfg = cl->tx_cfg;
	ssip.rx_cfg = cl->rx_cfg;
	ssip.platform_data = NULL;
	ssip.archdata = NULL;

	modem->ssi_protocol = hsi_new_client(port, &ssip);
	if (!modem->ssi_protocol) {
		dev_err(dev, "Could not register ssi-protocol device\n");
		err = -ENOMEM;
		goto error2;
	}

	err = device_attach(&modem->ssi_protocol->device);
	if (err == 0) {
		dev_dbg(dev, "Missing ssi-protocol driver\n");
		err = -EPROBE_DEFER;
		goto error3;
	} else if (err < 0) {
		dev_err(dev, "Could not load ssi-protocol driver (%d)\n", err);
		goto error3;
	}

	cmtspeech.name = "cmt-speech";
	cmtspeech.tx_cfg = cl->tx_cfg;
	cmtspeech.rx_cfg = cl->rx_cfg;
	cmtspeech.platform_data = NULL;
	cmtspeech.archdata = NULL;

	modem->cmt_speech = hsi_new_client(port, &cmtspeech);
	if (!modem->cmt_speech) {
		dev_err(dev, "Could not register cmt-speech device\n");
		err = -ENOMEM;
		goto error3;
	}

	err = device_attach(&modem->cmt_speech->device);
	if (err == 0) {
		dev_dbg(dev, "Missing cmt-speech driver\n");
		err = -EPROBE_DEFER;
		goto error4;
	} else if (err < 0) {
		dev_err(dev, "Could not load cmt-speech driver (%d)\n", err);
		goto error4;
	}

	dev_info(dev, "Registered Nokia HSI modem\n");

	return 0;

error4:
	hsi_remove_client(&modem->cmt_speech->device, NULL);
error3:
	hsi_remove_client(&modem->ssi_protocol->device, NULL);
error2:
	nokia_modem_gpio_unexport(dev);
error1:
	disable_irq_wake(modem->nokia_modem_rst_ind_irq);
	tasklet_kill(&modem->nokia_modem_rst_ind_tasklet);

	return err;
}
Example #23
0
static int pmc_probe(struct platform_device *ofdev)
{
	const struct of_device_id *match;
	struct device_node *np = ofdev->dev.of_node;
	struct resource res;
	const struct pmc_type *type;
	int ret = 0;

	match = of_match_device(pmc_match, &ofdev->dev);
	if (!match)
		return -EINVAL;

	type = match->data;

	if (!of_device_is_available(np))
		return -ENODEV;

	has_deep_sleep = type->has_deep_sleep;
	immrbase = get_immrbase();
	pmc_dev = ofdev;

	is_pci_agent = mpc83xx_is_pci_agent();
	if (is_pci_agent < 0)
		return is_pci_agent;

	ret = of_address_to_resource(np, 0, &res);
	if (ret)
		return -ENODEV;

	pmc_irq = irq_of_parse_and_map(np, 0);
	if (pmc_irq != NO_IRQ) {
		ret = request_irq(pmc_irq, pmc_irq_handler, IRQF_SHARED,
		                  "pmc", ofdev);

		if (ret)
			return -EBUSY;
	}

	pmc_regs = ioremap(res.start, sizeof(struct mpc83xx_pmc));

	if (!pmc_regs) {
		ret = -ENOMEM;
		goto out;
	}

	ret = of_address_to_resource(np, 1, &res);
	if (ret) {
		ret = -ENODEV;
		goto out_pmc;
	}

	clock_regs = ioremap(res.start, sizeof(struct mpc83xx_pmc));

	if (!clock_regs) {
		ret = -ENOMEM;
		goto out_pmc;
	}

	if (has_deep_sleep) {
		syscr_regs = ioremap(immrbase + IMMR_SYSCR_OFFSET,
				     sizeof(*syscr_regs));
		if (!syscr_regs) {
			ret = -ENOMEM;
			goto out_syscr;
		}
	}

	if (is_pci_agent)
		mpc83xx_set_agent();

	suspend_set_ops(&mpc83xx_suspend_ops);
	return 0;

out_syscr:
	iounmap(clock_regs);
out_pmc:
	iounmap(pmc_regs);
out:
	if (pmc_irq != NO_IRQ)
		free_irq(pmc_irq, ofdev);

	return ret;
}
Example #24
0
void __init tegra_init_timer(struct device_node *np)
{
	struct clk *clk;
	int ret;
	unsigned long rate;
	struct resource res;

	if (of_address_to_resource(np, 0, &res)) {
		pr_err("%s:No memory resources found\n", __func__);
		return;
	}

	timer_reg_base = ioremap(res.start, resource_size(&res));
	if (!timer_reg_base) {
		pr_err("%s:Can't map timer registers\n", __func__);
		BUG();
	}
	timer_reg_base_pa = res.start;

	tegra_timer_irq.irq = irq_of_parse_and_map(np, 0);
	if (tegra_timer_irq.irq <= 0) {
		pr_err("%s:Failed to map timer IRQ\n", __func__);
		BUG();
	}

	clk = of_clk_get(np, 0);
	if (IS_ERR(clk))
		clk = clk_get_sys("timer", NULL);

	if (IS_ERR(clk)) {
		pr_warn("Unable to get timer clock. Assuming 12Mhz input clock.\n");
		rate = 12000000;
	} else {
		clk_prepare_enable(clk);
		rate = clk_get_rate(clk);
	}

	switch (rate) {
	case 12000000:
		timer_writel(0x000b, TIMERUS_USEC_CFG);
		break;
	case 12800000:
		timer_writel(0x043F, TIMERUS_USEC_CFG);
		break;
	case 13000000:
		timer_writel(0x000c, TIMERUS_USEC_CFG);
		break;
	case 19200000:
		timer_writel(0x045f, TIMERUS_USEC_CFG);
		break;
	case 26000000:
		timer_writel(0x0019, TIMERUS_USEC_CFG);
		break;
#ifndef CONFIG_ARCH_TEGRA_2x_SOC
	case 16800000:
		timer_writel(0x0453, TIMERUS_USEC_CFG);
		break;
	case 38400000:
		timer_writel(0x04BF, TIMERUS_USEC_CFG);
		break;
	case 48000000:
		timer_writel(0x002F, TIMERUS_USEC_CFG);
		break;
#endif
	default:
		if (tegra_platform_is_qt()) {
			timer_writel(0x000c, TIMERUS_USEC_CFG);
			break;
		}
		WARN(1, "Unknown clock rate");
	}


#ifdef CONFIG_PM_SLEEP
	hotplug_cpu_register(np);
#endif
	of_node_put(np);
#ifdef CONFIG_ARCH_TEGRA_2x_SOC
	tegra20_init_timer();
#else
	tegra30_init_timer();
#endif

	ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US,
		"timer_us", 1000000, 300, 32,
		clocksource_mmio_readl_up);
	if (ret) {
		pr_err("%s: Failed to register clocksource: %d\n",
			__func__, ret);
		BUG();
	}

	ret = setup_irq(tegra_timer_irq.irq, &tegra_timer_irq);
	if (ret) {
		pr_err("%s: Failed to register timer IRQ: %d\n",
			__func__, ret);
		BUG();
	}

	clockevents_calc_mult_shift(&tegra_clockevent, 1000000, 5);
	tegra_clockevent.max_delta_ns =
		clockevent_delta2ns(0x1fffffff, &tegra_clockevent);
	tegra_clockevent.min_delta_ns =
		clockevent_delta2ns(0x1, &tegra_clockevent);
	tegra_clockevent.cpumask = cpu_all_mask;
	tegra_clockevent.irq = tegra_timer_irq.irq;
	clockevents_register_device(&tegra_clockevent);

#ifndef CONFIG_ARM64
#ifdef CONFIG_ARM_ARCH_TIMER
	/* Architectural timers take precedence over broadcast timers.
	   Only register a broadcast clockevent device if architectural
	   timers do not exist or cannot be initialized. */
	if (tegra_init_arch_timer())
#endif
		/* Architectural timers do not exist or cannot be initialzied.
		   Fall back to using the broadcast timer as the sched clock. */
		setup_sched_clock(tegra_read_sched_clock, 32, 1000000);
#endif

	register_syscore_ops(&tegra_timer_syscore_ops);

#ifndef CONFIG_ARM64
	late_time_init = tegra_init_late_timer;
#endif

	//arm_delay_ops.delay		= __tegra_delay;
	//arm_delay_ops.const_udelay	= __tegra_const_udelay;
	//arm_delay_ops.udelay		= __tegra_udelay;
}
Example #25
0
static int uec_mdio_probe(struct of_device *ofdev, const struct of_device_id *match)
{
	struct device *device = &ofdev->dev;
	struct device_node *np = ofdev->node, *tempnp = NULL;
	struct device_node *child = NULL;
	struct ucc_mii_mng __iomem *regs;
	struct mii_bus *new_bus;
	struct resource res;
	int k, err = 0;

	new_bus = kzalloc(sizeof(struct mii_bus), GFP_KERNEL);

	if (NULL == new_bus)
		return -ENOMEM;

	new_bus->name = "UCC Ethernet Controller MII Bus";
	new_bus->read = &uec_mdio_read;
	new_bus->write = &uec_mdio_write;
	new_bus->reset = &uec_mdio_reset;

	memset(&res, 0, sizeof(res));

	err = of_address_to_resource(np, 0, &res);
	if (err)
		goto reg_map_fail;

	new_bus->id = res.start;

	new_bus->irq = kmalloc(32 * sizeof(int), GFP_KERNEL);

	if (NULL == new_bus->irq) {
		err = -ENOMEM;
		goto reg_map_fail;
	}

	for (k = 0; k < 32; k++)
		new_bus->irq[k] = PHY_POLL;

	while ((child = of_get_next_child(np, child)) != NULL) {
		int irq = irq_of_parse_and_map(child, 0);
		if (irq != NO_IRQ) {
			const u32 *id = of_get_property(child, "reg", NULL);
			new_bus->irq[*id] = irq;
		}
	}

	/* Set the base address */
	regs = ioremap(res.start, sizeof(struct ucc_mii_mng));

	if (NULL == regs) {
		err = -ENOMEM;
		goto ioremap_fail;
	}

	new_bus->priv = (void __force *)regs;

	new_bus->dev = device;
	dev_set_drvdata(device, new_bus);

	/* Read MII management master from device tree */
	while ((tempnp = of_find_compatible_node(tempnp, "network", "ucc_geth"))
	       != NULL) {
		struct resource tempres;

		err = of_address_to_resource(tempnp, 0, &tempres);
		if (err)
			goto bus_register_fail;

		/* if our mdio regs fall within this UCC regs range */
		if ((res.start >= tempres.start) &&
		    (res.end <= tempres.end)) {
			/* set this UCC to be the MII master */
			const u32 *id = of_get_property(tempnp, "device-id", NULL);
			if (id == NULL)
				goto bus_register_fail;

			ucc_set_qe_mux_mii_mng(*id - 1);

			/* assign the TBI an address which won't
			 * conflict with the PHYs */
			out_be32(&regs->utbipar, UTBIPAR_INIT_TBIPA);
			break;
		}
	}

	err = mdiobus_register(new_bus);
	if (0 != err) {
		printk(KERN_ERR "%s: Cannot register as MDIO bus\n",
		       new_bus->name);
		goto bus_register_fail;
	}

	return 0;

bus_register_fail:
	iounmap(regs);
ioremap_fail:
	kfree(new_bus->irq);
reg_map_fail:
	kfree(new_bus);

	return err;
}
Example #26
0
static void __init mpc8xxx_add_controller(struct device_node *np)
{
	struct mpc8xxx_gpio_chip *mpc8xxx_gc;
	struct of_mm_gpio_chip *mm_gc;
	struct gpio_chip *gc;
	const struct of_device_id *id;
	unsigned hwirq;
	int ret;

	mpc8xxx_gc = kzalloc(sizeof(*mpc8xxx_gc), GFP_KERNEL);
	if (!mpc8xxx_gc) {
		ret = -ENOMEM;
		goto err;
	}

	spin_lock_init(&mpc8xxx_gc->lock);

	mm_gc = &mpc8xxx_gc->mm_gc;
	gc = &mm_gc->gc;

	mm_gc->save_regs = mpc8xxx_gpio_save_regs;
	gc->ngpio = MPC8XXX_GPIO_PINS;
	gc->direction_input = mpc8xxx_gpio_dir_in;
	gc->direction_output = of_device_is_compatible(np, "fsl,mpc5121-gpio") ?
		mpc5121_gpio_dir_out : mpc8xxx_gpio_dir_out;
	gc->get = of_device_is_compatible(np, "fsl,mpc8572-gpio") ?
		mpc8572_gpio_get : mpc8xxx_gpio_get;
	gc->set = mpc8xxx_gpio_set;
	gc->to_irq = mpc8xxx_gpio_to_irq;

	ret = of_mm_gpiochip_add(np, mm_gc);
	if (ret)
		goto err;

	hwirq = irq_of_parse_and_map(np, 0);
	if (hwirq == NO_IRQ)
		goto skip_irq;

	mpc8xxx_gc->irq = irq_domain_add_linear(np, MPC8XXX_GPIO_PINS,
					&mpc8xxx_gpio_irq_ops, mpc8xxx_gc);
	if (!mpc8xxx_gc->irq)
		goto skip_irq;

	id = of_match_node(mpc8xxx_gpio_ids, np);
	if (id)
		mpc8xxx_gc->of_dev_id_data = id->data;

	/* ack and mask all irqs */
	out_be32(mm_gc->regs + GPIO_IER, 0xffffffff);
	out_be32(mm_gc->regs + GPIO_IMR, 0);

	irq_set_handler_data(hwirq, mpc8xxx_gc);
	irq_set_chained_handler(hwirq, mpc8xxx_gpio_irq_cascade);

skip_irq:
	return;

err:
	pr_err("%s: registration failed with status %d\n",
	       np->full_name, ret);
	kfree(mpc8xxx_gc);

	return;
}
Example #27
0
static int tdm_fsl_probe(struct platform_device *ofdev)
{
	int ret = 0;
	struct tdm_priv *priv;
	struct resource res;

	priv = kzalloc(sizeof(struct tdm_priv), GFP_KERNEL);
	if (!priv) {
		ret = -ENOMEM;
		goto err_alloc;
	}

	dev_set_drvdata(&ofdev->dev, priv);
	priv->device = &ofdev->dev;
	ret = of_address_to_resource(ofdev->dev.of_node, 0, &res);
	if (ret) {
		ret = -EINVAL;
		goto err_resource;
	}

	priv->ptdm_base = (u32)res.start;
	priv->tdm_regs = of_iomap(ofdev->dev.of_node, 0);
	if (!priv->tdm_regs) {
		ret = -ENOMEM;
		goto err_tdmregs;
	}

	priv->dmac_regs = of_iomap(ofdev->dev.of_node, 1);
	if (!priv->dmac_regs) {
		ret = -ENOMEM;
		goto err_dmacreg;
	}

	/* tdmrd tmdtd at immrbar+0x16100 */
	priv->data_regs =
	    (struct tdm_data *)(TDM_DATAREG_OFFSET + (u8 *)priv->tdm_regs);
	/* TDMCLK_DIV_VAL_RX/TX at TDMBASE+0x180 */
	priv->clk_regs =
	    (struct tdm_clock *)(TDM_CLKREG_OFFSET + (u8 *)priv->tdm_regs);

	priv->dmac_done_intr = irq_of_parse_and_map(ofdev->dev.of_node, 0);
	if (priv->dmac_done_intr ==  NO_IRQ) {
		ret = -EINVAL;
		goto err_dmacdone_irqmap;
	}
	ret =
	    request_irq(priv->dmac_done_intr, dmac_done_isr, 0, "dmac_done_isr",
			priv);
	if (ret)
		goto err_dmacdoneisr;


	priv->adap = &tdm_fsl_ops;

	/* Wait q initilization */
	priv->adap->tdm_rx_flag = 0;
	/* todo - these should be configured by dts or init time */
	tdm_set_adapdata(priv->adap, priv);
	priv->adap->parent = &ofdev->dev;

	ret = tdm_add_adapter(priv->adap);
	if (ret < 0) {
		dev_err(priv->device, "failed to add adapter\n");
		goto fail_adapter;
	}


	ret = init_tdm(priv);
	if (ret)
		goto err_tdminit;

	ret = tdm_fsl_reg_init(priv);
	if (ret)
		goto err_tdminit;

	spin_lock_init(&priv->tdmlock);
	spin_lock(&priv->tdmlock);
	priv->tdm_active = 0;
	spin_unlock(&priv->tdmlock);

	if (tdmen) {
		ret = tdm_fsl_enable(priv->adap);
		if (!ret)
			goto err_tdminit;
	}

	return 0;

err_tdminit:
fail_adapter:
	free_irq(priv->dmac_done_intr, priv);
err_dmacdoneisr:
	free_irq(priv->tdm_err_intr, priv);
err_dmacdone_irqmap:
	irq_dispose_mapping(priv->dmac_done_intr);
err_dmacreg:
	iounmap(priv->dmac_regs);
err_tdmregs:
err_resource:
	dev_set_drvdata(&ofdev->dev, NULL);
	kfree(priv);
err_alloc:
	return ret;
}
Example #28
0
static int __devinit
mpc52xx_ata_probe(struct of_device *op, const struct of_device_id *match)
{
	unsigned int ipb_freq;
	struct resource res_mem;
	int ata_irq;
	struct mpc52xx_ata __iomem *ata_regs;
	struct mpc52xx_ata_priv *priv;
	int rv;

	/* Get ipb frequency */
	ipb_freq = mpc52xx_find_ipb_freq(op->node);
	if (!ipb_freq) {
		printk(KERN_ERR DRV_NAME ": "
			"Unable to find IPB Bus frequency\n" );
		return -ENODEV;
	}

	/* Get IRQ and register */
	rv = of_address_to_resource(op->node, 0, &res_mem);
	if (rv) {
		printk(KERN_ERR DRV_NAME ": "
			"Error while parsing device node resource\n" );
		return rv;
	}

	ata_irq = irq_of_parse_and_map(op->node, 0);
	if (ata_irq == NO_IRQ) {
		printk(KERN_ERR DRV_NAME ": "
			"Error while mapping the irq\n");
		return -EINVAL;
	}

	/* Request mem region */
	if (!devm_request_mem_region(&op->dev, res_mem.start,
				     sizeof(struct mpc52xx_ata), DRV_NAME)) {
		printk(KERN_ERR DRV_NAME ": "
			"Error while requesting mem region\n");
		rv = -EBUSY;
		goto err;
	}

	/* Remap registers */
	ata_regs = devm_ioremap(&op->dev, res_mem.start,
				sizeof(struct mpc52xx_ata));
	if (!ata_regs) {
		printk(KERN_ERR DRV_NAME ": "
			"Error while mapping register set\n");
		rv = -ENOMEM;
		goto err;
	}

	/* Prepare our private structure */
	priv = devm_kzalloc(&op->dev, sizeof(struct mpc52xx_ata_priv),
			    GFP_ATOMIC);
	if (!priv) {
		printk(KERN_ERR DRV_NAME ": "
			"Error while allocating private structure\n");
		rv = -ENOMEM;
		goto err;
	}

	priv->ipb_period = 1000000000 / (ipb_freq / 1000);
	priv->ata_regs = ata_regs;
	priv->ata_irq = ata_irq;
	priv->csel = -1;

	/* Init the hw */
	rv = mpc52xx_ata_hw_init(priv);
	if (rv) {
		printk(KERN_ERR DRV_NAME ": Error during HW init\n");
		goto err;
	}

	/* Register ourselves to libata */
	rv = mpc52xx_ata_init_one(&op->dev, priv, res_mem.start);
	if (rv) {
		printk(KERN_ERR DRV_NAME ": "
			"Error while registering to ATA layer\n");
		return rv;
	}

	/* Done */
	return 0;

	/* Error path */
err:
	irq_dispose_mapping(ata_irq);
	return rv;
}
static int __devinit mpc52xx_lpbfifo_probe(struct platform_device *op)
{
	struct resource res;
	int rc = -ENOMEM;

	if (lpbfifo.dev != NULL)
		return -ENOSPC;

	lpbfifo.irq = irq_of_parse_and_map(op->dev.of_node, 0);
	if (!lpbfifo.irq)
		return -ENODEV;

	if (of_address_to_resource(op->dev.of_node, 0, &res))
		return -ENODEV;
	lpbfifo.regs_phys = res.start;
	lpbfifo.regs = of_iomap(op->dev.of_node, 0);
	if (!lpbfifo.regs)
		return -ENOMEM;

	spin_lock_init(&lpbfifo.lock);

	/*                     */
	out_be32(lpbfifo.regs + LPBFIFO_REG_ENABLE, 0x01010000);

	/*                                */
	rc = request_irq(lpbfifo.irq, mpc52xx_lpbfifo_irq, 0,
			 "mpc52xx-lpbfifo", &lpbfifo);
	if (rc)
		goto err_irq;

	/*                                                             */
	lpbfifo.bcom_rx_task =
		bcom_gen_bd_rx_init(2, res.start + LPBFIFO_REG_FIFO_DATA,
				    BCOM_INITIATOR_SCLPC, BCOM_IPR_SCLPC,
				    16*1024*1024);
	if (!lpbfifo.bcom_rx_task)
		goto err_bcom_rx;

	rc = request_irq(bcom_get_task_irq(lpbfifo.bcom_rx_task),
			 mpc52xx_lpbfifo_bcom_irq, 0,
			 "mpc52xx-lpbfifo-rx", &lpbfifo);
	if (rc)
		goto err_bcom_rx_irq;

	lpbfifo.dma_irqs_enabled = 1;

	/*                                                              */
	lpbfifo.bcom_tx_task =
		bcom_gen_bd_tx_init(2, res.start + LPBFIFO_REG_FIFO_DATA,
				    BCOM_INITIATOR_SCLPC, BCOM_IPR_SCLPC);
	if (!lpbfifo.bcom_tx_task)
		goto err_bcom_tx;

	lpbfifo.dev = &op->dev;
	return 0;

 err_bcom_tx:
	free_irq(bcom_get_task_irq(lpbfifo.bcom_rx_task), &lpbfifo);
 err_bcom_rx_irq:
	bcom_gen_bd_rx_release(lpbfifo.bcom_rx_task);
 err_bcom_rx:
 err_irq:
	iounmap(lpbfifo.regs);
	lpbfifo.regs = NULL;

	dev_err(&op->dev, "mpc52xx_lpbfifo_probe() failed\n");
	return -ENODEV;
}
Example #30
0
static int __init xilinx_iic_probe(struct of_device *of_dev,
				   const struct of_device_id *match)
{
	XIic_Config xiic_cfg;
	struct xiic_data *dev;
	char *scan_results;
	struct resource mem;
	struct device_node *dev_node = of_dev->node;
	int error;
	const u32 *did;

	/* Allocate the dev and zero it out. */
	dev = kzalloc(sizeof(struct xiic_data), SLAB_KERNEL);
	if (!dev) {
		dev_err(&of_dev->dev, "Cannot allocate struct xiic_data\n");
		error = -ENOMEM;
		goto out2;
	}

	dev_set_drvdata(&of_dev->dev, dev);

	/* get resources from device tree */
	dev->irq = irq_of_parse_and_map(dev_node, 0);
	if (dev->irq == 0 /* NOIRQ */ ) {
		error = -ENODEV;
		goto out;
	}

	if (of_address_to_resource(dev_node, 0, &mem)) {
		error = -ENODEV;
		goto out;
	}

	/* initialize fields to satisfy i2c  */
	strcpy(dev->adap.name, of_dev->dev.bus_id);

	did = of_get_property(dev_node, "index", NULL);
	if (did == NULL) {
		printk
		    ("%s: Can not get device index from device tree, assume 0\n",
		     __FUNCTION__);
		dev->index = 0;
	} else
		dev->index = *did;

	init_completion(&dev->complete);

	memset(&xiic_cfg, 0, sizeof(XIic_Config));
	xiic_cfg.DeviceId = dev->index;

	/* Change the addresses to be virtual; save the old ones to restore. */
	dev->base = mem.start;
	xiic_cfg.BaseAddress =
	    (u32) ioremap(mem.start, mem.end - mem.start + 1);

	dev->remapped = 1;
	down(&cfg_sem);

	/* Tell the Xilinx code to bring this IIC interface up. */
	if (XIic_CfgInitialize(&dev->Iic, &xiic_cfg, xiic_cfg.BaseAddress) !=
	    XST_SUCCESS) {
		up(&cfg_sem);
		dev_err(&of_dev->dev, "could not initialize device.\n");
		error = -ENODEV;
		goto out;
	}
	up(&cfg_sem);
	XIic_SetRecvHandler(&dev->Iic, (void *)dev, RecvHandler);
	XIic_SetSendHandler(&dev->Iic, (void *)dev, SendHandler);
	XIic_SetStatusHandler(&dev->Iic, (void *)dev, StatusHandler);

	/* Grab the IRQ */
	error = request_irq(dev->irq, xiic_interrupt, 0, dev->adap.name, dev);
	if (error) {
		dev_err(&of_dev->dev, "could not allocate interrupt %d.\n",
			dev->irq);
		goto out;
	}
	dev->reqirq = 1;

	if (XIic_Start(&dev->Iic) != XST_SUCCESS) {
		dev_err(&of_dev->dev, "could not start device\n");
		error = -ENODEV;
		goto out;
	}
	dev->started = 1;

	/* Now tell the core I2C code about our new device. */
	/*
	 * SAATODO: Get a real ID (perhaps I2C_HW_XILINX) after
	 * initial release.  Will need to email [email protected]
	 * per http://www2.lm-sensors.nu/~lm78/support.html
	 */
	dev->adap.id = I2C_DRIVERID_I2CDEV;
	dev->adap.algo = &xiic_algo;
	dev->adap.algo_data = NULL;
	dev->adap.timeout = XIIC_TIMEOUT;
	dev->adap.retries = XIIC_RETRY;
	error = i2c_add_adapter(&dev->adap);

	if (error) {
		dev_err(&of_dev->dev, "could not add i2c adapter\n");
		goto out;
	}
	dev->added = 1;

	printk("%s #%d at 0x%08X mapped to 0x%08X, irq=%d\n",
	       dev->adap.name, dev->index,
	       dev->base, dev->Iic.BaseAddress, dev->irq);

	if (scan) {
		scan_results = xilinx_iic_do_scan(dev);
		if (scan_results) {
			printk(scan_results);
			kfree(scan_results);
		}
	}

	device_create_file(&of_dev->dev, &dev_attr_scan);
      out:
	if (error)
		xilinx_iic_remove(of_dev);
      out2:
	return error;
}